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Abstract. We examine a few key problems and their solutions from the
13 probability problems. Some are badly posed with imaginative but
incorrect solutions; others are difficult, interesting and with correct
solutions. The work of Carroll (C. L. Dodgson) is used to illustrate the
nature, standing and understanding of probability within the wider
English mathematical community of his time. Additionally, a probabilis-
tic controversy in which he was involved is discussed, and an Appendix
presents a Markov chain formulation of published and unpublished
problems and discussion of a further unpublished problem. One focus of
the paper is the intuitive difficulty in distinguishing between events
of probability zero and impossible events, and the teaching of such
probability-based difficulties.
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1. INTRODUCTION

Readers may know that Lewis Carroll, the author of
Alice in Wonderland and Through the Looking-Glass,
was an Oxford mathematician whose real name was
Charles Lutwidge Dodgson (1832-1898). A great deal
has been written about him as a result of these books
on which his fame rests, but little has been said about
the mathematical aspects of Dodgson’s creativity, and
even less about his interest in probability.

My own interest in Dodgson’s probability arose in
1979 when I was giving talks to high school mathemat-
ics teachers on the importance of probability and statis-
tics in the curriculum. When we got to Bayes’ Theorem,
one of them came to me with a problem on this topic
from a book called Pillow Problems and a Tangled Tale
by Lewis Carroll, published by Dover in 1958. The first
,part is a reprinting of the 4th edition of Pillow Prob-
lems which has a preface written by its author in
March 1895. The introduction to the 1st edition of his
Curiosa Mathematica, Part II: Pillow Problems is
dated May 1893. It is the hundredth anniversary that
the present article commemorates, from a probabilistic
standpoint.

By 1983 I had acquired a modest library on Carroll,
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partly thanks to a nonmathematical friend who as-
sumed all mathematicians are equal and interested in
each other. It had become clear that there were many
biographies; in these there was generally some attempt
to say something about Dodgson’s mathematics, citing
some expert. The assessment was generally negative.
In Lennon (1945), Eric Temple Bell comments (p. 271)
in characteristic fashion: “His range was that of a
freshman today in a good technical school, though the
freshman would have clearer ideas about elementary
things than CLD, and would not be so far behind his
own times mathematically as CLD was behind his all
his life.” The main mathematical commentator until
recent years has been Warren Weaver. The author of
Lady Luck, on looking through Dodgson’s unpublished
manuscripts, assesses him thus (Weaver, 1954): “the
more elementary aspects of calculus represented the
upper limits of Dodgson’s mathematical flights, and
... even in calculus, he had such vague and inaccurate
notions about infinitesimals that one must confess he
lagged behind the best knowledge of his times.”
[Quoted by Clark (1979), p. 262.] The mathematical
opinion in Hudson (1954), provided by C. A. Coulson,
FRS, is no better. I was fortunate, however, to read as
my first biography (a gift) that of Gattégno (1977)
which notes the comment of Bourbaki (1974, p. 87)
about “Kronecker’s definitive form of theorems on lin-
ear equation systems . . . which are also elucidated, in
an obscure treatise, with attention to detail characteris-
tic of him, by the celebrated author of Alice in Wonder-
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land” and soon after encountered a comment by the
authors of Chapter 2 of Kolmogorov and Yushkevich
(1978, p. 69): “The concept of rank and the theorem of
Kronecker-Capelli were discovered independently by
several investigators. The first printed proof of this
theorem is due to C. L. Dodgson (1832-1898), author
of the splendid stories Alice. . . .” The assessments
of Bell and Weaver indeed overlook Dodgson’s quite
startling contributions to linear algebra and to the
theory of determinants, discussed recently by Seneta
(1984, §§5-6) and Abeles (1986), even though “His sug-
gestions had little effect on the mathematical world
and the book (An Elementary Treatise on Determi-
nants with their Application to Simultaneous Linear
Equations and Algebraical Geometry, 1867) did not go
into a second edition.” (Beale, 1973, p. 30)

There was and is, to be sure, a continuing interest
in Dodgson as a logician, especially in connection with
certain paradoxes of his invention (Heath, 1967; Clark,
1979); in the construction of electoral systems (Black,
1958); as a constructor of games and puzzles (Gardner,
1960) and ciphers (recent work by Abeles, Hales and
Lipson); and as a pioneer in photography. Numerous
photographs of his are reproduced in the biographies
mentioned and elsewhere. That photograph of the moti-
vation for the Alice books, Alice Liddell (b. 4 May,
1852, d. 1934) as “the young beggar”—taken in 1859
and reproduced in Gattégno—is particularly striking
in its undertones. (Among studies of Dodgson’s associ-
ation with Alice Liddell and female children in general,
a recent film—shown in Australia as Dreamchild—
presents it in rather sombre form.)

There was also, surprisingly, an Australian connec-
tion (Hudson, 1954): two cousins of Dodgson, Frank
and Percy, emigrated to Australia, which he thought
a “mad idea.” (The Australian branch of the family
persists, and two letters from Dodgson to Frank exist.)
Some Australiana, possibly as a consequence, was
to be found in Dodgson’s library (Stern, 1981). In paral-
lel to active Lewis Carroll Societies in England (2
branches) and North America, there existed until re-
cently a Carroll Foundation in Australia, partly moti-
vated by this connection.

At any rate, by 1983 Dodgson’s probability seemed
worth looking at, and I set out to do a thorough study
of the probabilistic contents of the 72 problems of
which Pillow Problems consist. All 72 are claimed to
have been formulated and worked out at night while in
bed, mentally, and the answer written down afterward.
The questions are stated together in Chapter 1 with
date of solution, and page references are given to the
answer (answers are contained in Chapter 2), and to a
solution (Chapter 3 gives the solution procedure by
which the answers were mentally obtained). There are
13 probability problems altogether: 12 occur under the
subheading “Chances” of the heading “Algebra.” The

13th, No. 72, occurs under the mysterious heading
“Transcendental Probabilities.” All 13 problems are
dated between March 1876 and August 1890.

My study of all 13 problems appeared as Seneta
(1984), but it is little known. Even the Bayesian chroni-
cle of Dale (1991), while it mentions Lewis Carroll, does
not do so, as he deserves, in the context of English
Bayesian probability. I shall therefore confine overlap
in the present discussion to a few key problems. Only
one of the 13 problems, No. 72 (described below), has
attracted more than fleeting attention. On the basis of
it, Weaver (1956) dismisses Dodgson as a probabilist,
as he finally dismisses him as a mathematician.

It is a fact that some of Dodgson’s probability prob-
lems, like No. 72, are badly posed, and his solution,
while imaginative, is incorrect. On the other hand,
for some difficult and interesting problems he obtains
correct solutions, as we shall demonstrate. As a proba-
bilist he is not important; but his work reflects the
nature, standing and understanding of probability
within the wider English mathematical community of
the time. So, another motivation for this article is not
only to entertain but to demonstrate how difficult some
of the things in elementary probability, which we now
take for granted, were to formulate and grasp only 100
years ago and thus how difficult our beginning students
in statistics may find them.

To this end we shall use not only Pillow Problems
but also a probabilistic controversy (also discussed by
the author in Abeles, 1993) in which Dodgson was
involved on the pages of a journal called the Educa-
tional Times which had a section called “Mathematical
Questions and Solutions” and some unpublished mate-
rial from the Weaver Collection at The Harry Ransom
Humanities Research Center at the University of
Texas at Austin. (The other main U.S. archival source
of Carrolliana is The Parrish Collection at Princeton
University Library.)

2. DODGSON AND ENGLISH PROBABILITY

In regard to probability, English mathematics by
the 19th century (De Moivre’s Doctrine of Chances had
appeared in the 18th century) had taken directions
predominantly different from the analytical approach
of the Continent (Laplace, Poisson, Cournot, Cheby-
shev). The dominant influence in the 19th century
seemed to have been the Cambridge group, headed in
spirit (if not in location) by Augustus De Morgan
(1806-1871), his influential works being De Morgan
(1838) followed by his Encyclopaedia Metropolitana
essay of 1845, Other representative works of the group
were De Morgan (1847), Boole (1854), Todhunter (1865),
Venn (1866) and Whitworth (1867). Within the group’s
work were essentially two directions, both represented
in De Morgan.
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Venn’s and Boole’s approach to probability is through
logic. Dodgson was a strong logician, and it may be
that he came to probability by contact with such writ-
ings. He certainly corresponded with Venn on improve-
ment of “Venn diagrams.” He had all the books
mentioned above in his library, and, indeed, all of De
Morgan’s books (Stern, 1981).

On the other hand, De Morgan’s (1838) Essay on
Probabilities and Whitworth’s (1867) Choice and Chance
focused strongly on “inverse probabilities,” and many
illustrations are in terms of drawing counters from
bags. Dodgson’s probability problems tend to be urn
models of this kind with several stages of drawing, and
his approach to formultation of ignorance in terms of
a prior distribution is similar to Whitworth’s. These
are thus the books he learned from.

From the writings of the French, he had in his library
only Legendre’s Géométrie and Serret’s Algébre su-
périeure, rather little, and with Laplace conspicuously
absent.

The general question as to the prior distribution in
the urn problems has been discussed extensively in
Seneta (1984, §2), so we merely summarize the distinct
approaches in a characteristic setting (taken from
Whitworth—Question 136 in the 1901 edition):

A purse contains ten coins, each of which is either
a sovereign or a shilling: a coin is drawn and found
to be a sovereign, what is the chance that this is
the only sovereign?

IfA;,i=0,1,..., 10, is the event that initially
there are i sovereigns, De Morgan expresses initial
ignorance in a similar setting through a uniform prior
(the “principle of insufficient reason”): P(4) = 1/11,
i=0,1,2,...,10, as does Venn; whereas Whitworth’s
solution to the problem assumes that initially each coin
in the bag has probability 1/2 of being a sovereign, so
the prior distribution of the number of sovereigns is
binomial: P(A;) = (}1/2)},i =0, ..., 10, presupposing
a plausible mechanism for inputting coins.

3. DODGSON’'S PROBABILITY PROBLEMS

We begin our discussion with Nos. 50, 72 and 45 from
Pillow Problems, to give some insight into Dodgson’s
strengths and failings.

No. 50

There are 2 bags, H and K, each containing 2
counters: and it is known that each counter is
either black or white. A white counter is added to
bag H, the bag is shaken up, and one counter is
transferred (without looking at it) to bag K, where
the process is repeated, a counter being trans-
ferred to bag H. What is now the chance of draw-
ing a white counter from bag H?

The problem is to be understood as starting with 3
counters in bag H, the number of whites having possi-
ble values 0, 1, 2, 3 with prior distribution (0, 1/4, 1/2,
1/4); whereas the number of whites initially in bag K
has possible values 0, 1, 2, 3 with prior (1/4, 1/2, 1/4,
0). Then a counter is transferred in turn between bags
H and K, the counter being randomly chosen from its
bag each time.

Each transfer modifies the probability distribution
of the number of whites in each bag, the actual number
of counters alternating between 3 and 2, both current
distributions being needed for the modification. Mental
solution would seem to require a phenomenal memory,
even for just 2 transfers. This is perhaps the most
complex problem of the set of the 13 probability prob-
lems; Dodgson devotes over a page of calculation in
setting out the correct solution, 17/27. We see, from a
modern perspective, that we are dealing with a simple
version of an urn mixing model, along the lines of
the Bernoulli-Laplace, or the Ehrenfest, Markov chain
models for diffusion of heat. Dodgson’s model too can
be formulated as a Markov chain (see Appendix). We
next pass to the famous No. 72.

No. 72
A bag contains 2 counters, as to which nothing is
known except that each is either black or white.
Ascertain their colours without taking them out
of the bag.

The prior distribution is again taken as binomial:
(1/4, 1/2, 1/4) for BB, BW and WW: Dodgson’s solution
of this badly formulated problem proceeds by noting
by total probability that if a black were added to the
bag, the chance of then drawing a black would be 2/3.
But the only composition of a bag with 3 counters
which gives black a 2/3 chance of being drawn is two
blacks and a white. Thus, he reasons, the initial compo-
sition (before the black was added) had to be one black
and one white. Weaver (1956) describes the taking of
the binomial prior as the first of the two “dreadful
mistakes.” But is even the second, obvious, mistake so
dreadful? After all, Dodgson describes the problem as
one in Transcendental Probabilities and his May 1893
Introduction in reference to it says: “To the casual
reader it may seem abnormal, and even paradoxical;
but I would have such a reader ask himself, candidly,
the question ‘Is Life not itself a Paradox?”” Is it then
not impossible that No. 72 is just one of Lewis Carroll's
jests? However, Dodgson had genuine difficulties when
the state space in a random experiment was not finite.
The next problem, again improperly formulated, leads
us into this topic:

No. 45
If an infinite number of rods be broken: find the
chance that one at least is broken in the middle.
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Dodgson’s answer is “0.6321207 etc.” His solution,
not without ingenuity, begins by dividing each rod into
(n + 1) parts, where n is odd, and assuming the n
points of division are the only points where a rod
can break, each breakpoint being equally likely. The
probability that a rod will not break in the middle is
thus 1 — n~!. Now, taking the same number of rods
as breakpoints (!) the probability of no rod breaking in
the middle is (1 — n ~!)*, so the answer is lim(n = o)
1—(1—=—n"Y)=1-e"1=0.6321207, etc. Dodgson
thus proceeds by reducing the problem to a finite num-
ber of equally likely sample points.

We might nowadays ascribe some density over rod
length to the breakpoint position, possibly the uniform;
and come out with the answer zero. On the one hand,
we might note that in Dodgson’s time countability and
uncountability were only just beginning to be handled
by mathematicians such as Georg Cantor. On the other
hand there were probabilists (such as Laplace) who
had been treating “continuous probabilities” through
probability densities for almost 100 years, even in
England (such as Bayes). About such things a probabi-
listic dilletante such as Dodgson was not to know; one
wonders if he was aware, even in his own time, of
Crofton’s (1885) encyclopaedia entry. Still, in his de-
fence, No. 45 (dated May 1884) predates some of these
developments, and a probabilistic episode which cen-
tred on this gap in Dodgson’s understanding, and re-
sulted in a substantial controversy, began in March
1885. This setting is particularly apropos, since it-si-
multaneously illustrates his facility with discrete prob-
ability.

The following problem (Question 7695, posed by J.
O’Regan, 1885) appeared in the Educational Times [see
Abeles (1993) for general background]:

Two persons play for a stake, each throwing two
dice. They throw in turn, A commencing. A wins
if he throws a 6, B if he throws a 7: the game
ceasing as soon as either events happens. Show
that A’s chance is to B’s as 30 to 31.

The “reasoning” of the published solution is as fol-
lows: out of the 36 possible outcomes of a toss of two
dice, there are 5 yielding face value six, thus giving a
probability 5/36. Likewise there are 6 outcomes giving
face value seven. Thus the odds are (!) “no seven”/“no
six” = (1 — 6/36)/(1 — 5/36) = 30/31. The answer is
correct, but the reasoning is wrong: a situation tailor-
made for Lewis Carroll. On March 14, 1885, Dodgson
wrote to the editor about the erroneous solution
method, giving a correct argument: if the probability
of A’s being successful on a single toss is a, and B’s is
b, the probability of A’s winning is:

a+(1—a)l—ba+(1—al—bla+---
=al{l — (1 —a)(1 — b)}.

The odds of A’s to B’s winning are thus a/{(1 — a)b}
which with a = 5/36, b = 6/36 gives 30/31. So far so
good: even with a countably infinite state space. What
opens up a hornet’s nest is his final statement:

the ratio 30/31, is only approximative, the expecta-
tion of A and B being just less than the fractions
30/61, 31/61. If this were not so, the sum total of
their expectations would equal 1; i.e. it would be
absolutely certain one or other of them would
win —whereas there is clearly a chance, though an
indefinitely small one, that the game might go on
forever without either winning.

How many of us have spent long periods discussing
this kind of issue with intelligent and obstinate stu-
dents? In modern probability, the conceivable sample
point corresponding to the game going on forever has
to be allocated probability zero, since the sum of proba-
bilities of the countable set of sample points on which
A or B wins (so the game finishes in a finite time) is
unity. We do not, however, equate the statement that
an event has probability zero with the statement that
it cannot occur, as Dodgson is doing. Subsequently the
Rev. T. C. Simmons, a far better mathematician than
Dodgson, called Dodgson’s final statement “extremely
unmathematical” and had a view close to ours nowa-
days. Dodgson would not concede defeat, and they
(and others), each trying to win the point, sailed off
into the then uncharted waters of allocation of probabil-
ities on the sample space [0, 1]. Specifically, in order to
get away from the discrete setting and to show that
sensible sets of probability (measure) zero can readily
occur, Simmons puts in 1886 the Question 2000:

A random point being taken on a given line, what
is the chance of it coinciding with a previously
assigned point?

We would allocate, in accordance with Simmons’
formulation, Lebesgue measure to the Borel subsets
of [0,1]—the uniform distribution. Simmons argues

.correctly: if the point is &, probability of taking a point

toits left is 2 and to its right is 1 — %, so the probability
must be zero. Dodgson says that if the probability of
a specific point is zero, then the probability of any
point is zero, yet some point is chosen, and concludes:
“I re-affirm, as absolutely axiomatic, that when an
event is possible, its chance of happening is not zero.”
Yet the whole thing was eating at him, and with Ques-
tion 9588 (posed in 1889) he thought he finally had
Simmons. We paraphrase this slightly:

A random point being taken on a given line, find
the chance of its dividing the line into two parts
which are:

(1) commensurable (2) incommensurable.

On the basis of Simmons’ answer of zero to the
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previous problem, he says Simmons would argue that
the probability of selecting a specific rational is zero,
and that by adding the probabilities the probability of
selecting a rational is zero [as the answer to (1)]. By
the same argument however, he says, the probability
of an irrational is zero: hence the probability of any
number is zero: so there is, Dodgson thinks, a contra-
diction, since some point is selected. Dodgson’s error,
obvious to us now, is that in the case of irrationals he
is using additivity over a noncountable set. We would
deduce that the probability of selecting an irrational
is one, using the countability of the rationals, if we
accept the third of Kolmogorov’s probability axioms.
Countability is also at the root of Dodgson’s difficulty
with the “game going on forever.” The difficulty reflects
his obsession with “infinitesimals™ quantities (e.g.,
probabilities) supposed, on account of some limiting
process, say, to be less than any positive number, but
not zero (so a corresponding event is not “impossible”).
In the Kolmogorov axiomatization the continuity of
countably additive probability measure, of course, en-
sures probability zero for a corresponding limiting
event, which need not be null (that is, need not be
“impossible”). But the Kolmogorov axiomatization
came some 40 years after Dodgson’s probability dab-
blings, and it is easy to be wise with the benefit of
hindsight.

APPENDIX:
MARKOV CHAINS AND UNPUBLISHED PROBLEMS

Problem No. 50 may be formulated as a Markov
chain on the states (i,j), i indicating the number of
white counters in that bag which currently has a total
of 3 counters and j the number of whites in that bag
which has a total of 2 counters. Transitions occur with
transfer of a counter. Relabel the following sequence
of states as 1 to 11: (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (1, 2),
(2, 1), (3,0), (2,2), (3,1), (3, 2). Then the chain consists
of 5 closed irreducible aperiodic sets: {1, 2}, {3, 4, 5},
{6, 17, 8}, {9, 10}, {11}. The nonzero transition probabili-
ties are given by: p12 = 1, pa1 = 2/8, pa2 = 1/8; pss =
1,p44 = 2/3, P45 = 1/3, P53 = 1/3, P54 = 2/3, Pe1 = 2/3,
Pes’ = 1/3, P16 = 1/3, pnm = 2/3, Pse = 1; P9 = 1/3,
P90 = 2/3, P1o9 = 1; pPun = 1. The corresponding 5
stationary-limiting distribution vectors are: (2/5, 3/5),
(1/10, 6/10, 3/10), (3/10, 6/10, 1/10), (3/5, 2/5), (1). Hence,
irrespective of the initial distribution, there will be a
limiting (“long-term”) distribution vector {n},i =1,...,
11, which will be a convex combination of the 5 station-
ary-limiting vectors, and it will . depend on the initial
distribution. Hence the marginal limiting distribution
for the number of whites in the bag with 3 counters
has sample space (0, 1, 2, 3) with probabilities (n; + n3,
ne + ny + me, 5 + n7 + 7o, Mg + mo + m11); and for
the bag with 2 counters: (0, 1, 2) with probabilities (r,
+7t5+723,7l'1+7l'4+7I7+7I10,7l'3+71'6+7t9+7l'11).

Note that if one adds an additional closed state (0, 0)
(and relabels it 0)—although it can never occur with
Dodgson’s formulation —symmetry (which would have
pleased Dodgson) of the resulting 12-state chain occurs
about its centre. The Markov chain formulation and
the decomposable structure make it easy to compute —
by matrix powering—the probability structure of the
number of whites of either bag at any time point,
given an initial distribution. The computation of the
probability of then choosing a white from the bag
with 3 counters is straightforward. Dodgson’s initial
distribution with the 11-state relabelling is (0, 1/16, 0,
1/8,1/8,1/16,1/4,1/16,1/8,1/8,1/16).

Of course the more usual mixing models (Laplace,
Ehrenfest) with their structure of a single closed set
have the advantage of a unique stationary distribution,
although the Ehrenfest, with its periodicity, has no
limiting distribution. One realization of Dodgson’s pro-
cess, which can be extended in structure, is confined
to a single closed subset.

Curiously, an unpublished problem from the Weaver
Collection which, it seems, Dodgson had originally in-
tended to include in Pillow Problems since it is anno-
tated “Thought out, Mar/85”—and to which he returned
on Dec. 27, 1890, again unsuccessfully —presents an-
other opportunity for treatment as a Markov chain,
this time an absorbing one:

A, B, C, throw a guinea in rotation, till it gives 3
consecutive “heads,” when he who threw the last
of them, wins it. What is the expectation of each?

The solution attempts on both dates, contained in
jottings on a single page, are labelled by Dodgson
as “doubtful”; indeed, the problem seems difficult by
elementary methods. An annotation states: “[there is
a] chance that the throwing shall go on forever, without
3 consecutive heads ever occurring” which hearkens
back to Dodgson’s letter (also of March 1885) at the
beginning of the Educational Times controversy. It is
important to the tenor of the present article because,
even now when we teach finite Markov chain theory to
students with only basic probability, since it requires
only (Dodgson’s own) skills of finite sample space prob-
ability and matrix methods but is intuitively attrac-
tive, the explanation of why “absorption occurs with
probability one at some finite time” presents the same
intuitive difficulty as confronted Dodgson.

Let the state space consist of the triples HHH,
HHT, HTH, HTT, THH, THT, TTH, TTT, relabelled
consecutively 0 to 7. Take the initial time point 0 as
that after the third toss (the fact that C can win on
the third toss will be accounted for separately), time 1
as that after the fourth toss, etc. The state represents
the result of the last three tosses. The nonzero transi-
tion probabilities are poo = 1, p12 = p1s = P2y = Pas =
D36 = P31 = P40 = P41 = Ps2 = P53 = Pe4 = P65 = P16
= ps7 = 1/2. The state 0 is absorbing; the states (1,.. .,
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7) are a self-communicating set of transient states
(denote the substochastic submatrix of transitions be-
tween them by Q), with access to 0 through state 4.
Thus from any transient state absorption is certain in
finite time; the game ends on absorption into state 0.

If f§, n=1, is the probability of absorption at time
n beginning with state i = 1, . .., n the probabilities
of A, B, C winning are respectively:

o 17 o 7
(1/8) Z Zfigin+1), (1/8) Z Zﬁ83"+2)’

n=0i=1 n=0i=1

(1/8)(1 + f} éﬁ%?"’).

n=1i=1
In matrix terms these are respectively
(1/8){1I+Q+ @) '1) =32/108,
(1/8){1QU+Q + Q)1 } = 30/108,
1/8){1+ 1'Q*I+Q+ Q)™'1 } = 41/103.
The expected number of tosses until the game ends is

3+ (1B LU(I— Q' 1=14.

Although one can in no way give Dodgson any credit
in connection with the beginning of Markov chains,
which do not make their appearance in Markov’s writ-
ings until 1906, it is curious that Dodgson’s chains
above cover two important structural cases.

We conclude with another problem from the Weaver
collection intended for publication: it carries the nota-
tions “thought out Dec. 11/89” and “Press 28/8/90.” 1
have not found where (or if) it was published.

Four friends are in a room, one having 6 shillings,
another 6 sixpences; a third 6 four-penny-bits, and
the last 6 three-penny-bits. A very stupid boy is
blindfolded, and sent in, with an empty purse in
his hand, to play blind-man’s buff, on the under-
standing that any friend touched for the first time,
puts one coin into the purse—for the second time,
two —for the third time, three. The boy comes out
with 6 coins in the purse, but does not the least
know how many touches have occurred. What is
the “expectation,” as to the contents of the purse?

Dodgson begins well by saying that to result in 6
coins, either one person was touched three times (3
touches), or one person was touched two times and an-
other two times (4 touches), or one person was touched
twice and the three remaining persons once each (5
touches). However, he then has trouble with the prior
probabilities, as one might 'well do here, and his la-
belling is strange: he labels “A” to be the first person
touched, “B” the second person, and so on. His (condi-
tional) prior probabilities for the probabilities of 3, 4,
5 touches (4/64, 9/64, 12/64) do not add to unity, so he
rescales them to get (4/25, 9/25, 12/25).

If T is the total in the purse, in pence (a shilling is
12 pence):

E(T|3 touches, 6 coins) = 6(3 + 4 + 6 + 12)/4
= 150/4 = 75/2;
E(T|4 touches, 6 coins) = 3(7 + 9 + 10
+ 15+ 16 + 18)/6 = 75/2;
E(T)5 touches, 6 coins) = 150/4 = 75/2.

Because he forgets that in the second case each of
the two persons touched must pay a total of 3 coins,
Dodgson obtains 25/2, with a consequent final answer
of 28.5 pence. I have included this problem because of
its use of conditional argument and expectations and
because of the curious property, which would have
pleased Lewis Carroll: that the prior distribution over

" the possible number of touches given 6 coins is irrele-

vant to the final answer (75/2).
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