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development for cognitive science. Such interactions
will lead to a deeper understanding of the inter-
pretation and learning tasks, and may ultimately
help us to address other cognitive tasks, perhaps
including creative thinking and scientific discovery,
as well.

Comment
B. D. Ripley

Bing Cheng and Mike Titterington have reviewed
many of the areas of neural networks; their paper
overlaps the flood of books on the subject. I also
recommend Weiss and Kulikowski (1991) (Segre
and Gordon, 1993, provide an informative review)
and Gallant (1993) for their wider perspective and
Wasserman (1993) for coverage of recent topics. My
own review article, Ripley (1993a), covers this and
many of the cognate areas as the authors comment.
The five volumes of the NIPS proceedings (Advances
in Neural Information Processing Systems, 1989
1993, various editors) provide a very wide-ranging
overview of highly-selected papers. Much of the
latest work is available electronically from the ftp
archive at archive.cis.ohio-state.edu in directory
pub/neuroprose.

At the time I received this paper to discuss, I had
recently attended a NATO Advanced Study Institute
on From Statistics to Neural Networks (whose pro-
ceedings will appeai as Cherkassky, Friedman and
Wechsler, 1994), which despite the direction of the
title revealed that current thoughts in neural net-
works are not to subsume statistics in neural net-
works but vice versa. Many researchers in neural
networks are becoming aware of the statistical is-

sues in what they do and of relevant work by statis- .

ticians which encourages fruitful discussions.

Cheng and Titterington concentrate on similari-
" ties between statistical and neural network meth-
ods. I feel the differences are more revealing as they
indicate room for improvement on at least one side.
However, I believe the most important issues to be
those of practice which are almost ignored in the
paper. Before I turn to those, there are two points I
wish to attempt to clarify.

B. D. Ripley is Professor of Applied Statistics, Uni-
versity of Oxford, 1 South Parks Road, Oxford
OX1 3TG, United Kingdom. This comment was
written -while on leave at the Isaac Newton Insti-
tute for Mathematical Sciences, Cambridge, United
Kingdom.
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1. PROJECTION-PURSUIT REGRESSION

The connection between multilayer perceptrons
(MLPs) and projection-pursuit regression (PPR) is
much deeper than the authors appear to sug-
gest. Other empirical comparisons (apart from my
own cited in the paper) are given by Hwang et
al. (1992a,b, 1993), and Barron and Barron (1988)
viewed PPR from a network viewpoint. In the au-
thors’ notation PPR is

yi=woi + Y 1uTvp),
k

where I have allowed for multiple outputs. An MLP
with linear output units is the special case of logis-
tic ¢p; of course both PPRs and MLPs can be given
nonlinear output units. Since we can approximate
any continuous 1/, of compact support uniformly by
a step function and can approximate (nonuniformly)
a step function by a logistic, we can approximate 1,
uniformly by a sum of logistics. This fact plus the
(elementary) approximation result for PPR of Dia-
conis and Shahshahani (1984) gives the approxima-
tion results of Cybenko and others. There is a ver-
sion of Barron’s Ly result for PPR by Zhao and Atke-
son (1992). (This point of view, approximating 1
by a simple neural net of one input, corresponds to
organized weight-sharing between input-to-hidden-
unit weights for groups of units, a sensible proce-
dure in its own right.)

These results suggest that the approximation ca-
pabilities of MLPs and PPR are very similar (sug-
gesting an affirmative partial answer to the ques-
tion in Section 7). However, PPR will have an ad-
vantage when there are many inputs, only a few
combinations of which are relevant, in making bet-
ter use of each projection and hence fewer projec-
tions and parameters. My suspicion is that this is
commonly the case.
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2. HANDWRITTEN DIGIT RECOGNITION

The literature on handwriting recognition, es-
pecially studies of Zip-codes, is much misquoted
and I suspect much misunderstood. Many of the
best methods for handwriting recognition depend on
choosing good features, and the lower levels of the
Le Cun system can be thought of as feature extrac-
tion not classification and were originally optimized
by hand. The actual results are often stated con-
fusingly (including in Le Cun et al., 1990). There
is a training set of size 9709, 7291 of which are
handwritten, and a test set of 2007 handwritten
characters plus some others. According to Vapnik
(1992) the test-set error rate for the Le Cun sys-
tem is 5.1% (102/2007) (but the 1990 variant would
appear to achieve 4.6% (92/2007)) against 2.5% for
humans and 3.3% for the best automated system
to date. Undoubtedly, the automated systems have
been optimized for this particular dataset, so these
rates may be a little optimistic.

Later workers have suggested that the hand-
crafting is not necessary and report similar re-
sults from simpler applications of neural networks:
Knerr, Personnaz and Dreyfus (1992) and Martin
and Pitman (1990, 1991). Grother and Candella
(1993) report best results for the probabilistic neu-
ral network of Specht (1990), that is kernel discrim-
inant analysis, using up to 64 principal components
of the 1282 image data as input features. These are
all general purpose methods, at least as much so as
penalized discriminant analysis (PDA) and achieve
error rates of around 2.5%. Against this, the value
of PDA, with an error rate of 8.2%, is surely over-
stated. .

This example shows the difficulty of quoting er-
ror rates without reference to the Bayes risk. The
latter can often be estimated (Fukunaga, 1990;
Ripley, 1994b); but in this case, it must be close
to the error rate achieved by humans. It is also
potentially confusing to quote per-digit error rates
when the task depends on correctly reading whole
Zip-codes. That task has some redundancy (not all
possible Zip-codes are valid nor equally probable)
and high correlation in the errors for the separate
digits. The residual error rate contains both seg-
mentation errors in isolating the digits and plain
errors (wrongly labelled digits). There is substan-
tial interwriter variability, and careful studies (such
as that of Grother & Candella) use different writers
for the training and test sets.

3. OPTIMIZATION IN FITTING MLPs

The comments in Sections 4.2.2 and 4.3.2 hide a
series of very important practical points. Some au-
thors argue that the point of the back-propagation

gradient-descent algorithm is not to minimize E(W)
since doing so will lead to over-fitting. The regular-
ization approach is to add a term to penalize rough
functions (such as weight decay) and so change the
objective to a function we really do want to min-
imize. Other people believe in stopping early as
a means of regularization, although why travelling
along a path in the wrong direction to the nearest
point to a goal is thought a good procedure beats
me. (It also occurs in statistical approaches to to-
mography, e.g., Vardi and Lee, 1993.)

What is clear is that no experienced worker at-
tempts to minimize E(W) alone, and this makes
comparisons of methods difficult. A typical ap-
proach is to stop when the error measure on a val-
idation set starts to rise. This has a number of dif-
ficulties:

e To repeat the point, there is no guarantee that
the path taken is sensible.

e In my experience, the error on the validation
set often rises for a while then falls dramati-
cally before rising again; therefore, it is impos-
sible to know that the best point on the path
has yet been reached.

o The use of a validation set wastes data, and I
suspect that often the test set is used. One ex-
ample, in a textbook, is Thornton (1992, p. 199).

A further difficulty is the prevalence of local min-
ima, which are much more common than comments
in the literature (e.g., Thornton, 1992, Section 13.6)
suggest—it needs careful work to discover many of
the minima of the error surface.

Schiffmann, Joast and Werner (1992) and Jervis
and Fitzgerald (1993) report studies of a wide range
of optimization techniques on a narrow range of
problems, and both review the literature. Their con-
clusions differ, and their experience differs from my
own. It does seem that the more sophisticated meth-
ods (such as quasi-Newton and conjugate gradients)
do best in hard optimization problems, often dra-
matically so (e.g., Grother and Candella, 1993), but
can be beaten by on-line gradient descent methods
on simpler tasks. \

The back-propagation algorithm can be extended
to compute second derivatives in some or all direc-
tions (Bishop, 1992; Buntine and Weigend, 1993;
Pearlmutter, 1994). Interesting developments in
this area include RProp (Riedmiller and Braun,
1992) and scaled conjugate gradients (Mgller, 1993)
which can make use of Pearlmutter’s techniques.

It is worth noting that in the Bayesian approach
the effort of minimization is redirected to integra-
tion over the weights, either by a saddlepoint ap-
proximation or by Monte-Carlo methods (e.g., Neal,
1993). (We will almost never be interested in the
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weights per se despite the emphasis of Section 4.3.5.)
It is not yet clear how much effort is needed to do
the integration well.

4. METHODS FOR CLASSIFICATION

The authors mention Hastie, Tibshirani and
Buja’s FDA in Sections 4.3.1 and 7. These au-
thors and I studied Breiman and Ihaka’s unpub-
lished 1984 paper to see if such simple results had
a simple explanation and rederived the results via
canonical correlations. My version will appear in
Ripley (1993b, 1994b) and in detail in Ripley and
Hjort (1994).

For two normally distributed classes with a com-
mon covariance matrix, it is well known that the
sample linear discriminant (LDF) is more efficient
than logistic discrimination since it uses full rather
than conditional maximum likelihood and that the
LDF can be found by regression up to the additive
constant.

We can think of the linear regression as the best
linear approximation to the posterior probabilities
and extend this to more than two classes. As a
principle of classifier design, this has been used
(Duda and Hart, 1973; Devijver and Kittler, 1982;
Fukunaga, 1990) under the name of minimum
(mean) square error classifiers. Unlike the linear
discriminant, this procedure classifies by the near-
est target or equivalently the largest component of
a regression for each class indicator. What Breiman
and Thaka showed is that the regressions span the
same space as the canonical variates and that the
linear discriminant classifies by choosing the near-
est target in a non-Euclidean metric in that space.

Neural networks (at least, MLPs and RBFs) are
nonlinear regressions. This suggests a number of
ways to use them for classification:

e (What Hastie, Tibshirani and Buja, 1992,
called FDA). Regress the class indicators on the

input variables and use LDA in the space of fit- .

ted values. Equivalently, encode the classes in
scores and regress the scores on the inputs.

e Use the functions in a nonlinear model for the

' log posterior probabilities. This is sometimes
known as softmax in this field and fitted via
maximum likelihood and is possibly penalized
by, say, weight decay.

e Use the functions for separate nonlinear lo-
gistic models for each class versus the rest,
as in an MLP with. logistic output units. Al-
though apparently less sensible than the previ-
ous method, this is by far the most commonly
used, for example, in the Le Cun study.

e Choose well-separated scores for the classes
and regress on the inputs (Dietterich and

Bakiri, 1991).

The authors appear to prefer the first method, but
they probably have no practical experience. I have
found a number of difficulties, over many experi-
ments, that stem from the need to estimate the
within-class covariance in the space of fitted val-
ues. For fits from nonlinear regressions (includ-
ing MLPs, RBFs, MARS and projection pursuit re-
gression) the covariance matrix can be dominated
by outliers; and even with robust estimation, it can
be insufficiently well determined. My current pref-
erence is for the second approach, but this raises
problems for techniques such as MARS that are tai-
lored to least-squares fitting. My impression is that
how the flexible family of functions is used is much
more important than which family is chosen.

5. WHAT CAN NEURAL NETWORKS ACHIEVE?

It is no accident that all the real examples Cheng
and Titterington chose are classification problems;
in my reading, these form over 90% of the applica-
tions with regression techniques being used in time
series (Weigend and Gershenfeld, 1993) and con-
trol (Miller, Sutton and Werbos, 1990). Great ad-
vances have been claimed for neural networks, but
more careful studies have shown that in many of the
cited examples statistical methods can do as well
or even much better. (For NETtalk, Wolpert, 1990;
for digit recognition, Grother and Candela, 1993; for
the sonar problem of Gorman and Sejnowski, 1988a,
b; Ripley, 1994a.) Often linear methods or k2-nearest
neighbour methods, used carefully, will do as well as
neural networks.

There should, though, be a place for methods be-
tween the linear parametric methods and wholly
nonparametric methods for highly-parametrized
methods such as MLPs, RBFs, MARS and projection
pursuit regression, especially in problems with sig-
nificantly curved structure and relatively few data
points.

One thing clients often require is to be able to un-
derstand the classifier. This is difficult with black-
box systems such as neural networks and is of-
ten claimed as an advantage of machine-learning
systems such as tree- and rule-induction systems
(Quinlan, 1993; Thornton, 1992). This may be true
if there is a simple true classifier. In other cases,
the true relationship between classes appears to be
too complicated to be perceived easily (such as the
forensic glass example in Ripley, 1994a, b). Humans
often find rules easiest to comprehend; and any clas-
sifier can be approximated by a rule system, for ex-
ample, by generating examples from it and inducing
rules from these (as in Gallant, 1993 or Quinlan,
1993).
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Issues of choosing model complexity and assess-
ing performance and “generalization” (Section 4.3.4)
are among the most important open questions.
There is some evidence that methods such as cross-
validation and AIC are too “local” to fully assess the
variability of very flexible methods; therefore some
of the assessed benefits of nonlinear methods may
be illusory. [On “generalization”, Haussler (1992)
is a far-reaching extension of the ideas of VCdim
to which statisticians, especially David Pollard and
Luc Devroye, have contributed; and Anthony and
Biggs (1992) is an introductory text on the seminal
ideas of Blumer et al., 1989.]

One thing statisticians can contribute to the de-
bate is experience in careful use of sophisticated
nonlinear methods. Software is readily available,

Comment
Robert Tibshirani

Cheng and Titterington’s paper is a scholarly
overview of the field of neural networks. It should
raise the statisticians’ awareness of this interest-
ing and important field. One of the authors’ objec-
tives was to encourage cross-disciplinary research
between neural network researchers and statisti-
cians. Here at the University of Toronto, I have
been collaborating informally with Geoffrey Hinton
of the Computer Science department, and I think
that this collaboration has been fruitful for both of
us.

First I would like to make a general point draw-
ing a distinction between statistics and neural net-
works:

Statisticians tend to work with more interpretable
models, since measuring the effects of individual in-
put variables, rather than prediction, is often the
purpose of the analysis.
 Having said that, there is still much that one field
can learn from the other. I will briefly summarize
some of the main points:

WHAT THE STATISTICIAN CAN LEARN FROM
NEURAL NETWORK RESEARCHERS

1. We should worry less about statistical optimal-
ity and more about finding methods that work,

Robert Tibshirani is Associate Professor, Depart-
ment of Preventive Medicine and Biostatistics, Uni-
versity of Toronto, 12 Queens Park, Toronto, Ontario
M5S 1A8, Canada.

including in S, and I would encourage statisticians
to experiment rather than quote inadequately de-
signed propaganda studies.

To end on a positive note, some very impres-
sive applied statistics is being done using neural
networks, and the explosive growth of the subject
has opened the eyes of some statisticians (includ-
ing myself) to the complexity of problems that may
be fruitfully attacked by nonlinear methods. I and
others have been particularly impressed by some
work of my Oxford Engineering Science colleague,
Lionel Tarassenko, on analyzing sleep EEG data us-
ing both Kohonen nets and radial basis functions
to detect structure and anomalous signals (Roberts
and Tarassenko, 1993, 1994).

especially with large data sets.

2. We should tackle difficult real data problems
like some of those addressed by neural network
researchers, like character and speech recogni-
tion and DNA structure prediction. As John
Tukey has said, it is often better to get an ap-
proximate solution to a real problem than an
exact solution to an oversimplified one.

3. Models with very large numbers of parameters
can be useful for prediction, especially for large
data sets and problems exhibiting high signal-
to-noise ratios.

4. Modelling linear combinations of input vari-
ables can be a very effective approach because
it provides both feature extraction and dimen-
sion reduction.

5. Iterative, nongreedy fitting algorithms (like
steepest descent with a learning rate) can help
to avoid overfitting in models with large num-
bers of parameters.

6. We (statisticians) should sell ourselves better.

WHAT THE NEURAL NETWORK RESEARCHER
CAN LEARN FROM STATISTICIANS

1. They should worry more about statistical opti-
mality or at least about the statistical proper-
ties of methods.

2. They should spend more effort comparing
their methods to simpler statistical approaches.
They will be surprised how often linear regres-
sion performs as well as a multilayered percep-



