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Probabilistic Algorithms for Speedup

Joan Feigenbaum and Jeffrey C. Lagarias

Abstract. This article surveys situations in which probabilistic algo-
rithms offer speedup over what is possible using deterministic algo-
rithms, either in practice or in principle.
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1. INTRODUCTION

One of the most compelling reasons to use random-
ized algorithms is that they permit certain problems
to be solved faster than is possible by deterministic
methods.

One pays a price for such speedup, namely the possi-
bility of occasional very long computations or of occa-
sional errors in the computation. The amount of
possible speedup may depend on whether the algorithm
is required to give either a correct answer or no answer
or it is permitted to give incorrect answers.

Section 2 describes a formal version of such ques-
tions from the viewpoint of computational complexity
theory, in terms of probabilistic complexity classes.
The question of whether probabilistic algorithms can
give a superpolynomial speedup over deterministic al-
gorithms is restated there as the unsolved problem,
does P # BPP? Thus it is unresolved whether or not
speedup exists, and settling this question is likely
to be as hard as the notorious P # NP? problem of
complexity theory.

There is a weaker sense in which probabilistic algo-
rithms currently offer advantages over deterministic
ones. There exist problems for which the fastest known
algorithm is probabilistic and problems for which at
present the fastest fully analyzable algorithm is proba-
bilistic. Here the situation reflects the current limita-
tions on our knowledge. Section 3 describes examples
of such problems from number theory, such as pri-
mality testing and factorization. In both cases, at pres-
ent, the best fully analyzed algorithms are probabilistic
ones.

Probabilistic algorithms give a demonstrable speedup

Joan Feigenbaum is a Member of the Technical Staff,
Computing Principles Research Department. Jeffrey C.
Lagarias is a Distinguished Member of Technical Staff,
Mathematical Sciences Research Center, AT&T Bell
Laboratories, 600 Mountain Avenue, Murray Hill, New
Jersey 07974.

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
Statistical Science. MIKORS ®

20

in the exchange of information among several people,
each having partial information to begin with. This
is the subject matter of communication complexity. It
plays an important role in distributed computing, in
which exchange of information among the processors
is an important part of the computational task. Com-
munication complexity results are described in Sec-
tion 4.

2. PROBABILISTIC COMPLEXITY CLASSES

The theoretical possibility of speedup has been for-
malized in computational complexity theory with the
notion of probabilistic complexity classes; these clas-
sify computational problems according to the running
times and types of error allowed by probabilistic algo-
rithms. Here we define several of these complexity
classes.

The model of computation used is a probabilistic
Turing machine. This is a Turing machine that has an
extra “random” tape containing a random string of
zeros and ones that can be read as necessary. A probabi-
listic polynomial-time Turing machine (PPTM) is such
a machine equipped with a clock that, when given an
input of n bits, always halts after p(n) steps, where p
is a fixed polynomial. The performance of such ma-
chines is averaged over the uniform distribution of all
random bits read by the machine. (At most p(n) random
bits are read during the computation on an n-bit input.)
The computational problems considered are those of
recognizing a language £ < {0, 1}*, where {0, 1}* de-
notes the set of all finite strings of zeros and ones.
For example, £ might consist of all prime numbers,
expressed using their binary representations.

We say that £ is in the complexity class BPP (bound-
ed-error-probability polynomial time) if there is a
PPTM that, given x € £, outputs “x € £” with probabil-
ity at least 3/4, where probability is computed over all
random tapes for the fixed input x, and given x ¢ £
outputs “x ¢ £” with probability at least 3/4 similarly.
In this complexity class, two-sided classification errors
are allowed: The machine may output “x € £” when in
fact x ¢ £ and vice versa. Note that any problem in
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BPP is solvable by a PPTM for which the error proba-
bility is exponentially 'small. The new PPTM repeats
the test for x € {0, 1}* on the old PPTM #n times using
independent random bits each time and then takes a
majority vote on the n outputs to decide whether x €
£; the error probability for the new PPTM is less than
(3/4)2,

We say that £ is in the complexity class RP (random
polynomial time) if there is a PPTM that, when given
an input x € £, outputs “x € £” at least 3/4 of the time
and, when given an input x ¢ £, always outputs “x ¢
£. That is, only one-sided error is allowed. We say
that £ is in the complementary complexity class co-RP
(co-random polynomial time) if there is a PPTM that,
when given an input x ¢ £, outputs “x ¢ £ at least
3/4 of the time and, when given an input x € £, always
outputs “x € £.”

Finally, we say £ is in ZPP (zero-error-probability
polynomial time) if £ is both RP and co-RP. In this
case, when the PPTM outputs either “x € £” or “x ¢ £,
it is correct, but it is allowed to give no output for a
small fraction of the random tapes.

The complexity class BPP is closed under comple-
mentation, and we have the following inclusions shown
in Figure 1, where P denotes the set of (deterministic)
polynomial-time recognizable languages.

In this framework, it is unknown whether probabilis-
tic algorithms ever give a superpolynomial speedup,
that is, whether there are any languages in BPP that
are not in P. Yao (1982) announced a converse result
suggesting that at most a subexponential speedup is
possible.

TaeorREM 1 (Yao, 1982). If there exists a uniform
secure polynomial pseudorandom bit generator, then

BPP c N DTIME (2.
e>0

For elaboration of the notion of uniform secure polyno-
mial pseudorandom bit generator, one can consult the
article by Lagarias that appears in this issue, and for
a proof of Yao’s theorem, one can consult Boppana and
» Hirschfeld (1989). Several researchers, most recently
Babai et al. (1991), have since improved the result by
showing that the same conclusion follows from weaker
hypotheses.
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Fic. 1. Relationships between complexity classes.

A detailed discussion of probabilistic complexity
classes is given in Johnson (1990) and Zachos (1988).

3. PROBABILISTIC ALGORITHMS IN NUMBER
THEORY: FACTORING AND PRIMALITY TESTING

The primality testing problem is that of determining
whether an integer N is prime or composite, and the
factoring problem is that of finding all the prime factors
of N. These are two of the most basic computational
problems in number theory.

The primality testing and factoring problems have
the added practical significance of playing complemen-
tary roles in the RSA cryptosystem, which is the cur-
rent best candidate for public key cryptography and
for digital signatures. The practicality of constructing
RSA ciphers depends on primality testing’s being easy
to do, whereas the security of the cipher depends on
the apparent difficulty of factoring large numbers.

At present, the fastest known fully analyzed algo-
rithms for both primality testing and factoring are
probabilistic.

Theoretical and practical progress in primality test-
ing has been rapid since 1977. Analysis of various
primality testing algorithms led to study of the com-
plexity classes described in Section 2.

Most methods of primality testing are based on
variants of Fermat’s little theorem, which asserts that
if N is prime, then

(1) a1 =1 (modN)

if N does not divide a. Most composite numbers have
many residues a (mod N) for which a"~! # 1 (mod N);
hence a test for probable primality is to test whether
a’! = 1 (mod N) for many random a. Unfortunately,
there exist composite numbers N for which oV~ ! =
1 (mod N) if (a, N) = 1; these are called pseudoprimes.
Refinements of the condition (1) can be used to rule
out pseudoprimes, either probabilistically or determin-
istically.

The primality testing problem is believed by many
to be solvable in polynomial time. In fact, Miller (1976)
proposed a deterministic algorithm believed to have
this property:

Miller's Primality Test

Given N = 1 (mod 2), find the largest 2* exactly
dividing N — 1.
For 1 < a < 10 (log N)? do:
Is a¥! = 1 (mod N)? If not, output “N composite.”
Forl <j < k,do
Is a¥ V¥ £ +1 (mod N)? If so, output “N com-
posite.”
Is a¥ Y% = —1 (mod N)? If so, exit loop.
continue
continue.
Output “N prime.”
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Note that a¥~! (mod N) may be computed in polynomial
time by expanding N"in binary and computing a¥
(mod N) by repeated squaring and reduction (mod N),
so this is a polynomial-time algorithm. Miller proved
that this algorithm is always correct when it outputs
“N composite” and that, assuming the truth of the
extended Riemann hypothesis (ERH), it is correct
when it outputs “N prime.” However, because the ERH
is unproven, it is currently not actually known to be a
primality test.

Probabilistic analogs of this algorithm were devel-
oped by Solovay and Strassen (1977) and Rabin (1980):

Solovay-Strassen Primality Test

Given N = 1 (mod 2), find the largest 2* exactly
dividing N — 1.
Draw a at random from [1, N — 1].
Isa”~! = 1 (mod N)? If not, output “N composite.”
Forl <j < k,do '
Is a¥ Y% % +1 (mod N)? If so, output “N com-
posite.”
Is a¥ 1% = —1 (mod N)? If so, exit loop.
continue.
Output “N prime.”

They proved that, if N is composite, this test outputs
“N is composite” with probability at least 3/4 and, if N
is prime, it always outputs “N is prime.” This shows
that Primes = £ € co-RP. By repeating the test
(log N)? times, the probability of error can be made
exponentially small.

The drawback of the Solovay-Strassen test is that
it does not guarantee that N is prime when it outputs
“N prime”; that is, it provides no proof of primality.

This situation was partially remedied by Goldwasser
and Kilian (1986). They gave a probabilistic algorithm
that counts points on “random” elliptic curves (mod N),
and they proved that for almost all primes p it finds
in probabilistic polynomial time a proof that p is prime.
However, they could not rule out the possibility of the
existence of a small set of “exceptional” p for which
‘there was no proof of the kind they searched for. Re-
cently, Adleman and Huang (1987) announced a proof
that Primes € RP. Their result is technically difficult
and proceeds by counting points on “random” Abelian
varieties (mod p) of certain types. Taken together with
the Solovay-Strassen result, it shows that Primes €
ZPP.

In contrast, the fastest fully analyzed deterministic
primality testing algorithm is due to Adleman, Pomer-
ance and Rumely (1983). It tests N for primality in
time O((log N)o'eleleN) for a certain positive con-
stant co.

For the factoring problem, all known algorithms,
whether probabilistic or deterministic, require super-
polynomial time. The fastest fully analyzed determinis-

tic algorithm for factoring N, due to Pollard (1974),
has the exponential running-time bound O(N/4*¢),

The algorithms used in practice for factoring large
numbers are probabilistic in nature. The basic ap-
proach of most of them is to find solutions to X* =
Y2 (mod N) and hope that (X + ¥, N) is a nontrivial
factor of N. This is done by generating probabilistically
many pairs (X, a;) with X? = a; (mod N), where the a/’s
are not squares, and then finding a product of the as
that is a square by an auxiliary method. The basic
approach is to consider only a/s having all prime fac-
tors less than a bound y; such numbers are called
y-smooth. Those a/s that do not have this property are
discarded. Then the y-smooth a;’s are factored

a= ]I pj.
pji<y

Now if sufficiently many such a/s are known, the ma-
trix [e;] considered over GF(2) must have a linear de-
pendency. The product of the a/'s corresponding to this
linear dependency is the desired square YZ, where X?
is the product of the corresponding X?. This approach
was first described in the Morrison and Brillhart (1975)
continued fraction method. Dixon (1981) gave a fully
analyzable version of the method. Let L = expl(log
n log log n)?). The Dixon algorithm uses y-smooth
numbers with y = L, for a small constant S.

Dixon’s Random Squares Factoring Algorithm

1. Test N for primality. If N is not prime, continue.

2. Randomly pick X; and compute the least positive
residue a; of X? (mod N).

3. Trial divide a; by all primes p; < LA If a; com-
pletely factors as

a= II pf
pj<
add (X;, a;, e;) to a list. Continue until the list has
L’ elements. ‘

4. The matrix [e;] is now linearly dependent over
GF(2). Compute a linear dependency, that is, a
set S of rows with

Z e; = 0 (mod 2) for all]
ieS

5. Set X = [[,.s Xi and Y2 =[], 5 a:. Then X* = Y?
(mod N). Test whether (X +Y, N) is a nontrivial
factor of N. If so, halt. If not, go to Step 2 and
repeat.

Here a dependency in the matrix [e;] is found using
Gaussian elimination over GF(2). Dixon (1981) showed
that the probability of finding a factor of a composite
N in one pass through this algorithm is at least 1/2.

The key to analysis of the algorithm is that the
probability that a random integer in [1, N]is Lf-smooth
is about L%, Dixon showed that a similar probability
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estimate holds for the a/s that are random quadratic

residues X?. Hence the expected time needed to gener-

ate the matrix [e;] is L#T"?), and the time needed to

Gaussian reduce the matrix [e;] is about L*. This is

minimized for = 1/2, and the algorithm takes time

O(L??*¢) and space O(L'*?) bits. This is Dixon’s result.
Note that this expected running time bound,

O<exp[<g + s)(logN log log N)WD,

is subexponential in N; that is, it represents a super-
polynomial speedup of the currently best fully analyzed
deterministic factoring algorithm.

Pomerance (1987) gives a refined variant of this prob-
abilistic algorithm that is rigorously proven to run in
expected time O(L+?), There are several other fac-
toring algorithms of a similar nature that are believed
to run in expected time O(L'*? (Lenstra and Lenstra,
1990; Pomerance, 1982), and one such algorithm for
which the bound O(L*¢) can be proven rigorously (Len-
stra and Pomerance, 1992).

More recently, a new factoring algorithm, the num-
ber field sieve, has been found that incorporates proba-
bilistic ideas and uses arithmetic in an auxiliary
algebraic number field to generate X2 = Y2 (mod N).
It appears to have running time Ofexp[(2 + &)(log N(log
log N)»)'3]} but is likely not to be fully analyzable. It
is particularly efficient for factoring numbers of special
form, such as x" + 2, and has already been used in
practice to factor a 158-digit number; a preliminary
description appears in Lenstra et al. (1990).

4. COMMUNICATION COMPLEXITY

Communication complexity studies variants of the fol-
lowing problem.

A Boolean function f is defined on a finite set X X Y.
Two persons, Px knowing x € X and Py knowing y €
Y, both want to know f(x, y). How many bits of informa-
‘tion do they need to exchange to do this?

This problem was proposed by Yao (1979). It is a
basic problem in distributed computation, where the
“persons” are processors, each possessing partial infor-
mation about the current state of the computation.

The worst-case (deterministic) communication com-
plexity C’D(f ) is defined as follows. Let ¢ be a determinis-
tic protocol describing a sequence of bit exchanges
between Px and Py that always computes f correctly.
Let l,(x, y) denote the number of bits exchanged using
¢ when Px knows x and Py knows y. The worst-case
communication complexity for the protocol ¢ is

C'D(f )o:= max [llx,y)],

(x,y)eX XY

and the worst-case deterministic communication com-
plexity for f is

Colf) := inf[Col(f)]

Randomized algorithms offer provable speedups for
some problems in communication complexity. Here one
allows protocols ¢ in which Px and Py each have access
to different sources of independent random bits. Let ¢
be a protocol computing f(x, y) with probability of error
at most ¢ for all (x, y). Let I,(x, y) denote the expected
number of bits needed by ¢ when Py knows x and Py
knows y, and define

CR(f )o:= max [Lix,y)]

(x,y)eXXY

The &-error randomized communication complexity is
Crlf, &) := inf[Cr(),],

where the infimum is computed over all protocols with
error probability at most ¢. We single out the zero-error
randomized communication complexity C'R(f, 0).

We describe two specific functions for which probabi-
listic computations give speedups. The first is the

equality function equ. Here X =Y ={1,2,..., n},
and
_ 1, ifx=y,
equlx,y) = {0, otherwise.

Yao (1979) showed that Cplequ) = [log(n)]. In fact,
Colequ) is exactly [log(r)] + 1. A protocol attaining this
bound is as follows: Px transmits x to Py, and Py
transmits back the value f(x, y). Yao (1979) also gave
a randomized protocol ¢ with error probability at most
¢ and showed that

Crlequ), < co (log log n + log (%)),

thus demonstrating a speedup. To describe this proto-

A col, let 0 = «/Qloﬂ.
P

Randomized Prime Protocol

1. Py picks a random prime p in the interval o <
P =< 20. He transmits p and y (mod p).

2. Py transmits 1 if x = y (mod p) and 0 otherwise.

3. Px and Py both take the bit transmitted to be
the value equ(x, y).

If this algorithm outputs equ(x, y) = 0, this answer
is correct, but when it outputs equ(x, y) = 1, this an-
swer may be incorrect, with probability at most ¢. For
the function equ, no speedup exists using a zero-error
randomized algorithm (see Orlitsky and El Gamal,
1990).
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Next we consider the function componentwise-equal
(c.e.), which has X = Y'= {0, 1}"*. Write x = (xy, . . .,
x,) with each x; € {0, 1}* and similarly for y. Then

if for some i, x; = y;,

1,
ce (xy) = {0, else.

Mehlhorn and Schmidt (1982) showed that Cplc.e.) =
n?. They exhibited a zero-error randomized protocol ¢
such that

C’R(c.e.),, < b5nlogn+co.

The protocol is as follows.

Repeated Equality Protocol

1. Forl<i=<n,

(a) Px and Py determine equ(x;, y;) using the ran-
domized prime protocol with & = (log n)/n.

(b) If they conclude that x; # y; they move to
Step (a) and next i. If they conclude x; = y;,
they exchange x; and y; and check whether
they are actually equal. If so, they output 1
and halt. If not, they move back to Step 1.

2. Output 0 if all i are scanned and no x; = y; are
exchanged.

This protocol is zero-error because it checks directly
whether x; = y; on indices i, where the randomized
prime protocol might have made a mistake. Fiirer
(1987) further improved the zero-error bound for this
function to

Cric.e., 0) < con,

for a constant co.

Aho, Ullman and Yannakakis (1983) demonstrated
that at most a quadratic speedup is possible for zero-
error randomized communication complexity relative
to worst-case communication complexity; namely,

Cr(f, 00> = Colf).

The second example above shows that this bound is
essentially sharp.

Finally, we mention a recent result of Ahlswede and
Dueck (1989) that any object among N = 92"k objects
can be identified in blocklength n using a discrete
memoryless channel of rate R with arbitrarily small
error probability via an encoding procedure that uses
randomization.

Orlitsky and El Gamal (1988) give a general survey
of communication complexity, and Halstenberg and
Reischuk (1990) state the best currently known results
about relationships among communication complexity
classes.
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