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Despite the great potential of such work, given the
unknowably enormous range of possible analyses of
many public-use files, and the typical dependence
of Bayesian model specification on prior assump-
tions, I remain sceptical that the kinds of biases
arising in the example in Section 3.1 can ever be
removed entirely and feel that missing values in
public-use files should continue to be flagged to en-

able users to use incomplete-data methods when
necessary.
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Comment: Using the Full Toolkit

Alan M. Zaslavsky

Meng’s paper sits at the intersection of two parad-
igms of statistical inference: randomization-based
frequentist inference, as traditionally practiced in
the analysis of sample surveys, and model-based,
specifically Bayesian, inference. It has been diffi-
cult to combine these approaches, not only because
of the philosophical differences between them but
also because of the different strengths and emphases
of modeling in the respective traditions. Nonethe-
less, some problems can be solved by using tools
from each paradigm to attack different aspects of
the analysis. This melding of approaches is im-
plicit in the distinction between the complete- and
missing-data analyses in multiple imputation, and
Rubin (1987) lays out a theoretical basis for it,
which Meng has extended in a useful and interesting
way' .

In this commentary, I contrast the main features
of these two inferential approaches.in order to draw
out some of the difficulties in combining them. I
then describe three examples in which frequentist
and Bayesian modes of inference are merged to give
useful answers to practical problems.

Typically, when a survey is conducted, only the
randomization (sampling) scheme is assumed to
be known. “Design-based” inferential methods are
intended to produce inferences that are asymptot-
ically valid regardless of complex features of the
population, such as various systematic relationships
that are not the object of inquiry, or complex patterns
of dependency among units at various nested levels.
In order to give valid inferences under these circum-
stances, randomization inferences typically are de-
signed to depend only on means and variances, hence
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the emphasis on unbiased estimation of means and
variances in the survey literature. In fact the ro-
bustness of survey inference is dependent on features
of the population other than the first two moments,
particularly the adequacy of the asymptotic nor-
mal approximation to the sampling distribution
of estimators, which in turn depends on the
underlying distributional form of the population
as well as the design. Nonetheless, randomiza-
tion inference is usually conducted without at-
tempting formally to model these features, which
are instead investigated through diagnostics and
rules of thumb that are secondary to the main
analysis.

Bayesian inference, on the other hand, in princi-
ple requires specification of probability distributions
for all relevant features of the population. These
distributions can be expressed either directly, or
indirectly through the intermediary of hypothetical
parameters of greater or lesser parsimony, such as
superpopulation means and variances. (In finite pop-
ulation inference, the parameters may be regarded
as devices for the specification of population models,

" because the object of inference is the population at

hand rather than the hypothetical superpopulation;
see Rubin, 1987, Chapter 2.) Only after such a com-
plete specification is it possible to “turn the Bayesian
crank” to obtain inferences, a process which can be
computationally challenging but which requires no
particular conceptual innovation.

Thus, the requirement of complete specification of
realistic models in Bayesian inference runs counter
to the survey analyst’s typical effort to make infer-

ences for particular estimands of interest by choosing"

and evaluating estimators.

Skinner, Holt and Smith (1989, Chapter 1) distin-
guish three approaches to analysis of survey data
when the population, the survey design and the es-
timators have complex features. One approach is to
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use estimators and associated estimators of variance
developed for simple populations and designs (simple
random sampling or i.i.d. observations) and mod-
ify them with general-purpose corrections, notably
the application of univariate or multivariate “design
effects.” The second is to select an estimator and
then evaluate its sampling properties when applied
to the population and sample design at hand. This
approach includes, for example, the use of regression
models together with the robust “sandwich” estima-
tor of the sampling variance of parameter estimates.
Meng alludes (Section 1.2) to a method proposed by
Fay (1991) to analyze surveys with missing data by
filling in missing data by a deterministic model and
then evaluating the sampling variance of the result-
ing estimates; this proposal falls into the same cate-
gory. See also Efron (1994) for proposals along these
lines,and commentary by Rubin.

The third approach is to specify models that fully
describe the relevant features of the populations
under study and to perform inference under these
models. For example, a population with nested units
can be described using a model with a variance
component for each level of clustering. Estimators of
population parameters and the corresponding vari-
ance estimates in this case are those derived under
the model. Obviously, such models can be very com-
plex if they are realistically to describe complex pop-
ulations. Fully Bayesian methods fall in this last
category.

Because it may be so difficult to specify fully a
Bayesian analysis, in many problems the best strat-
egy can be to use a model-based Bayesian inference
for the part that requires it, in particular the imputa-
tion of missing data, and to use frequentist methods,
relying on estimates of means and variances and on
approximate normality, for the rest of the inference.
Multiple imputation is a device for such a combined
approach, which combines features of the second and
third categories in the typology described above. This
strategy may engender uncongeniality of the analytic
methods used in the different parts of the inference,
even though each is appropriate for its part of the in-
ferential task, and even in cases in which the same
organization carries out both parts of the analysis.
Nonetheless, the mixed strategy is desirable when
it is the most tractable valid approach. Meng’s con-
tribution, therefore, is to give the analyst and the
imputer (who may be the same person) confidence
that under even more general conditions than those
described by Rubin (1987, Chapter 4), the combined
inference will be valid.

I conclude by describing three examples of data
analyses in which Bayesian and frequentist modes
of inference are mixed and the analysis is formally
uncongenial but still valid.

The first example is the problem of imputation
of unresolved match status in 1990 census under-
count estimation (Belin et al.,, 1993), mentioned
by Meng. To estimate the rate of coverage errors
(persons who were omitted from the census or erro-
neously included in the census), a coverage survey
was conducted in a sample of blocks. Persons in the
survey were matched against those in the census in
the corresponding blocks. It was not always possi-
ble to determine with certainty whether a person in
the survey could be identified with some person in
the census listing (“match status”), even after fol-
lowup interviews; in these cases the match status
was “unresolved” (missing). Therefore an imputa-
tion model was developed to estimate the probability
that the person was a match (“match probabilities™).
This model was fitted to data from all cases for
which match status had been determined, and it was
specified flexibly as a logistic regression with effects
for sampling strata and with random coefficients by
“match code” group (defined by processing informa-
tion available before follow-up).

In order to carry through the multiple imputation
analysis, it was necessary to obtain a posterior dis-
tribution for the regression coefficients. Three lev-
els of units were relevant at this point: the person,
the household and the block. The block was the
sampling unit for the coverage measurement sur-
vey, and variance estimation for the complete-data
analysis was performed by jackknife resampling of
blocks. The objective of the multiple imputation pro-
cedure, however, was to estimate match probabili-
ties for cases in the sample blocks, not to describe
these probabilities for the entire population. There-
fore we conditioned on the sample in this part of the
analysis.

The units of analysis in the logistic regression
model were individual persons. In many cases,
though, resolution of match status depended upon a
determination of whether or not an entire household

- inthe census could be identified with a corresponding

household in the coverage survey. Despite the fact
that the grouping of persons into households was not
explicitly considered in the formulation of this model,
we felt it was important to consider possible associ-
ations between match status for different individu-
als in the same household. Rather than augmenting
the model to include effects for households explicitly,
we chose to approximate a posterior distribution by
a sampling distribution, using a bootstrap method-
ology in which we resampled households, treating
the blocks as strata. Our intention was to obtain a
plausible estimate of variance without undertaking
the far more complex task of modeling the depen-
dence between match statuses of persons within
households.
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A second example concerns the “total error model”
used to summarize all possible sources of uncer-
tainty in estimation of census undercount (Mulry
and Spencer, 1993). The following are among the
components of variability included in the model:
(1) sampling variability in the original estimates;
(2) uncertainty about the contribution to under-
count from cases whose match probabilities were im-
puted (Schafer and Schenker, 1991) under the model
described above (i.e., missing data); (3) sampling
variability in estimates (based on a small auxiliary
survey) of various types of systematic bias in un-
dercount estimates due to response errors, unde-
tected fabricated enumerations, matching errors and
so forth; and (4) uncertainty among alternative prior
assumptions about certain unmeasured biases (such
as “correlation bias” due to the existence of persons
who are hard to catch in both the census and the cov-
erage measurement survey). Each of these sources of
uncertainty can be regarded as contributing a vari-
ance component to final bias-corrected estimates of
undercount rates for various domains. Variance com-
ponents (1) and (3) are sampling variances of esti-
mates and can also be regarded as posterior vari-
ances assuming locally flat priors. Component (2) is
the between-imputation variance discussed above; it
can be regarded as a component of posterior variance,
but a resampling methodology is used to estimate
it. Finally, (4) can only be understood as a compo-
nent of posterior variance; it has no “repeated sam-
pling” meaning. Zaslavsky (1991) argues that the
difference between estimated and true undercount
rates can be decomposed into approximately inde-
pendent disturbances corresponding to these four
variance components.” Mulry and Spencer (1991)
point out that the assumption of flat priors leads
to an unsatisfactory inference for the true under-
count rates, and Zaslavsky (1993) shows that a more
satisfactory inference can be obtained through a hi-
erarchical Bayes model, combining estimates from
the coverage survey, bias estimates and estimates
of the variance components for the many estimation
domains.

" The third example arises from a different subject
ared, but shares the feature that total uncer-
tainty combines components that correspond to both
sampling and nonsampling uncertainty. Microsim-
ulation models are widely used as tools for policy
analysis in areas such as tax policy, health care,

welfare reform and so forth (Citro and Hanushek,
1991). They consist, essentially, of sample files of
records corresponding to some units, together with
modules that simulate the effects of some policy de-
cision on these units, often including some behav-
ioral response that can be modeled deterministically
or stochastically and some process for “aging” avail-
able survey data to simulate conditions at a time.
Recently, therefuture has been increasing recogni-
tion of the need to have realistic measures of un-
certainty for estimates from these models (Citro and
Hanushek, 1991, 1994). The following are among the
sources of uncertainty: (1) sampling variability in
creation of the data file; (2) sampling variability and
uncertainty about model specification in estimation
of models for behavioral responses; (3) uncertainties
involved in statistical matching, imputation and so
forth required to create the data file; (4) uncertainties
about macro-level trends (such as the future state of
the economy) that affect outcomes; and (5) stochas-
tic variability in simulations of uncertain outcomes.
Analysis of the magnitude of each component is im-
portant both to estimate total uncertainty and to
show which components are most important and
thereby to orient research intended to improve the
model. Zaslavsky and Thurston (1994) outline meth-
ods for estimating and combining these components,
using resampling of microdata records, repeated sim-
ulation and multiple imputation. Uncongenial mul-
tiple imputation inferences are necessary because
the construction of the data set involves using di-
verse data files and complex linkage procedures that
are not incorporated into the final microsimulation
model and therefore are not directly accessible to the
analyst.

In each of these three examples, several different
sources of variability that correspond to distinct mod-
els (or procedures) and to distinct inferential modes
must be combined to represent properly the uncer-
tainties in the final results. Through his careful dis-

. cussion of such combined analyses in the context of

multiple imputation, Meng has advanced our ability
to solve large-scale problems that require the use of
a full statistical toolkit.
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