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Quantum Statistical Inference

James D. Malley and John Hornstein

Abstract. The three main points of this article are:

1. Quantum mechanical data differ from conventional data: for example,
joint distributions usually cannot be defined conventionally;

2. rigorous methods have been developed for analyzing such data; the
methods often use quantum-consistent analogs of classical statistical
procedures;

3. with these procedures, statisticians, both data-analytic and more
theoretically oriented, can become active participants in many new
and emerging areas of science and biotechnology.

In the physical realm described by quantum mechanics, many conven-
tional statistical and probabilistic assumptions no longer hold. Probabi-
listic ideas are central to quantum theory but the standard Kolmogorov
axioms are not uniformly applicable. Studying such phenomena requires
an altered model for sample spaces, for random variables and for inference
and decision making. The appropriate decision theory has been in devel-
opment since the mid-1960s. It is both mathematically and statistically
rigorous and conforms to the requirements of the known physical results.

This article provides a tour of the structure and current applications of
quantum-consistent statistical inference and decision theory. It presents
examples, outlines the theory and considers applications and open prob-
lems.

Certain central concepts of quantum theory are more clearly appre-
hended in terms of the quantum-consistent statistical decision theory.
For example, the Heisenberg uncertainty principle can be obtained as a
consequence of the quantum version of the Cramér-Rao inequality. This
places concepts of statistical estimation and decision theory, and thus
the statistician, at the center of the quantum measurement process.

Quantum statistical inference offers considerable scope for participa-
tion by the statistical community, in both applications and foundational
questions.

Key words and phrases: Quantum mechanics, Heisenberg uncertainty,
joint distribution, Hilbert space, self-adjoint operator, spectral measure,
probability-operator measure, decision theory, Bayesian inference, de
Finetti representation theorem, Cramér-Rao inequality.

1. INTRODUCTION

One of the principal scientific discoveries of the twen-
tieth century is that much of the behavior of matter
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and radiation cannot be described by the Newtonian
mechanics of particles or the classical theory of fields,
even as amended by relativity. Matter and radiation
must instead be described by quantum mechanics
(QM). Of course, both Newtonian and relativistic meth-
ods, free of QM considerations, each have appropriate
domains of applicability in which they act as suffi-
ciently accurate approximations. But there are exten-
sive domains where quantum fluctuations dominate,
and these domains motivate what follows.

QM is a subject both vast and deep, with an aston-
ishing range of applications. It yields many counterin-
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tuitive but well-verified predictions. In QM the chance
character of an outcome is not a matter of ignorance
or lack of specification on the part of the observer. The
source of randomness in QM is neither measurement
error nor incompleteness of the observer’s knowledge:
no cleverly crafted models or alternate error structures
can avoid this essential randomness. In QM some out-
comes violate the Kolmogorov laws of probability. This
can be empirically verified in terms of observed fre-
quencies.

On the other hand, QM effects figure prominently
in many practical domains where the machinery of
statistical inference and experimental design could pro-
vide optimal decisions or more efficient estimates. Ex-
amples include medical imaging, spectroscopy, optical
communication and signal detection and remote sens-
ing. Additional examples occur in many parts of applied
physics, astronomy, chemistry and molecular biology.

In designing experiments and analyzing data when
QM effects are important, a question therefore arises:
Do statistical methods need to be modified? In this
paper we argue that they do and, furthermore, that
appropriate modifications may be based on a body of
existing techniques that we call methods for quantum
statistical inference (QSI).

We now mention some potential application areas of
QSI. Quantum noise must be taken into account in
analyzing spectroscopic data when the probed species
or the probing species are scarce, or if they rarely
interact when both are present. Typical instances are
the spectroscopic detection or estimation of trace spe-
cies, spectroscopy with small fluxes of probing radia-
tion, and nonlinear spectroscopy. Important special
cases include: the astronomy of faint sources, or of
neutrinos or gravitational radiation; much experimen-
tal work on elementary particles; and the new field of
spectroscopy with trapped single ions or atoms. Other
classes of examples arise in: control and communica-
tion using weak optical or particle beams, as in deep-
space optical communication; laser ranging of astro-
nomical bodies; the new fields of molecular electronics
and electronics using superlattices, quantum wells, and
quantum dots; and the manipulation of isolated
trapped electrons, ions, atoms, molecules or biological
organisms. One recently developing area that appears
primed for a rigorous splicing of quantum theory and
statistics is quantum cryptography: see Nature (Octo-
ber 1991, p. 384), Science (7 August 1992, p. 752),
Discover (September 1992, p. 92) and Physics Today
(November 1992, p. 21).

Of special interest to us is the rapidly developing field
of light-based imaging devices and detection methods
and analysis techniques using other forms of radiation,
particularly as applied to biotechnology. Possible bio-
medical applications of quantum-consistent statistical
decision theory could include: reduced-dose PET scans;

real-time, laser-based reduced-illumination confocal mi-
croscopy of living cells and tissue; and bioluminescent
molecular tagging and enhanced chemiluminescence,
which would allow the study of biological processes at
the level of individual molecules. A brief survey of this
very rapidly growing field of optical biotechnology, at
the molecular and atomic level, is given in Nature (3
December 1992, p. 493). That quantum mechanical
events at the biomolecular level are more generally
entering into the scientist’s toolkit is shown by recent
success in modeling electron quantum tunneling path-
ways in proteins: Science (11 December 1992, p. 1740).

QSI has already been applied to a variety of im-
portant problems in optical detection and communica-
tion, to the design of interferometric fiber-optic sensors
and to the optimal use of optical data, for example, to
resolve closely spaced sources; see Personick (1971),
Helstrom (1976), Yuen and Shapiro (1980), Shapiro
(1980), Nagaoka (1990), and more recently Shapiro and
Shepard (1991). To give some background, we note that
QSI was developed primarily by electrical engineers
interested in communications systems. Their efforts
were a response to the invention of the maser and then
the laser. These devices led to amplifiers and oscillators
where quantum fluctuations are an important source of
noise. Lasers offered the prospect of high performance
optical communications, where again quantum noise
is significant. It became necessary to calculate the
detection and estimation performance of systems hav-
ing significant quantum noise, and so QSI was born.
Using QSI improvement of a full order of magnitude
has been observed. Electrical engineers and workers
in quantum optics still constitute the bulk of its prac-
titioners.

Two of the researchers working on these and other
applications have also been the principal developers of
the new methods: Carl Helstrom, who can be credited
with founding the field of quantum statistical inference,
beginning in the late 1960s, and Aleksandr Holevo,
who has made, and continues to make, major contribu-

- tions, both theoretical and practical.

Helstrom and Holevo have each written complete,
rather different, books on QSI (Helstrom, 1976; Holevo,
1982). However, both texts were addressed to an audi-
ence of physicists and quantum knowledgeable electri-
cal engineers. The present article seeks to motivate
and outline QSI for a primarily statistical audience,
one not assumed to be conversant with either the
basics of quantum theory or the (ultimately required)
mathematics of spectral measures. Since this article
is, to our knowledge, the first to attempt this bridging
for the statistical community, the reader may be alter-
nately intrigued, confused and challenged: it is for these
reasons that the lengthy and more technical Appendix
was created.

The need to review QM also presents an opportunity
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to outline the essentials of quantum theory in a way
that avoids some common misinterpretations of the
theory. Key ideas of statistics can sometimes prove
useful in deconstructing these misinterpretations, while
other, very comfortable and familiar ones may present
serious obstacles to understanding QM and QSI. Our
broader goal is to systematically compare quantum
and plausible classical procedures for the same detec-
tion or estimation problem, in an attempt to choose
between them. This has lead us to our conjecture of
local equivalence for quantum inference. The conjec-
ture asserts that: in many, perhaps all, applications the
results of QSI can be obtained by ordinary statistical
inference, if the set of outcomes and their probabilities
are computed according to the rules and axioms of
QM, rather than the Kolmogorov axioms applied un-
critically. (See Item Al.)

More directly, QSI materially advances quantum
theory itself by capitalizing on the fact that QSI has
its roots in statistics. For example, one major accom-
plishment of QSI has been to show that mathemati-
cally rigorous quantum analogs of Cramér-Rao lower
bounds for variances of estimators lead to generalized
uncertainty relations on the products of variances of
estimators. A special case is the Heisenberg uncer-
tainty relation on position and momentum. These ana-
logs are vigorous enough to resolve long-standing
controversies about other uncertainty relations, for
example those pairing time with energy, or phase with
number of quanta (see Item A2). Moreover, the mathe-
matical strength of these analogs yields strictly
sharper bounds that may be obtainable in experimental
practice.

QSI consolidates classical statistical inference and
quantum probabilities into a unified, rigorous scheme:
it gracefully mediates transactions between quantum
theory and statistical inference. QSI demonstrates that
a useful and consistent statistical decision theory can
be developed even when, for example, joint distribu-
tions do not exist. Thus, our central claim: QSI materi-
ally increases the sum total of useful probability models.

The paper is organized as follows. Whereas this first
, section dealt with history and motivation, Section 2
begins actual study of quantum statistical inference
(QSI) by presenting our basic example. More complete
statements on basic physics, quantum theory, underly-
ing (often highly nontrivial) mathematics and addi-
tional remarks are found in the Appendix. Section 3
deals with Heisenberg uncertainty and its intersection
with QSI. Section 4 covers the basics of QSI. Section
5 looks at current and potential applications of QSI,
and Section 6 is a summary and conclusion.

Again, much important material that resists easy
domestication appears in the Appendix, and references
in the text proper are of the form, for example, (See
Item A12), which directs the reader to Item 12 in the
Appendix.

2. CHALLENGES TO CLASSICAL
STATISTICAL DECISION THEORY

2.1 Some Essential Physics

Before presenting our main example of QSI in action
it is first necessary to sketch some basic physics (in
this section) and then very briefly outline the structure
of quantum theory (in the next section).

Many types of quantum objects possess a property
called spin. Classically, spin is associated with, say, a
child’s top. For quantum objects however, spin is an
essentially nonclassical degree of freedom: a quantum
spinning object cannot be consistently described as a
spinning classical rigid body, nor as having an angular
momentum due to the motion of internal constituents.
A good introduction to quantum spin can be found in
the well-known lecture notes of Feynman, Leighton
and Sands (1965, pp. 5-1 to 6-14). In this paper we
mostly work with particles having “spin 1/2,” and apart
from a constant, spin is assumed to take only two
values: +1 (or “up”) and —1 (or “down”). (See Item A3.)

ExampLEs. Using just the physics introduced above
we show, at the basic probability event level, that
quantum phenomena do not necessarily satisfy the
usual Kolmogorov axioms. This is done in two ways.
The first can be accomplished with just two pairs of
polaroid lens sunglasses. We urge the reader to actually
try this before proceeding: one of the most counterintu-
itive features of quantum data is immediately ap-
parent.

However, since this counterexample to the familiar
rules of probability has a classical (not strictly quan-
tum) “explanation,” we also consider a second version
of this three-filter experiment that has only a quantum
mechanical explanation. This example requires labora-
tory equipment, but is discussed fully in Feynman,
Leighton and Sands (1965, Vol. 3, Chap. 5).

1. Obtain three pieces of polaroid plastic — for exam-
ple, just pop out the lenses from two pairs of
inexpensive sunglasses. Hold two of the lenses
at right angles to each other: (essentially) no light
passes through (a small amount does, in fact,
since the lenses are not perfect filters). Next, hold
two of the lens together with one of them turned
at 45° with respect to the first. Some light gets
through: less than the amount passing through
just one lens, but much more than with two
placed at right angles to each.

Now, hold two of the lens at right angles. Let
A be the event that light gets through the first
lens (essentially with probability 1), and let C be
the event that light gets through the second lens
by itself (also with probability 1). We have al-
ready observed that the probability of A N Cis
0. Let B be the event that light gets through the
third lens, by itself, when it is turned through



436

J. D. MALLEY AND J. HORNSTEIN

45° (again, essentially equal to 1). We have seen
that with two lenses arranged at 45° with respect
to each other some light gets through, so the
probability of A N B is not 0.

Finally, with two of the lens set at right angles
(no light getting through) put the third lens be-
tween these two, turning it at 45° with respect
to the first. Some light now gets through!

We have therefore observed that

PriA N B N C)>Pri(A N O,

and this is close to a hand-held, home-experiment
violation of the rules for probability and events.
It not exactly so, since the experiment is not fully
quantum, has a classical physics “explanation,”
and the stated probabilities are, more precisely,
light intensities. If the experiment were done at
the level of counting single photons, it would
be fully quantum. As it is, the experiment is a
macroscopic consequence of quantum phenom-
ena. Moreover, it is a precise, hand-held analogy
for a fully quantum experiment, which we now
consider.

The second example, a quantum version of the
lens experiment above, is discussed in detail in
Feynman, Leighton and Sands (1965, Vol. 3,
Chap. 6). It uses particles with quantum spin 1
and uses physics laboratory equipment, in particu-
lar gadgets called Stern-Gerlach devices. These
are described below. For the reader’s convenience
this experiment is outlined in Item A4, but the
reader still can perform the “thought experiment”
of using three such devices in place of the polaroid
lenses used above. The result is a clean violation,
at the probability event level, of the basic Kolmo-
gorov axioms: it is an experimentally observed
fact of nature.

A more precise dissection of the differences
between the two examples is as follows. In the
first, the light shining through is obeying a rule
that gives the intensity of the transmitted light
as the squared cosine of the included angle be-
tween any pairing of the filters: it is not strictly
speaking a probability rule, at the macroscopic
level, but is a consequence of a probability rule
at the single photon level. In the second example,
the squared-cosine law is a probability rule and
using spin 1/2 particles and Stern-Gerlach de-
vices, the probability of getting through with spin
up, say, obeys this same squared-cosine rule; we
derive this below. The important point is that, in
QM probability calculations, one begins with a
complex-valued amplitude, and the squared mod-
ulus of this is the required probability. And,
loosely speaking, amplitudes add, but probabilities
do not. This is all congenially covered in Feyn-

man, Leighton and Sands (1965, Vol. 3, Chaps. 1
through 6; see especially the Summary on pp.
1-10].

2.2 Some Essential Quantum Theory

We narrow our focus to exactly two of the several
axioms of QM (see Item Ad4). In ordinary probability
theory, an observable corresponds to a random variable
X. The expected value of X is the sum (or integral) of
pX, where p is a probability density function. In quan-
tum mechanics X and p are replaced with matrices (or
more generally, operators).

The first axiom of QM is that a quantum system is
fully characterized by a density operator, which is a
certain linear transformation of a complex-valued vec-
tor space. Recall that an Hermitian matrix is one that
is equal to its own complex-conjugate transpose. Then,
the Hermitian linear operator p acting on the space 3C
is said to be a density operator if it is positive definite
and its Hilbert space trace equals one; it is always
assumed that JC has a positive definite inner product.

The density operator is the quantum counterpart of a
conventional statistical density, and the trace function
does duty as the quantum analog for statistical expec-
tation. That is, tr[pX] replaces E(X): where the trace
function uses a quantum density operator p and Hilbert
space operator X, the standard expectation E(X) is
taken using a classical density function p and classical
random variable X.

If the density operator p is the projection onto a
one-dimensional subspace of JC then the system is said
to be in a pure state; otherwise it is said to be in a
mixed state (equivalent language: p denotes a mixture
state). One verifies that p is a pure state if and only if
p? = p. (See Item A5.) Also, it is frequently convenient
to describe a quantum system with density operator p
as simply a system in the state p.

ExampLE 1. As a first example of a density operator,
consider the study of quantum spin. For a spin 1/2
particle whose spin is “along” a direction in the (x, y)
plane, at an angle 6 from the x-axis, the density opera-
tor can be shown to be:

_ 1 e——ia
po= e 1 .

This is a density operator since it is Hermitian, positive
definite and tr(ps) = 1. Moreover, it is the density
operator of a pure state, since (p)? = p,. The Hilbert
space JC associated with the spin states is a two-
dimensional vector space over the complex numbers.
(See Item AG6.)

ExampLE 2. As a basic example of how infinite-
dimensional Hilbert spaces occur naturally in applica-
tions, consider a single electron constrained to move
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along the x-axis. The Hilbert space JC for this system
is isomorphic to £2, the space of equivalence classes
of square-integrable, complex-valued functions of a real
variable x, with integration over Lebesgue measure.
For any ¢(x) and w(x) € 3C the inner product is given

by

(0,¥) = f " o) ylxldx

for ¢*(x) denoting the complex conjugate of ¢(x).

The density operator is not the only operator acting
on the vector space: many, but not all, quantities of
interest are associated with Hermitian operators. (See
Item A7.)

The role of these and other operators on the vector
space become clearer in the discussion of the second
axiom of QM. The second axiom for QM ties together
the space JC to the outcomes of experiments. It is
assumed that the experimental devices themselves and
their associated meters, registers, displays, and so on,
are classically described systems, and that the mea-
surements are real-valued. (This highly nontrivial cabal
of assumptions is still the subject of much debate in
the literature on foundations; it remains unchallenged
on the practical level.)

The second axiom is the link to the space 3C, and
is made as follows: each quantum measurement is
associated with a family of operators on the space 3C.
It is assumed that the outcome of the measurement
lies in some Borel measurable set B in ®", and that
the value of the observed outcome is an eigenvalue of
one of these operators. Precisely which operator is
given by a link to the set B via a probability-operator
measure (p.o.m.): for a given set B, a Hermitian opera-
tor X(B) on JC is defined such that

Pr(observed value of X lies in B) = tr[pX(B)],

where tr, as above, is the trace function on the opera-
tors of 3C. Usually the p.o.m., that is, the entire family
of operators associated with the quantum measure-
ment, is denoted by just X (in a very convenient, often
used and often confusing abuse of notation).

‘The second axiom for QM, the coupling just dis-
played between probability, densities and observables,
we refer to as the trace-rule for probabilities. (See Item
AS8.) At this point we emphasize that it will often not
be obvious to the reader how p and X(B), for all Borel
sets B, are derived in a given problem. Practicing
quantum mechanists have though, over time, devel-
oped a number of useful intuitions and correspondence
rules that help here, as the axioms of QM do not
include explicit, universal recipes for generating p and
X(B), for all Borel sets B. -

Observe also that the quantum measurement scheme
as defined does not conform to the usual statistical
declaration that measurement of an observable yields

X = x in B. That is, a distinctive feature of random
quantities in QM is: the p.o.m. X is defined on Borel
sets B, but yields operators on 3C, and probability is
attached to an outcome [= an eigenvalue of X(B)] via
the trace-rule on J3C. Classically, a random variable X
is defined pointwise and returns real or complex values,
with probability attached to an outcome via a density
function on a Boolean sample space. We also note that
a pure state does not meaningfully correspond to a
point mass density. Pure state systems in general do
not guarantee sharp, repeatable measured outcomes.
The trace-rule, even with the added assumption that
X(B) is a projection operator associated with a single
point B = {x}, still returns only the probability that the
measurement yields the eigenvalue x. Again, quantum
randomness is not a removable singularity of the
axioms.

This QM replacement of the definition of a “random
variable” by a collection of operators on a Hilbert space
is at the mathematical core of many of the properties
of quantum observables which trigger the inappropri-
ateness of the universality of the usual Kolmogorov
rules for probability spaces. This arduous shift, and
its consequences, has been pursued at length (see, e.g.,
Gudder, 1979, 1988), and we must exile essentially all
of the details to the intrepid reader and the genuinely
formidable mathematical literature. (See Item A9.)

Continuing to illustrate the notation and ideas of
QM more simply, let the quantum system be described
by a pure state, so the density operator p is the projec-
tion onto a one-dimensional space, specified by a unit
vector v € 3C: p = ywy*. Letting X(A,) be the projection
operator assigned by the observable X to the single
point A; on the real line, it can be shown that

Pr(outcome A; observed) = tr[pX (4:)]
= (v, X (L) y) = y*X (L)y.

(see Item A10.)

Next, let p; denote the probability of observing A;, one
of a finite set of eigenvalues. The mean and variance for
the operator X are defined, respectively, by

E(X) = 2Atr[pX (4)] = 2Aips
var(X) = E(X?) — [EX)].
To further simplify the discussion, the main examples
discussed below use only the machinery for the case
of operators with discrete eigenvalues, proper eigenvec-
tors (see Item A9) and a finite-dimensional space 3C,
and usually only pure states of the quantum system

are considered. Then, the expressions for expectation
and variance simplify, respectively, to

EX) =2 h(v, X (L)) = 2Aps
var(X) = 2(A:)%pi — [ 2Api]%
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With the present restrictions on the measurement
and the state of the system, the formulae above exactly
parallel the familiar ones of classical statistics. (See
Items A1l and A12.)

RemaRrk. This is probably the best place to consider
the assertion that “everything is quantized,” which is
often (and incorrectly) made in popularized treatments
of QM. The discussion comprises part of our effort to
deconstruct and demystify some quantum-provoked
misrepresentations.

The phrase in question may have one of (at least)
three meanings:

1. “All quantities are discrete.” This is the version
that is most relevant to the present discussion
and also the most persistent in popular QM ac-
counts, and it is also false. As discussed earlier,
the position operator usually has a continuous
spectrum (has only generalized eigenvectors), and
the momentum and energy operators often have
a partly or wholly continuous spectrum.

2. “All quantities are represented by Hermitian op-
erators on Hilbert space.” This version is false.
Quantities such as time, phase and other angles
do not correspond to Hermitian operators. Those
that do are called quantum observables, while the
quantities just mentioned are much more rigor-
ously treated, in QSI, as parameters of the quan-
tum process under observation. Also, the systems
approach of Shapiro and Shepard (1991) shows
how some experimental outcomes can be rigor-
ously treated using non-Hermitian operators.

3. “Every system must be subject to the laws of
QM, so any system in particular must obey the
uncertainty principle.” This version is correct,
since if even one system were not subject to the
uncertainty principle (discussed below), it would
in principle be possible to use that system to
construct a violation of the uncertainty principle
for those systems that were ostensibly subject
to it.

2.3 Coins of the Quantum Realm

Enough of the essential physics and quantum theory
is now at hand to permit looking at an experimental
example that sharply illuminates the differences be-
tween classical inference and QSI.

ExampLE: QuanTUuM CoIN Tossing. Consider tossing
a biased coin. The bias is known to be one of two
different amounts. Table 1 gives the probabilities of
heads and tails for the two versions of the coin.

The prior probability ¢ of bias state 1 is known to
the decision maker; state 2 has a prior of 1 — ¢&.

Choose a 0-1 loss structure for the decision problem:
assign loss 1 to an incorrect decision, and assign loss
0 to a correct decision.

TaBLE 1
Probabilities of heads and tails for two versions of a coin

Heads Tails
Bias state 1 0.4 0.6
Bias state 2 0.8 0.2

Given the opportunity to toss the coin exactly once,
and then decide between state 1 or 2, it is a standard
exercise to calculate the minimum Bayes risk rule (see,
e.g., DeGroot, 1970, Example 1, pp. 140-141). The
classical rule is given in Table 2.

A quantum version of this coin-tossing problem is
as follows: consider sending an uncharged (neutral)
atom through an apparatus called a Stern-Gerlach
device; see Figure 1 below, and also Feynman, Leighton
and Sands (1965, pp. 5-1, 5-17). The particle passes
through an intense, inhomogeneous magnetic field cre-
ated by the two poles of a large, specially shaped
magnet. If the atom has a net spin, it will be deflected
slightly toward one of the poles. The signed magnitude
of the deflection is proportional to the spin component
along the direction joining the two poles.

An atom with spin 1/2 (meaning, it takes the values
+1 or —1) exits the device with only one of two possible
deflections: a small amount up (+1) or an equal amount
down (—1), assuming that the two poles in the Stern-
Gerlach device are arranged vertically, as in Figure
1. This exemplifies the quantization of spin angular
momentum, as discussed earlier: only two outcomes
are possible. If the particle has not been prefiltered or
selected in some way (by an initializing Stern-Gerlach
device say) then the probability that it leaves in the
“up” state is 1/2, and for the “down” state, also 1/2.

Stern-Gerlach devices provide a nice example of
the QM calculation of probabilities. The calculation is
relevant to quantum coin tossing and at the same time
provides a context for discussing a distinctly quantum

.mechanical pitfall that must be avoided when dis-

cussing conditional probabilities.

Thus, consider two Stern-Gerlach devices, SG1 and
SG2, such that only those atoms that emerge in the
“up” state relative to SG1 are allowed to enter SG2.
SG2 has the same axis as SG1, but its “up” direction
makes an angle of 6 relative to that of SG2. The atoms

TABLE 2
Classical rule for probability of heads and tails
in the coin-tossing problem

For 0 =¢<1/3
For 1/3 = ¢ < 3/4

always decide state 2

decide state 2 if heads observed
decide state 1 if tails observed

For 3/4 <¢ =< 1  always decide state 1
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spin up

—
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spin down

Fic. 1. Quantum version of the coin-tossing problem. An un-
charged (neutral) atom is sent through a Stern-Gerlach device.

entering SG2 will emerge in the “up” state (relative to
SG2) with a probability given by

Pr(spin up from SG2, given spin up from SG1)

= cos"’<l 0).
2

This can be explicitly verified by using the trace-rule
for probabilities. The density operator for a spin 1/2
particle whose spin is “up” along a direction in the
(x, y)-plane and making an angle 6 with the x-axis is

—l 1 e—ie
Po 9le® 1 |

= L<1>
v=%u
is the eigenvector corresponding to eigenvalue +1

(“up”) for the “spin x” operator so that the projection
operator associated with X(+1) is

111
* = _|
dd {1 1]’

Now, the vector

2

(See Item A7.) Hence the trace-rule for probabilities
gives .
_1 1 €011
tr[pax<+1)1—ztrHe_,-g . Hl 1H

= cos?(L
cos <20>,

as required. (See Item A13; the form for the displace-
ment operator p; and the projection operator associated
with X(+1) are not immediately derivable from any-
thing we have said so far.)

Suppose now that SG1 is hidden from the observer,
who can take measurements only on the atom exiting
SG2. This observer thus only notes whether the deflec-
tion of the emerging atom corresponds to “SG2 up” or

— O - Optimal Classical Risk

- - @ - Optimal Quantum Risk

T T | T |
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F1G. 2. Risk curves for classical (with fixed SG2 at 6 = 0) and
quantum-informed (SG2 tunable) rules.

to “SG2 down” (“heads” or “tails”). It is further assumed
that SG1 is turned through an angle 6, or 6, with
respect to SG2, with a probability of £ that the setting
is 6; (and 1 — ¢ that it is 65).

Choose the angles 6, and 6 so that, according to the
probability rule given above, the observer stationed at
the exit ports of SG2 observes heads or tails with
exactly the probabilities given in Table 1. That is, let

6, = 2 arc cos(v0.4) = 101.54°,
6, = 2 arc cos(+/0.8) = 53.13°.

The minimum Bayes risk quantum decision rule for
the coin-tossing problem is derived in detail below
[using the method outlined in Helstrom (1976, pp. 106~
108)]. We explicitly assume that the experimenter is
allowed, for each value of the prior, to also search for

-the optimal angle to turn the device SG2, although for

an experimenter who is not quantum-informed, it may
not be obvious that turning SG2 could lead to signifi-
cant changes in the decision rule and the subsequent
risk. The optimal Bayes quantum-informed rule auto-
matically yields an optimal setting for SG2—more on
this below.

We observe that the quantum rule does as least as
well as the classical rule (and in fact, at all but one
point, does strictly better), when the classical rule does
not take possible advantage of optimally setting SG2;
later we show that this holds even if a classical rule is
used in conjunction with an optimal setting of SG2.
The risk curves for these two procedures, classical
(with fixed SG2 at § = 0) and quantum-informed (SG2
tunable), are shown in Figure 2. Figure 2 shows how the
optimal minimum Bayes risk quantum rule performs
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relative to the classical rule. Some noteworthy differ- SG2 set at 49.23°

ences between the two‘rules are:

— & Optimal Classical Risk
a. As shown below (Section 4), the quantum rule

always depends on the data, while the classical

- -@®- Optimal Quantum Risk

rule does not do so, in both the upper and lower 05— F—t—F+—"F—"F—"F—"F—"F—"F—
ranges of the prior: see Table 2. Notice also that : ‘ 3
the quantum rule is always symmetric about the 04t - /‘3\ T
prior value one-half, and the classical rule is not 035 __ L . \ S __
in general. This may seem puzzling at first, but " 10.333, 0.2448) / \ ]
aside from checking the explicit equations and 8T TR ,,/— L JSSEERN T
confirming this invariance of the quantum Bayes 2 E x/‘ .o ;
risk (but not the Bayes rule itself!) under the f 0'25_; S ’, A \‘7 R
transformation % 0wt S, }5\ .1
P e —> _ : ] r . PARE ) : * .
prior = (1 — prior), st g /¢ oL h\\ S
we advance two, perhaps more convincing, argu- Fo) : R 1
ments for this symmetry. 01 ,2 - ' \; El
Thus, observe that the only physical invariant 0_05_3_ I : . .\\\ __
in the problem is the included angle between the % . '\
possible settings of the SG1 and SG2 devices. 0 —t—t—tt—t—t+—+—1—1¢
0 01 02 03 04 05 06 07 08 039 1

As the prior sweeps between 0 and 1, we would
anticipate this invariance to be respected by the
risk function for any reasonable decision rule.
This is the case for the quantum risk, and not the
case for the classical, nonquantum risk. Hence, in
fact, we are led at the outset to reject the classical
rule as “unphysical,” and thus, on the basis of
physical intuition, confirm the observed symme-
try of the quantum Bayes risk curve. The second
argument for symmetry of the Bayes risk curve
follows from:

. The quantum rule works, in effect, by tossing the
quantum coin differently, and then making the
decision between 0; and 0z the optimal Bayes
quantum rule is equivalent to measuring spin up
or down along a direction different from that used
by the classical one. In fact, the rule smoothly
incorporates both design and optimal decision
making into a single-step Bayes optimal proce-
dure, and this is obtained in an essentially closed-
form solution. Namely, letting

the quantum measurement then is performed

with SG2 turned, with respect to vertical (6 =
0), at an angle # implicitly given by

__sinfp — ysin 6

tanf= — —————,
cos B, — y cos 6,

Hence for example at £ = 1/3, where the classical
rule does worst, the optimal setting for SG2
would be § = 49.23°.

A plot of the risk functions for this setting of
SG2 is given in Figure 3. (See Item A14.)

Prior Probability

Fi1c. 3. Plot of risk functions with SG2 at 6 = 49.23°.

c. Note that it is far from obvious that setting SG2

at an angle of 49.23° results in the minimum
Bayes risk procedure for £ = 1/3. Thus, the quan-
tum-consistent decision theory provides specific,
essentially closed-form, practical guidance for de-
signing optimal experiments and detection de-
vices.

The example illustrates one other essential differ-
ence between the classical and quantum decision
rules.

To obtain the minimum risk at each value of
the prior, the classical rule uses a conventional
random variable and Borel o-algebra. The quan-
tum rule is constructed using operators on a cer-
tain Hilbert space, where plausible candidates for
“events” might be the (closed) subspaces of the
Hilbert space. However, it can be verified that
these candidate “events” do not form a Boolean
algebra, as would be required for a purely classi-
cal approach; see for example Jauch (1968,
pp. 26-27).

This distinction is not just the infliction upon
the reader of one more mathematical entangle-
ment: Hilbert spaces and operators behave very
differently from Boolean algebras and conven-
tional random variables, and these differences im-
ply profound distinctions about measurement, and
by implication, decision making and estimation,
in the quantum world.
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2.4 More Quantum Coin Tossing: The Nonexistence
of a Joint Distribution

There are many arguments, both experimental and
theoretical, that prove the nonexistence of certain joint
distributions; see, for example Gudder (1988, pp. 175-
178) and Shimony (1989, pp. 385-386). For complete-
ness we include a sketch of the proof appearing in
Gudder (1988): see Item A13.

Recently there has been a resurgence in proofs
(= mathematically rigorous, and real, or at least physi-
cally plausible, experiments) involving triples of out-
comes, obtained by measuring particle spin, say, along
three different directions (at three different times), that
cannot have any conventional joint probability distri-
bution. Hence, lingering with just simple spin systems
as described above has led to increasingly rigorous
challenges to the universal existence of joint distribu-
tions. And in fact much more has emerged from these
recent, multiple derivations; see especially Mermin
(1990a,b,c), Greenberger et al. (1990), Peres (1990) and
Fivel (1991). We highlight two of these developments:

1. It can be shown in some examples that the QM
calculations end with a value +1 for the outcome,
but ordinary probabilistic reasoning (which as-
sumes the existence of joint distributions) gives
a value —1. These calculations are exact and not
subject to any additional quantum or classical
randomness.

2. The newer derivations sharply underscore the
problem of assigning any measurement value
(“dynamic attribute”) to quantum objects in the
absence of actually having performed the re-
quired measurement. The problem is that it ap-
pears experimentally and mathematically not
always meaningful to ask that any assignment
of future possible, mutually exclusive outcomes
must be consistent. See especially Mermin (1990a,
pp. 171-173).

Thus, these newer and much sharper (but conceptu-
ally still simple) experiments raise serious questions
for any classical (non-Bayesian) statistical procedure
that, in the quantum world, argues from the assign-
ments and associated likelihoods of any outcomes that
“could have occurred but were not observed, given the
data at hand.” In QM, any non-Bayesian procedure is
evidently confronted with a serious, experimentally
driven questioning of underlying rationale.

We leave this issue for future study by the reader
and ourselves. It is surely a research topic positively
luxuriant with new statistical possibilities and novel
inferential consequences and fuels the question: Must
frequentist-based statistical inference be found logi-
cally indefensible, and hence for foundational reasons,
be excluded from the quantum world? (See Item Al5.)

3. THE HEISENBERG UNCERTAINTY PRINCIPLE

The Heisenberg uncertainty principle is one of the
most famous features of QM. (See Item A16.) Our
basic reference is Beltrametti and Cassinelli (1981),
and we adopt their use of A, B, C and so on, for
quantum observables.

The statistical moments of a quantum observable
depend upon the state p of the system. In this section
the dependence of moments upon state will be indi-
cated explicitly:

E(A|p) = expectation of A for system in state p
V(A |p) = variance of A for system in state p.

Although the outcomes of measurements on QM
systems need not be discrete for all types of observ-
ables, for each observable there is always at least one
state for which the spread of observed values around
the mean E(A|p) is as small as desired.

That is, given any & > 0, there always exists some
unit vector such that V(A|p) < ¢; see Beltrametti and
Cassinelli (1981, p. 19). In words, in QM the measure-
ments of a single observable A can be made as accu-
rately as desired. (It is, however, not part of the QM
formalism itself to describe how a particular observable
is to be measured.)

A basic property of Hilbert spaces, the Cauchy-
Schwarz inequality, is now used. For any pair of Her-
mitian operators A, B and every vector y (in the inter-
section of the domains of definition for Hilbert space
operators A and B) and associated pure state p = yy*,
the inequality gives

ViAlo) X V(Blo) = 1 | (A, By) — (By,4v) | .

See Holevo (1982, pp. 87-88) for a full derivation.

For the inequality above one of two things must be

true:

i. For any ¢ > 0 there exists some state vector y
and a state p = ww* such that the product of
variances on the left-hand side is less than ¢; or

ii. there exists some ¢ > 0 such that for every state
vector y and corresponding state p the product
of variances is greater than ¢, and the left-hand
side is bounded strictly away from 0.

Case (ii) is known as Heisenberg’s uncertainty principle.
For Case (ii) the lower limit must be nonzero for all
states of the system. (See Item A17.)

ReMark. We note that the Heisenberg lower limit,
for position and momentum, rigorously applies to the
following novel, but perfectly valid experiment: pre-
pare two identical quantum systems, in two different
cities, on two different days. Taking position measure-
ments repeatedly in one of the cities yields a spread
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of values; similarly for the momentum measurements
taken in the other city on the other day. Heisenberg
uncertainty then assérts that the product of these
separately sampled variances still has a strict, nonzero
lower limit.

In words, one series of measurements is not meaning-
fully “disturbing” the measurement of the other series:
there is no causal interaction at work in Heisenberg
uncertainty.

This deconstruction of the “disturbance” model leads
us to consider other interpretations, sound and un-
sound. (See Item A18.) We take Niels Bohr’s formally
neutral position that there is no “why” or “explanation”
beneath the rules and results of QM, in particular
Heisenberg uncertainty. Recent research points to still
more emphatic, simply stated, yet rigorous statements
of this point of view: see especially Peres (1990) and
Mermin (1990c).

4. QSI: QUANTUM STATISTICAL INFERENCE
4.1 An Outline of Things to Come

This section carries classical statistical decision the-
ory forward into the quantum regime. Standard refer-
ences for decision theory in the classical mode are
Ferguson (1967) and DeGroot (1970). References for
the quantum-consistent version are Holevo (1973;
1982, Chaps. 4 and 6) and Helstrom (1976, Chaps. 3,
4 and 7).

The focus here is on problems whose decision spaces
are finite. Parameter estimation (and the associated,
often infinite-dimensional decision spaces) is consid-
ered later, but only in terms of linking the Heisenberg
uncertainty principle to the Cramér-Rao inequality. A
fuller treatment of estimation approximately par-
allels the finite decision space theory; see Malley and
Hornstein (1992).

First, the basic ideas of classical decision theory are
reviewed. Then the quantum analog of the theory is
described, using operators and observables in place of
random variables. Since decision theory may require
using a family of functions (called detection operators),
it is necessary to verify that joint distributions of all
the functions are meaningful where they are required
(otherwise joint measurement may be problematic, as
shown by the above discussion of the uncertainty prin-
ciple). Also, Yuen, Kennedy and Lax (1975) show how
the family of detection operators, and hence the de-
cision rule, is directly definable in terms of a single
p.o.m.: the individual detection operators are found by
integrating the p.o.m. over the separate prior (classical)
densities.

Theoretical quantum loss and utility functions can
still be calculated from the operators, even when joint
distributions, which would have allowed data-driven

estimates of loss and utility functions, are not in princi-
ple available.

To repeat, without joint distributions, many optimal
measurements, when expressed as families of detection
operators, cannot be assumed to be realizable. This
remains a significant problem for many applications of
QSI. While original work for Shapiro and his students
[personal communication; see also Shapiro and Shep-
ard, 1991] has shown how some key, optimal measure-
ments of this type can (in the limit) be experimentally
realized, we view this enduring problem as incentive
for a more intense collaboration between physicists
and statisticians. (See Item A19.)

4.2 Review of Classical Statistical Decision Theory

A standard basis for statistical decision theory has
three parts:

i. A set O of possible “states” of nature, referred to
as the parameter space;
ii. a set @ of actions (or decisions) available to the
statistician, referred to as the action space;
iii. a loss function L(6, a) defined on ® X G.

For given Borel measures on the product space
® X @, it is assumed that L is real-valued and Borel
measurable. Quotation marks about the “states” in (i)
distinguish these parameter space states from the states
of a quantum system,; this distinction disappears (i.e.,
becomes redundant) after the quantum states them-
selves have been parameterized by QSI.

A statistical decision problem is a specification of a
triple (O, @, L) and an experiment & which involves a
(classical) random observable X. (X here indicates an
observable that is measured and should not be con-
fused with the earlier usage of X to denote a spectral
measure.) It is assumed that X takes values in a Borel
space, X, called the sample space, and it is also as-
sumed that the distribution, ¥, of X depends on the
states of nature

F = F(X,0).

On the basis of an outcome of the experiment &, the
value of X is inferred to be x. The decision maker then
chooses an action d(x) € @; if the decision rule has no
randomized component, the function d maps the Borel
sample space X into @. Next, the loss function is
evaluated, yielding the random variable L(6,d(x)),
which depends on 6, and whose value is not generally
known. The expected value of L, given the observed
X, and taken conditionally on 6, is called the Bayes
risk function for the problem.

~ Denoting the risk by ®:

®(6,d) = E(L(6,d(x))|0)
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® therefore represents the average loss to the deci-
sion maker, when the true state of nature is 6, using
the decision rule d, and an observable X generated by
the experiment. It is assumed that the risk exists and
is finite for d, and all 6 € ©.

4.3 The Essentials of QSI

A good bridge into QSI is provided by the binary
decision problem; see Helstrom (1976, pp. 106-113).
Many of the essential features of QSI are already
displayed in the quantum-consistent resolution of this
simply posed problem. (See Item AZ20.)

Here, the binary decision problem is first discussed
using a Bayes approach and then using the Neyman-
Pearson approach. The QSI Bayes procedure is used
to explicitly solve the quantum coin tossing example
given above in Section 2.

The steps in the QSI Bayes solution are shown,
but the optimality conditions are stated here without
derivations. The derivation of the QSI Neyman-Pear-
son approach for the problem presents primarily a
computational change, without any new conceptual
difficulties (aside from the possible problem of using a
frequentist approach in the quantum domain at all).

4.4 The Bayes Approach

We suppose the quantum mechanical system is char-
acterized by one of two density operators p, and p;,
which correspond to the two competing hypotheses
(states of nature). It is not assumed that these density
operators commute: they need not have a joint distribu-
tion or be jointly measurable. All operators in this discus-
sion act on a Hilbert space of states of the physical
system whose density operator is either po or p:.

Prior probabilities for the two states are {, and {1,
with (o + {1 = 1, and a cost matrix C = [C;;] is assumed,
with C; being the cost of making decision i when the
true density operator is j, for i, j =0 or 1.

Helstrom (1976, Chap. 4) and Yuen, Kennedy and
Lax (1975) show that to solve the binary decision prob-
lem we must find two nonnegative Hermitian detection

_operators I, and II,. The practical interpretation of
these operators is this: we observe an outcome, and
think of the operators I, and II; as two bells. If II,
rings, we choose po as our guess of the state of nature;
if IT; rings, we choose p;. Note that the operators are
constrained by the condition

I+I;, =1
This implies
ITp(ITp + IT;) = (ITp + ITy)I o,
which yields
IToIT; = IT:0IT,.

Thus, these detection operators do commute, and are
also bounded: they therefore have a joint distribution [a
result from functional analysis; see Holevo (1982,
p- 71)] and so are in principle jointly measureable. Also,
since the desired solution is a constrained optimum
(the detectors must sum to the identity), it is in general
necessary to introduce an appropriate Lagrange opera-
tor I'. However, Holevo (1973) (see also Helstrom, 1976,
p- 93) has shown that the optimality equations, includ-
ing the Lagrange condition, can be replaced by a single
set of symmetrical conditions

IT,(W,,, — W1, =0, for all pairs &, m;
O0<km=1l,

where
W; = (oCiopo + $:Cap1, fori=0,1

for priors {; and density operators p;,i = 0,1. Next,
define

_ %0(C10 — Coo)

4 &(Co1 — Cra)

This ratio also arises in classical theory, where it yields
the decision-boundary value of the likelihood ratio.

Consider the operator t = p; — Apo. The optimal de-
tection operators Iy and IT; are derived from the spec-
tral resolution of 7 and its decomposition into a
weighted sum of projection operators.

Following Helstrom (1976, pp. 107-108) the sought-
for optimal IT; is shown to be the projection operator
onto the subspace spanned by the eigenvectors corre-
sponding to positive eigenvalues of 7, while IT projects
onto the subspace spanned by the eigenvectors corre-
sponding to negative eigenvalues of 7.

If © has zero as an eigenvalue, the subspace spanned
by any eigenvectors corresponding to the zero eigen-
value contributes nothing to the Bayes cost: a random
decision can be made when the observed value of 7 is
zero, with any probability of accepting the null hypoth-
esis, without changing the Bayes cost. (See Item A21.)

ExampLE. The materials are now available to explic-
itly derive the QSI minimum Bayes risk rule given in
Section 2.

Using just the density operator for spin measure-
ments given in Section 2, and the squared-cosine rule
for probabilities given in the example there, proceed
as follows.

First, calculate angles 6; and 6, which reproduce the
probabilities displayed in Table 1. As stated in the
example of Section 2, these values are

6, =101.54° and 6, =53.13°.

Next let p; = p(61) and p; = p(6:) be the two required
density operators. The optimal QSI operator is equiva-
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lent to projecting onto the positive and negative eigen-
spaces of

T=ps—yp1 wherey=¢/(1-¢).

For each value of y, find the positive eigenvalues of
the operator 7 = 7(y). For the angles given above,  has
exactly one positive eigenvalue n* = n*(¢). (See Item
A22)

From Helstrom (1976), and using the 0-1 loss struc-
ture of the problem, the minimum Bayes risk is then

Rmin(é) = (1 = (1 — 7*(2)).

The (symmetric) quadratic risk curves appearing in
Figures 2 and 3 are the plots of R, against ¢.

Again, the classical risk curves displayed are the
easily derived polygonal lines as shown; see for exam-
ple DeGroot (1970). (See Item A23.)

4.5 The Neyman-Pearson Approach

For the binary decision problem, a Neyman-Pearson
test can be performed using an operator of the same
form as that used for the Bayes approach; only the
constant y is modified. (We proceed here as if a quan-
tum-consistent frequentist approach is indeed viable;
see our comments above.)

Start with an operator of the form = p;, — yp,. Let
IT,, the detection operator, be given by

IT, = I14 + vIpy4,

where I, is the projection onto the space of positive
eigenvectors of 7, I is the projection onto the space of
eigenvectors associated with eigenvalue 0 of 7 and v is
a constant to be determined, 0 < v < 1.

The Neyman-Pearson test operates by rejecting the
null hypothesis whenever an eigenvalue of IT; is the
observed outcome, and where y and v are adjusted to
obtain the desired size of the test.

As discussed in Helstrom (1976, pp. 110-111), and
indeed in the classical context as well, if the (convex
downward) operating characteristic curve of the test
is continuous as a function of y, then a size a test can
be found for any a, 0 < a < 1. In this case v is set to 0.
If the curve is polygonal then y is found first, as the
sloi)e of the curve on which the desired size is found,
and then v is adjusted accordingly. A nonzero value
of v results in a randomized strategy.

In either case (v =0 or v # 0) the power of the test
is then found from

1 — S = power of the test = tr[p,I1;],

for # the probability of falsely rejecting the null hypoth-
esis. (See Item A24.)
4.6 Heisenberg Uncertainty and Cramér-Rao

The machinery developed so far permits a condensed
demonstration of the relation between the Heisenberg

uncertainty principle and the Cramér-Rao inequality.
The discussion largely follows Helstrom (1976), but
includes some important technical details, some of
which are discussed by Holevo (1982), and then illus-
trates the connection for the case of position and mo-
mentum operators.

Just as in the simple spin problem considered here,
quantum-consistent optimal estimation begins by pa-
rameterizing the density operator. It is important to
note that the parameterization amounts only to select-
ing a family of operators of interest and does not impose
any restrictions on the underlying Hilbert space 3C nor
on its operators.

Suppose 6 is to be estimated by observing the out-
come of a quantum-mechanical operator X; write § for
the value of the outcome when X is measured. The
bias, b(6), of the estimator X is given by

b(0) = Eo6) — 0 = tr[peX] — 6 tr[ps]
= tr[pdX — 6)],

since tr[pg = 1.

In the classical Cramér-Rao inequality the logarith-
mic derivative of the probability density plays a promi-
nent role. Analogously it is useful to introduce quantum
operators which act as logarithmic derivatives of the
density operator. Here only the symmetric logarithmic
derivative is considered, but one-sided (right and left)
logarithmic derivatives are also useful; see Holevo
(1982, pp. 257, 278), Helstrom (1976, pp. 116, 283-285).

First, note that

tr[b%m)x]

defines a continuous linear functional on the Hilbert
space of all square-summable operators X on 3C. [The
partial derivative of the density operator p;, is assumed
to be sufficiently regular: it is defined as a strong-operator
limit on JC; see Holevo (1982, pp. 82, 257).] Then by
Riesz’s theorem for continuous linear functionals (see,
e.g., Prugovecki, 1981, p. 184) there exists an Her-
mitian operator L, such that

] 1

— == + Leps).

ae(po) 2(.09Lo 4Pe)
The operator L, serves as the quantum analog to the
classical logarithmic derivative

d(log ps)

a0

A calculation entirely along very classical lines then
yields

vardf) = Eof — 6)2 = tr[ps(X — 6)?]
= [1 + B0/ {tr [ po(Lo)?]}.
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This is one version of the univariate quantum Cramér-
Rao inequality. The reader may notice the connection
with the classical result in that the denominator above
is precisely

2
tr [po(Lo)’] =E["“j,’%} .

An alternative form of the inequality is sometimes
more useful. Using
d
tr[ (po)J =0,

a9

gives, finally,
2

varo(X) X varo(Le) > [;%{EAX)}J

The practical utility of this result now depends on
being able to calculate the logarithmic derivative L.
For the important special class of Gaussian states (see
Holevo, 1982, Chap. 5) the derivatives are explicitly
known. Otherwise, there is an inequality for the vari-
ance of the symmetric logarithmic derivative that cir-
cumvents the need to calculate the logarithmic derivative
itself; see Holevo (1982, p. 265) or Malley and Horn-
stein (1992).

More importantly, the quantum Cramér-Rao inequal-
ity just derived, using the symmetric logarithmic deriva-
tive, provides in principle more information than the
usual Heisenberg uncertainty relation, in that the lower
bound above is greater than the Heisenberg bound, and
strictly so, unless the density operator represents a pure
state: see Holevo (1982, p. 265). In other words, the
QSI approach here yields strict improvements over the
more familiar quantum uncertainty rule, and the door
is open for investigation of when physical realizations
of the quantum Cramér-Rao rule can be obtained. Such
results would improve current experimental practice.

The multiparameter quantum-consistent form of
the Cramér-Rao inequality is also a fairly straightfor-
ward reworking of the classical argument: see Holevo
(1982, pp. 274-277) and Helstrom (1976, pp. 266-270).
Only the required definitions and the conclusion need
be given here.

Let the density operator be parameterized by a vec-
tor

0= (01,...,9”,)
with
Po = p(01, . .(, 0,,,).

Letting X;, 1 <i < m, be an unbiased operator for 6,
form the covariance matrix

®=[®y], for®;=E[(X:—6)(X;—6)].

Next, define the m symmetric logarithmic derivatives
implicitly by

8pdld6s = Z(poLs + Lups),  forl <k <m.
The QSI version of Fisher information is then given
by

@=[@;], for@y= %tr[p(L,Lj +LL)].
The multiparameter QSI Cramér-Rao inequality is,
finally,

®=QqL

4.7 Example: Position and Momentum

The univariate quantum-consistent Cramér-Rao in-
equality given above is almost in a useful form for
dealing with position and momentum, say.

Any particular application needs three additional
items: the proper choice of the operator X, specification
of the correct parameterized density operators and
then calculation of the logarithmic derivative. Given
these, the quantum Cramér-Rao inequality can be ap-
plied to estimating the distance by which a state has
been rigidly displaced from a reference state (see Mal-
ley and Hornstein, 1992). In this instance the QSI version
of the Cramér-Rao inequality implies the Heisenberg
uncertainty principle for position and momentum.

4.8 QSI and Parameter Estimation

A rigorous analysis of quantum parameter estima-
tion requires a systematic use of spectral measures for
operators having a continuous spectrum. (See Item
A8.) Quantum analogs of many classical estimation
strategies have now been derived for a wide variety of
problems of physical importance. These include quan-
tized Bayes estimators (under various loss functions),
maximum likelihood estimation, uniform minimum
variance unbiased estimation, minimax and general-
ized least squares; see Holevo (1982, 1973) and Hel-

‘strom (1976, especially Chap. 8) (see Item A25).

5. CURRENT AND POTENTIAL APPLICATIONS
OF @sl

There have been four areas in which QSI has already
been applied:

(i) Quantum analogs of classical results in mathe-
matical statistics;
(i) problem-specific quantum communication and de-
tection problems;
(iii) quantum information theory;
(iv) foundational questions in quantum theory.

We briefly discuss these areas and then consider
other potential applications of QSI.
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5.1 Quantum Analogs of Classical Statistical Results

Helstrom (1967) developed the QSI version of mini-
mum mean-squared error estimation, and this is the
source of the Cramér-Rao inequality discussed in Sec-
tion 4. It has been generalized in several ways.

Personick (1970, 1971) extended the result to condi-
tional-mean minimum mean-squared error, by allow-
ing the parameter vector for the density operator to
be a (classical) random variable, with a known distribu-
tion. He also obtained quantum versions of the Bhatta-
charyya and the Barankin lower bounds. The results
were then applied to a wide range of communication
and signal detection problems, often with substantial
gains in detection power and sensitivity.

The QSI analog of minimax estimation was consid-
ered by Holevo; see, for example, Holevo (1982, p. 191).
Sekiguchi, Hirota and Nakagawa (1990) developed de-
tails of the QSI quantum minimax rule, applying it to
general quantum state signal estimation. A simplified
method of calculation was proposed, employing a geo-
metric interpretation.

Nagaoka (1990) produced a new lower bound of the
“Cramér-Rao type” that improves on the bounds de-
scribed in Section 4 and showed that the new bound
maximizes all lower bounds of the Cramér-Rao type.
The calculations involve the symmetric logarithmic
derivative, but the optimal solution cannot be obtained
explicitly except in special cases.

Shapiro, Shepard and Wong (1989) and Shapiro and
Shepard (1991), addressed the question of optimum
phase-shift estimation of a single mode of a radiation
field, under an average-photon-number constraint, find-
ing that the (quantum optics) Susskind-Glogower
phase operator is (in the limit) precisely the QSI maxi-
mum likelihood estimator for all input states.

Holevo (1991) is among a group of QSI researchers
that is systematically developing the field of quantum
stochastic processes. This yields a consistent, rigorous
theory of continuous-time, quantum measurements
and an associated quantum-consistent It6 stochastic
calculus. This work can be traced from the references
in Holevo (1991) and Belavkin (1991); more recently
see Accardi and Koroliuk (1992).

5.2 ‘Quantum Communication and Detection
Problems

A large and flourishing literature exists on applica-
tions of QSI to communication problems in which quan-
tum noise is important. The precise details of the
problems are beyond the scope of this article as they
assume considerable knowledge of the physics and
electrical engineering of communication, detection and
receiver design.

Still, a partial list of work in this area must include:
Shapiro (1980), Yuen and Shapiro (1980), Shapiro and
Wagner (1984), Helstrom, Charbit and Bendjaballah

(1987), Charbit, Bendjaballah and Helstrom (1989) and
Bendjaballah, Hirota and Reynaud (1991).

Helstrom and Holevo have both made many contri-
butions to the practical applications of QSI, many of
which are discussed in detail in their respective books,
Helstrom (1976) and Holevo (1982).

The theory of optimal control of quantum systems
is being developed, with the help of QSI. This theory
should eventually deepen both the theory and practice
of quantum measurements. For the current status of
quantum control theory see Butkovskiy and Samo-
ilenko (1990).

5.3 QSI and Quantum Information Theory

While this article has emphasized statistical deci-
sion theory and estimation, there is also a quantum-
consistent counterpart to information theory. Gabor
(1950) first discussed the need for such a development,
but Holevo (1973) was probably the first to move in
this direction, and since then Ingarden (1976), Davies
(1978), Ohya (1983) and Vourdas (1990) have made
contributions. Recent work in this field can be found
in Bendjaballah, Hirota and Reynaud (1991).

We also observe that the work on quantum informa-
tion theory overlaps conceptually with that of Blanken-
becler and Partovi (1988), Jaynes (1989), Levine (1989)
and Schumacher (1990), who investigate how the no-
tion of maximum entropy can clarify or account for
various practical as well as theoretical features of quan-
tum theory.

5.4 Quantum Theory Foundations

The papers of Jaynes (1989) and Levine (1989) also
contain discussions of how the quantum state and the
density operator may have a Bayesian interpretation.
In particular they advance the idea that since one
interpretation of the density operator is that it does
not specify an objective element of reality but instead
quantifies our knowledge of a quantum system, then
it is reasonable, perhaps indeed necessary, to view the

' quantum state as a subjective element of QM. A pre-

cise and complete formulation of this outlook would
have far-reaching consequences for QM as well as Bayes
theory.

That a Bayesian outlook is evidently of fundamental
importance in QM is established by the remarkable
connection that exists between the long-standing prob-
lem of what one means by “identical” particles, the de
Finetti representation theorem and the idea of ex-
changeability. The details appear in van Fraassen (1991,
pp. 413 ff.).

The subjective interpretation of quantum states is
quite controversial. In particular, it has been vigor-
ously contested by Margenau (1963); Popper (1968,
p. 225; 1982, pp. 75, 104-118) and Ballentine (1970).

An alternative formulation of how Bayesian methods
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could apply in QM is developed in the work of Gudder
(1988), his coworkers and many others, on quantum
logic. It is still a matter of further research precisely
which components of this approach represent truly
new insights and problem resolutions, and which (not
unimportantly) represent only new derivations of re-
sults obtainable by careful use of existing Bayesian
methods. Finally, of course, a truly novel derivation
and point of view may suggest truly new results.

An unusual line of related research involves a quan-
tum logic analog for maximum likelihood estimation.
An intriguing argument is made for this approach,
which is then used, for example, to disentangle the
very classical statistical problem posed by Simpson’s
paradox; see Gudder (1988). On the other hand, an
initial evaluation suggests that here, for example, a
careful, nonquantum Bayes argument leads to the
same result (personal communication: Larry Wasser-
man and Mark Schervish). Evidently the notion of
exchangeability enters into this discussion as well: see
van Fraassen (1991, pp. 63-65).

Recall that at several points the present article has
promoted the view advanced by Helstrom and Holevo
that the quantum measurement process is usefully
viewed as the process of quantum statistical estima-
tion and decision making. In this regard, Ozawa (1991)
has investigated how measurements of position and
momentum can be made so as to reduce the error in
position, say, at the explicit expense of precision in
measuring momentum, with the aim of constructing
experiments, for example, to detect gravity waves (as-
suming them to exist). The product of the measurement
variances is still, of course, bounded from below by
the Heisenberg uncertainty principle.

The design of an experiment for the deliberate trade-
off of error variances for this pair of variables is im-
portant in the field of quantum optics, with the
production and applications of squeezed light (and
other forms of nonclassical light), and is a growth
industry in itself; see Yamamoto et al. (1990) for a
recent review. These novel and powerful uses of classi-
cal and nonclassical light in a wide range of applica-
.tions are part of what has been called the photonic
revolution. The area is another example of where a
classical statistical approach (the design of experi-
ments) could be profitably and rather directly carried
forward by statisticians into the quantum domain. It
is also another example of the systems approach to
QSI advanced by Shapiro and Shepard (1991): here one
works to optimally control the (input) quantum state
as well as the optimal detection scheme.

5.5 Potential Applications and New Directions

The Introduction mentioned several areas where
QSI could potentially have a practical or theoretical

impact. In each area, only a sustained collaboration
between the QSI-informed statistician and the subject-
matter specialist (physicist, molecular biologist, quan-
tum optics expert, etc.) will yield useful results.
Technically, the problem usually reduces to determin-
ing the correct, parameterized density operator and
then finding explicit solutions for the optimal decision
rule or estimator. Both halves of the problem are usu-
ally highly nontrivial.

Embedded in the problem of identifying explicit opti-
mal solutions is that of devising realizations of the
optimal operators. A useful first step in this direction
would be a means whereby the optimal operator could
be assumed to be a projection-valued operator. In gen-
eral only by invoking a result of Naimark (see Hel-
strom, 1976; Holevo, 1982) can this step be guaranteed.
The theorem introduces an ancillary Hilbert space and
extended density operator, and so may be more a
change in venue, rather than a full solution to the
realization problem. However, introduction of an ancil-
lary Hilbert space can also be exactly what is needed:
see Shapiro, Shepard and Wong (1989) and Shapiro
and Shepard (1991).

In another direction, Holevo (1973; 1982, pp. 298-
302) considers linear unbiased quantum measurement,
obtaining quantum analogs for uniform minimum vari-
ance unbiased estimates (QSI linear UMVUEs). We
note the strong similarity between these results and
those of Zyskind, Seely and Rao (see Zyskind, 1967;
Seely and Zyskind, 1971; Rao, 1973; Malley, 1986) and
we speculate that many of these classical results have
natural quantum equivalents, whose derivations would
closely parallel the classical ones.

We further note that the results mentioned in sub-
section 4.6 often yield solutions that are known to be
not realizable as Hermitian operators on the original
Hilbert space, and Naimark’s results must be drawn
into the argument to obtain operators that are at least
Hermitian on an enlarged Hilbert space system.

This latter result does not truly resolve the problem
of physical realizability, of course, but we conjecture
that a quantum version of the expectation-maximiza-
tion (EM) algorithm, or a quantum version of the Gibbs
sampler, applied to the larger space, could be employed
[for background see, e.g., Gelfand and Smith (1990)].
Either of these would treat part of the data as “missing”
and the added parameters (specifying the density oper-
ator on the larger Hilbert space) are then extraneous
parameters to be estimated (or for which samples from
the correct posteriors are generated). These methods
would produce all required parameter estimates or pos-
teriors, without having to construct new laboratory de-
vices, similar, for example to use of the EM algorithm
that produces efficient estimates of all parameters
(original or added) without having to actually impute
missing values. This is an area, therefore, for which
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statisticians could materially contribute to experimen-
tal practice in the quantum domain. (See Item A27.)

Finally, there remains the task of validating our
conjecture of equivalence for quantum statistical infer-
ence enunciated in Section 1. This will entail increasing
the precision of the statement of the conjecture and
extending its range. The conjecture was verified here
only for a special two-state decision problem. Other
decision problems and a variety of estimation problems
need to be investigated to confirm the conjecture, or
characterize its range of applicability, and possibly
elevate it to the status of a principle of equivalence
for quantum statistical inference.

6. CONCLUSION

Quantum statistical inference is an established, ac-
tive, although not widely known, synthesis of quantum
physics and statistical methods. The example pre-
sented in Section 2 illustrates the value and novel
challenges of QSI. The QSI treatment of the spin
decision problem, the discussion of quantum estima-
tion in Section 4 and the applications cited in Section 5
show that a quantum-consistent framework for decision
making and inference is already available and is both
often practical and potentially far-reaching.

Our introduction of the principle of local equivalence
for quantum statistical inference is a plausible exten-
sion of earlier ideas (see, e.g., Feynman, 1951), and
admits a more precise statement because of the techni-
cal context provided by QSI. Also, a wide range of
familiar statistical methods now have precise equiva-
lents or near equivalents in the quantum domain.

A number of statistical inference problems have also
been discussed; some have been resolved here, many
others remain open. Solution of some of the open prob-
lems would extend the practical utility of QSI. For
example, in subsection 4.6 it was noted that the QSI
derivation of Heisenberg uncertainty results in a quan-
tum Cramér-Rao lower bound that is for mixture states
strictly sharper than the usual derivations. Finding
physical realizations of the relevant operators could
thus sharpen experimental practice. Or our conjecture
described in subsection 5.5 about use of a quantized
version of the EM algorithm or of the Gibbs sampler
could avoid the realization problem altogether. And in
the wake of the recent results of Mermin and others,
components of our current understanding of statistical
practice appear to be significantly challenged. Thus,
must frequentist methods be embargoed from use in
the quantum domain? )

Perhaps most significant of all is the new vantage
point provided by QSI: the process of quantum mea-
surement is basically quantum-consistent statistical
estimation and decision making.

This viewpoint, coupled with QSTI’s efficient synthe-
sis of quantum mechanics and statistical theory, should

bring varied and significant benefits to both statisti-
cians and scientists. Included in the possible benefits to
scientists we seek, for example, to bring the established
methods of the rapidly developing field of quantum
optics, and its use of nonclassical light, to bear on sharply
improving a variety of biomedical techniques of detec-
tion and estimation, as outlined in the Introduction.

APPENDIX

Al. This equivalence does not undermine the practical
importance of QSI, and instead validates it, by show-
ing that its conclusions are essentially unique. Thus,
any practical application that invokes equivalence, in-
stead of QSI—that is, ordinary statistical inference,
but with the correct quantum space of outcomes and
probabilities—will usually require a tedious and un-
structured search for optimal decision rules and estima-
tors, only to end with a result that may have already
been provided by QSI.

This hybrid approach — classical statistical inference,
but with outcomes and probabilities calculated from
quantum mechanics—is the normative practice in
physics and quantum electronics. According to “equiv-
alence,” QSI substantiates the standard practice when
it includes a search for the optimal decision rule or
estimator. QSI offers improvements as compared to
the standard practice by avoiding an unstructured
search for the optimal rule or estimator.

A2, Historically the traditional uncertainty relations
were applicable only to variables that are represented
quantum mechanically by Hermitian operators; they
were therefore not applicable to time, phase angles
and other angles. Embracing an approach standard -
in classical statistics, QSI treats time and angles as
parameters of the apparatus which produced the objects
to be measured. By considering such quantities as
parameters to be estimated, or about which decisions
must be made, QSI is able to finally secure mathemati-
cally sound uncertainty relations for these important
quantities.

A3. We briefly discuss some further details of spin.
Operators (such as spin) have only a discrete set of
eigenvalues and are said to have a pure-point spec-
trum: only these discrete values will be observed. For
the spin 1/2 particle, the operator representing the
component of the spin angular momentum along the
direction defined by a unit vector n is +(1/2)(c-n),
where o = (05, gy, 7,) is a “vector” of three Hermitian
operators. The standard matrix representation for the
operators is given below, but it is important to note
here that the eigenvalues of ¢-n are +1 and —1 for
any direction n. The value observed for any component
of g for an electron, say, must then be one of the two
values +1 or —1: for any choice of n, these are the
only eigenvalues of the operators o-n.

Ad4. Given the more detailed introduction to spin
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above, let us look again at the three filter experiment.
We use spin “one” systems that assume only the values
+1,0 and —1 (that is, “up,” “no deflection” and “down”).

We follow Feynman, Leighton and Sands (1965, Vol.
3, Chap. 5, pp. 5-6 to 5-10). The experiment consists
of a sequence of three Stern-Gerlach devices, each set
to split up a beam of spin one particles (e.g., silver
atoms) into three channels, labeled +1,0, —1. Each
particle has a certain probability of passing through
one of the devices in the chain when one or more of
that device’s output channels are blocked off. This
event, the passage of a given particle through one of
the devices, has by itself a classical probability of
occurrence. This is assumed to be arbitrarily well-
approximated by a large sample observed frequency.

Using a slight variation of Feynman’s notation
(which is not used elsewhere in this paper but which
we hope makes the connection with Feynman easier),
call the three devices, in sequential order, S, T and S*.
Devices S and S* are set to have the same magnetic
orientation, say vertically, while the device T, situated
between S and S*, is turned at some angle from the
vertical, say 45°. Now, looking at device S, say, write
(+1]S) to denote that device S has been set to pass
only +1 particles, its other outputs being blocked off.
Also, write, for example, (+1, 0|7) to denote that de-
vice T is set to allow passage of both +1 and 0 parti-
cles, but blocks passage of —1 particles.

Consider setting the channel filters on the devices
in various ways, writing for example,

(+1|S) = (+1|T) — (0|S*)

to represent the passage of a particle through the three
devices, with the first two set to allow passage of only
+1 particles, and the third only allows passage of spin
state 0 (no deflection) particles. Actual experiment then
demonstrates that the event represented by

(+1]8) > (0]S*)

has probability zero: no particles will be observed leav-
ing the third device. Probability zero is also obtained
, for particle passage in the arrangement

(+1]8) = (+1,0, —1|T) > (0|S¥),
while the experiment with the arrangement
(+1]8) = (0|T) > (0|S*)

will be observed to yield a strictly nonzero probability.

At this point we have observed something unex-
pected: putting a more absorbing filter in the middle
lets more particles pass through. We now make this
more explicitly a violation of the Kolmogorov axioms
for probability event spaces.

Thus let A be the event that a particle leaves the
system represented by

(+1]8) > (0|S*),

and let B be the event that a particle passes through
the arrangement

(+1]8) ~>(0|T).

Note that the set-theoretic complement of B, B¢ is
represented by passage through

(+1]8) =~ (+1, —1|T)

(remember that the notation means that the first device
in this arrangement just given blocks off 0 particles),
while passage through (+1,0,—1|T) given passage
through (+1|S) is the sure event, denoted by I.

Then, BUB® = I and classically we must have

A=ANI
=AN(BUB"
=(ANB)UANBY

by the usual distributive rule, and since the two events
on the right are disjoint, probability should sum. Yet
by experiment we know that the probabilities of each
of the events on the right are strictly nonzero, while
we also must have the probability on the left, Pr(A) = 0.
This is therefore an experimentally obtainable violation
of one basic rule for classical probability event spaces.

A5. Useful references for the physics are Messiah
(1961), Gottfried (1966), Schiff (1968) and Cohen-
Tannoudji, Diu and Laloé (1977). Dirac (1958) is a good
follow-up to any of these. Useful references for the
industrial-strength mathematical details of QM are
von Neumann (1932, 1955), Prugovetki (1981) and Bel-
trametti and Cassinelli (1981). None of this is easy
reading, but Beltrametti and Cassinelli (1981) evi-
dently provide the most succinct summary.

Concerning alternate formulations of QM, we quote
from van Fraassen (1991):

In the 1960s and 1970s quantum logic became a
highly developed mathematical subject. The inspi-
ration was in part the apparent, tacit agreement
to develop quantum theory itself starting with the
most general notion of a theoretical model which
could possibly fit any data the future might bring.
The postulates of quantum logic narrowed down
this class of models step by step, and eventually
the representation theorems showed that the state-
space was constrained to be a Hilbert space. As
the term “logic” shows, the project was subject to
very high standards of rigour. This gives it a
special value for the project of interpretation of
quantum mechanics. For the more or less axiom-
atic development allows us to introduce the inter-
pretational additions also at each relevant point,
with absolute clarity. In my opinion, any philo-
sophical view on contemporary physics should
eventually measure itself by this standard. (pp.
229-300)
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A6. The QM literature normally uses (the Dirac-
introduced) angle brackets {|{) for the Hilbert space
inner product, and correspondingly indicates a vector
by |¢{)> and the associated dual vector by ¢¢|. The
correspondence between direct and dual vectors is the
usual natural one induced by the inner product. Thus,
in the QM literature the projection operator onto the
one-dimensional subspace spanned by |{) is denoted
by [£><¢].

A7: Example 1*. As mentioned earlier, the spin angu-
lar momentum of a spin 1/2 particle is described by
operators o, o, and o..

In a convenient complex basis in the spin subspace,
the operators corresponding to the x,y and z compo-
nents of the spin vector are 1/2 o, 1/2 g, and 1/2 o,

where
o=|01 a=0—i o =1 0
*lrol” ™ i of 7 Jo-1

are called the Pauli spin matrices. As an example of
the convenience of the spin matrices, observe that
measuring the component of spin along a direction
lying in the (x, y) plane, at an angle 6 from the x-axis,
corresponds to the operator

gs = (cos @)o. + (sin Ha,

_ 0 e—io
o |

Example 2*. In the infinite dimensional Hilbert
space needed for an electron moving along the x-axis,
say, the operators corresponding to position and mo-
mentum are: multiplication by x, and apart from a
purely imaginary constant factor, differentiation by x,
respectively. )

Let X and P denote the operator associated with
position and momentum, respectively. Then

Xo(x) = zp(x),
Py(x) = (=in) L p(x)].

Note that X and P do not commu(:e:
PX—XP = (—ih)I

for I the identity operator on JC. The noncommutativ-
ity of the position and momentum operators, and this
“commutation relation” just given, figures prominently
in the later discussion of the Heisenberg uncertainty
principle.

AS8. The observable X denotes a probability-operator
spectral measure because the map (in a standard abuse
of notation)

B~ tr[pX(B)]

can be shown to define a real-valued measure on ®”".

Mathematically, necessary and sufficient conditions
for the existence of the required measures (p.o.m.’s) is
a deep result due to Gleason (1957); see also Beltra-
metti and Cassinelli (1981).

It is also a feature of a p.o.m., X, that

(i) X(UB)) = LX(B,), for any sequence B, and B, ...
of pairwise disjoint Borel sets in ®";
(ii) X(®R") = I the identity operator on JC.

These properties are said to define a resolution of
the identity. If the p.o.m. maps Borel sets to projection
operators which are orthogonal whenever the corre-
sponding Borel sets are disjoint, then the p.o.m. is an
orthogonal resolution of the identity. One of the major
achievements of functional analysis, the spectral reso-
lution theorem, applies to the orthogonal p.o.m.’s; the
theorem is crucial to the mathematical foundations of
QSI, but is not discussed here; see Yoshida (1980) and
Akhiezer and Glazman (1981).

It is traditional in QM to assume that every observ-
able induces (is associated with) an orthogonal p.o.m.
For many problems, however, QSI permits or requires
the use of nonorthogonal resolutions of the identity.
The spectral resolution theorem is then applied to a
larger Hilbert space, such that the operator extension
of the original p.o.m. is a more tractable orthogonal
p.o.m. This key, purely mathematical fact, is an early
functional analysis result of Naimark; details appear
in both Holevo (1982) and Helstrom (1976). It achieves
its most thorough-going expression and utilization in
the systems approach to QSI of Shapiro and Shepard
(1991). .

A9. When XC is infinite dimensional still other serious
complications may arise. The p.o.m. X may have an
infinite number of eigenvalues or no eigenvectors at
all: then one absolutely needs the machinery of the
spectral resolution theorem for self-adjoint operators.
So armed, the usual notion of eigenvalues can be car-
ried over intact, while the notion of eigenvector is
replaced by that of a generalized eigenvector.

We note that the use of eigenvalue decompositions
via generalized eigenvectors may be rendered more
intuitive by thinking of them as linear functionals on
3¢, or by regarding them as a symbolic shorthand for
certain Lebesgue-Stieltjes integrals. Good references
are Bohm (1986), Hoskins (1979), Zauderer (1983) and
Shilov (1968). The profusion of references is offered as
an aid to the reader, because generalized eigenvectors,
working in concert with the angle bracket notation
mentioned earlier, leads to a very convenient functional
calculus, one widely encountered in physics, engineering
and applied mathematics.

A10. On the other hand, when JC is infinite dimen-
sional, it often happens that the operator X has no
proper (= nongeneralized) eigenvectors; the operators
corresponding to the position and momentum of a
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quantum system are usually of this type. Then the
last equality above, expressing the probability of an
outcome, is represented using an integral over ®”" with
respect to the spectral measure induced on ®” by X;
see Prugovecki (1981, Chap. 3, Sec. 5) and Yosida
(1980).

Al1l. In general, however, quantum mechanical calcu-
lations of probability, means, variances and so on, and
the evaluation of functions of measurements, have two
features that distinguish them from familiar calcula-
tions in classical mathematical statistics: first, the
trace-rule for probability, and second, the technicalities
introduced for not-purely discrete quantum measure-
ments and (possibly infinite dimensional) Hilbert
spaces JC.

A12. The trace-rule for probabilities contains a very
important hidden moral: for an operator A, a given set
of probabilities may be attached to the Borel sets
S € ®" by an infinite family of (generally nonunique)
projection operators. This critical point is easy to prove
rigorously using only basic linear algebra: see Beltram-
etti and Cassinelli (1981, p. 9).

Thus a mixed state p can be written as

p= 200" = 356

for distinct sets of positive constants {a:}, {;} and
distinct density operators

{ G)i(l) } , { (pj(z) ]

(projections onto one-dimensional spaces spanned by
& and y;)).

Both decompositions yield the same probabilities (via
the trace-rule) for the outcomes associated with the
given observable A. In fact, given a set {a;} there is
an infinite collection of sets of constants {f;} which
give the same probabilities as {a;} when the trace-rule
is applied.

Therefore, for an arbitrary state p it is not possible
to meaningfully (consistently) interpret the constants
a; or f; as “probability weights,” such that the quantum
system is “In” the state i, defined by the density (projec-
tion operator) ®; (with probability -@;) or “in” state j
(with probability g;). Taking the trace in effect removes
any “memory” or “trace” of the projectors used in an
expansion for the density. Stating this important point
somewhat differently, the interpretation of a single a;
depends on the entire set ® of projectors and not on
the projector ®* alone.

In view of the above, QM conspicuously resists any
easy probabilistic interpretation of the coefficients oc-
curring in a particular decomposition of a state. Using
the notion from classical statistics this is summarized
as: a density operator is identifiable if and only if it is
a pure state.

On the other hand, it is still possible to envision the

coefficients {a;} as probabilities for a compound experi-
ment, as follows. For each pure state appearing in a
decomposition of a (mixture) state, imagine constructing
separate machines or experiments such that the entity
to be studied is known to be in that pure state.

Next, perform a secondary experiment that consists
of selecting each primary experiment with a probability
equal to the positive constant weight that is associated
with each pure state. Making the given measurement
on this two-stage experiment generates outcomes
with the required probabilities for the observable in
question.

But any other decomposition of the state, and its
attached list of coefficients and pure states, amalgam-
ated as above, also leads to the same results. So although
the final results may be conceived as a two-stage experi-
ment (indeed any member of an infinite family of such
experiments), with an interpretation of the coefficients
as probability weights for that particular two-stage
experiment, one cannot in QM attach any intrinsic
significance to the constants in decompositions of non-
pure states.

A13. While the stated probability equation is experi-
mentally valid, there is a nontrivial conceptual shift
embedded in its calculation from the axioms of QM.

The equation gives the probability of an outcome
associated with a repeated measurement: first measur-
ing spin up with SG1 and then measuring spin up
with SG2. It is not defined via a classical conditional
probability, one that entails a joint distribution for the
two spin measurements.

The nonexistence of a conventional joint distribution
for this problem is, now, after nearly seventy years of
research, standard and repeatedly verified by experi-
mental study. We thus only briefly discuss this below;
see Gudder (1988, p. 54) and Helstrom (1976, p. 66),
for a more complete discussion of joint and conditional
distributions and repeated measurements in QM. The
problem is related to the study of quantum mechanical
stochastic processes, an area currently under active

" investigation: see Section 5.

For the convenience of the reader we insert an adap-
tation of a result appearing in Gudder (1988, pp. 180-
181) that proves the nonexistence of joint distributions
for, in particular, spin 1/2 systems. Two easily derived
results are needed. The first is:

Result 1. For real constants p, ¢ and r, suppose that
0 < p, q,r = 1. Then the events A, B and C can exist
in a conventional (Boolean sigma algebra) probability
space, with Pr(A N B) = p, Pr(A N C) = q and
PrBcN C)=r,ifandonlyifg <= p +r < 1.

For a single Stern-Gerlach device consider making
three spin measurements in the x-y-plane in the direc-
tions u, v and w. Or, equivalently, consider making
three spin measurements in succession, using three
differently oriented Stern-Gerlach devices. Write A for
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spin up in the u direction, B for spin up in the v
direction, and C for spin up in the w direction; similarly
write —u for direction -(n — u), so measuring spin in
this direction is equivalent to measuring spin down in
the u direction. Also then, for example, B¢ is the event
spin down (spin = —1) in the v direction. With this
notation Result 1 is restated as

Pr(u N w) < Priu N v) + Pr(—v N w),
and hence also
Pr(—u N w) < Pr(—u N v)+ Pr(—v N w).

By physical symmetry the probabilities above are func-
tions only of the included angle between the directions
in their arguments. Denote the angle between © and v
by 6:, between v and w by 6, and between w and u by
0s. and write g(6:) = Pr(u N v) and so on. Then

gln — 61) + g(61) = Pr(—u N v) + Priu N v) = %,

with a similar result for 6,, and 6s.
Thus

gln—6) = % —g(6), fori=1,2,3.

The second probability inequality stated above now
yields

§— 8100 = |} - a0 + |}~ 6000

and therefore
gl6n) + gl6) — gl6s) < %.

Following Gudder (1988, p. 181), an induction argu-
ment gives:
Result 2. g(n/n) < (1/2)(1—1/n), forn = 1,2,....

On the other hand, assuming the existence of a joint
probability for measuring pairs of spins, and recalling
the squared-cosine rule for the conditional probability
described in Example 1 of subsection 2.3 (the quantum
coin-tossing example), leads to

* g(61) = Pr(u N v) = Pr(w)Pr(v|u) ='§ X cos? eol) .

To see this, recall that the probability of measuring
spin up with an SG device for a spin 1/2 system is 1/2
for a particle having an initial arbitrary spin orienta-
tion. The joint probability is then assumed to be found
from the usual product rule: the product of Pr(spin up
observed first) and Pr(spin up observed in the new
direction, given spin up first observed).
Taking 6, = 6, = n/3, and 6; = 2n/3, we find that

p=PrluNv)=gl(6)=3/8,
q = Pr(u Nw)=g(f) =1/8,
r="Pr(—v N w)=gln—6) =1/2 — g(6y) = 1/8,

so that
q=18<4/8=1/8+3/8=p+r.

Hence the condition of Result 1 is satisfied. Yet
1 <2_ﬂ>= <,,_£>=1_ <E>
g &3/ 8\""3)T2783
1_ l<1 _1> =1
2 2\ 3/ ¢’

and this is a contradiction.

Experimental results therefore show that a classical
Borel sample space treatment of the three spin out-
comes is not possible. Equivalently, no conventional
joint distribution probability is possible on this space
of three spin outcomes that is consistent with all the
marginal distributions. In still other language, the con-
tradiction just obtained is a consequence of the non-
commutativity of the three quantum spin operators.

Al4. The quantum rule can also be experimentally
implemented as follows.

Combine the output beams of SG2 into a single
beam, doing this “coherently.” Basically, this means
the beams are blended into one without making any
observation about up or down: see Feynman, Leighton
and Sands (1965, p. 6-4). Then, send the single beam
to a third Stern-Gerlach device, SG3, and arrange for
SG3 to be aligned at the angle 6 given above. Finally,
observe “up” or “down” as the output of SG3, and
decide for bias state 1 if “up” occurs.

Remarkably, coherently combining the output of
SG2, and then using an observation from SG3, has the
effect of eliminating entirely any quantum effect of
SG2. Hence the quantum observer makes no use of
the classical (unrotated) SG2 observation and uses an
observation obtained for an angle # and associated
state that is neither bias state 1 nor 2.

Thus using either a properly aligned SG3 or a rotated
SG2 and a recalculated classical decision rule will give
the minimum Bayes risk (= 0.2448) at the prior ¢ =
1/3. This is a working example of what we call the

v

‘conjecture of local equivalence for quantum inference,

which is more carefully stated as: given the proper
experiment and the associated quantum mechanical
probability assignments, the classical rule maker can
derive a decision rule with the same Bayes risk, at a
given value of the prior, as the quantum rule maker.
For this coin-tossing problem, the classical rule maker
matches the optimal QSI risk only locally: all rules
obtained classically for this problem have polygonal
risk curves that are, at best, tangent to and everywhere
else above the QSI curve. The QSI procedure is the
lower envelope of all the classical rules that achieve
the lowest Bayes risk at a given value of the prior. In
effect, the QSI procedure smoothly collates all the
searches (over all possible settings of SG2) for the
optimal, classical Bayes rule: it is not required that
we parse the problem into one of first estimating the
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optimal amount to turn SG2 (or SG3), and then apply
an optimal decision rule. Referring to Figure 2, observe
that the classical risk is exactly the quantum optimal
risk at some value of the prior & between 0.5 and 0.6.

The conjecture of equivalence is therefore a local and,
for now, narrowly defined statement: all probabilities
must be either specified or determined from quantum
theory, before the classical rule maker can uncover the
optimal angle for setting SG2. No single classical rule
for the problem above will match — for all values of the
prior —the quadratic optimal risk procedure for this
problem so succinctly derived by QSI.

A15. The structure of many important physical theo-
ries is an assemblage of three parts (see, e.g., Prugo-
vecki, 1981; the corresponding three parts of QM are:

(i) a Hilbert space as the mathematical setting;

(i) observables or measurements, represented by op-
erators on that space, together with a rigorous
link between operators and outcomes;

(iii) a differential equation called Schrodinger’s equa-
tion, which expresses the time evolution of a quan-
tum system.

Al6. Actually, there are many Heisenberg uncer-
tainty principles: one for each pair of “incompatible”
observables; see Prugovecki (1981, p. 260) for the defi-
nition of “compatible” observables and Beltrametti and
Cassinelli (1981, pp. 26-28) for the related, but mathe-
matically distinct, idea of “complementary” observ-
ables.

A17. Necessary (only) conditions for Case (ii) to ob-
tain include:

(a) The operators A and B do not commute;

(b) neither A nor B is bounded;

(c) A and B have no point spectrum (i.e., the induced
Borel measures are nonatomic), or, if either one
of them has a nonempty point spectrum, then its
eigenvectors lie outside the domain of definition
of the other.

When A and B commute, the right-hand side of the
inequality above vanishes. It is then possible to find
states in which both A and B have values (possibly
distinct) assumed with probability 1.

On the other hand two noncommuting operators
(bounded or unbounded) can still have one or more
eigenvectors in common: they simply cannot have all
their eigenvectors in common. That is, noncommutativ-
ity is not equivalent to a positive lower bound for all
states, and thus some care is required in equating
noncommutativity with Heisenberg uncertainty.

Also, if a pair of observables do have a joint distribu-
tion then the right-hand side of the equation above has
no positive lower limit, and arbitrarily precise joint
measurement is possible. A partial converse to this
result exists; see Louton (1975) for a careful study
of the relationship between the possibility of joint

measurement and the vanishing of the lower limit in
the inequality.

A18. The uncertainty principle has been especially
targeted for interpretation in conflicting, inaccurate
ways. These constitute, however, only some of the
serious obstacles to understanding the unique chal-
lenges that quantum mechanical data pose for statisti-
cal inference, and we confront some of them here.

One such argument has been proposed in an attempt
to refute the nonexistence of joint probabilities. Start
with many instances (experimental realizations) of a
quantum system in a given state. For some of the
systems, measure first the position and afterward the
momentum; for the others, measure the momentum
first and then the position. List the paired obser-
vations. It is sometimes claimed that the list consti-
tutes an empirical joint distribution of position and
momentum.

But the claim is false, because the second measure-
ment in each pair was not performed on a system in
the same state as the first, or equivalently, it requires
measurement on a different quantum object. Instead
of constituting an empirical joint distribution for a
single population of systems, the list instead contains
two empirical conditional distributions, which pertain
to two distinct populations; see Gudder (1988).

There have been still other attempts to domesticate
the uncertainty principle and the nonexistence of cer-
tain joint distributions, that is, to find familiar phenom-
ena—often outside of physics—that mimic quantum
mechanics but that have less stressful, more satisfying
explanations. But so far the search for analogs has not
borne fruit, and this search has now extended over
more than seventy years.

It is instructive to look at two of these other at-
tempts, and in what ways they fail. The first approach
tries to understand quantum phenomena by seeing
them as merely a manifestation of “measurement order
effects,” as in: “measuring A before B gives a different
result than measuring B before A.” The noncommuta-
tivity of certain pairs of quantum measurements is
then taken to be the sole cause of the distinctive fea-
tures of QM.

But in this “order effect” model of QM, conditional
probabilities play a major role: keeping track of condi-
tional probabilities is all (it is asserted) that is needed to
make the conceptual switch from classical to quantum
physics. However, in any conventional statistical struc-
ture, conditional probabilities are defined in terms of
joint probabilities, and, as seen earlier, in QM some of
the pertinent joint probabilities simply do not exist.

The second approach seeks out familiar macroscopic
arenas where joint probabilities do not exist. It is
argued that a joint probability is not humanly deter-
minable for one or another everyday phenomenon.

But simple ignorance of a joint probability is not
sufficient to make the case: to provide an “everyday
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experience” model of quantum phenomena it is neces-
sary to show that merely assuming the existence of a
joint probability for the relevant pair of variables must
inexorably lead to a mathematical contradiction. No
non-QM phenomenon meeting this stringent test has
yet been found.

To sum up, the uncertainty principle and the nonex-
istence of certain joint distributions have thus proven
mathematically sound, physically valid but, finally,
basically impervious to easy interpretation, let alone
along classical statistical lines.

This may be news to some, or just wrong for others,
but it is basically “old business” that conventional
physics and conventional statistical models cannot be
blended into a tame and docile interpretation because
(1) values of quantum variables do not in general exist
prior to measurement and because of (2) the nonexis-
tence of joint distributions.

A19. Thus, to be current and honest, some invoca-
tions of QSI still lead only as far as sets of operator
equations, which only implicitly define the optimal
solutions, and for which it is not yet known how to
physically realize the optimal solutions.

Pursuing this important point a little further, realiz-
ability is an issue in QSI but not in classical statistical
inference because of the novel character of quantum
data. Thus, choosing to measure some quantities ex-
cludes having data on others, at least for the same
set of “events.” In classical statistical inference the
existence of joint distributions guarantees the exis-
tence of a set of comprehensive data providing all
the types of information that will be needed by all
conceivable decision rules (although not all rules will
inquire about all the types of information available).

QSI decision rules thus yield a taxonomy of equiva-
lence classes, each requiring its own type of data, which
may be incompatible with the types of data required
by the others. It is then possible that a particular
decision rule will require an impossible combination of
types of data. Since the structure of QSI correctly
incorporates QM, it is plausible that such cases will not
remain unresolved, but the question is not definitively
. settled. .

A20. The more general problem of deciding between
more than two alternatives is a natural extension of
the binary problem; this M-ary decision problem is
treated in Yuen, Kennedy and Lax (1975), and of course
Helstrom (1976).

A21. More precisely, let #; be the eigenvector of 7
corresponding to positive eigenvalue 7;. (This abuse of
notation can be conveniently avoided by using Dirac’s
delta function notation, but to avoid overloading the
reader with novelties that is not done here.) Following
Helstrom (1976, Chap. 4) the optimum detection opera-
tors are

[Io=2>mn* and L= 2 nn*

7i<0 1i>0

The optimal rule is: decide state 0 whenever a mea-
surement of the observable corresponding to IT yields
the value +1, and decide state 1 when the observable
corresponding to IT; has the value +1. These operators
are orthogonal and in each case if one observable is
+1 then the other must assume the value 0.

The minimum Bayes risk ®umin is found to be

Rumin = tr T = {oCoo + {1Co1 — {1(Cor — Co1) 2. 7.
7>0

A22. One calculates that the positive eigenvalue, as
a function of the prior, is

@ =10-p—1(1+ 8~ 2eos (6 - 0)) ",

for
__ ¢
ﬁ_—l—é'

A23. The classical and quantum Bayes decision rules
displayed above for our basic spin problem, together
with the earlier discussion of the problem of making
joint simultaneous measurements, now permits a de-
tailed demonstration of the nonexistence of a data set
which could be fed to competing decision rules for a
data-based evaluation.

We show that: there can be no single data set that
can be jointly processed by both the classical and the
quantum rules given in the example. Basically, this is
because the two rules in the example are specified by
p.o.m.’s whose associated spectral measures do not
commute.

As proof, recall a theorem of functional analysis on
commuting spectral measures [see, e.g., Holevo (1982)
p. 71]. Begin by checking that for any spin operator
0., the only other spin operator g, commuting with it
must have § = ¢, or = ¢ + 7. In our example the
classical and quantum rules are neither identical nor
separated by a displacement angle of 7, hence they
cannot be jointly measurable. Thus they cannot both
be derived from a single bivariate, physically realizable
data set.

Of course, other decision problems, not discussed
here, may have optimal classical and quantum rules
which do have commuting spectral measures. Exam-
ples are problems for which the two density operators
commute; the quantum and classical rules are then
identical. But cases where the quantum decision opera-
tors commute (or where a classical rule and a quantum
rule commute) are evidently infrequent. We are not
aware of any decision problems which allow jointly
measurable data for the optimal quantum and the classi-
cal rules.

The argument above assumes that the existence of
a joint distribution is synonymous with the possibility
of making a joint measurement. This assumption is
standard in quantum theory; see Varadarajan (1962),
Prugovecki (1981, p. 260) or Bohm (1986, p. 72).
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A24. Indeed, even for n = 1, the operator 7 is not
itself obviously realizable. Only fairly recently (Swift
and Wright, 1979) was it shown that a general spin
operator (an arbitrary linear combination of the Pauli
spin matrices) could always be realized by using a
generalized SG device, in which there is an inhomoge-
neous electric field in addition to the usual inhomoge-
neous magnetic field.

A25. In both approaches above (Bayes and Neyman-
Pearson) sample size was not explicitly an issue; it was
fixed at n = 1. Consider again density operators po
and p;, but now suppose that multiple sample outcomes
are available.

It follows from one of the axioms of QM, not dis-
cussed above, that the density operator corresponding
to n samples from identically prepared systems is the
n-fold tensor product of the one-sample density opera-
tors, and these act on the n-fold tensor product of the
underlying Hilbert space.

This is so even though the particles measured in the
n-sample experiment are identical (bosons or fermions),
because the n-sample experiment distinguishes them
in time, space or both. For example, the same particle
can be run repeatedly through the experimental appa-
ratus at n different times, or n particles can each be run
once through n different (numbered, noninteracting)
copies of the apparatus.

With either arrangement, and using either the Bayes
or the Neyman-Pearson approach, the operator " for
the problem with sample size n is formed from

A=p®: - -Q®p (ncopies)
PP =p®: - ®py (ncopies)
to give B
™ = pf) — Apf.

As can be checked, ™ is generally not of the form
® + + - Qt (n copies).

Deriving the optimal operator, that is, the positive
eigenspace projector for 7", for this decision problem
may not be easy. Moreover, whether the approach is
Bayes or Neyman-Pearson, and even if the density
operators commute or an optimal operator can be writ-
ten as a tensor monomial, it may not be obvious how
to design a device to physically realize the optimal
operator: the implementation problem persists for sam-
ple size greater than 1.

A final comment is in order about n-sample optimal
quantum detectors. As we have seen the optimal detec-
tor for the M-ary decision problem, based on a sample
of size n, requires using an operator on an n-fold tensor
product Hilbert space, and this may explicitly not call
for measuring individual outcomes for each of the n
particles. That is, optimal processing for this problem
could become unobtainable if information about indi-
vidual outcomes were insisted upon, for whatever reason.

Hence, in a sequential decision problem, statistical
power, or Bayes risk, could be in principle seriously
impaired if experimental inquiries were made about the
outcomes of any of the n individual particles: looking at
any intermediate outcome may significantly degrade
overall performance. The modifications needed here for
sequential quantum decision making are an open prob-
lem. Potentially significant, nonintuitive changes from
procedures for classical optimal sequential detection
and estimation may be required for quantum data.
Again, this forms part of the currently active study of
quantum stochastic processes; see the references in
Section 5.

A26. The point just made and the earlier example
on quantum coin tossing underscore the following: the
process of quantum mechanical measurement is a pro-
cedure for estimating a parameterized density opera-
tor. In particular, various observables can be rated
by their efficiencies when considered as detectors or
estimators. This greatly clarifying view of quantum
measurement as statistical detection and estimation
was evidently first proposed by Helstrom (1976, p. 6).
It places quantum-consistent statistical procedures
and the statistician close to the center of both quantum
measurement theory and practical experiment.

The value of the decision-theoretic approach to quan-
tum measurement is also illustrated by the following
facts. For Gaussian states, the uniform minimum vari-
ance unbiased estimator (quantum UMVUE) of the
displacement is the outcome of a measurement of the
position operator; see Holevo (1982, p. 261). But for
non-Gaussian states, the unprocessed outcome of mea-
suring the position operator can be shown to no longer
be the optimal estimate. This statistical estimation
approach thus suggests a systematic search for opti-
mal displacement estimators for other classes of states.

A27. The alert reader may spot a possible fatal flaw
in this proposal: in the larger space a joint distribution
is obtained, but this would then appear to suggest that
all marginal distributions would also exist. Thus, for

‘position and momentum, say, there is no bivariate

marginal for these measurements on the base space.
Hence no joint distribution on any larger space could
be presumed to exist either. However, in QM no contra-
diction arises. That is, while we have seen that two
marginals can exist, and have no joint distribution, it
is also true that a joint distribution can be found
(on a larger Hilbert space) such that the univariate
marginals reduce to position and momentum say, but
no bivariate marginal is required to exist. In still other
words, marginals can exist without the existence of a
Jjoint distribution, and the converse in QM holds as
well: a joint distribution can exist while a subset of
marginals may have no joint distribution. This con-
verse has apparently not been noted before.

A good example of this converse can be constructed
from the extension of the position and momentum
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operators, P and @, on Hilbert space 3¢, say, to opera-
tors P* and @* acting on 3¢’ (containing a copy of 3C);
see Holevo (1982, p. 123) for full details. It is found
that P* and @* commute on J¢* and have a common
set of eigenvectors. Thus, they also have a joint distri-
bution. On the other hand the restriction of P* and
Q* to IC yields operators with identical measurement
statistics as that of P and Q. There is no contradiction
here because, very loosely speaking, 3C does not have
enough vectors to supply a basis of common eigenvec-
tors whereas 3C* does.
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