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lyzed in Cressie (1991), where data are only available
averaged over counties, with counties of quite irregular
shapes. In this case the data are aptly described by
the “empirical regression function” XY;14;, where sets
A, represent the counties. Obviously, GM type estima-
tors are directly applicable to such data, while NW
and LWLS estimators are not.

A generalized version of LWLS which is capable of
handling data like this is as follows: consider fis(x) =
Bolx), where

(Bo, B1) = ar(}gl;l)in [y — (Bo + Bilt — x)) ]2

(7

-G(tl bxl,...,t" bx”>dF(x,y)
for any probability measure dF on ®” X ®, p = 1.

If F is the joint distribution of measurements
(X;, Y), X; € ®?, Y; € &, this yields the convolution of
the true regression function with the bandwidth-scaled
kernel Kgq of (2). If dF = dF, = n™! Yoy, vy the
empirical measure, then fis(x) is the ordinary LWLS
estimator.

Let now (A;) be a partition of the compact domain
A into measureable sets A; C A, 1 < i < n. Choosing
dF = Z[A(A,)/).M)]{dFU,A, X 6yi}, where FU,A,' is the uni-
form distribution on A;, J, an atom of mass 1 at y and
A the Lebesgue measure, then one obtains

3, B.) = S — —x)]2
(Bo, B1) ar(irglnmm);:l] N [yi — Bo + Bult — x)]
—x,
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This special case of M yields the proposed LWLS
type estimator frs(x) = Bo(x) for this spatial smoothing
problem.

7. OTHER SMOOTHING METHODS

As mentioned by H&L, other important and popular
nonparametric regression estimators are smoothing
and regression splines (see Eubank, 1988, or Wahba,
1990), and it would be of interest to see how these
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If the “smoothing community” includes the users of

smoothers, then local regression has been popular for
more than 10 years. In particular, Cleveland’s (1979)

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
Statistical Science. MIKORS ®

139

compare with the other methods. It follows from re-
sults of Silverman (1984) that for regular designs
smoothing splines are asymptotically equivalent to
GM estimators with certain “equivalent” kernels with
noncompact supports and bandwidths which vary lo-
cally according to the design density; compare also
Messer and Goldstein (1993) who investigated corre-
sponding boundary kernels. We may therefore expect
that at any fixed point, even for finite n, the behavior
of smoothing splines will be closer to GM estimators
than to the other kernel methods. The design-adaptive
local bandwidth variation feature of smoothing splines
is a bonus. For other smoothing methods, such local
bandwidths variation can be implemented as well, but
only at the expense of substantial additional concep-
tual and numerical complexity.

One advantage of controlled local bandwidth varia-
tion for kernel and LWLS estimates, however, is that
this may include adaptations not only to locally vary-
ing design density but also to curvature and hetero-
scedasticity (Miiller and Stadtmiiller, 1987; Fan and
Gijbels, 1992a).

Considering the random design case, the NW estima-
tor which is a special case of LWLS has serious draw-
backs as pointed out by H&L and Chu and Marron
(1991). One of the more serious problems is that this
estimator cannot reproduce straight lines as regression
functions (in the univariate case) when the marginal
density of the predictors X; is nonuniform. An identity
reproducing transformation, which is applicable to any
nonparametric regression estimator, was introduced in
Miiller and Song (1991) to address this problem. A
corresponding identity reproducing nonparametric re-
gression estimator (IRENORE) derived from the NW
estimator then has the same asymptotic MSE proper-
ties as LWLS in random designs. It is thus another
approach which achieves the desirable MSE properties
of LWLS.
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adaptation and resistance to outliers. The S implemen-
tation lowess and more recently the multidimensional
loess are largely responsible for this widespread use,
although ForTraN source code is also available from
NetLiB. That local regression has excellent theoretical
properties has also been clear for more than 10 years:
Stone (1977, 1980, 1982) has established consistency
and shown that local polynomials obtain optimal rates
of convergence under minimal design assumptions. Yet
in the subsequent years local regression has largely
been ignored by the theoretical community. Instead
much effort has been expended developing modified
kernel type methods that require unnecessary restric-
tive assumptions and have many undesirable features.
A culmination of this work was Chu and Marron (1991)
who compare asymptotic bias and variance for some
of these kernel estimates. Among many other good
features, local linear regression achieves both the desir-
able asymptotic bias and asymptotic variance expres-
sions, yet Chu and Marron decided not to consider
local regression methods, discarding them as “obscure
alternative methods” (p. 434). We are therefore thank-
ful for the recent refreshing breakthroughs of Fan,
which will hopefully nudge this community along more
realistic directions.

The discussants have chosen to ignore the issues we
raised, instead focusing on issues such as bandwidth
selection and computation. These arise whether one
adopts a local regression or modified kernel approach,
and so we view them as irrelevant to comparisons
between the approaches; however, they are important
issues that practitioners must face up to. We comment
briefly on these additional issues below.

The discussants also raise questions related to other
nonparametric function éstimation problems such as den-
sity estimation and regression in non-Gaussian fami-
lies. Although these extensions were also not a focus of
our paper, we emphasize below that the bias-correcting
properties of local polynomial regression can be ex-
tended in a natural way via local-likelihood techniques
to cover all these problems.

1. EQUIVALENT KERNELS

Effective use of nonparametric regression requires a
clear understanding of what the fitting procedures are
doing, how they work and when they might fail. It
seems that our most important messages were lost on
the discussants:

It is not helpful to think about the bias correcting
properties of a smoother via the equivalent kernel
(we don’t appreciate the properties of linear regres-
sion by plotting the rows of the hat matrix!).

Figures 1.1-1.4 of Fan and Marron’s discussion and
the accompanying explanation should support this
claim! Our pictures of local regression show separately

the kernel that assigns the local weights (this is its
natural role) and the polynomial that is fit locally to
reduce the bias. It is because of this nice separation
that local regression has had such intuitive appeal to
practitioners. Applying this separation to Fan and
Marron’s Figure 1.3, one is attempting to fit a cubic
polynomial over a window that includes much of the
data. Clearly this cannot be a good approximation; if
the data are good enough for this type of structure to
be detected at all, then a smaller bandwidth should be
used.

It is not intuitive to tamper with kernels in order
to achieve particular bias properties.

Miiller’s Sections 3 and 4 support this claim!

We seriously doubt anyone would consider fitting a
parametric model using modified kernels, high-order
kernels and the like. It is quite possible to do so: letting
b = o in the Gasser-Miiller (GM) estimate results
in a “boundary kernel” method for fitting parametric
models (Hart and Wehrly, 1992). For randomly scat-
tered designs, this limit is very inefficient and cannot
be considered a serious competitor to least squares. For
some of the simplest designs, such as an equidistant
design, this boundary kernel method is almost indistin-
guishable from the least squares estimate; however,
most would agree this is a miserably weak reason for
introducing new estimates.

By contrast, if one lets & = o in the local polynomial
estimate, all observations receive equal weight and the
parametric least squares fit results. This is exactly
how one should expect their smoother to behave; spline
smoothers have a similar property.

The comparison between modified kernel and local
regression methods is identical. We need the local re-
gression method for many of the complicated designs
encountered in practice: multiple predictors, randomly
scattered and nonuniform designs and the like. Meth-
ods which work well but only for very special classes
of designs are not worth the space they take up in the

. practicing statistician’s toolbox.

We do not understand Miiller’s defense of the opti-
mality of Kso4. For example, setting ¢ = 0 in Miiller’s
expression gives Kgoolx) = —6x(1 + x) (6 — 10x).
When fitting at an endpoint, this kernel gives zero
weight to observations at the endpoint: the most infor-
mative observations are discarded! This cannot be opti-
mal under any sensible conditions; there is no reason to
enforce the boundary constraints imposed by Miiller. A
dramatic example of the effect of this inefficiency is
described in the discussion of change points below.

2. BANDWIDTH AND ORDER SELECTION

How should one decide on the order of fitting to use,
and how should the bandwidth be determined —locally
or globally; fixed width; nearest neighbor or somewhere
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in between? For bandwidth selection, much literature
has been written on automatic methods that attempt
to minimize a lack-of-fit criterion such as integrated
squared error.

From a practical viewpoint, this is discarding much
of the power of nonparametric regression. A major
strength of nonparametric regression is flexibility in
the scope of models that can be fit; we should also
want flexibility in the way we specify the smoothing
parameters. By fitting models of different bandwidths
and orders, the user can observe how the fit changes,
and diagnostic tools such as the M; plot (Cleveland
and Devlin, 1988) can be used to view the bias-variance
trade-off and help determine whether observed struc-
ture is real or random. One can then choose a final fit
which shows any interesting structure found, but is
minimally cluttered by noise.

Miiller suggests that the boundary problem becomes
a bandwidth problem for local regression. This is mis-
leading; the question of how to vary bandwidth in
boundary regions arises whether one uses kernel or
local regression methods. Indeed, under some assump-
tions on the design density, local linear regression with
a constant bandwidth (but decreasing as sample size
increases) achieves the same rate of convergence at
boundary and interior regions, suggesting that asymp-
totically the boundary bandwidth problem is less im-
portant for local linear regression than for kernel
methods. This uniform rate-of-convergence property
continues to hold for any odd-order polynomial and in
the multidimensional case; Fan and Gijbels (1992a)
and Ruppert and Wand (1992) discuss these issues
further. )

Fan and Marron object to our statement that order
selection is part of the bias-variance trade-off. We see
no harm in having two smoothing parameters—order
and bandwidth — and in selecting the most suitable pair
for the data at hand, locally or globally.

They also raised objections to nearest neighbor-
hoods, illustrating the rough estimates obtained using
a uniform kernel. In Cleveland’s (1979) implementation
of local regression, a tricube kernel (with compact sup-
port) is wedged into the interval defined by the nearest
neighborhood. As the neighborhood slides along, this
allows observations to enter smoothly, and the visual
roughness disappears. On the positive side, windows
defined by near neighborhoods adapt to the local design
density (in data-dense regions the windows can afford
to be narrower) and lead to estimates with roughly
constant variance in the interior.

3. LOCAL LIKELIHOOD

Miiller defends boundary kernels by arguing that
they are still required for “other models” such as Pois-
son regression, via local-likelihood techniques. In fact,
local polynomial fitting extends to many other models

through the same local-likelihood techniques. Tibshir-
ani and Hastie (1987) studied local-likelihood estimation
in models such as logistic regression and the propor-
tional hazards model. Examples there show the value
of local linear fitting in bias reduction at endpoints.
Although they use local linear fitting and a rectangular
weight function, these can easily be generalized. Stanis-
walis (1989) made the generalization to nonrectangular
kernels but used local constants rather than local linear
fits.

Local-likelihood methods can also be used in prob-
lems such as density and hazard-rate estimation. Sup-
posed that Y3, ..., Y, are an independent sample from
a density f(¢). By considering a limit of multinomial
models the appropriate local log likelihood for local
linear fitting is

)= SIK(Yi—t)(a+bY:)—n / Kly — the+ody.
i=1 —o
Let 4(¢) and b(¢) be the values of @ and b which maximize
l(t). The density estimate is log f(t) = 4(t) + b(o)t.
This type of density estimate has not to our knowl-
edge been studied previously and has the correct corre-
spondence to the penalized likelihood approach in
Silverman (1986, Equation 5.30). Modeling log f(t)
rather than f(t) has some potential advantages over
traditional kernel methods. First, the density estimate
must be positive, in contrast to kernel estimates with
high-order or boundary kernels. Second, when the den-
sity has unbounded support, the tails of log f(¢) will
often be much more polynomial-like than the tails of
f(t), suggesting that a local-likelihood approach may
result in better estimates of the tails of densities.

4. COMPUTATION

Direct fitting of a local regression surface at individ-
ual points may be computationally prohibitive with
large data sets. This is particularly true in the multidi-
mensional setting, since the fitted surface must be evalu-
ated at a large number of points to get an adequate
representation of the surface. However, fast computa-
tional algorithms have been developed, and computa-
tional issues should not be seen as hindering the use
of local regression.

A fast algorithm, loess, has been implemented in
local regression software of the current release of S
and is described in Cleveland, Devlin and Grosse (1988)
and Cleveland and Grosse (1991). The local regression
surface is computed exactly at a small but carefully
chosen set of points, and a fast interpolation scheme
is then used to approximate the surface at remaining
points.

Another approach (especially in the one-dimensional
case) is via the Fast Fourier Transform (FFT) (Sil-
verman, 1982; Jones and Lotwick, 1984; Hirdle, 1987).
We outline the essential idea for the Nadaraya-Watson
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(NW) estimator for uniform data. The sequence of nu-
merators and denominators for the vector of fits at the
observed design points are a discrete convolution of a
kernel and, respectively, the response vector (Y) and
a vector of 1’s. Additional bells and whistles fix up
the boundary truncation of the kernel and nonuniform
designs. These FFT techniques are easily extended to
local regression; for local linear regression, for example,
we need additional convolutions with the vectors X,
X? and XY (Hastie and Shirey, 1988).

Fan and Marron ask whether local polynomial meth-
ods are competitive with smoothing splines in terms
of computational speed. In one dimension the answer
is yes; fast O(n) algorithms exist for both methods. In
multiple dimensions, Cleveland and Devlin (1988) see
computation as the most serious problem with thin
plate splines, since a large optimization problem must
be solved, taking O(rn®) time. Some fast approximations
have recently been developed by O’Sullivan (1991) and
others; however, for large data sets these are not com-
petitive with the local regression algorithms of Cleve-
land and Grosse (1991) which are O(n) with a fixed
smoothing parameter.

5. CHANGE POINTS AND SPATIAL ESTIMATION

Local polynomial fitting is designed for smooth func-
tions; with other basis functions, nonsmooth functions
can be obtained. For example, using the basis functions
blx) = {1,I{x > 1),x,(x — 7)*} for fixed 7 induces a
discontinuity at 7; b(x) = {1, x, (x — 7)*} gives a discon-
tinuous first derivative at 7. This differs slightly from
Miiller’s proposal in the second case; in particular, data
lying exactly on a broken line @ + bix + bolx — 7)*
will be exactly reproduced by our method.

Often change points are unknown and must be esti-
mated from the data. Miiller (1992a) has proposed
using the “smooth optimum” boundary kernels to esti-
mate left and right limits at any point ¢, estimating t
to be the point where the difference is maximized. These
kernels give absolutely terrible change point estimates,
with rates of convergence way below the n~! expected
in change point models. Under a more sensible weighting
scheme, Loader (1992) has established estimates (either
kernel or local regression-based) that attain the n—!
convergence, with the same asymptotic distribution
familiar from likelihood estimates in parametric change
point models.

Miiller suggests spatial smoothing as an application
where GM estimates may be useful. However, consider-
able care must be used here to avoid inefficiencies. For
example, consider two neighboring counties of similar
size; one predominately urban with high population
density, and the second predominately rural with low
population density. Then the observed rate of Sudden
Infant Death Syndrome will be subject to much larger

random fluctuations in the second county, and hence
this county should be downweighted proportionately.
The direct implementation of the GM estimate will not
account for this. However, variance information can
easily be incorporated into the local regression ap-
proach.
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