276 D. R. COX AND N. WERMUTH /D. J. SPIEGELHALTER ET AL.

This device of embedding the dashed graph into a
CI graph with “latent variables” certainly solves some
problems. It also indicates why latent variables in
highly structured graphs allow marginal empirical de-
pendences to determine the statistical analysis. A
prime example of this is the graphical analysis of the
state space model underlying the Kalman filter.

ROLE OF THE PARTIAL VARIANCE
(SCHUR COMPLEMENT)

The technical conditions for conditional indepen-
dence in multivariate normal distributions, for in-
stance, that X; || X,|X; is characterised by a zero
in the inverse variance matrix of (X;, X5, X;), appear
somewhat bizarre at a first acquaintance. A good un-
derstanding requires an interpretation of the elements
of this inverse variance matrix, and I found it useful
in writing Chapter 5 of my book (Whittaker, 1990) to
use the concept of the partial variance as the vehicle
for this explanation. For instance, slightly extending
the notation of the CW paper, when a vector X with
variance X is partitioned into (X,, X;) the block in the
inverse variance X! corresponding to X, is I* =
(XY (and not (Z.)~Y), the essential content of the
inverse variance lemma is that

(1) ST = var(X,|Xs) .

Here var(X,|X;) is the partial or residual variance of
X, having regressed out X,, and defined by var(X, —
X.(X,)) where X,(X,) is the fitted (multivariate) regres-
sion of X, on X,. These entities can be represented in
the Pythagorean vector diagram

Xa _Xa(Xb) ¥ Xa

XX Xb

The notion of a partial variance permits the diagonal

Rejoinder
D. R. Cox and Nanny Wermuth

We are grateful to all the contributors for their
thoughtful and constructive contributions. There is
rather little with which we disagree so that our reply
is brief. :

While to some extent the use of the word causal is
a matter of convention, we much prefer to restrict the

elements of the inverse variance matrix to be inter-
preted as functions of the multiple correlation coeffi-
cient: if a = {i} is 1-dimensional, so that b denotes the
p — 1 remaining variables, then (1) becomes

>7 = var (Xi|Xoea) ! = var(X:)~'/ (1—R¥)

where R(i) is the multiple correlation coefficient of X;
with the remaining variables. In consequence, the larger
Y% in relation to var(X;) the more predictable is X;
from the other variables. By choosing a = {i, j} to be
2-dimensional, formula (1) enables an explicit expres-
sion for the off-diagonal elements of the inverse
variance in terms of the partial correlation of X; and
X; given the remaining variables. In point of fact
¥ [ Jxixi = —corr (X;, Xj| Xrest).

The inverse variance lemma, which is by no means
new, is really just statistical interpretation of invert-
ing a partitioned matrix. In fact var(X,|Xs) can be com-
puted from var(X,) — cov(X,, Xp)var(Xs) cov(X;, Xo)
which in the mathematical literature is well known as
the Schur complement of the matrix

cov(Xy, X,)

var(X,)
var(X;)

cov(X., Xb)]

The determinant represents the squared length (vol-
ume) of the residual vector in the Pythagorean vector
diagram above. This quantity is denoted by X, in
CW as in many books on the multivariate normal dis-
tribution, but such a notation obscures various elemen-
tary properties such as var(AX,|X;) = Avar(X,|X;A’
where A is a fixed linear transform, and if B is inverti-
ble, var(X,|BX;) = var(X,|X:) expressing the invari-
ance of the partial variance to a change of units in the
regressor variables.

Various forms of the lemma exist and a frequent
application is to Bayesian analysis for instance, in the
analysis of linear models by Lindley and Smith (1972),
in standard treatments of factor analysis, and in Kal-
man filtering.

word to situations in which we have knowledge of some
underlying process. We reassure Dempster that we are
deeply concerned with the elucidation of processes that
might have generated the data, but are cautious about
what conclusions can be drawn from single investiga-
tions or even repeated investigations, especially but
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not only when these are observational. We agree that
the graphs suggested by Glymour and Spirtes could
possibly be chosen as another description of our nonde-
composable models but we do not regard them as
indicating useful potential processes to generate the
data, the point of our distinction.

In a recent paper, Stone (1993) elucidates require-
ments for particular causal interpretations. He also
examines critically strongly ignorable treatment alloca-
tion. Pearl in his contribution gives an important
graphical interpretation exactly of this assumption,
this facilitating the judgement of the effects of inter-
ventions in a hypothesized causal process.

Several contributors mention the role of latent vari-
ables, including as a special case the occurrence of
measuring errors. We agree that their use, preferably
sparingly, especially in elucidating nondecomposable
models, needs further study. For instance, the tetrad
conditions studied by Spirtes, Glymour and Scheines
(1993) for linear relations become relevant as well for
binary variables having a quadratic exponential distri-
bution. This distribution has some of the properties of
the multivariate normal distribution and provides ex-
act or approximate answers to Hill's question about
graphical theory for binary distributions and to Whit-
taker’s comments on complete independence.

Dempster favours shrinking estimates toward zero
as opposed to setting parameters exactly to zero. We
agree when empirical prediction is the objective, but
not where essentially qualitative understanding via
simple representations is involved, and the latter is
our main concern.

The issue, raised by Whittaker, of labelling the edges
of a graph can be solved in various ways if a single
degree of freedom is attached to each edge (by partial
correlation coefficients or by standardized regression
coefficients, for instance). The introduction of graphs
with dashed edges has, however, a different objective,
because it leads to structures of independence different
from those discussed by Whittaker, thus enriching the

class of graphical chain models, as pointed out by -

Hill. Whittaker’s graphs (ai) and (aii) do not represent
., the multivariate regression of our Figure 1c because
the essential association between the two responses is
omitted.

Rejoinder
David J. Spiegelhalter, A. Philip Dawid, Steffen
We are grateful to the discussants for their thoughtful

comments: since our paper is already quite long enough
we shall try to restrict our responses. We shall first deal

Whittaker points out the relation of the Schur com-
plement to partial correlations and inverse covariance
matrices. An early treatment of this in the statistical
literature is by Cramér (1946, subsections 22.7, 23.4 and
23.5). The connection between partial correlation and
canonical parameters in the exponential family has
opened the road to defining analogous independence
structures for discrete variables and for mixed discrete
and continuous variables, known now as block regres-
sion (full edge) chain models.

In general distributional assumptions are necessary,
in addition to the independence graph, for a full speci-
fication of a statistical model. Indeed some research
hypotheses may not be possible for a particular joint
distribution of specified form. For example, X ||
Y|A cannot hold without additional independences if
the joint distribution is given by the linear logistic
regression of the binary variable A on the bivariate
normal variable (X, Y). Similarly if (X, Y) are condition-
ally bivariate normal given the discrete variable A,
then marginal independence of X and Y is possible only
with additional independences. See Cox and Wermuth
(1992b) for further details.

We were glad to see that Sobel regards our introduc-
tion of multivariate regression (dashed edge) chain
graphs as a step toward more traditional analyses in
the social sciences. In fact, it was one of our purposes
to provide simple examples which help one to recog-
nize similarities and distinctions between different ap-
proaches, the latter being explicitly appreciated by
both Sobel and Dempster.

Because of the particular focus of our paper, we have
put little emphasis on such issues as description of
sample selection, checking data quality, testing model
adequacy, examining the need of data transformation
and comparison of the fits of different kinds of models.
All of these are a normal if often difficult part of ap-
plied statistical work. From our present perspective,
whether the formal aspects to the analysis are in fre-
quentist or Bayesian terms is a secondary issue.

A special topic for further work concerns the role
of graphs with both kinds of edge, for example, in
representing the regression for multivariate binary
data studied by Zhao and Prentice (1990) and by Fitz-
maurice and Laird (1993).

L. Lauritzen and Robert G. Cowell

with representations of causality, followed by some
technical points on zero probabilities. Automatic model
construction will then be considered, and whether a



