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Comment: Assessing the Science Behind
Graphical Modelling Techniques

A. P. Dempster

These papers, labelled here CW (Cox and Wermuth)
and SDLC (Spiegelhalter, Dawid, Lauritzen and Cow-
ell), are welcome reviews of extensive collaborations.
CW are the more limited of the pair in their aims,
making a few points convincingly, most notably (1)
that covariance-based regression models are conceptu-
ally distinct from the simultaneous causal models of
econometrics, even when both varieties are expressed
through identical linear equations, and (2) that models
with covariance matrices corresponding to restricted
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graphical structures often give good fits to empirical
matrices. The SDLC paper by contrast is a tour de
force that aims to leave no relevant topic unmentioned.

Both sets of authors intend their formal models and
computations to speak to issues of scientific knowledge
and science-based decision making, and in particular
both are concerned about the informal scientific under-
standing that motivates their formal models. CW are
reluctant to use the term “causal,” viewing it as too
ambiguous, but the authors substitute nonspecific lan-
guage such as “appropriate subject matter considera-
tions.” SDLC, in contrast, discuss “influence” and
“relevance” that take “account of one’s understanding
of causal structure.” The difference appears to be that
CW wish to hold to the idea that informal prior knowl-
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edge of the phenomena is limited to descriptive as-
pects, while SDLC accept that understanding of causal
processes is part of normal scientific thinking. My own
view is closer to the latter: I do not see that informal
causal understanding can or should be suppressed
(Dempster, 1990). On the other hand, the formal statis-
tical models of these papers need not to be interpreted
causally, because the essential role of probability models
is to produce inferences and predictions derived from
uncertainty relations. Probabilistic causation strikes me
as an oxymoron, since probability quantifies progres-
sions of internal uncertain knowledge while causation
-identifies external mechanics of change. The graphical
model restrictions proposed in both papers depend for
support and credibility on the quality of the underlying
science, including causal interpretations, and on how
aptly the formal models capture that science, but the
uses of the models are mainly inferential and decision
oriented.

CW choose to make their arrows point away from
explanatory variables and toward response variables,
whereas SDLC make their arrows point away from the
disease node about which predictions are desired and
toward the predictive variables. It is interesting that
the medically driven “algorithmic approach” to the

- problem of telephone diagnosis of blue babies reported
in Franklin et al. (1991) also reverses the statistically
driven SDLC choice. My sense is that the CW and
Franklin et al. strategies represent mainline scientific
thinking, and that SDLC may weaken their claim to
be able to represent genuine medical expertise by buck-
ing the tide. It is normal for a clinician to absorb
seriatim relatively simple pieces of information about
a patient and to attempt to reason from these data to
disease states. Disease states are relatively complex
and sometimes amorphous constructs, but when they
are well defined and separated, as in the blue baby
example, it is relatively easy to mentally cycle through
looking for a match of each disease to a list of symp-
toms. The cleverness of the Franklin et al. (1991) algo-
rithm appears to derive from the skill of the senior
coauthor in putting together a logical sequence of tests
for matches involving subsets of the predictors, in such
a way as to tease out, with a low error rate, which of
26 disease categories is the true one. Why do SDLC not
attempt to directly probabilize the clinical expertise
displayed in Franklin et al. (1991)?

The tree structure displayed in Franklin et al. (1991)
is an event tree including decision nodes, of a kind
commonly found in elementary decision analysis texts.
By contrast, the expertise required in the modelling
phase of the direct acyclic graph (DAG) approach of
SDLC, with its conditioning on disease states, and its
request for discernments of Markov structures, seems
far from the practical expertise of clinicians. The tech-
nology seems rigid as implemented because the DAG

structure is required to be the same whatever the
disease. In principle, SDLC and Franklin et al. (1991)
are attempting the same task of constructing a set
of logical constraints on multivariate outcomes, and
SDLC should have the advantage because they have
the more powerful tools of probabilistic logic, whereas
Franklin et al. (1991) use simpler and unrealistic deter-
ministic logic with failures of diagnoses transparently
labelled on the graph. Nevertheless the brief numerical
comparisons in subsection 5.3 of SDLC indicate that in
the current state of the art the deterministic approach
does better. It is also troubling that in Table 6 the
CHILD model with assessed conditional independen-
cies is minimally better, if at all, than the naive model
that is sometimes called idiot’s Bayes. Is their technol-
ogy the right medicine?

Both papers surprised me by a near absence of dis-
cussion of what is known about sample selection, in
contrast with their softer heuristic assessments of rela-
tions or nonrelations among variables, whether derived
from subject matter considerations or causal insights.
In their examples, both papers ultimately assume that
samples exist from which multivariate models can le-
gitimately be estimated. Obviously statistical relations
among variables are strongly influenced by processes
that select the units making up a sample. These pro-
cesses operate in a social realm operationally separated
from the biological processes of disease, whence the
selection mechanisms can be considered causally inde-
pendent of the biological mechanisms. SDLC do men-
tion at one point the effect of an original medical
judgment on the flow of referrals in examples given,
but such considerations appear to play no role in dis-
cussions of what conditional independence assump-
tions to adopt, at least in a first pass. Can this be
justified? I think not. Technical papers in applied sta-
tistics by tradition and habit move quickly to formal
assumptions and in doing so hide large areas of subjec-
tive choices of (unit, variable) pairs for consideration
and analysis. By implication these choices are tradi-
tionally viewed as made for good reasons, usually by
the statistician’s client or substantive collaborator and
hence are removed from the statistical analysis. Conse-
quences are that statisticians tend to express distorted
views of the mix of subjective and objective elements
in the mosaics to which their analyses contribute and
pay little heed to the creative experiences of carrying
analyses back to their elemental sources in accrued
informal scientific knowledge. My critical attitude
about the scientific limitations of many statistical mod-
els and analyses rests on a perception that their ties
to overall contexts are too often too loosely tied down.

The pessimistic cast of the foregoing remarks applies
to the present state of applied statistics, not the future.
The understanding of complex multivariate relations
and of associated computational strategies, as detailed
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especially by SDLC, bodes well for ongoing develop-
ment. Although critics will point to the dangers, there
is also great promise in-the strategy of constructing
stochastic models that adequately represent uncertain-
ties about the states of hidden aspects of complex
phenomena, and hence they are bases for credible
probabilistic inferences. Since SDLC are more pointed
to complexity than are CW, most of my subsequent
remarks are directed to their enterprise. These experi-
enced colleagues scarcely need my advice to push on
to more ambitious and intensive modelling efforts, con-
structing formal models of population incidence, of
disease signs and their rates of progression, and of
prospects for intervention and cure, before proceeding
to combine such submodels into larger systems capable
of supporting informed and sound decisions. As part
of this process, many specific concerns may arise and
lead to profitable debates, some of which I will attempt
to stimulate.

A major topic of concern is “eliciting subjective judg-
ments.” Expert judgment enters model construction
at the successive stages of choosing variables, choosing
graphical structures and choosing numerical probabili-
ties. The soundness of each stage merits questioning,
not least as they relate to social responsibilities and
public purposes, but most critical attention is focused
on the last stage of probability assessment that often
draws on teams of experts selected and coached for
the purpose, generally by those responsible for the
preceding stages of choice. A fascinating case study
of elicitation is to be found in the major “‘NUREG-1150"
study of five large nuclear power plants (U.S. Nuclear
Regulatory Commission, 1990). Extensive external re-
views in this case forced a delay of more than a year
while elicitations were redone to improve the quality
of the panels and the credibility of their judgments.
The point to stress is that subjectivity does not imply
freedom to choose the first numbers that come to mind,
nor to choose handily available local staff as experts.
Analyses depend on subjective evidence to bridge gaps
and supplement inadequate empirical data bases, but
such evidence is not of a wholly different character
from empirical evidence, as many discussions of sys-
tems and technologies for elicitation might suggest.
Numbers provided by an expert are acceptable only if
there is credible evidence that they are distillations of
the expert’s accumulated knowledge and experience.
When final inferences have sensitive dependence on
expertise, the information and analyses on which ex-
pert judgments depend need to be clearly set forth so
they can be challenged, debated and revised, much as
statistical data analysis and models are subject to
criticism and model revisions. My sense is that much
remains to be done by way of developing and testing
quality control standards for evidential inputs from
experts. There is no subjective nirvana, just as there

is no objective nirvana, but real expertise exists and
substantial payoffs can be expected from using it well.

An obvious way to decrease the influence of elicited
expertise on diagnosis, or on risk assessment in gen-
eral, is to increase the weight of documented empirical
studies, including quality-checked data bases. Again
it is instructive to compare and contrast the NUREG-
1150 engineering example, where the sample size is 5
from a world-wide population of order 1,000, and where
the physical description of each plant, though daunt-
ingly complex, is more easily accessible and decompos-
able into independent subsystems than is the human
body. My sense is that in the engineering analysis
vastly more data sets on components, such as data on
reliabilities of various types of critical elements, were
assembled than is typical of medical expert systems.
In place of data on physical components, medical sta-
tistics tends to rely on collections of studies and associ-
ated meta-analyses. These give clues to variation
among different patient populations, and so may help
inform expert prior assessments that depend on pa-
tient flows through treatment systems. A remaining
difficulty with population thinking is that any specific
patient under diagnosis automatically belongs to many
cross classified subpopulations, depending on age, sex,
ethnic identity, social class and so forth. Available
data comes from margins and complex mixtures of
these populations. There is large scope to jointly model
networks and mixtures to facilitate combination of
data from multiply interrelated varieties of popula-
tions.

SDLC correctly adopt a general approach to treating
the complexity of an individual patient as demanding
stochastic modelling of interacting biological systems
such as heart and lungs. The currently fashionable
alternative approach to complexity through determin-
istic chaos theory may be promising when one subsys-
tem operates under controlled circumstances, but is
scarcely capable of faithfully representing the complex
social and biological processes routinely encountered
by risk assessors (cf. Casdagli, 1992). I am uncomfort-
able, however, with the basic principle of simplicity
used by both CW and SDLC that performs radical
surgery on the proliferating parameter sets of highly
multivariate statistical models. DAG models are math-
ematically transparent, have relatively few parameters
and suggest elegant and fast computational strategies.
Less felicitously, however, the models are expressed
through variables that are rarely better than crude
proxies for hidden variables that actually express un-
derlying causal mechanisms, whence the substantive
understanding that could justify DAGs if the hidden
variables were observable is less than compelling and
may be misleading when used to justify DAG assump-
tions for simple (e.g., dichotomous) variables. I believe
that wholesale parameter reduction as widely practiced
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in contemporary statistics is not the only way to
achieve simplicity. The main lesson that I took away
from Wermuth's doctoral research (cf. Dempster,
Schatzoff and Wermuth, 1977) is that smooth systems
of declining parameter values are usually a more effi-
cient way to simplify statistical complexity than sharp
cutoffs that set most parameter values to zero. Compu-
tational strategies of choice then become radically
different. Classical estimation techniques that are ade-
quate with relatively few parameters must be replaced
with Bayesian or similar methods that reflect prior
assessments of patterns of smooth decline. Donoho et
al. (1992) illustrate a notable non-Bayesian approach.
My own preference is for Bayesian models with many
more hidden variables and many more dependence pa-
rameters than SDLC allow, to have a reasonable possi-
bility of capturing actual mechanisms. I believe that
rapidly developing computing power and algorithms
that sample posteriors should be used to implement
and test more complex Bayesian models.

Beyond the elicitation of priors and beyond the prob-
lem of simplifying the complex structures of highly
multivariate and selectively filtered populations en-
countered in real practice, there remains a gray area
that SDLC address briefly in two sentences as situa-
tions where “the number of assessments made is in-
sufficient to specify a joint distribution uniquely.” The
use of maximum entropy or other arbitrary prior gener-
ation principles typically leads to exactly the unrealis-
tic procedures that the smoothing of large parameter
sets is designed to avoid. SDLC fail to mention the
belief function approach (Shafer, 1976) that Dempster

and Kong (1988) show fits naturally into network mod-
elling built on decompositions of evidence into indepen-
dent sources similar in spirit to the “graphical modelling”
approach of SDLC. It is my view as a coinventor of
the BEL theory that it is a near cousin of the Bayesian
strategy that descends directly from classical subjec-
tive probability and is not a foreign interloper from
distant tribes of semicoherent formal systems. Unlike
the naive upper and lower probability models that have
been studied by Good, Walley and others, the BEL
system constructs models from judgmentally indepen-
dent assessments on knowledge spaces and combines
the components by a simple precise rule that reduces
to the Bayesian rule for combining likelihood and prior
in the special Bayesian case. The chief hindrance to
developing and testing BEL models for probabilistic
expert systems has been computational difficulties.
Shafer, Kong and others showed in the mid-1980s how
to decompose BEL computations coincidentally with the
parallel demonstrations of Lauritzen and Spiegelhalter
(1988) that SDLC feature. But these clever algorithms
only stave off computational complexity temporarily.
The future of both Bayesian and BEL approaches de-
pends on the revolution that has been gathering speed
for the past five years on Monte Carlo posterior sam-
pling.
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Comment: Conditional Independence

and Causal Inference

Clark Glymour and Peter Spirtes

Fourteen years ago, in an essay on conditional inde-
pendence as a unifying theme in statistics, Philip
Dawid wrote that “Causal inference is one of the most
important, most subtle, and most neglected of all the
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problems of Statistics” (Dawid, 1979a). Only shortly
later, several statisticians (Wermuth and Lauritzen,
1983; Kiiveri and Speed, 1982) introduced frameworks
that connect conditional independence, directed acyclic
graphs (hereafter DAGs) and causal hypotheses. In
these models the vertices of a DAG G represent vari-
ables, and a directed edge X — Y expresses the proposi-
tion that some change in variable X will produce a
change in Y even if all other variables represented
in G are prevented from changing. The power and
generality of DAG models derive from their dual role
in representing both causal or structural claims and



