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Survival in Dynamic Environments

Nozer D. SingpurWaIIa

Abstract. This expository paper is an overview of a relatively new class
of failure models, both univariate and multivariate, that are suitable for
describing the lifelength of items that operate in dynamic environments.
Many of the currently used failure models are developed under the
premise that the operating environment is static: these models turn out
to be special cases of the new models that are overviewed here. These
new models are derived by describing the underlying failure-causing
mechanisms, such as degradation and wear, using suitable stochastic
processes: this is the underlying mathematical theme that drives their
development. Because of their generality, the new models should pro-
vide improved descriptions of failure data and assessments of item
survivability. Furthermore, they may signal a new philosophy of life-
testing experiments wherein one also monitors the environmental fac-
tors that govern the tests. This overview categorizes the models by the
various strategies used for their development, outlines the salient as-
sumptions underlying them and provides a convenient road map to the
pertinent references, which are scattered among the applied probability,
engineering, reliability and survival analysis literatures. It is our hope
that this paper sets a tone for the direction of future work in the
development of models for survival wherein the physics of failure and
the characteristics of the operating environment play a key role.
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mula, diffusion, dynamic linear models, extended gamma process,
gamma process, hazard rate, Lévy processes, Markov additive processes,
multivariate distributions, reliability, shot noise, stochastic processes,
survival analysis, Wiener process.

1. INTRODUCTION AND OVERVIEW

The last few years have witnessed much criticism
about the failure of reliability theory to have a
tangible impact on the problems of modern science
and technology. The lack of meaningful assess-
ments of the integrity of composite materials and
the survivability of structural elements have been
cited as examples. Such criticism is justified be-
cause much of the literature in reliability tends to
focus on old themes such as a characterization of
classes of survival distributions or inference for
parameters of failure models chosen from a limited
inventory of such models. Parametric families of
distributions, such as the exponential and the
Weibull, have been used as failure models for al-
most 30 years. Besides tradition and convenience, a
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typical reason for selecting these models has been a
subjective assessment about the aging characteris-
tics of an item and/or the model’s goodness-of-fit to
failure data. Often the failure data used is obtained
from life-testing experiments conducted under con-
trolled laboratory environments that are static. To
many engineers and scientists, this black-box ap-
proach to model selection is unsatisfactory. A more
appealing approach would be to choose a model
based on the physics of failure and the characteris-
tics of the operating environment. Some efforts in
this direction are already underway, and an aim of
this overview is to highlight this trend.

Over the last few years, some literature devoted
to the evolution of a relatively new class of failure
models, both univariate and multivariate, for appli-
cations in reliability and biometry has begun to
appear. A distinguishing feature of these new mod-
els is the fundamental theme that drives their de-
velopment: they have been derived by considering
stochastic processes that are presumed to describe
the failure-generating mechanisms. Describing fail-
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ure-generating mechanisms by stochastic processes
is particularly germane when the environment un-
der which the items operate is dynamic, that is,
when the induced stresses (or covariates) vary over
time. This is because dynamic environments induce
internal stresses in an item that change the rates
and the modes by which the item degrades to fail-
ure. The purpose of this paper is to survey this new
literature and to present an overview of the salient
developments. The focus of this overview is on prob-
abilistic modelling. Inferential issues are beyond
the scope of what is discussed here and, indeed,
require further research.

Because dynamic environments induce changes
in the physics of failure, a stochastic-process ap-
proach to failure modelling provides flexibility with
respect to describing the failure-generating mecha-
nisms. This flexibility results in a better description
of the failure data and an improved assessment of
item survivability. This is perhaps the main reason
why reliability engineers should be interested in
the approach of this paper. Furthermore, the ap-
proach also raises the general level of the state of
the art in reliability theory and survival analysis,
especially in the ability to describe the surviva-
bility of multistate items. A disadvantage of the
stochastic-process-based approach to failure mod-
elling is that the resulting expressions for the sur-
vival function take unmanageable forms and can
only be expressed via their Laplace transforms.
However, with the rapid advances in the use of
computer and simulation-based technologies in the
statistical sciences, together with a widespread use
of numerical techniques such as saddle-point ap-
proximations, the disadvantage of not having
closed-form expressions will gradually disappear.
Consequently, future research in reliability will also
have to focus on computation  and computability.
Another aim of this paper is to emphasize the
importance of this direction and to enable reliabil-
ity theory to regain its lost appeal.

In developing an approach to failure modelling.
based on a stochastic process, it appears that four
strategies have evolved; the two predominant ones
are emphasized here. With the first strategy, the
item state (or, equivalently, its wear) has been
described by a diffusion process: typically a Wiener
process, a gamma process or a deterministic diffu-
sion. It can be shown that deterministic diffusions
give rise to some of the well-known failure models
that are in use today. Diffusion processes are
stochastic processes with continuous sample paths.
With the second strategy, it is the failure rate (also
known as the hazard rate) of the item that is
described by a stochastic process: typically a gamma
process; a shot-noise process; functionals of a

Wiener process; or, in general, a Lévy process. Lévy
processes have stationary independent increments,
and their marginal distributions are infinitely di-
visible. A more recent trend has been the develop-
ment of failure models based on a consideration of
two processes, one for the item state or wear and
the other for a covariate that drives it. Covariate
processes that drive the wear are referred to in the
engineering literature as excitation processes. A
study of models derived from excitation processes
may signal a new philosophy of life-testing experi-
ments wherein one must also monitor the condi-
tions of the test. The third strategy for developing
failure models focuses on describing the damage-
causing environment by a stochastic process,
typically a shock-inflicting Poisson process; the
resulting failure models are known as shock mod-
els. The fourth and final strategy, and one for
which there has been little development, is that in
which a response variable that is strongly corre-
lated with the lifelength, such as temperature, is
described by a stochastic process, typically a station-
ary, continuous-time Gaussian process.

The text of this paper is based on a synopsis of
material from the following chronologically ordered
references which focus on one or the other of the
first two strategies mentioned above: Mercer (1961);
Gaver (1963); Antelman and Savage (1965); Cinlar
(1977); Arjas (1981); Myers (1981); Dykstra and
Laud (1981); Yashin (1985, 1993); Lemoine and
Wenocur (1985, 1986); Meinhold and Singpurwalla
(1987); Blackwell and Singpurwalla (1988);
Wenocur (1989); Cinlar and Ozekici (1987); Gamer-
man (1991); Kebir (1991); and Singpurwalla and
Youngren (1991, 1993). The flowchart depicted in
Figure 1 is a convenient road map that shows the
disposition of the material in some of these refer-
ences. The above list is not to be viewed as exhaus-
tive, and it is very likely that some key references,
particularly those from the biostatistical literature,
may have been overlooked. The work on models for
failure based on the occurrence of shocks stems
from the seminal paper of Esary, Marshall and
Proschan (1973) and essentially culminates with
the papers by A-Hameed and Proschan (1973, 1975).
Desmond (1985) outlines an overall scheme for de-
veloping failure models under the fourth strategy,
namely, that involving a response variable; Schabe
(1990) applies it when the response variable is a
crack due to fatigue; also see Sobczyk (1987).

An historical comment may be of interest. It ap-
pears that Mercer (1961) may have been the first to
consider the idea of describing item state by a
stochastic process, and Gaver (1963) the first to
propose modelling the item failure rate as such.
Failure models based on covariate processes also
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Fic. 1. Modelling strategies and a road map to the literature.

appear to have been first envisioned by Mercer
(1961) in his remarkably imaginative and far-
sighted paper. However, it is Cinlar (1972) who, via
his notion of Markov additive processes, puts this
idea on a firm mathematical basis and in so doing
provides the needed boost for its formal develop-
ment. .

2. ORGANIZATION

The organization of the rest of this paper is as
follows. Section 3, which constitutes the bulk of

what is written here, pertains to models for the
failure of components, whereas Section 4 pertains
to failure models for multicomponent systems and
networks. Work in the arena of the reliability of
multicomponent systems, though currently sparse,
is very important; it shows signs of extensive fur-
ther development. Section 5 concludes the paper
with an indication of directions for continued re-
search in the interesting and potentially useful
ideas that are described in Sections 3 and 4.
Section 3 is broken down into four subsections,
each devoted to a specific modelling strategy. Thus,
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Section 3.1 pertains to the premise that the state of
a component changes over time, with the various
state transitions being described by a stochastic
process. The processes considered are a determinis-
tic diffusion, a Wiener process and a gamma pro-
cess. In Section 3.2, it is the failure rate of the item
that is stochastic. This is in contrast to the tradi-
tional approach wherein the failure rate is taken to
be a deterministic function of time with unknown
parameters. Processes that are considered for de-
scribing the stochastic nature of the failure rate
function are the shot-noise process and the Lévy
process, with the gamma and the compound Pois-
son processes as special cases. Sections 3.3 and 3.4
pertain to failure models derived via consideration
of the behavior of covariates that influence failure.
Thus, for example, in Section 3.3.1 the covariates
are assumed to be time-varying and are described
by a Brownian motion, whereas in Section 3.3.2
they are described by a random walk. Section 3.3.1
leads us to the famous Cameron—Martin formula.
Section 3.4 is different in spirit from Section 3.3; it
involves a consideration of two stochastic processes,
one for the item state and the other for the covari-
ate that drives the state. This potentially fertile
idea, though proposed by Cinlar as early as 1972,
offers much promise regarding a sense of the fu-
ture, but remains to be fully exploited.

Section 4 is based on the notion that dependen-
cies between component lifelengths are due to a
common but dynamic environment in which the
components function as a system, and that the
effects of the environment are described by a
stochastic process. Two processes are considered:
the first is an extension of the gamma process and
the second is a shot-noise process. The former gen-
eralizes the shock model framework of Esary, Mar-
shall and Proschan (1973) and yields the famous
multivariate exponential distribution of Marshall
and Olkin (1967) as a special case. The latter re-
sults in a new family of multivariate distributions
with exponential marginals as a special case.

To summarize, much of the material of Sections 3
and 4 provides concrete probabilistic results per-
taining to models for failure and survival. The im-
" plication of these models for practical applications
and the associated inferential matters are topics
that need to be researched.

3. MODELS FOR THE FAILURE
OF COMPONENTS

The simplest way to start is via the setup of
Section 3.1, which considers the failure of an
item due to the competing causes of deterioration
and trauma. The deterioration is described by
some stochastic process, and the rate of occurrence

of trauma by a Poisson process with a state-
dependent intensity function. The proposed setup is
quite natural and intuitively appealing; it leads to
a general expression for the survival function of the
item [see equation (3.5)]. A consideration of special
cases for the stochastic process (Sections 3.1.1-3.1.3)
leads us to either an alternative perspective on
some of the commonly used failure models or to
some new failure models. The alternative perspec-
tives facilitate a critique of some of the commonly
used models. By expanding the inventory of plausi-
ble failure distributions, the new models provide
added flexibility for dealing with failure data.

3.1 Modelling the Item State by a
Stochastic Process

Suppose that the time axis is divided into con-
tiguous and equispaced intervals of length A, and
that the successive endpoints of the intervals are
denoted by A, 2h, 3h,...,nh,.... Let X(n) denote
the state of an item at time nk, n = 1, 2,..., where
X(n) is some physically observable entity, such as
the size of a crack.

The item wear is defined as the increment
X(n + 1) — X(n), and the following discrete ap-
proximation to the diffusion of X(n) has been con-
sidered by Lemoine and Wenocur (1985) and by
Wenocur (1989):

X(n+1) —-X(n) =0c(X(n)e,
+ w(X(n))h,

where the {¢,} are independent and identically dis-
tributed (i.i.d.) variables, with expectations E(e,)
and variances Var(g,); o and pu are functions of
their arguments. Thus if the item at the start is x,
then over A units of time its wear will increase on
the average by o(x)E(g,) + u(x)h, and the stan-
dard deviation of the average increase in wear is
a(x)[Var(g,)]/% Clearly, if o(), u(-) and &, are
nonnegative, then the wear is monotonically in-
creasing. It should be noted, however, that there
are many situations in which the wear need not be
increasing. For instance, cracks due to fatigue load-
ing sometimes reflect a tendency to heal.

The item is said to have failed when its state
reaches a level (say, r) or when a traumatic event
such as a shock of large magnitude annihilates it.
Suppose that traumatic events occur as a Poisson
process with a rate (called killing rate) which de-
pends on the item’s state. The latter is a meaning-
ful assumption, since the weaker the item, the
more susceptible it is to failure due to trauma.
Then, per the postulates of a Poisson process,

(3.1)

P{item fails due to trauma by A time
(8.2) unitslitem state remains at x, x # r}

=1 — exp{—hk(x)},
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where k(x) is the killing rate when item state is x.
Thus given X(j) = [ X(0), X(1), ..., X(j)], a history
of the item states, and assuming that X() #r,
i=0,...,J

P{item is surviving at time jh | X(j)}

(3.3) J-1
= exp —h Z k(X(i)) I[O,,-)(X(j)),

i=0

where I[O,r)(X(j)) is 1if X(j) < r, and O otherwise;
recall that jh represents the endpoint of the jth
interval. Conditioning only on X(0) = x, and letting
Jh = t,

P{item is surviving at ¢ | X(0) = x}

3.4)
= E"[exp{j: - k(X(S)) ds}I[o’r)(X(t))]’

where E*[-] denotes expectation of the argument
within the square brackets, with X(0) fixed at x. A
scenario in which X(0) is random is considered by
Crowder, Kimber, Smith and Sweeting (1991, page
74). However, their development incorporates re-
sults from fracture mechanics for developing a suit-
able failure model.

Thus if T is the time to failure of the item and 9
is the time to first passage of the X(:) process to the
level r, then a general expression for the surviv-
ability of the item for a mission time (say, t) is of
the form

P(T >t |X(0) =x)

Cprr s

= E"[exp{ — /:k(X(s))(ds}I(y> t)] .

(3.5)

The next step would be to evaluate (3.5) under
specific assumptions about the ii.d. sequence {¢,}.
For this, it is helpful to go back to (3.1) and to
consider its continuous-time analogue. The discrete
version (3.1) is conceptually easier to motivate and
is therefore chosen as a starting point. Accordingly,
we allow A to decrease to 0, and we focus on the
resulting stochastic differential equation

3.6) dX(t) =o0X(t)dy(t) + ul X(#)]dt,

where {y(¢)} will be a gamma process if the {¢,} are
assumed to be i.i.d. gamma, and it will be a Wiener
process if the {¢,} are assumed to be i.i.d. Gaussian.
The essential features of these two processes will be
summarized in Sections 3.1.2 and 3.1.3, respec-

tively; however, we note now that in integral terms
(3.6) becomes

X(t) = X(©0) + [ ‘ol X(s)] dy(s)
(3.7) 0
+ [‘ul X(5)] ds,
0

a form that will be subsequently used.

3.1.1 A deterministic diffusion for item state.
Suppose that in (3.7), o(-) = 0 and that X(0) = «.
Then the process {X(¢), ¢ > 0} satisfies the integral
equation

X(t) = /0 ‘u(X(s)) ds + x,

or, alternatively, the following differential equation
with initial condition X(0) = x:

dX(t) = ul X(¢)] dt.

The assumption o(-) = 0 implies that the deteri-
oration of the item is deterministic, and hence the
expectation operator of (3.5) is not needed. Conse-
quently,

(3.8) PT>t)= exp{— jo ‘B(X(5)) ds}I(yM}.

Equation (3.8) is noteworthy because it relates
the notion of the failure rate, familiar to those
working in reliability and in survival analysis, to
that of the killing rate. Specifically, (3.8) suggests
that under a deterministic diffusion the failure rate
at time u equals the state-dependent killing rate at
u. For example, if the survival function of 7' were
judged to be a Weibull with scale parameter a and
shape parameter B, that is, if P(T > ¢l a, B) =
exp(—at?), then this judgment is equivalent to
stating that an item’s failure is due to the compet-
ing causes of a deterministic deterioration of the
item state and the occurrence of trauma with a
killing rate at time ¢ of apBt?~1. Note that aBtP!
is also the failure rate of a Weibull distribution at

" time ¢. Furthermore, if B # 1 and k(x) =xF"1,

then X(¢) = t(aB)Y P~V = tw, say, so that u(x),
the rate of deterioration of the item, is a constant
w. If B =1, that is, if the survival function is
judged to be an exponential, then £(X(¢)) = «, and
this implies that either the killing rate is a con-
stant or that the item wear is 0, or both. Lemoine
and Wenocur (1985) draw similar analogies when
the survival function is a Gumbel or a Makeham
distribution. This is the promised alternative per-
spective on some well-known failure models such as
the exponential, the Weibull and the Gumbel. But
has anything noteworthy been gained by this alter-
native perspective? The answer is yes; the deterio-
ration of an item is generally a function of usage
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and/or the operating environment, and since the
latter are typically time-varying and random the
assumption of a deterministic deterioration is a
gross simplification. Consequently, the routine use
of the exponential and Weibull distributions in reli-
ability and survival analysis, even when defended
by formal goodness-of-fit tests, needs to be reevalu-
ated. The physics of failure may not support such a
choice. The failure models derived in Sections 3.1.2
and 3.1.3 appear to have a more realistic motiva-
tion and thus are worthy of serious consideration.
Indeed, they may provide a better goodness-of-fit to
failure data than the exponential and the Weibull
distributions.

3.1.2 A Wiener process diffusion for item state.
Suppose that the diffusion of the item state is
described by a Wiener process, also known as
Brownian motion. Specifically, this means that the
process {y(s), s > 0} of (3.7) is such that y(0) = 0,
v(s) has stationary independent increments and,
for every s > 0, y(s) ~410, c?%s) for some ¢ > 0. If
v(8) ~ M us, c2s) for some w > 0, then the process
is called a Brownian motion with drift. With either
case, y(s) is a continuous function of s. The inde-
pendent increments property of the Wiener process
implies that, for any ¢ > 0,

Ply(t+s)<aly(s)=x,v(u),0 <u < s}
=P{y(t+s)<aly(s) =x},

and so the Wiener process is a Markov process.

A disadvantage of assuming a Wiener process for
the diffusion of item state is that the wear is no
longer monotonically increasing. In many applica-
tions the assumption of decreasing wear may not be
meaningful; an exception is the healing of cracks
caused by fatigue. An advantage is that the mathe-
matics of Wiener processes has been studied exten-
sively. More important, as will be described below,
some commonly used distributions in reliability and
survival analysis can be motivated as special cases

for diffusion under such processes. For example, -

consider the simplifying scenario in which trauma
occurs at a rate that is independent of item state,
that is, 2(x) = A, the case of constant killing. Then
the expectation operator of (3.5) is again not neces-
sary, and

(3.9 P(T > t) =exp(—At)P(T > t).

Thus it suffices to derive the distribution of the
first passage time 9.

Calculating the first passage time distribution for
an arbitrary diffusion is generally quite difficult.
However, there is a significant class of diffusions
that gives rise to mathematically tractable first
passage time distributions. For example, it is well

known (see Barndorff-Nielsen, Blasild and Hal-
green, 1978), that for certain diffusion processes
with drift, such as the Wiener process, the general-
ized inverse Gaussian distribution with a nonpos-
itive power parameter is the first passage time
distribution. The inverse Gaussian, the inverted
gamma, the hyperbolic and, as a limiting case, the
gamma are special case of the generalized inverse
Gaussian distribution. Distributions such as the
gamma and the inverse Gaussian have in the past
been used as failure models; thus the above devel-
opment can be viewed as an alternative motivation
for these distributions. However, since the assump-
tion that the rate of occurrence of trauma is inde-
pendent of the item state is not always realistic,
one must refrain from the routine use of the gamma
and the inverse Gaussian distributions, even when
a goodness-of-fit test supports their choice.

3.1.3 A gamma process diffusion for item state.
The use of a gamma process for diffusion of item
state can be justified on the basis of two considera-
tions, the main one being that under a gamma
process the item wear is always nondecreasing. The
other consideration stems from the fact that the
gamma process is the limit of a shot-noise process
with exponential decay. Shot-noise processes are
discussed by Cox and Isham (1980) and are natural
in many practical situations where the environ-
ment is comprised of shocks and jolts; more will be
said on these in Section 3.2.1.

A gamma process for item state results if the
{y(s); s = 0} of (8.7) is described by a gamma pro-
cess. Specifically, this means that y(0) = 0, that
{v(s)} has stationary independent increments and
that, for ¢ > s, (y(¢) — y(s)) has density g,_,, which
is a gamma density with scale 1 and shape (¢ — s)
lie., g,(w) = e™* - u"~1/T(Rh)]. Like the Wiener pro-
cess, the gamma process also possesses the Markov
property.

To proceed further, it is helpful to generalize the
last term of (3.4) by writing I[O’,)(X(t)) as f(X(2)),
where f(-) is some function. The ensuing expres-
sion,

P*(T > t)

(3.10) =E"[exp{—/0tk(X(s)) ds}f(X(t))},
known as the Kac functional equation, facilitates a
use of known results. In particular, under certain
conditions on the functions o (-), u(-), f() and k(.),
equation (3.10), the reliability of the item, can be
evaluated. This has been done by Wenocur (1989),
from which the following examples are taken.

If, forall s > 0, 0(s) =1, u(s) =0, f(s) =1and
k(s) = s, that is, the item has a constant killing
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rate, the critical state r = 4+ and the diffusion of
item state is described by a gamma process without
an underlying drift [i.e., u(-) = 0], then, using some
limiting arguments to show that P*(T > t) satis-
fies the Feynman-Kac equation, Wenocur (1989)
argues that

P*(T >t) =exp(—t(x—1)
—(1 + In(1 + ¢)).
Observe that, when x = 1,
Y =1+ THIn(1 + T) ~ exponential(1).

If the gamma process has a drift, say, u(s) =1,
for all s > 0, then

(3.11D)

P¥(T>¢t) = exp{—ln(l +t)1 +¢)

+t(1—x) — — ).
1-x) 3

If, for all s >0, o(s) = w(s) =1, f(s) = I ,(s)
and k(s) = 0, that is, the failure of the item is due
to wear alone, then

(3.12) t2 }

x ("—-7C)Jr y':~ 1eAy
(3.13) PX(T > ¢) fo X0
the cumulative of a gamma density with shape
parameter ¢, the mission time.

Thus consideration of a gamma process diffusion
for the item state results, via (3.11)—(3.13), in.a new
family of failure models whose properties remain to
be explored and whose utility needs to be estab-
lished. Of the three new failure models given by
(8.11)-(3.13), the first two appear to be idealized
because of the assumption that the item state never
reaches a critical value. The model given by (3.13)
is quite intriguing because the mission time ¢ has
also become the shape parameter of an underlying
distribution. For a fixed value of (r — x)*, P*(T > t)
decreases in ¢. This decrease implies that the un-

dy,

derlying distribution shifts toward the right as the.

mission time ¢ increases, which is a true for a
gamma distribution with shape parameter ¢. The
model also has an intuitive appeal because failure
of many items is more likely to be due to wear than
due to trauma.

3.2 Modelling Item Failure Rate by a Stochastic
Process

Dynamic environments exert random stresses on
the item. Since the notien of stress is a conceptual
one (i.e., stress is not a directly observable entity),
one way to capture the effect of stress on the item’s
lifelength is by its failure rate. An approach for
modelling the lifelength of items in a dynamic envi-

ronment is to describe the item’s failure rate by a
stochastic process. Arjas (1981) has referred to such
processes as hazard rate processes. To develop fail-
ure models based on an assumed form for the haz-
ard rate process, two candidate processes are con-
sidered: the shot-noise process, to be discussed in
Section 3.2.1; and the Lévy process, to be discussed
in Section 3.2.2. Despite the fact that these pro-
cesses lead to survival functions that have interest-
ing functional forms, they lack a stronger motiva-
tion. In contrast, the material of Section 3.3 is more
appealing because it motivates, via consideration of
the stochastic behavior of covariates, a functional of
a Wiener process and a random walk process for
the failure rate function. However, before proceed-
ing further, we wish to point out an interesting
relationship between a hazard rate process and a
doubly stochastic Poissen process (also known as a
Cox process).

Let T denote the lifelength of the item, and let
{A(s), s = 0} be a nonnegative, real-valued, right-
continuous process. Then {A(s), s > 0} is said to be
the hazard rate process of T if

P(T>t|As),0<s<t)= exp[—ft)t(s) ds].
0
Consequently,

P(T=¢) = E{exp[—ft)t(s) ds]}, t>0.
. Yo

Next, suppose that {N(s), s > 0} is a doubly
stochastic Poisson process with a stochastic inten-
sity function {A(s), s > 0}, and let S denote the
time until the arrival of the first event. Then, for
t>0,

P(S=>t) = E{exp[—ft/\(s) ds]}
0

=P(T=>t).

Thus the lifelength of an item in a dynamic envi-
ronment whose effect is described by a hazard rate
process {A(s), s > 0} can also be viewed as the time
to first arrival in a doubly stochastic Poisson pro-
cess with intensity function given by the process
{A(s), s = 0}. A rigorous proof of the above relation-
ship is in Grandell (1976).

3.2.1 A shot noise for the hazard rate process.
The shot-noise process provides a natural setting
for describing the time-dependent effects of damage
due to nontraumatic events.

Suppose that an item operates in a dynamic envi-
ronment whose net effect is to inflict shocks of
varying magnitude. Suppose that shocks occur over
time u, according to a Poisson process with rate
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m(u), u > 0, and that the consequence of each shock
is a stress on the item contributing to its failure
rate. Specifically, if a shock of magnitude D occurs
at an epoch S, then at time S + ¢ the contribution
of this shock to the item’s failure rate is DhA(t),
where the attenuation function h(t) is a nonin-
creasing function of ¢. One example wherein the
assumption of a decreasing attenuation function is
meaningful is the human heart muscle’s tendency
to heal after a heart attack. Another example is
from materials science and pertains to cracks due
to fatigue which tend to close up after the material
has borne a load which has caused the cracks to
grow. In many applications, however, h(¢) would be
a constant function of ¢.

If{S,, n > 1} are the epochs at which the shocks
occur and {D,, n > 1} are the respective shock mag-
nitudes, then the item’s failure rate at time ¢ is

At)= ) D,h(t-38,),
n=1
where h(t) = 0, when ¢t < 0.

Suppose that A(0) = 0 and that the D,’s are the
realizations of a random variable D. Also, suppose
that the sequences {D,} and {S,} are both serially
and contemporaneously independent.

With stress comes susceptibility to failure, and if
for some parameter & > 0 the rate of occurrence of
fatal trauma, given that the failure rate is x, is kx,
then T, the time to failure of the item, would be
such that

P(T<6+ulT>u, Mu)=x} = 8kx + 0o(8).

It now follows that R(¢), the survival function of T,
is given by

(3.14) P{T >t} = E{exp(—ftkA(u) du)}
0

If #* is the Laplace transform of the distribution of
D, H(t) = [§ h(u) du and M(¢) = /¢ m(u) du, then
it can be shown (see Lemoine and Wenocur, 1986,
or Singpurwalla and Youngren, 1993) that

R(t) = exp[ —M(¢)]

' 3.1
(3.16) -exp[fti”*(kH(u))m(t —u)dul.
0

Special cases of the above result provide us with
concrete probabilistic results for some new families
of failure distributions, distributions which have
not previously been considered as failure models.
For example, suppose the following: that all the
shocks are of a constant magnitude, so that D = d;
that A(u) = (1 + u)~!, implying that the shock-
induced stress decays slowly; that [{ m(u) du = mt,

so that the shock-generating process is a homoge-
neous Poisson; and that 2d = 1. Then

(3.16) R(t) =e ™(1+¢t)".

Observe that this form of R(¢) is the survival
function of a Pareto distribution of the third kind
(cf. Johnson and Kotz, 1970, page 234). Thus we
have here an alternative motivation for the Pareto
as a failure model.

If, on the contrary, D has an exponential distri-
bution with parameter b, then, for a > 0, h(u) =
expl —aul, [ m(u) du = mt and k = 1,

R(%) ( mabt

b= exp 1+ ab)

(3.17) 1+ ab — exp(—at) mb/(1+ab)
{ ab

The above form of the survival function is unfa-
miliar, but interesting. It is interesting because, for

a=b=1and m = 2, equation (3.17) implies that
def
x< exp(—T) has a beta distribution on (0, 1), with

parameters 1 and 2. Since inference procedures for
the beta distribution based on Bernoulli trials are
well established, a scenario which transforms life-
lengths to follow a beta distribution appears to
have an attractive advantage.

3.2.2 A Lévy process for the hazard rate. Sup-
pose that the hazard rate process {A(s), s > 0} is
right-continuous and increasing with independent
increments. Candidates for such processes, to name
a few, are the Poisson and the compound Poisson
processes; the gamma process; and stable processes
(Breiman, 1968, page 316). The It6 decomposition
(It6, 1969) of {A(s), s = 0} facilitates an evaluation
of the survival function generated by such pro-
cesses. Specifically, A(s) can be represented as

318 M) =r(s)+ L W+ [ [ 2N(du, d2),
0’R*

$;<s
where the following hold:

e r(s)1is a deterministic, increasing and continuous
real-valued function of s > 0;

o the s;’s are some fixed points on the positive real
line R*; .

o the W/s are mutually independent, strictly posi-
tive random variables which may or may not
depend on the s;’s;

e N is a Poisson measure on the space (R*X R™*),
with mean n(du, dz), independent of the W;’s;
that is, for every Borel subset B of (R*X R™),
P(N(B) = j) = expl —n(B)X(n(B)) /j!.



94 N. D. SINGPURWALLA

If the increments of the process described above
have a stationary distribution, then the resulting
process is known as a Lévy process. The Ito decom-
position for Lévy processes has the simplifying fea-
tures that r(s) is linear in s, say, r(s) = as, where
the constant « > 0 is known as the drift rate of the
process, and that there are no random variables W,.
Furthermore, the mean n(du, dz) = du v(dz),
where v(dz) does not depend on u; v(dz) is known
as the Lévy measure.

Besides its generality, a motivation for describing
the hazard rate by a Lévy process is due to the
following striking result of Kebir (1991), who shows
that the survival function of T is given by

at?
R(t) = exp{ - T}

(3.19) .exp{_[tds
0

.f:[l — exp(—(t — s)x)]v(dx)}-

The result is striking because its implication is
that the reliability of an item with a Lévy process
for its hazard rate is identical to the reliability of
an item with a deterministic hazard rate (%),
where

B(t) = at + f°°[1 — exp(—tx)]v(dx).
0

Special cases of (3.19) yield some models of fail-
ure that appear to be new. For example, suppose
that the Lévy measure of the hazard rate process is
of the form N

v(dy) = by ' exp(—cy)dy, y=0.
Then, for ¢t > 0,
t c+s
(3200 R@() = exp[—f bln( ) ds],
0 c

implying that the item has a deterministic hazard
rate function of the form b In((¢ + s)/c), which for
s > 0 is increasing in s. A further simplification of
(3.20) results in the survival function

c b(c+1t)
7 esa

R(®) = ebt(c + 1

which to the best of our knowledge is not of any
recognizable form.

As a second illustration of the use of (3.19) for
generating some meaningful failure models, sup-
pose that {A(s), s > 0} is a compound Poisson pro-
cess with a constant intensity » and with incre-

ments having distribution ¢. Then, for n(ds, dy) =
w ds ¢(dy), it can be seen (cf. Kebir, 1991) that

(8.21) R@) = exp[—ftw(l —,S’jﬁ(s)) ds|,
0

where .7, is the Laplace transform of ¢.

The very general result above is of value because
it provides us with a computable expression for the
survival function, especially because hazard rate
processes which are compound Poisson are easy to
conceive. For example, consider an item operating
in an environment comprised of shocks with each
shock inflicting a random amount of damage to the
item. If the shock-generating process is assumed to
be Poisson and the successive amounts of damage
assumed to have a distribution ¢, then the as-
sumption of a compound Poisson process for the
hazard rate is meaningful. It is perhaps useful to
distinguish between the shock model scenario of
Esary, Marshall and Proschan (1973) and the sce-
nario described above. In the former, the amount of
some physically observable entity, such as the
amount of wear or the size of a crack, is modelled
by a compound Poisson process, whereas here the
hazard rate (which is an unobservable entity) is so
modelled. With the former, the item fails when the
observable entity reaches a threshold, whereas here
there is no parallel notion of a threshold for the
hazard rate.

As a special case of (3.21), suppose that ¢ is a
gamma distribution with shape (scale) parameter
b(c). Then Z,(s) = (c/(c + s))?, and so, for ¢t > 0,
the survival function of the item is

wfctt we
e ’
c

R(¢) = e"”(t-i— c ( c )b‘l c )

if b =1,

b—1\c+¢ b1
if b # 1.

Observe that, for the case b = ¢ = 1, R(¢) would
be identical to (3.16).

3.3 Covariate Induced Hazard Rate Processes

The new classes of survival models in Section 3.2
were based on assuming two particular forms for
the hazard rate process: a shot-noise process and a
Lévy process. The assumed forms were intuitively
satisfactory, but because one cannot directly ob-
serve the failure rate these forms lack a definitive
justification. One way of overcoming this reserva-
tion is to model directly the stochastic behavior of
the covariates believed to influence the hazard rate,
and, by so doing, to induce a hazard rate process.
We emphasize that inducing a hazard rate process
via a covariate process does not in itself make the
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former realistic. Rather, the premise here is that it
is conceptually more direct to propose a particular
form of a stochastic process for an observable entity
such as a covariate than for an unobservable entity
such as the failure rate.

With the above in mind, we consider two ap-
proaches for specifying particular forms of the co-
variate process. In Section 3.3.1 the covariates are
assumed to evolve over time according to a Brown-
ian motion, whereas in Section 3.3.2 the coefficients
associated with each covariate follow a random
walk. A special case of the former results in the
hazard rate process being a functional of the Wiener
process, and this in turn leads to the famous for-
mula of Cameron and Martin (1944) and its multi-
dimensional version (Liptser and Shiryayev, 1977).
The Cameron—Martin formula enables us to com-
pute the characteristic function of the definite inte-
gral of a squared Brownian motion process. The
approach of Section 3.3.2 was designed to facilitate
a statistical analysis of lifetime data using the
dynamic linear models technology of West and Har-
rison (1989); however, the setup is attractive enough
to be regarded as a general strategy for failure
modelling.

3.3.1 The hazard rate as a functional of Wiener
processes—the Cameron—Martin formula. The use
of Brownian motion (Wiener process) to describe
hazard rate processes has appeared in the biosta-
tistical and demographic literature; Yashin (1985)
provides an overview. The motivation in biostatis-
tics stems from the following scenario. In a clinical
trial, Z, the vector of physiologic, laboratory and
hematologic variables, together with treatment in-
dicators, is measured at the time of entry into a
study. The survival time T, viewed as a dependent
variable, is regressed on Z using techniques such as
those introduced by Cox (1972). A linear diffusion
with time-dependent, continuous and nonrandom
coefficients is used to describe the changes in Z
over time. This framework is used to induce a

hazard rate process that satisfies a linear stochas- |

tic differential equation driven by a Wiener process.
Some highly technical machinery involving the so-
lution of a matrix Ricatti equation (cf. Myers, 1981)
is then invoked to obtain the survival function of 7T'.
The special case in which the diffusion process is
one-dimensional with constant coefficients results
in the Cameron—Martin formula.

Specifically, following Myers (1981), suppose that
the m-dimensional covariate vector Z, represents
the values at time s of the physiologic, environmen-
tal or treatment variables relevant to the viability
of an individual. If the instantaneous hazard at s is
s, Z,, B(s)), where B(s) is a parameter function

(a vector or a matrix), then the survival function of
T, given that the unit is surviving at ¢, and follows
the covariate path Z, =z, is, for ¢ > ¢,, of the
form

R(t|ty, z,, B(s)) = exp(—ft/\(s, z,, B(s))ds]|.
to

It is important to bear in mind that the above
exponential formula is valid only if the elements of
the covariate vector Z, are what Kalbfleisch and
Prentice (1980, page 123) call “external covariates.”
With “internal covariates,” difficulties of the type
mentioned by Yashin and Arjas (1988) arise, and
the exponential formula is no longer valid; also see
Singpurwalla and Wilson (1995).

In clinical trials, often covariates cannot be
tracked continuously over time so that it is not
possible to obtain z_, s > 0. Rather, all that can be
observed is z,, the value of Z; at ¢,, the time of
entry into the trial. In this case, the relevant sur-
vival function is the conditional expected survival
obtained by averaging the above expression over all
covariate paths z_, which pass through (¢,, z,), that

is,
ZO} .

With ¢, = 0, the similarities among (3.22), (3.10)
and (3.14) are quite apparent.

As it stands, (3.22) is too general for most pur-
poses, but the choice of a diffusion for Z, with the
instantaneous hazard being a time-dependent
quadratic function of Z, makes the needed compu-
tations feasible. Recall that with (3.10) and (3.14)
the assumptions of a gamma process for item state
and a shot noise for the hazard rate process facili-
tated the computations. The choice of a diffusion for
Z_ appears to be more realistic for applications to

R(t | tO; z()y ﬁ(s))
3.22
8-22) =E{exp(—ft)t(s,zs, B(s)) ds)
to

_ reliability than for biostatistics and demography.

This is because in many engineering scenarios the
applied stresses and loads, such as fatigue and
temperature, tend to fluctuate rapidly around a
central value and are better described as diffusions.
Sobczyk and Spencer (1992, page 117) discuss ex-
amples in which fatigue cracks are described by
diffusion processes.

Suppose that, for some matrix B, vector C and
constant d, the instantaneous hazard A(s) is the
quadratic function A(s) = Z*BZ, + 2C*Z, + d,
where Z* denotes the transpose of a vector Z. If B
is symmetric, then A(s) can be written as A(s) =
Y*BY, + v, where Y, =Z_, — u, and v and u are
constants. If B is positive definite, then u can be



96 N. D. SINGPURWALLA

interpreted as the healthiest point in the covariate
space. The incorporation of aging effects in the
model can be achieved by letting B = B(s), a con-
tinuous deterministic function of time. Substituting
the parameterization for A(s) in (3.22) leads us to

E{exp( - ftY;"B(s)Ys ds) } ,
0

whose general solution has been obtained by Myers
(1981) when Y, is of the form dY, = a(s)Y,ds +
b(s) dW,, with a(s) and b(s) continuous, and W; is
a standardized m-dimensional Brownian motion
with independent coordinates. Myers’ proof involves
an exponential martingale in Z_ with It6’s lemma
applied indirectly to the exponent. His result,
though explicit, is not in closed form. Specifically,
his theorem states that, under the conditions given
above,

R(t10,Z,, B, p,v)

= exp(—rt + (zy — p)*U,(0)(zy — p)

+tr [ b()b*()U;(s) ds),
0

where U(s) = U(s) is a solution of the matrix
Riccati equation

B(s) = U(s) + (U(s) + U*(s))a(s)
+3(U(s) + U*(sNb*(s)(U(s) + U*(s)),

with terminal condition U(¢) = 0. Effective algo-
rithmic methods for solving the general Riccati
equation are given by Bellman and Kalaba (1965).

The survival function R(¢ | 0, Z,, B, u, r) can be
evaluated in closed form if Y, is one-dimensional
and the coefficients a(s) and b(s) constant, say,
a > 0 and b > 0. In particular, if A(s) = BZ? and if
Z, = Z, + bW, is a one-dimensional Brownian mo-
tion with scale & and which starts at Z,, then the
logarithm of the survival function R(¢ | 0, Z,, B) is
such that

d

= BZ? sech?(Gt) + G tanh(Gt),
where G = (2b%B)"/2.

Because the right-hand side of (3.23) is the fail-
ure rate of an item at time ¢, this result implies
that the reliability of an.item having the square of
a one-dimensional Brownian motion with constant
coefficients for its hazard rate is identical to the
reliability of an item with a deterministic failure
rate BZZ sech?(Gt) — G tanh(Gt). The foregoing re-

sult parallels that of Section 3.2.2, which consid-
ered a Lévy process for the hazard rate and which
arrived at an analogous conclusion. Note that when
Zy=0 and B =05 =1, the failure rate at ¢ is
V2 tanh(v21¢); it is monotonically increasing but
bounded like the failure rate of a gamma distribu-
tion. This observation and the text of Section 3.1.2
provide support for a naive use of the gamma dis-
tribution as a failure model. Formula (3.23) was
first derived by Cameron and Martin (1944), after
whom it is now named. Antleman and Savage (1965)
appear to have been the first to mention its use in
reliability (and in survival analysis). More recently,
Yashin (1993) has extended the development for
hazard rate processes that are functionals of
piecewise-continuous Gaussian martingales, such
as the Orstein—Uhlenbeck processes and the pure
jump process.

3.3.2 A random walk model for the evolution of
covariate effects. A recent development in reliabil-
ity and in survival analysis has been the use of
random walk processes to describe the stochastic
evolution of the effects of the covariates on the
survival time 7. This activity has been spawned by
the success of dynamic linear models, also known
as Kalman filter models or state-space models, with
problems of time series analysis and forecasting.
Even though the initial motivation for considering
dynamic linear models in reliability (cf. Meinhold
and Singpurwalla, 1987, and Blackwell and
Singpurwalla, 1988) and in survival analysis (cf.
Gamerman, 1991) centered around failure data and
inference, the underlying structure of such models
is broad enough to provide a general strategy for
model development. The setup described below is
prompted by the work of Gamerman (1991); it has
some commonality with the material of Section 3.3.1
and uses parallel notation.

Suppose that Z =(Z,,...,Z,) is a row vector
denoting the p covariate values believed to influ-
ence the instantaneous hazard of T, at time s, via
the relationship

(8.24) s, Z, B(s)) = exp{Z*B(s)},

where Z* = (1, Z), B(s) is a (p + 1) X 1 vector of
regression parameters of the form B'(s) = (By(s),
Bi(s), ..., B,(s) and By(s) =In Ay; A, is known as
the baseline hazard (cf. Cox, 1972).

In (3.24), the effect of the covariates on the in-

. stantaneous hazard changes over time, while the

actual covariate values are assumed fixed. Such a
strategy is in contrast to that of Section 3.3.1,
where the covariate values themselves changed over
time so that Z was indexed by s and a diffusion
assumed for Z,. In biomedicine a motivation for
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model (3.24) is the scenario in which a single expo-
sure to a drug or a hazardous substance has a
progressively deleterious effect on survival. In engi-
neering a motivation is the growth of a crack caused
by a single fatigue-causing shock that progressively
damages an item and decreases its probability of
survival. A dynamic model results when one speci-
fies the manner in which B(s) changes with s.
However, before we do this, the next step in the
model-development process is specifying a particu-
lar form for X(s, Z, B(s)). A simplifying choice is the
piecewise-constant hazard; specifically, for some in-
teger k > 2,

/\I(Z, B(S)), s € Il = [30; 31];
MNEZ, B(s)), selI =(s,_qs]
/\(S,Z, (8)) — i ’ ’ i i—119id>
P 2<i<k-—-1,
)\k(z, B(s)), s e Ik = (sk—17 °°),
where 7= {s;,...,s,_;} is a partition of the time
axis with 0 = sy <s; < - <s,_;. Thus given A =
(Ay,...,A,) and 7, T is said to have a piecewise-

exponential distribution with guide relation

P
(3.25) Inx =lnr + Y Z; B0,
-1

J

where for j = 1,...,p, B(i) = B(s), for s €[}, i =
1,...,k

To specify the evolution of each B;(s) over time s,
that is, to specify the system equation, a common
but simple approach is the random walk model,

where w;, the vector of innovation terms, equals
{wD),..., o(k)} and has mean (vector) 0 and a
specified covariance matrix W;. With a judicious
choice of the W;’s, relationship (3.26) can be used to
provide a suitable degree of smoothness for the
function A;, i =1,...,k.

With (3.25), (3.26) and an assumed distributional °

form for the w,(i)’s, the specification of a failure
model for T is, in principle, complete. For example,
if for each j the w(i)’s are assumed to be indepen-
dently and normally distributed with variances that
are functions of I, the width of the ith interval,
and if the intervals are of equal widths, then a
limiting argument would suggest that the diffusion
of the As,i = 1,..., k, would result in approximat-
ing the process {A(s, Z, B(s)); z > 0} by a Brownian
motion with drift, and the development of Section
3.3.1 would apply. If on the contrary the w;(i)’s are
assumed to be independently and identically dis-
tributed as a gamma and if relationship (3.24)
were of the form (s, Z, B(s)) = Z*B(s), then a dif-

fusion of the A’s, i = 1,...,k, would suggest that
{A(s, Z, B(s); s = 0} could be approximated by a
Lévy process, and the development of Section 3.2.2
would apply. Thus many scenarios involving a ran-
dom walk model for the evolution of covariate ef-
fects result in the failure rate being described by
processes whose treatments have been previously
considered.

3.4 Markov Additive Processes for Describing the
Item State and a Covariate

Markov additive processes, abbreviated MAP,
were introduced by Cinlar (1972). They provide a
generalized approach for modelling the lifelengths
of items given the stochastic behavior of a covari-
ate. The idea here, using the notation of the previ-
ous sections, is that at any time ¢ one looks at two
stochastic processes: X(¢) € R*, representing the
state of the item; and Z(¢) € &, representing a
covariate which is assumed to excite (influence)
X(t). For example, Z(¢) could be binary with Z(¢) =
1 denoting the item in use and Z(¢) = 0 denoting
the item at rest. In general, Z(¢) could represent
the state of the environment at time ¢, with &
being either a countable set or a subset of the real
line R. Both X(¢) and Z(¢) are assumed to be
right-continuous and have left-hand limits every-
where, and X(¢) is nondecreasing. The probabilistic
structure of a MAP has been investigated by Cinlar
(1972); its key features are summarized below.

For each z € & there is a probability measure p?
on a suitably defined probability space such that
pA(X(0)=0, Z0)=2)=1. Let Q(z, A, B)=
p?(X(t) € A, Z(t) € B). Then {X(¢), Z(¢), ¢t > 0} is
a Markov additive process if p*{(X(s + t) — X(s))
€A, Z(s + t) € B |#(s)} = Q(Z(s), A, B), where
#(s) is the history of the process until time s. Let
P(z, A) = Q,(z, A, R"). Then it can be shown that
{Z(t), t > 0} is a Markov process with a state space
& and transition function P,(-,-) and that, given
Z(t), the conditional law of X(¢) is that of an
increasing process with independent increments.
Furthermore, locally, that is, during a small inter-
val of time (¢, ¢ + dt), the probability law of X(¢) is
that of an increasing Lévy process whose parame-
ters depend on the state of the excitation process
Z(-). This latter property is useful for describing
situations involving the occurrence of many shocks
in very small intervals of time (such as fatigue due
to vibrations) where no individual shock causes any
measurable damage to an item. Item states that are
described by increasing Lévy processes such as the
compound Poisson, the gamma (see Section 3.1.3)
and the increasing stable processes can be viewed
as special cases of MAP’s with & having only one
element.



98 N. D. SINGPURWALLA

Examples of items operating in scenarios mean-
ingfully described by a MAP are given by Cinlar
(1977). A few of these are outlined below; they
demonstrate the versatility of this failure modelling
methodology.

3.4.1 Compound Poisson shocks in random envi-
ronments. Suppose that & consists of only two
states & = {r, w} and that {Z(¢); ¢t > 0} is a two-state
Markov process with Z(¢) = r denoting the item at
rest or in repair at time ¢ and Z(¢) = w denoting
the item working at ¢. Suppose that Z(-) stays in w
for an exponentially distributed length of time, then
jumps to r and stays there for an exponentially
distributed length of time and then jumps back to
w and so on. Suppose that, when Z(-) is in state w,
shocks occur according to a Poisson process with a
rate ¢ and that each shock inflicts a random amount
of damage to the item. Suppose that the amount of
damage is independent of everything else and has a
distribution ¢. When Z(:) is in state r, there are no
shocks and therefore no damage. Suppose that
damage is cumulative, and let X(¢) denote the
cumulative damage at time ¢. Clearly, {X(¢), Z(?),
t > 0} is a MAP; its sample path is shown in Figure
2. The conditional probability law of X(-) given Z(-)
is described (see Cinlar, 1972) by its Laplace trans-
form at fixed time ¢. Specifically, for any A > O,

E?[exp(—AX(2)) | Z(t), t = 0]

3.27 ®
@20 _ exp[—At‘/(; cd(dx)(1 — exp(Ax))|,

where A, is the amount of time spent by Z(-) in
state w during (0, ¢t]; thus A, can be regarded as a
parameter of the excitation process. The super-
script z on the expectation operator E denotes the
fact that expectations are with respect to the mea-

sure p®. The distribution of the time to item failure
is the distribution of the hitting time of the X(-)
process to some threshold, say, X,. An analytical
determination of this distribution appears to be an
onerous task; simulation offers an alternative. An
attractive feature of results given by (8.27) is our
ability to incorporate the stochastic behavior of the
covariate (environment) process as a parameter of
the process of interest. A disadvantage is the ab-
sence of a closed-form probabilistic expression for
the survival function. A possible strategy for easing
this difficulty is to use the saddlepoint approxima-
tions technique of Daniels (1954) to obtain the
marginal distribution of X(¢) and then to use the
marginal distributions to simulate the distribution
of the hitting times. Thus the need for developing
computational methodologies for reliability and
survival analysis is a pressing one, for only then
will the effectiveness of modern stochastic mod-
elling technologies come to fruition.

3.4.2 General Markov additive process with a fi-
nite &. Suppose that {Z(¢); ¢ > 0} is a Markov pro-
cess with a finite state space &; one may view Z(¢)
as the state of the environment at time ¢. Let X(¢)
denote the cumulative damage at time ¢, and sup-
pose that, when Z(¢) = i, X(¢) increases as a Lévy
process with a drift rate a(i) and Lévy measure
v(i, dx) (see Section 3.2.2). Increases in damage
over the different environments are assumed to be
linearly additive. In addition, suppose that every
change of state from i to j is accompanied by a
shock which causes an additional random amount
of damage whose distribution is F(i, j, -). The
amount of damage accompanying a shock is as-
sumed to be independent of the cumulative dam-
age at the time the shock occurs. The process
{X(), Z(¢); t > 0} is a MAP. Analogously to (3.27),
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Fic. 2. Sample path of a two-state Markov additive process with Poisson shocks ( from Cinlar, 1977).
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given Z(:), the conditional law of X(-) is, for some
constant A > 0, described by

E*[exp(—AX(¢)) 1 Z(t), t = 0]

= exp[—Afta(Z(s)) ds — ftds
0 0

(3.28) o
[z, d - eXp(—Ax))]

[T1P* 2, 20
s<t
where F*i, j) = [§ F(, j, dx)exp(—Ax) if i #j
and is 1 when i = j (see Cinlar, 1977).

Figure 3 shows the sample path for the above
process when & consists of three states: i, j, and k.
The distribution of the time to item failure is the
distribution of the hitting time of the X(-) process
to a threshold X,. The comment at the end of
Section 3.4.1 now takes on a stronger meaning; we
have here a model that is quite realistic and gen-
eral, but in a form that resists application. As of
this writing we are unable to offer any suggestions
for the practical implementation of expressions
given by (3.28).

3.4.3 Gamma process in random environments.
As a final illustration of the use of MAP’s in failure
modelling, we consider the scenario of failures in-
duced by metal creep and fatigue. Let X(¢) be the

2

X(t)

State of
Item

creep level at time ¢, and let Z(¢) be the state of the
covariate at ¢. We suppose that {Z(¢); t > 0} is a
Markov process and that {X(¢); ¢ > 0} is locally a
gamma process with a shape B(X(¢)) and scale
a(X(#)); it has been claimed that gamma processes
offer attractive possibilities for modelling creep.
Then, analogously to (3.27) and (3.28), it can be
shown that

E?[exp(—AX(¢)) | Z(¢), ¢t = 0]

3.29 1
( ) = eXp[-]JB(Z(t))h(l + m) dt}

Here again the distribution of the time to failure
must be obtained via numerical techniques and
simulation though the computational burden ap-
pears to be less than that of (3.27) and (3.28).

4. MODELS FOR THE FAILURE
OF SYSTEMS

The development of failure models for the relia-
bility of systems and networks of components is an
active area of research in reliability and survival
analysis. The impetus comes because many avail-
able models have been based on the simplifying
assumption of component independence; this as-
sumption has resulted in inadequate assessments
of system reliability. Failure models for system sur-

sl Time Axis

State of i
Covariate

Z(t)

— —
Gy SR e — G— —— ————————— a—

|

|

Fic. 3. Sample path of a three-state Markov additive process with a Lévy process wear and accompanying shocks with change of state

(from Cinlar, 1977).
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vival that incorporate component dependencies
were proposed as early as 1961 (Freund, 1961), but
subsequent progress has been limited. Further-
more, almost all of the existing models assume a
static operating environment; exceptions are the
work of Marshall and Olkin (1967) and Esary and
Marshall (1974). The latter, however, is mainly
qualitative and leads to results that are not statis-
tically tractable. The objective of this section is to
review a class of models for system reliability when
the environment is dynamic; the distribution of
Marshall and Olkin will turn out to be a special
case. The theme underlying the development of this
class of models was echoed by Marshall (1975) and
exploited by Lindley and Singpurwalla (1986), who
argue that component dependencies are due to a
lack of knowledge about the effect of the common
operating environment on the lifelengths. The same
notion has been used by Cinlar and Ozekici (1987),
but their aim has not been the development of
parametric classes of failure models.

For the sake of completeness, we point out an-
other strand of research in multivariate failure
models for reliability conducted by Shaked and his
colleagues and summarized in Marshall and Shaked
(1986) and Shaked and Shanthikumar (1993). How-
ever, the emphasis of such work has been on the
characterization of aging and dependence and their
preservation properties as opposed to the devel-
opment of explicit probabilistic expressions for
the failure of multiple components. Related point-
process models used in reliability are discussed by
Arjas (1981) and by Shaked and Shanthikumar
(1993).

4.1 The Setup for Model Development

In what follows attention will be restricted to the
case of two-component systems; extension to multi-
component systems is straightforward. Suppose
that T, and T,, the lifelengths of the two compo-
nents when they operate in the laboratory (design)

environment, have specified failure rates A,(w),"

u=>0,i=1,2, respectively. Suppose that the sys-
tem is installed in an operating (use) environment
comprising several covariates (stresses) whose
presence and intensities change over time. Assume
that the net effect of the operating environment is
to modulate A;(w) to A (u)n(w), where n(u) is as-
sumed to be an unknown function of time, referred
to by Singpurwalla and Youngren (1991) as the
environmental factor function (EFF). This notion of
modulating the failure rate is analogous to, though
not exactly the same as, that proposed by Cox
(1972) for proportional hazards. If at any time u
the operating environment is harsher than the de-
sign environment, then n(u) > 1; otherwise, n(u)
< 1. Finally, suppose that, conditional on A;(x) and

n(w), the lifelengths of the components are judged
to be independent. Since n(u) is unknown, its un-
certainty is described by a suitable stochastic pro-
cess {n(u); u > 0}). Two candidate processes have
been considered in the literature; these are dis-
cussed in Section 4.2. The lack of knowledge about
1n(u) results in a judgment of dependence between
the T}’s. The case n(u) = 7, for all u > 0, with the
uncertainty about 7 described by various distribu-
tions, has been considered by several authors;
Singpurwalla and Youngren (1993) and Oakes
(1989) give reviews. Of particular note, especially
for biostatistical applications, is the work of
Hougaard (1987), who assumes a positive stable
distribution for n and generalizes most of the known
results.

4.2 Stochastic Processes for the Environmental
Factor Function

The two processes that have been considered for
describing the effects of uncertainty about the envi-
ronmental factor function n(u) are the “extended
gamma process” of Dykstra and Laud (1981) (also
see Cinlar, 1980) and the shot-noise process men-
tioned in Section 3.2.1. A motivation for the former
is given by Cornfield and Detre (1977), Kalbfleisch
and Prentice (1980, page 203) and Cinlar (1980);
also see Singpurwalla and Youngren (1993), who
motivate via the decomposition of the gamma pro-
cess. A motivation for the shot-noise process was
given in Section 3.2.1.

4.2.1 An extended Gamma process for the envi-
ronmental factor function. Dykstra and Laud
(1981), in proposing a nonparametric Bayes ap-
proach for inference in survival analysis, defined an
extended gamma process. Specifically, if a(s) is a
nondecreasing left-continuous real-valued function
on [0, ®) with a(0) =0 and if B € (0, »), then
{Y(s); s > 0} is said to be a gamma process with
parameters a(s) and B. It is denoted Y(s) €
Z(a(s), B) if Y(0) =0, if Y(s) has independent
increments and if, for 0 <s < ¢, (Y(¢) — Y(s)) has a
gamma distribution with shape (a(¢) — a(s)) and
scale 1/B. The definition of the gamma process
given in Section 3.1.3 is a special case of the above
when a(u) = u, for all © > 0, and B = 1. The inde-
pendent increments property of the gamma process
makes it unsuitable for describing many environ-
mental phenomena; thus it does not make sense to
describe n(u) by a gamma process. However, the
fact that a gamma process can be represented as
the sum of a countable number of jumps of random
heights occurring at random points (Ferguson and
Klass, 1972) motivates representing the cumulative
effect of the environment on the survival function
by a gamma process. Therefore the following gener-
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alization of the gamma process has been proposed.
Suppose that y(s), s = 0, is a positive right-con-
tinuous real-valued function bounded away from 0
with left-hand limits and that Z(¢) = [{ y(s) dY(s),
where Y(s) is a gamma process with g = 1. Then
{Z(t); t = 0} is called an extended gamma process
with parameters a(¢) and y(¢), denoted Zg(a(?),
v(¢)). This process has independent increments and
like the gamma process is a pure jump process. Its
Laplace—Stieltjes transform, obtained by Dykstra
and Laud (1981) (also Cinlar, 1980), is of the form

41D Z(o)= exp[—fotln(l + oy(w)) da(u)|.

Reverting to the two-component system, let
Y(¢) = ¢ dY(w), where dY(u) = n(u) du whenever
n(u) exists, and suppose that Y(¢) € £(a(¢), 1/b),
where a(t) is differentiable for all ¢ with «'(¢) =
a(t). Then the cumulative hazard of component i,
A8) = [¢ M(w) dY(w), is such that Al(t) €
Zg(a(t), A,(t)/b). Using (4.1), it can be shown that,

for 0 <1, <7,, the bivariate survival function
— £
F(ry, 1) = P(T, > 1,, T, > 7,) is of the form

exp[—fﬁln(l-l_ _)ﬁ);_’\zfu_))a(u) du]
@z b7
T Az(u)
.exp[—f ln(1+ b )a(u)du],

from which it follows that the marginal survival
function of component i, P(T; > 7),i = 1, 2, is

)‘1(“)

a(u) du];

(4.3) exp[—j:ln(l +

for details see Singpurwalla and Youngren (1993).
The case of A, (v) = A;, i = 1, 2, yields a failure rate
for L, that is a constant times the derivative of
a(7), the shape parameter of the gamma process.
Thus different choices of a(7) result in different
marginal distributions. One choice is a(7) = a7 for

some constant a > 0. For this choice the marginal

distributions are exponential, and the bivariate
survival function (4.2) can be shown to reduce to
the bivariate exponential distribution of Marshall
and Olkin. If a(r) = ar? for some constants « and
8 > 0, then the resulting survival function is the
bivariate Weibull of Marshall and Olkin (1967).

These results are of interest because they provide
an alternative, stochastic-process-based motivation
for one of the most widely discussed multivariate
life distributions in reliability theory; furthermore,
they provide a vehicle for extending it in new direc-
tions. Finally, the fact that the extended gamma
process results in a familiar family of multivariate
exponential distributions is in itself a good motiva-
tion for considering such processes.

4.2.2 A shot-noise process for the environmental
factor function. Following the notation of the previ-
ous section, suppose again that A, (u) = A;, i =1, 2,
but that n(u) is now described by a shot-noise
process. Then it follows that {A;n(«); u > 0} is also
a shot-noise process, where A;n(u) is the failure
rate of component i under the operating environ-
ment. Given A, Ay, M(¢), H(t) and Z* (see Section
3.2.1 for their definitions), it has been shown by
Singpurwalla and Youngren (1993) that, for 0 <
T, < 7y, F(1,, 7,) is given by

Z*[MH(7y) + A H(7y)]

. exp[‘/:lﬁ/*{TIH(Tl —uy)

(4.4 +7H(ry — uy)}m(u,) dul]

. exp[ffz_i/*{TZH(’rz - uz)}

‘m(u,) duy, — M(Tz)].

The marginal survival function of T; at some 7> 0
follows and is easily seen to be of the form

Z*[ AH(71)]exp

(4.5) X [—M(T) + /ZS”*{AH(u)}m(T —u) du].
0

Observe the similarity between the above result
and that given by (3.15), which did not involve the
modulation of a base failure rate A but in which
there was included a scale factor %.

Special cases of (4.4) result in some interesting
distributions, one of which is a new family of bivari-
ate distributions with exponential marginals.
Specifically, if A, = A, = A, A(w) =1 and m(u) =
A/b = m, where the distribution of the shot magni-
tudes D is a gamma with shape 1 and scale b, then
for 7;, 7, > 0 the joint survival function is

F(TI,T2)
1 — m - min(r,, 7,) + m - max(r;, 75)
(4.6) =\/ 1> T2 1> T2

1+ m(r + 79)

-exp[ —m - max(7,, 75)].

The marginal survival function of 7; at some 7> 0
follows from (4.6) and is of the form

4.7 F(r) =e™™".

Thus a shot-noise process environment will pre-
serve the nonaging property of a component if the
stress-inducing jolts are Poisson with rate A/b, if
the jolts induce a cumulative damage on the compo-
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nent and if the magnitudes of the induced stresses
are exponential with scale parameter b.

The joint survival function (4.6) has been devel-
oped via considerations that appear to be realistic
and natural. However, as of this writing, its proper-
ties (such as the joint moments, decomposition into
an absolutely continuous and a singular part etc.)
have not been computed. Thus it is hard to assess
the value of (4.6) for practical applications. This is a
potential arena for additional research.

5. CONCLUDING COMMENTS

It appears that the current practice in reliability
assessment and survival analysis focuses on the
use of a few parametric families of distributions
such as the exponential, the gamma, the lognormal,
the Pareto, the Weibull and their mixtures and
multivariate analogues, or on nonparametric proce-
dures. Subsequent to this, much effort (both
Bayesian and frequentist) has been devoted to in-
ferential issues under complete or censored infor-
mation. A recent book by Crowder, Kimber, Smith
and Sweeting (1991) captures the spirit of the cur-
rent state of the art in reliability. The parametric
families mentioned above have been in use for al-
most 30 years, and most have been motivated by
the behavior of the failure rate function whose
general form is subjectively specified using assump-
tions about aging. Sections 3.1.1 and 3.1.2 provide
an alternative, more microscopic, approach for mo-
tivating some of these distributions. Our conclusion
is that the existing models may be meaningful in
static operating conditions, but this situation is
rare. The stochastic-process-based approach for de-
veloping failure models is relatively new and offers
a rich environment in which dynamic operating
conditions can be meaningfully captured. In many
cases it yields concrete probabilistic results pertain-
ing to some new families of failure models, a few of
which are given in this paper. Equations (3.11)-

(3.13), (3.16), (3.17), (3.20), (3.21) and (4.6) provide |

specific examples.

The material reviewed in this paper indicates
that a stochastic-process-based approach to failure
modelling is a promising area of development, offer-
ing possibilities which enhance current practice.
The approach better exploits the physics of the
failure process and offers potential for improved
assessments of item survivability. It also facilitates
the modelling of dependencies, an important topic
that has not been vigorously explored. Major draw-
backs of this more microscopic approach are the
complexity of the resulting distributional forms and
the lack of available inferential procedures. Thus
future work is needed before the applications gap

can be filled. The author conjectures that modern
numerical and simulation-based techniques such as
saddlepoint approximations will provide the tools to
bridge the gap between theory and practice. Be-
cause of the inherent complexity of the proposed
models, inferential procedures will tend to be in-
volved and also call for simulation-based tech-
niques. The Gibbs sampling approach of Gelfand
and Smith (1990) and Tierney (1994) offers hope.

Finally, one may ask why we need new models
for failure, especially more complicated ones. An
obvious response is to enhance the state-of-the-art
by expanding the inventory of models and provid-
ing added flexibility for fitting failure data. How-
ever, such an answer may not be a sufficiently
strong argument. Perhaps a more appealing answer
is that the proposed models reflect a new paradigm
for life-testing experiments in which one also moni-
tors environmental factors under which failure data
are obtained; the models of Section 3.4 serve as
illustrative examples.
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