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The Roles of Conditioning in Inference

N. Reid

Abstract. This paper reviews the use of sufficient and ancillary statis-
tics in constructing conditional distributions for inference about a pa-
rameter. Special emphasis is given to recent developments in accurate
approximation of densities, distribution functions and likelihood func-
tions, and to the role of conditioning in these approximations. Exact
conditional or marginal inference is available for essentially two classes
of models, exponential family models and transformation family mod-
els. The approximations are very useful for practical implementation of
these exact results. The form of the approximations suggests methods
for inference in more general families.
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1. INTRODUCTION

Most statisticians, theoretical and applied, use
conditioning arguments every day in their work
without a second thought. Regression analyses in
observational studies are amost always performed
conditionally on the observed values of the co-
variates. With some few exceptions all analyses
condition on the observed sample size. Conditional
probability is such a natural way of separating
what we know from what we want to know, that it
is hard to imagine statistical science advancing far
without it. -

“Conditional inference,” the topic, though, has a
reputation as a vaguely determined area of theoreti-
cal statistics, requiring familiarity with such murky
concepts as “relevant subsets,” “approximate ancil-
larity,” “similar regions” and the like: an area to be

avoided if at all possible, and one that is given short

shrift in most statistics textbooks. Discussion of con-
ditional inference usually begins with a relatively
. straightforward example, such as Cox’s (1958a) ex-
ample of two weighing machines of unequal preci-
sion. Unfortunately the next and succeeding exam-
ples are much less clearcut. The most familiar of
these is perhaps Fisher’s exact test for 2 x 2 tables;
we seem to have been arguing about it for more than
50 years.
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The distinction between conditioning as a very
natural tool in applications and the study of “con-
ditional inference” is, I think, both unfortunate and
unnecessary. Conditioning is as natural a tool in
the theory of inference as it is in practice. Although
there are valid foundational arguments leading to
conditioning in particular classes of problems, a
very important aspect of conditioning often over-
looked in theoretical treatments is that conditional
distributions can be much easier to calculate than
marginal distributions, as they do not require high-
dimensional integration. This fact is powerfully
exploited in recent work in spatial statistics and in
the use of Markov chain Monte Carlo methods in
Bayesian inference.

In the past 15 years there has been rapid de-
velopment in the area of higher-order asymptotics,
which I take here to describe the derivation of
more accurate distributional approximations for
likelihood-based inference. These approximations
are derived from asymptotic expansions which in-
clude terms beyond the leading term. Conditioning
is an essential feature of this work. Of course it
would not usually be of interest to construct a
conditional model which could be accurately ap-
proximated if such a model did not provide “good”
inference for 6, in some sense. A major feature
of recent results in likelihood-based inference is
that conditional densities which are suitable for
inference about 6 can be accurately approximated.

Cox (1988) identifies at least four interrelated
roles for conditioning in inference: to make prob-
ability calculations relevant to the data under
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study, to recover information lost in reducing the
dimension of the problem, to eliminate nuisance
parameters and to enable computation of accu-
rate approximations to densities. It is the last of
these that has seen very rapid development re-
cently, but it is the first three that enable one to
say the approximations are useful for inference.
Making probability calculations relevant and re-
covering information are usually associated with
conditioning on ancillary or approximately ancil-
lary statistics; eliminating nuisance parameters is
usually associated with conditioning on sufficient or
approximately sufficient statistics. These two types
of conditioning are most transparent in transforma-
tion family models and exponential family models,
respectively.

In the remainder of this section, we consider in
detail the notions of sufficiency and ancillarity, in
the simple case of no nuisance parameters. In Sec-
tion 2 we summarize approximate calculations for
this setting. Section 3 discusses sufficiency and an-
cillarity in the presence of nuisance parameters, and
Section 4 discusses accurate approximation for mod-
els with nuisance parameters. Section 5 reviews ex-
tensions of exact sufficiency and ancillarity to ap-
proximate sufficiency and ancillarity in more gen-
eral settings. Section 6 examines some other uses of
conditioning in inference and touches on some foun-
dational aspects such as the relation between con-
ditioning and Bayesian inference and the relation
between conditioning and power.

Throughout we consider parametric models for a
random vector y and inference for the parameter 0
or for some component of the parameter 6. To fix
some ideas and notation, we first consider the case
where inference is to be constructed for the param-
eter 0. Recall that if there exists a one-to-one trans-
formation from y to (s, ¢) such that

(1.1) f(3;0) o« f(s;0)f (tls),

then s = s(y) is sufficient for 6 and inference for

0 is based on the marginal density for s. In (1.1)"

the Jacobian of the transformation from y to (s, t)
is absorbed into the proportionality constant.

The conditional density in (1.1) does have a role
to play in inference, but not in inference for 6. As
is suggested in Cox and Hinkley (1974, Chapter 2)
the conditional density f(t|s) is useful for model
checking; in particular because it does not depend
on which value of 6 generated the data y. From the
model-checking point of view, 6 is a nuisance param-
eter which is eliminated in the conditional density.

The most well known class of models which allows
a sufficiency reduction of the type (1.1) is the family
of linear exponential models f(y; 0) = exp{€'s(y) —

k(0) — d(y)}; s = s(y) is the minimal sufficient
statistic and is of the same dimension as the pa-
rameter 6.

In contrast to (1.1), if

(1.2) f(y;0) « f(slt; 0)f (),

then ¢ = t(y) is said to be ancillary for 6. In this
case it is the conditional density that is used for in-
ference about . The argument often advanced for
using f(s|t; ) for inference about 6 is either that the
conditional density gives more precise inference for
0 or that the subset of the sample space defined by
fixing the value of ¢ is the relevant subset for infer-
ence about 6. These were the arguments advanced
in Fisher (1934); for further discussion see Dawid
(1991) and Kass (1989). The idea of using the con-
ditional distribution in (1.2) for inference has not
been as widely accepted as using the marginal den-
sity in (1.1). This may be because the partition in
(1.2) is not typically unique, whereas that in (1.1) is
essentially unique.

The main class of models which allows an ancil-
lary reduction of the type (1.2) is the class of trans-
formation models, that is, models generated by a
group of transformations ¢, say, acting on the sam-
ple space. Denoting the base model by f(:), the
transformation model is f(y;0) = fo(gey), Where
g is a member of a group of transformations in-
dexed by 0 that leaves the original sample space
unchanged. For example, in a location—scale model,
goy = (y — 01)/6,. In a sample of size n from a
transformation model a partition of the form (1.2)
obtains with s = s(y) = 6, the maximum likelihood
estimate, and ¢ = #(y) = g4y, the maximal invari-
ant for the group. Again s has the same dimension
as the parameter 6. In a sample of size n from a loca-
tion model, t(y) = (y1—0, ..., y,—0); for a location—
scale model, #(y) = (65" (y1— 01),..., 5"y, — 01)).

In transformation family models, where (1.2)
obtains, the conditional density f(s|¢;60) can be
obtained by renormalizing the likelihood function
(Fisher, 1934; Fraser, 1968, Chapter 2; Fraser, 1979,
Chapter 7; Efron and Hinkley, 1978; Barndorff-
Nielsen, 1980). In exponential family models where
(1.1) obtains, the marginal density f(s;6) can be
obtained, at least to a high degree of approxi-
mation, by renormalizing the likelihood function
(Daniels, 1954, 1958; Barndorff-Nielsen and Cox,
1979). In 1980 a series of papers in Biometrika
(Cox, 1980; Barndorff-Nielsen, 1980; Durbin 1980a,
b; Hinkley, 1980a) discussed aspects of approximate
sufficiency and ancillarity and the approximation
of the relevant distributions by the renormalized
likelihood function. A common feature in all this
work was a formula that has come to be known as
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Barndorff-Nielsen’s formula, or the p* formula. The
p* formula is discussed in the following section.

2. COMPUTATION OF MARGINAL AND
CONDITIONAL DISTRIBUTIONS

2.1 The p* Formula

Barndorff-Nielsen’s formula, or the p* formula,
provides an approximation to the conditional den-
sity of the maximum likelihood estimate 6, given an
auxiliary statistic ¢:

L(6;0,¢)

L(8;0,1)
In (2.1) it is iAmportant to note that the likelihood
function L(6; 6, ¢) has been expressed as a function
of (0,t) in its dependence on the data; that is, us-

ing the usual definition of the likelihood function as
proportional to the sampling density,

L(6; y) = a()f(y;0),

it has been assumed that the minimal sufficient
statistic can be expressed as a one-to-one function of
6 and ¢. The observed Fisher information appearing
in (2.1) is defined by

@1) F(6lt:6) —c{ }|J(9)|l/2 = p*(0l0).

vz 3*log L(6; y)
)= | 2085 Y)
(0 { 30907 0=d
_i 9*log L(6; 6, t)
360 96T o—d

In discussion of the p* formula it is usually assumed
that the marginal distribution of ¢ is free of 6, at
least approximately; that is, that ¢ is an exactly or
approximately ancillary statistic.

It is essentially (2.1) that highlights the role of
conditioning in constructing accurate approxima-
tions (Barndorff-Nielsen, 1988b, Chapter 1). The
requirement that ¢ be approximately ancillary en-
sures that there is little information about 60 in the
marginal density for ¢, so that the conditional dis-
tribution of @ given ¢ is expected to provide “good”
inference for 6. The existence of an accurate approx-
imation to this distribution enables computation of
significance probabilities, confidence intervals and
S0 on.

In the special case that f(y; ) is a transformation
model, a maximal ancillary exists and factorization
(1.2) holds. In this case, with ¢ fixed,  is a one-to-one
function of s, and the exact conditional distribution
of 6 given ¢ is given by (2.1) (Fraser, 1968, Chapter 2;
Barndorff-Nielsen, 1980). As a simple example, in a
sample of size n from the location model, the exact
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conditional density is

(2.2) fblt)=c F[

i=1

folti+6—0)
fO(tz) ’

where c is a normalizing constant for the conditional
density. This result is given in Fisher (1934); see
also Cox and Hinkley (1974, Chapter 7).

In the special case that f(y;6) is an exponential
family model, the sufficient statistic s(y) is a one-
to-one function of §; thus the likelihood function de-
pends on the data only through 6. In this case (2.1)
gives an approximation to f(; 8) with relative error
O(n~3/2) and can be derived directly from the sad-
dlepoint approximation to the density of the sample
mean (Daniels, 1954, 1958; Barndorff-Nielsen and
Cox, 1979; Barndorff-Nielsen, 1983). These results
are reviewed in more detail in Reid (1988).

Formula (2.1) holds quite generally, subject to
specification of an approximate ancillary. A detailed
discussion and review of the literature is given in
Barndorff-Nielsen and Cox (1994, Chapter 6), and
a proof of its validity in curved exponential fami-
lies is given in Barndorff-Nielsen and Cox (1994,
Section 7.4). An elegant and very general proof is
given in Skovgaard (1990), by first deriving an ex-
pression for the exact distribution of the maximum
likelihood estimator as a product of three terms;
one is the likelihood ratio that appears in (2.1); two
others combine to give the information determinant
and the normalizing constant, after approximation
(see, in particular, Skovgaard, 1990, equation (3.3)).

2.2 Tail Area Approximations

In the case that 0 is a scalar, there are also avail-
able accurate approximations to the cumulative dis-
tribution function for §, which may be more useful
in applications. The general tail area approximation
is

F(0t; 0)
o {¢(r) + w(r)(~ - -) }{1 +0(n~%%)},
where
@4) r=+ (2[10;;{28;”)1/2,
25) u= {(91((;;72,1:) » al(a 0. t)}l i(0)712,

1(0) = log L(#) and ® and ¢ are the standard nor-
mal distribution and density functions, respectively.
This result is obtained in Barndorff-Nielsen (1988a,
1990) and Fraser (1990), from the p* formula (2.1).
In order to use the approximation it is necessary
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to compute the derivative in (2.5) with the approxi-
mate ancillary statistic ¢ from (2.1) held fixed.

Again the approximation simplifies in transfor-
mation and exponential families. In transformation
families, such as the location model, ¢ is the maxi-
mal invariant and u simplifies to the standardized
score statistic:

(2.6) w=uv="1(0) ().

In exponential families the maximum likelihood es-
timate is sufficient, no ancillary statistic is needed
and u simplifies to the Wald statistic:

@2.7) u=q=(0-0)i6)"".

The tail area approximation (2.3) using u = q was
derived in Lugannani and Rice (1980) from the sad-
dlepoint approximation to the density of 8; see also
Daniels (1987).

An alternative version of (2.3) can be obtained by
approximating the quantile. Let

(2.8) r‘=r+ 1 log ¢
r r
Then
(2.9) F(0)t; 0) = ®(r*){1 + O(n~3?)};

this can be verified using a Taylor expansion of
r about u (Barndorff-Nielsen, 1990; Jensen, 1992).
The r* version, due to Barndorff-Nielsen (1986) can
sometimes be more accurate than (2.3) although the
difference is often slight.

2.3 Approximate Ancillarity

To use either the p* formula or the tail area for-
mula (2.3) or (2.8), it is necessary to be able to
find an approximately ancillary statistic ¢ such that
(0, t) is a one-to-one function of the minimal suffi-
cient statistic y. In many practical problems this
will be either difficult or impossible, although in
special settings a variety of approximately ancillary
statistics have been suggested.

“Approximately ancillary” is usually taken to
mean that the density of ¢ does not depend on 6,
for 6 in an /n-neighborhood of the true value. Fol-
lowing Cox (1980) we say that ¢ is gth-order locally
ancillary if

F(&; 00+ n~V28) = f(¢; 0,){1 + O(n~9?)}.

A fairly general construction of second-order locally
ancillary statistics in the scalar parameter case
is given in McCullagh (1987, Section 8.3), follow-
ing the development in Cox (1980) and McCullagh
(1984). There is no unique second-order locally an-
cillary statistic, but the p* formula can be shown
to hold conditionally on any of the second-order

ancillary statistics, with relative error O(n~1!) (cf.
McCullagh, 1987, Section 8.6, where the same
result is obtained to O(n~2/2) using third-order an-
cillary statistics). McCullagh (1984) uses the term
locally sufficient for a statistic which is indepen-
dent of a local ancillary and shows that the signed
square root of the likelihood ratio statistic can be
adjusted by a bias correction to be locally sufficient
to order O(n~!). Skovgaard (1990) gives a very
thorough and helpful discussion of approximate an-
cillarity in relation to the p* formula and indicates
that the p* formula will hold with relative error
O(n~3/%?) when the statistic ¢ is ancillary only to
second order.

The construction of locally ancillary statistics
outlined in McCullagh (1987, Section 8.3) and
Cox (1980) is based on linear combinations of log-
likelihood derivatives, evaluated at 6,. A similar
construction of locally ancillary statistics based on
linear combinations of log-likelihood derivatives
evaluated at 0 is outlined in detail in Barndorff-
Nielsen and Cox (1994, Section 7.2). For both
constructions the main idea is that the array of
log-likelihood derivatives ({4, Zgg, Lggg, - - -) i jointly
asymptotically normal, can be standardized to be
jointly asymptotically standard normal and thus
to have a distribution not depending on 0, at least
approximately. The order of ancillarity is deter-
mined by the order of the ilighest log-likelihood
derivatives used in constructing the statistic. The
standardization involves computation of the joint
cumulants of the likelihood derivatives. For exam-
ple, McCullagh (1987, equations (8.7) and (8.8))
derives the linear combination of 1,(6y) and [44(6,)
that is ancillary to second order. The function of 6
and l,,(0) that is ancillary to second order is the
Efron-Hinkley ancillary (iy)~1(j—{), where i and j
are the per-observation expected and observed in-
formation, respectively, and 7 = y(f) is an estimate
of the Efron or exponential curvature of the model
(Barndorff-Nielsen and Cox, 1994, equation (7.1)).
In a scalar parameter family vy is the residual vari-
ance of l,,, after linear regression on [, (Hinkley,
1980a).

When the model of interest can be viewed as
a submodel of an exponential or transformation
model, possibly by introducing nuisance param-
eters, it is usually possible to obtain an ap-
proximately ancillary statistic from the larger
model. This is the approach taken, for example, in
Barndorff-Nielsen (1984) in constructing approxi-
mately ancillary statistics for curved exponential
families. This same construction can be used to
eliminate nuisance parameters by approximate an-
cillarity, as is done in Barndorff-Nielsen (1986).
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Two types of approximate ancillaries using this ap-
proach are derived in Barndorff-Nielsen and Cox
(1994, Section 7.2); the first based on linear combi-
nations of log-likelihood derivatives, and the second
based on the signed square root of the likelihood ra-
tio statistic for testing the model of interest against
the larger model.

EXAMPLE 2.1. This example is discussed in
Barndorff-Nielsen and Cox (1994, Exercise 7.4),
and in Hinkley (1980a) and Skovgaard (1985).
Let (Y;,Z;), i = 1,...,n, be independent, identi-
cally distributed with Z;, ~ N(6,1) and Y;|Z; ~
N(6,Z;,1). The log-likelihood function is

1(6, 0) = —é{w% +1)Y2F—-20,) 2
(2.10)

— 202 Z YiZ; + n(ﬁ}

with minimal sufficient statistic (3 y;2;, > z?,
Y z;). As indicated in Barndorff-Nielsen and Cox
(1994), the Efron—-Hinkley ancillary is equivalent to
the exact ancillary, which is a mean and variance
standardization of @ = Y.(z; — 2)?. The ancillary
constructed in McCullagh (1987, Section 8.3) is ob-
tained from a linear combination of dl/36;, dl/30,
and V22 = 02l/(90% + 201(31/301) - 202(&l/302) =
(202 —1)Y. 22 —20, 3 z;y;+260, X z;. The resulting
statistic is locally ancillary at 6, when evaluated
there, although it seems most natural to evaluate
it at §, in which case it simplifies to a statistic
equivalent to the exact ancillary.

Note that the log-likelihood function is that of a
(3,2) curved exponential family, although it does
not seem obvious what the most natural embedding
(8, 3) family is. For example, we could simply 1ntro-
duce a third parameter 65 as the coefficient of - 22
It is then necessary to compute the normalizing con-
stant for the joint density in order to evaluate the
likelihood ratio statistic for testing this larger model

against (2.10). While this is not too difficult in this
example, it leads to rather unwieldy expressions.

If we are interested in using the r* or tail area
approximation, rather than the p* formula, then
it is not necessary to determine ¢ explicitly. It
is only necessary to be able to differentiate the
log-likelihood function with ¢ held fixed, that is,
to determine the gradient of the likelihood in
approximately ancillary directions. A general tech-
nique for computing this is outlined in Fraser and
Reid (1995). For scalar parameters, the ancillary
statistic is simply {—dF (y;; 0)/190}/{07F(yt, 0)/9y;},
evaluated at 6 = 6, where F is the cumulative
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distribution function. The vector parameter case is
more difficult and is obtained only for a class of gen-
eralized linear models. In addition, it is shown in
Fraser and Reid (1995) that for computing tail area
approximations accurate to O(n~%/2) it is sufficient
to obtain the gradient to O(n1).

The development of Barndorff-Nielsen’s formula
and techniques for constructing approximate ancil-
laries provide an accurate means for implementing
conditional inference and, in the setting discussed
in this section, of inference for the whole parameter
6, there is little or no controversy in implementing
this conditional approach. However, in construct-
ing inference for components of 6 in the presence
of nuisance parameters, the controversial examples,
such as inference for the odds ratio in a 2x2 table,
are examples involving nuisance parameters. While
progress has been made in accurate approximation
for tail probabilities in the presence of nuisance pa-
rameters, as we shall see in the next section the role
of conditioning is much less clear than it is in (1.1)
and (1.2).

3. NUISANCE PARAMETERS

We will assume that the parameter 6 has two
components [6 = (i, A)] and that inference is to be
constructed for one component (usually ¢) with the
other component treated as a nuisance parameter.
Nuisance parameters arise in a variety of settings,
but typically they are included to make the model
more realistic for the application of interest.

We assume that if the model f(y; 0) satisfies (1.1)
or (1.2), the marginal or conditional density for s
will be used as the basis for inference, and we will no
longer explicitly indicate the conditioning in (1.2). In
other words, we have a reduction in dimension from
the original problem to the dimension of s. In expo-
nential or transformation models, the dimensions of
s and 6 are the same.

In considering extensions of factorizations (1.1)
and (1.2), the simplest is

(3.1 F(s;9, M) = f(s1ls2; ¥)f (525 1)-

Even in this simple setting, the definitions of suf-
ficiency and ancillarity are not unambiguous. For
example, we could say that s, is sufficient for A, as
in (1.1), or that s, is ancillary for ¢, as in (1.2).
Many definitions of sufficiency and ancillarity in
the presence of nuisance parameters require the pa-
rameters of the model to split into component densi-
ties in the manner of (3.1) (Fraser, 1956; Basu, 1977,
Cox and Hinkley, 1974, Chapter 2). Cox and Hinkley
(1974, Chapter 2) refer to s; as “conditionally suf-
ficient for .” Barndorff-Nielsen (1978, Chapter 4)
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uses the terminology “s; is S-sufficient for ¢.” Basu
(1977, 1978) calls s, partially sufficient for A.

Whatever difficulties with definitions might exist,
it is clear from (3.1) that we should use the condi-
tional distribution of s; given s, for inference about
¢, and the marginal distribution of s, for inference
about A. In the first case the nuisance parameter A
is eliminated by conditioning, and in the second the
nuisance parameter ¢ is eliminated by marginaliz-
ing.

EXAMPLE 3.1. Suppose that Y; and Y, are inde-
pendent Poisson random variables with means ¢
and ¢, respectively. The conditional distribution of
Y, given Y, = Y; + Y, is binomial with probability
of success /(1 + ¢), and the marginal distribution
of Y, is Poisson with parameter ¢ + ¢4 = A, say. So
(3.1) holds:

f(y1, ¥2:0) = F(y1ly s ¥ (v A);

inference for ¢ is constructed from the conditional
distribution of Y; given the total Y, ; and inference
for A is constructed from the marginal distribution
of Y,. If we think of Y; and Y, as the counts in
two Poisson processes, it is intuitively obvious that
there is no information available on the ratio of the
rates from the total count Y; + Y.

Note that the parameter A was redefined from
the original parametrization in order for (3.1) to ap-
ply. It is essential in this redefinition that the new
parametrization includes all of the original parame-
ter space, or that ¢ and A be variation independent.
In this situation the statistic s, in (3.1) is called a
cut (Barndorff-Nielsen, 1978, Chapter 4).

Very few models with nuisance parameters admit
a factorization of the form (3.1). One generalization
of (3.1) is ’

(3.2) f(550) = f(s1ls9;5 ) f (595, A).

Now s, is no longer ancillary for ¢, but it is suffi-
cient for A in the sense that the nuisance param-
eter A has been eliminated in the conditional dis-
tribution. One motivation for using f(s|sy; ¢) for
inference about ¢ is merely pragmatic: we can do
this without specifying a value for the unknown pa-
rameter A. A more theoretical motivation is that in
testing an hypothesis about ¢, with A unspecified,
any test having a type I error that does not depend
on A must be constructed from the conditional dis-
tribution, at least if s, is complete (Lehmann, 1986,
Chapter 4). However,. there is potentially informa-
tion about ¢ in the marginal density of s,, as is
indicated explicitly in the notation. A systematic in-
vestigation into ways of quantifying the information

in such marginal (or conditional) densities is given
in Barndorff-Nielsen (1978, Chapter 4) and in re-
cent work by Jorgensen (1993).

EXaMPLE 3.2. The most common models admit-
ting a factorization of the form (3.2) are exponential
family linear models

f(s;0) = exp{irs; + Asy — (i, 1) — d(s1, s2)}-
It is easy to show that
(3.3)  [f(silsa; ¢) = exp{ys; — ko(¢) — da(s1)}

and that the marginal distribution of s, depends
on (¢, A) (Lehmann, 1986, Chapter 2). The Poisson
model of example (3.1) is a special case of this. In
(3.3) the functions ky(¢) and dy(s;) depend on s,
and are usually difficult to calculate. From Section
2 we know that calculation of d(s;, sy) can be by-
passed by the saddlepoint approximation and would
thus expect that calculation of dy(s;) can be simi-
larly bypassed. In fact, as we shall see in Section 4,
calculation of k,(¢) can also be bypassed this way.
For applications it will be important to generalize
to the case where the parameter of interest is not
a component of the canonical parameter, and this is
discussed briefly in Section 5.

Tests of hypotheses about ¢ based on (3.3) have
an unconditional optimality property: they are uni-
formly most powerful among the class of unbiased
tests. Conditional inference based on (3.3) is dis-
cussed in detail in Lehmann (1986, Section 4.4) from
this point of view. Examples 3.1 and 3.4 are consid-
ered in Section 4.5, and Example 3.3 is given as a
problem in Section 5.16.

EXAMPLE 3.3. The shape parameter of a gamma
distribution is a component of the canonical param-
eter. Suppose we have a sample of size n from the
density

B4)  flyd)= F(lmwy“/-l exp(~1y).

The minimal sufficient statistic is
(s1,82) = (Z log y;, Z yi)

and the conditional density of s; given s, is given
by (3.3), where versions of k,(-) and dy(-) are

exp{ky()} = [ exp{(¥ — Dsi}h(s1, s5) sy,

3.5) exp{—dy(s1)} = exp(—s1)h(s, S2),
' h(s1, s3) = exp{—d(s1, s2)}

=/Ady1...dym
where A = {(y1,---5Yn)? X ¥ = S2, 2 logy; = s1}.
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EXAMPLE 3.4. Another special case of Exam-
ple 3.2 is the comparison of two binomials. Let
Y, ~ Bin(n{, p;) and Yy ~ Bin(n,, py) be indepen-
dent, and suppose that the parameter of interest is
the log odds ratio ¢ = log[p;(1 — ps)/{pa(1— p1)}]
This model is an exponential linear model with
A =log{pe/(1— py)}. Then, writing Y, =Y; +Y,,

(1, 2:0) = F(y1ly 9 (v 9, A),

where the first factor is the noncentral hypergeo-
metric density

Fonlysn = (F)(, ", ) exetwricw. v,

The normalizing constant C(¢, y,) is the function
exp{ky(¢)} of (3.3) and is typically cumbersome
to compute exactly. Specialized programs are now
available for exact computation of C(y, y,), how-
ever, and are reviewed in Agresti (1992). Extension
of this example to logistic regression is consid-
ered in Cox (1958b) and Cox and Hinkley (1974,
Chapter 5).

Use of f(y1|y4;¢) when ¢ = 0 corresponds to
Fisher’s exact test for the equality of two binomial
proportions, or for the absence of interaction in a
2x2 table, and has a long history of controversy as-
sociated with it. A recent reference that touches on
many of the issues is Yates (1984), but see also the
several references in Agresti (1992, Section 8.1). If
we array the data in the form of a 2x2 table, the four
cell entries are y;, y9, 7 — y; and ny — y,, and con-
ditioning on y, means ignoring information about
¢ in the margins of the table. That there is informa-
tion about ¢ in the distribution of y, is clear, but
quantifying it has proved rather elusive (Plackett,
1977; Yates, 1984). The partial Fisher information
for ¢ in the marginal distribution of y_ is computed
in Zhu and Reid (1994).

Generalizations of the 2x2 table to loglinear mod-
els for multidimensional contingency tables also ad-
mit a factorization of the form (3.1), with s, the
vector of marginal totals. Conditional inference for
these models is reviewed in Agresti (1992), and sev-
_ eral discussants indicate unease in basing inference
on f(si|sy; ). As emphasized by Agresti in his re-
ply to the discussion, and in Barnard (1984), the is-
sue is clouded by the discreteness of the conditional
simple space, and it seems likely that careful inves-
tigation of the properties of mid-p values will help
to resolve this aspect of the controversy.

EXAMPLE 3.5. An important extension of Exam-
ple 3.4 is to consider a series of independent pairs
of binomials, each with the same value of ¢ but
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different values of A, and each with small sample
sizes, say n; = ng = 1. The maximum likelihood
estimate of ¢ based on the joint density of (y4;, ¥9;;
i=1,...,k)isinconsistent as £ — oo; in fact ¢ con-
verges to 2¢ as £ — oo (Andersen, 1973; Breslow,
1981; Breslow and Day, 1980, Chapter 7; Jennison,
1992). Use of the conditional density I1f(yy;|y.,;; ¢)
provides a consistent estimate of . However, this
estimate of  can be very inefficient if in fact the A;
are all equal (Liang, 1987). Evidence for the equality
of the A; or subsets of them might be available extra-
neously and incorporated as a prior, or it might be
obtained by estimating the A;’s using the marginal
density of y_;.

This example is one of a class of problems, some-
times called Neyman—Scott problems, where the
dimension of the nuisance parameter increases
with the number of observations (or more gener-
ally with the Fisher information). One reasonably
general version is to assume that we have observa-
tions (y;; j=1,...,n; i =1,..., k) with f(y;;
Y, A;) the model for observations in group i. As
k — oo, the asymptotic theory of Sections 2 and 4
does not apply, and as yet there is no general
asymptotic treatment of these models beyond the
first-order theory outlined in Portnoy (1988). Note
that although the dimension of the nuisance pa-
rameter is unbounded, it is reasonable to expect
that an asymptotic theory could be developed for
the case that n; increases with k. Some examples
are discussed in Cox and Reid (1992).

A different generalization of (3.1) is the case
where s, is no longer sufficient for A, but is ancil-
lary for

(3.6) f(s;¢, A) = f(s1ls2; ¢, A)f (25 A).

By analogy with the situation in (3.2), for inference
about A, we would use the marginal density of s,.
Again, one motivation for using this marginal den-
sity is pragmatism; we can construct inference for
A without specifying any value for the nuisance pa-
rameter . If our interest is in the parameter ¢,
then we will either use f(s;¥, A) or f(sq|se; ¥, A)
for inference about ¢. If we use the conditional den-
sity, plausible values of A might be obtained from
the marginal density for s,. This is a more direct
generalization of the ancillarity definition (1.2): the
distribution of the ancillary statistic depends on an
additional parameter rather than being completely
known as in (1.2).

EXAMPLE 3.6. Suppose we have a sample of size
n from the normal distribution with mean p and
variance o?. Writing y and s? for the sample mean
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and variance, we have
f(y’ 82; 22 0-2) = fl(:)_" M U2)f2(32; 0-2)7

where f; is the N(u, 02/n) density and f, is the
o%x2%_, density. Because 7 and s? are independent,
this is a generalization of both (3.2) and (3.6). In-
ference about ¢ is based on the marginal distribu-
tion of s? [as in (3.6), s? is ancillary for u] or the
conditional distribution of s2 given j [as in (3.2), ¥
is sufficient for u]. In fact this example highlights
the difficulty with the extended definitions of suffi-
ciency and ancillarity. Although y is sufficient for u
in the sense of definition (3.2), it is not sufficient in
our usual understanding of the definition based on
(1.1); that is, inference for u cannot be constructed
from j alone.

Of course in this example inference for u is con-
structed from the ¢-statistic /n(y — w)/s. The ¢-
test can be derived by formal considerations re-
lated to (3.2) and (3.6). One derivation is via the
construction of similar tests for the ratio of canoni-
cal parameters in the exponential family (discussed
briefly in Section 5; see also Lehmann, 1986,
Section 5.2) and the other is via construction of
an invariant test (Lehmann, 1986, Section 6.4).
The ¢-statistic is the most well-known example of
a pivotal statistic, that is, a function of the data
and parameters whose distribution is known ex-
actly. The development of inference based on pivotal
statistics proceeded somewhat separately from that
of conditional inference, although recent work em-
phasizes the connections between them. The normal
distribution is both an exponential family and a
transformation family, which is why arguments
based on sufficiency or ancillarity lead to the same
result.

In transformation models tests based on the
marginal distribution of the ancillary statistic (the
maximal invariant) have an unconditional opti-
mality property: they are uniformly most powerful
among the class of invariant tests. This is the point
of view from which the ¢-test is derived in Lehmann
(1986, Section 6.4).

- EXAMPLE 3.7. As a slight generalization of the lo-
cation family, suppose we have a sample of n obser-
vations following the regression model

(3.7) Y = XB+s,

where X is an n x p matrix of regression constants,
and ¢ has a known density fy(g). As in the location
model, an ancillary statistic is available and a pre-
liminary reduction by conditioning is assumed. The
(conditional) density f( B; B) is itself a location fam-
ily, that is, £(8; B) = f(B — B). If one component of

B is of particular interest, with the remaining com-
ponents treated as nuisance parameters, then (3.6)
obtains:

(3.8) f(B—B)=f(B1—B1)f(Ba — Ba)lb1— B,

where () is the nuisance parameter (8, ..., 8,).
Inference for B; is based on the marginal density
of B,, and any potential information about B, in
the conditional density is ignored. Generalizations
of (3.7) that allow incorporation of scale and shape
parameters in the density of & are discussed in Sec-
tion 5. Conditional inference in linear regression
models is discussed in Fraser (1979, Chapter 4) and
Lawless (1982, Chapter 6).

Although there is potentially information about
B; in the conditional distribution in (3.6), this does
not seem to have generated any controversy in
the literature about the appropriateness of using
the marginal distribution. Marginal distributions
of the form illustrated in (3.6) also play an im-
portant role in Bayesian inference in the presence
of nuisance parameters. In the Bayesian setting
nuisance parameters are integrated out of the
joint posterior density. Recent advances in evalu-
ating high-dimensional integrals have made using
marginal densities for inference possible for ap-
plications involving large numbers of nuisance
parameters.

4. APPROXIMATIONS IN MODELS WITH
NUISANCE PARAMETERS

4.1 Introduction

In Section 2 we saw that accurate approximations
for conditional or marginal densities and distribu-
tion functions can be readily constructed from the
likelihood function. These have recently been gen-
eralized to the nuisance parameter setting, and the
existence of accurate approximations in these set-
tings provides one of the motivations for the dis-
cussion in Section 3. In Section 2 we also saw that
the approximation for the marginal distribution of
a sufficient statistic and the approximation for the
conditional distribution given an ancillary statistic
had essentially the same form: this is also the case
here.

4.2 Exponential Linear Models

As mentioned in Section 2, the functions k,(y)
and dy(s;) in (3.3), needed to compute the condi-
tional density of s; given sy, can be accurately ap-
proximated by the saddlepoint approximation. This
problem has recently been reviewed in Pierce and
Peters (1992) and will only be described briefly here.
Pierce and Peters (1992) is particularly helpful for
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clarifying the differences among various formulas in
the literature and also provides a careful discussion
of the use of the approximation for discrete distri-
butions.

Using the saddlepoint approximation, the con-
ditional log-likelihood function from (3.3) can be
approximated by an adjustment to the profile log-
likelihood function obtained from the full model
(Barndorff-Nielsen and Cox, 1979); that is,

w 1(p) =log f(s1|sa; ) = ¥sy — ko(¥) — ds(sy)
' = U(¢, Ay) + Llog | jan (¥, Ay,

where I(¢,A) = ¢s; + Asy — k(¢, A) is the log-
likelihood from the joint density of s; and sy, and
Ja(¥, A) = —3%1(y, A)/drdAT. This approximate
conditional likelihood function, which only depends
on ¢, can be used in Barndorff-Nielsen’s formula
(2.1) to provide an approximation to the density of
the conditional maximum likelihood estimate:

(e )
= | = L(F )2 exp{le(P.) — L(W)H1+ O(n=3/%)}.
It can also be used in the tail area formula (2.3):

F(J;4)
R tocra + ot

Here r, and q, are the likelihood root and the Wald
statistic constructed from [ () on the right-hand
side of (4.1):

re= i[z{lc(‘ﬁc) - lc(l//)}]lﬂ’
qe = (e — )| = ()2
An equivalent approximation to F(i; ¢) can be ob-

tained directly from the likelihood function for the
joint distribution, and it takes the form

F(§; )
4.3)
= {CIJ(rp) + <p(rp)(i -

T'p

rl - ql)}u +0(n~%2)}.

c c

o Je oy,

where r, is the likelihood root from the profile like-
lihood function ,(¢) = L(y, Ay),

a, = — )| = Uy ()"V?
and
_ [ 1@ Rl }1/2'
| Jan (¥, )A‘.//)|

Approximation (4.3) is due to Skovgaard (1987)
and is usually called the double saddlepoint ap-
proximation (see also Davison, 1988). It also follows
immediately from Barndorff-Nielsen (1986), as was
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shown by DiCiccio and Martin (1991). Approxima-
tion (4.2) is derived in Fraser, Reid and Wong (1991)
and is called the sequential saddlepoint approxima-
tion. The sequential saddlepoint adjusts the like-
lihood function, as in (4.1), and uses the adjusted
version in the one-parameter approximation. The
double saddlepoint makes the nuisance parameter
adjustment to the tail probability approximation di-
rectly, through the factor p. In applications the se-
quential saddlepoint is typically more accurate, al-
though there are exceptions. In the special situation
that the function ky(¢) in (3.3) is explicitly avail-
able, computation of the sequential saddlepoint ap-
proximation using the exact conditional likelihood
was suggested in Skovgaard (1987).
As at (2.8), writing

. 1 u
r‘*=r+—-log—,
r r

where r and u are either r, and g, in (4.2) or r , and
Pq, in (4.3), we have

F(59) = (r){1+ O(n™%?)}.
4.3 Transformation Models

In this case we seek to approximate the marginal
density for one parameter component from the un-
normalized joint density for the vector of parame-
ters. This joint density is conditional on the ancil-
lary statistic, as usual, and its unnormalized form is
simply proportional to the joint likelihood function.

In evaluating integrals of this type in Bayesian
analysis, Tierney and Kadane (1986), Tierney, Kass
and Kadane (1989) and Kass, Tierney and Kadane
(1988) suggested approximating the integral using
Laplace’s method. Applying these results shows that
the marginal log-likelihood for the parameter of in-
terest can be approximated by adjusting the profile
likelihood function:

(W) = 10g Fu (i3 ) = log [ f(8;0)dA

= Uy, )A\.//) - %log | Fan (¥, )A\.p)l

This approximate marginal likelihood can be con-
verted to a tail area approximation using (2.3) and
(2.6):

(4.4)

F(J;9)
4.5
o+ - 1) a0y,
where

'm = i[z{lm(l]}) - lm((p)}]l/z,
U = Ly ()] = L ()2



INFERENCE 147

Note the similarity of (4.1) and (4.4), and of (4.2)
and (4.5). Result (4.5) was established in DiCiccio,
Field and Fraser (1990). It is of the “sequential sad-
dlepoint” form described in Section 4.2, in the sense
that the likelihood is adjusted before it is converted
to a tail area approximation. There is an equiva-
lent “double saddlepoint” version, also derived in
DiCiccio, Field and Fraser (1990), analogous to (4.3);
and r* versions can also be constructed from either
of these approximations.

4.4 Discussion

The asymptotic theory outlined in this section and
in Section 2.2 has emphasized the use of the signed
square root of the likelihood ratio statistic, which re-
quires that the parameter of interest is a scalar. As
a referee has stated, since in this case the density
approximation given by the p* formula could be in-
tegrated numerically, it is not obvious that tail area
approximations (2.3), (2.9), (4.2), (4.3) and (4.5) are
particularly useful from a practical point of view.
The amount of calculation involved in computing
the tail area approximations is still considerably
less than numerical integration, though, and where
the approximations have been compared to numeri-
cal integration the results are generally comparable
in accuracy (cf., e.g., Butler, Huzurbazar and Booth,
1992). Use of the tail area approximations is par-
ticularly simple for computing p-values for a null
hypothesis. As discussed in Sweeting (1995c), the
tail area approximations are essentially two-point
quadrature formulas, but the two points at which
they are evaluated are in some sense specially tai-
lored to the problem. Nevertheless, the surprising
accuracy of the tail area approximations is men-
tioned in many papers in the literature and has not
yet been fully explained.

Another reason for emphasizing the tail area ap-
proximations, in addition to their apparent accu-
racy in applications, is that this approach has been
quite fruitful for theoretical developments. The sim-
ilarity between the approximations for exponential
families and for transformation families is striking

.and suggests the possibility of a general approxi-
mation formula for tail probabilities. The distinc-
tion between the double saddlepoint approximation
and the sequential saddlepoint approximation out-
lined so clearly in Pierce and Peters (1992) high-
lighted intriguing connections between frequentist
and Bayesian inference; see in particular Lindley’s
(1992) contribution to 'the discussion, Pierce and
Peters’ (1992) reply and Pierce and Peters (1994).
Further development of these ideas is presented in
Sweeting (1995a, b). Another advantage of the tail

area approximations is their decreased dependence
on the ancillary statistic, as discussed in Section 5.4.

Tail area approximations are, however, only use-
ful for inference about a scalar parameter, and there
will be situations when some or all components of
a vector parameter are of interest. As a referee has
pointed out, it is not clear how the p* approximation
is to be used in this setting. One approach, outlined
in Barndorff-Nielsen (1986), is to order the compo-
nents of a vector parameter in some manner and to
construct a series of tail area approximations, one
for each component. The same difficulty arises in
Bayesian inference and in conditional inference in
transformation models, for which a componentwise
approach using likelihood ratio statistics is outlined
in Fraser and MacKay (1975).

A more usual approach is to base inference for a
vector parameter on the log-likelihood ratio statis-
tic, which to first order follows a X%-distribution,
where p is the dimension of the parameter. As has
been widely discussed, the statistic is readily ad-
justed to follow a Xf,-distribution to a higher order
of approximation, by the technique of Bartlett ad-
justment. Bartlett adjustment will not be reviewed
here; some particularly useful recent references are
Barndorff-Nielsen and Cox (1994, Section 4.4, 6.5),
DiCiccio and Stern (1993a) and Bickel and Ghosh
(1990). The derivation of the Bartlett correction
from the p* formula is given in Barndorff-Nielsen
and Cox (1984), where in particular it is shown
that the Bartlett-corrected likelihood ratio statistic
has the same distribution conditionally and uncon-
ditionally. Jensen (1986b) shows that, in the setting
of Section 4.2, the Bartlett-corrected likelihood ra-
tio statistic is an O(n~3/2) approximation to the
conditional distribution of s;, given the sufficient
statistic for the nuisance parameter.

In the scalar parameter setting, a mean and vari-
ance adjustment of the signed square root of the log-
likelihood ratio statistic is equivalent to a Bartlett
adjustment of the log-likelihood ratio statistic
itself; in fact Lawley (1956) derived the Bartlett
adjustment by considering a sequence of signed
likelihood roots. This approach is also used in
McCullagh (1987, Section 7.4), Bickel and Ghosh
(1990) and Sweeting (1995b).

Although the exponential family versions (4.2)
and (4.3) have been fairly thoroughly developed for
regression models (Davison, 1988; Pierce and Pe-
ters, 1992; Fraser, Reid and Wong, 1991), the results
in Section 4.3 have not been systematically applied
to regression models of the form ¥ = XB + os,
all of which can be analyzed using these methods.
DiCiccio and Martin (1991, 1993) have extended
the range of application of the original formula
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somewhat and have illustrated its implementation
in several examples. In examples where it has been
considered, the double saddlepoint version does
not seem to work as well as the sequential sad-
dlepoint version (DiCiccio, Field and Fraser, 1990;
DiCiccio and Field, 1991; Butler, Huzurbazar and
Booth, 1992).

Conditional models are useful in other contexts
for eliminating nuisance parameters or enabling
approximate computation of probabilities, or both.
These extensions are considered briefly in the next
section.

5. EXTENSIONS
5.1 Exponential Families

In many applications, the parameter of interest
will not be a linear function of the canonical pa-
rameter. In the special case that the parameter of
interest is the ratio of two components of the canon-
ical parameter, the nuisance parameter can still be
eliminated by conditioning, although some compli-
cations arise.

Assume that the density is of the form

f(y;¥,A)
= exp{As1(y) + PAsy(y) — k(¥ A) — d(y1, ¥2)}

where, as usual,  denotes the parameter of inter-
est. For fixed ¢, s(y) = s; + s, is sufficient for A
in the ordinary sense. The Jacobian of the transfor-
mation from (s, s3) to (sq, s) is ¥, so we have

f{s1ls(¥)}
=y~ exp[As; + A(s — 51) — (¥, A)
—d{s1,y (s —s)}]

. [/ Y~ Lexp[As; + A(s — 31') — k(4, 1)

(5.1) -1
~ o107 s = s ds |
_ exp[—d{s;, (s — s1)/¢}]
Jexp[—d{sy, (s —s1)/¥}]ds;

= exp{ds(sy; ¢¥) — ko(¥)}.

Note that the Jacobian of the transformation does
not depend on sy, so it does not affect the conditional
distribution. In the terminology of Chamberlin and
Sprott (1989), s(¢) is a linear pivotal. In general,
(5.1) is not itself a linear exponential family as was
the case in (3.3).

EXAMPLE 5.1. Let s; and s, be sums of exponen-
tial random variables with rate parameters A and
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Y A, respectively, based on samples of size n; and n,.
Writing s(i) for s; + ¢sy, it is not hard to show that

sit (s — sy

st (s— s tdsy

f(s1ls(¥)) =

that is, that s;/s(y) follows a Beta(ny,n,) dis-
tribution. The marginal distribution of s(y) is
Gamma(n + ng, A). If we consider the two exponen-
tial random variables to be the waiting times for
events in two Poisson processes with rates ¢A and
A, respectively, then s(¢) corresponds to the total
time to n; + ny events from two processes adjusted
to have the same rate, A\. From this point of view
conditioning on s(y) seems quite reasonable.

The result (5.1) suggests a partition of the original
joint density as

(5.2) Fi(sals(@); ) fo(s(4); ¢, A)

by analogy with (3.2). In Example 5.1 we have the
further simplification to

(5.3) Fi(s1ls())f2(s(d); A),

that is, the ¥-dependence in the joint density is en-
tirely absorbed in the function s().

A conditional or marginal likelihood cannot be
easily defined from the component densities in (5.2),
because the differential element associated with the
density also depends on . This is true both for
f1(s1]s(¢)) and for fo(s(¢)). Thus likelihood-based
functions, such as the score function or Fisher in-
formation, cannot be obtained in a straightforward
manner.

One approach to defining a likelihood function
is to consider the problem of testing Hy: ¢ = ¢
and condition on s(ig) = s; + YoSy. This is recom-
mended in Cox and Hinkley (1974, Chapter 5) and
McCullagh and Nelder (1989, Chapter 7). The result
for the family (5.1) is

f(s1ls(¥o); ¢, A)

=epfa(1- )i —d(on 152 ) |
. [/exp{)\(l — d%)sl
(5.4) - -1
~don 52 ) s

= exp{)\(l — %)81 — d(s1, ¥o)

0

—cs(A ¢, ‘l’o)}-
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Note that this is a linear exponential family for s;,
with canonical parameter A(1 — ¢/¢), but that it
is not free of A unless ¢ = ;. Because this condi-
tional density has monotone likelihood ratio in s;
for all A and all ¢ > ¢ (or ¢ < ), uniformly most
powerful similar tests can be constructed for test-
ing Hy: ¢ = ¢, and a confidence interval can be
built up by testing a succession of ¢y-values. In Ex-
ample 5.1 conditioning on s(i,) gives the same con-
ditional density as in (5.3), because the conditional
density depends on ¢ only through s(¢).

EXAMPLE 5.2. Suppose we have a sample of size n
from the gamma distribution and are interested in
inference about the mean, which is a ratio of canon-
ical parameters. An expression for d(s;, s,) is given
in (3.5), although no closed form is available. Thus

exp(—s1)h(sy, (s — s1)w)

S exp(—s1)h(sy, (s — s))p) dsy ’
where A(s;, s9) is the volume of the region A defined
in (3.5). If we condition on s(u,) instead, we get

f(s1ls(mo); > A)
(5.5) _ exp{)\( _ %Q)sl — d (51, o) — cs('%, A) },

where

exp{—d4(s1, o)} = exp(—s1)h(sy, (s — 51)1p),
exp{ —cs(%, A)} — [ expi=d,(s1, wo)} dsi.

Jensen (1986a) discusses uniform saddlepoint ap-
proximations for A(sq, sy) to obtain confidence inter-
vals for u constructed from the conditional density
(5.5).

f(s1ls(u);m) =

If the parameter of interest in an exponential fam-
ily model is not either a ratio or a difference of
canonical parameters, no exact conditional distribu-
tion is available for eliminating the nuisance param-
eter. While in principle an approximately sufficient
statistic could be constructed, no general treatment
seems to be available. Constructing an approximate
- conditional likelihood is a little easier and is dis-
cussed in Section 5.3.

5.2 Transformation Models

In transformation models, conditioning on an an-
cillary gives a dimension reduction to the dimension
of the parameter. Nuisance parameters are then
eliminated by integrating, that is, by finding the
marginal density related to the component of inter-
est.

EXAMPLE 5.3. We generalize the location-regres-
sion model (3.7) by writing

(5.6) Y =XB+oe,

where ¢ > 0 is a scale parameter and ¢ as be-
fore follows a known density f(-). The conditional
density of (B, &), given the maximal ancillary, is
given by the general expression (2.1), but in or-
der to eliminate the nuisance parameters by inte-
grating it is necessary to define the pivotals ¢; =
(BI_BI)/&’ ey tp = (Bp_ﬁp)/&y tp+1 = &/0" that
is,
f(BA’ &;B5 U) & f(tl(Bl)7 ey tp(Bp)9 tp+1(0))
= () (te)lt),

where ¢9) = (3, ..., ,41)- By analogy with (3.2) the
marginal density is free of the nuisance parameters,
but as in (5.2) the argument of the density is a piv-
otal statistic.

A further generalization of interest in the regres-
sion model is to allow f(&) to depend on some shape
parameters, say, A. In this case the full joint density
f(y) factorizes as

_— f(¥;B,0,4)
X f(tl(Bl)’ ey tp(Bp)’ tp+1(0)|d; A)f(da A)’

where d is the maximal ancillary statistic (y —
X B)/ ¢. This is a generalization of (3.6). Models of
this type are discussed in Fraser (1979, Chapter 6)
where it is recommended to use f(d;A) for infer-
ence about A and then to use a range of plausible

‘values for A in constructing inference for (8, o). A

systematic investigation of this approach does not
seem to be available in the literature.

5.3 Conditional and Marginal Likelihoods

The results in Sections 5.1 and 5.2 provide expres-
sions for the exact conditional or marginal densities,
although not in closed form. As we might hope from
earlier sections of the paper, accurate approxima-
tions to these densities might be available from sad-
dlepoint approximations or the p* formula. While
very accurate approximations for the density can
often be obtained in particular cases, the form of
the p* and r* formulas suggests that a fruitful ap-
proach is to construct approximations from a likeli-
hood function.

As well, in models that are not exponential or
transformation families, there is no exact method
for eliminating nuisance parameters by condition-
ing or marginalizing. The only reasonably general
non-Bayesian approach to such models seems to be
to construct an approximate conditional or marginal
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likelihood and to use asymptotic arguments for com-
puting p-values and confidence intervals.

A likelihood construction based on Section 5.1
was suggested in Cox and Reid (1987). For fixed ¢,
the restricted maximum likelihood estimate of the
nuisance parameter le, is at least asymptotically
sufficient for A, so Cox and Reid (1987) suggested
computing f( yI)A\,,,) as the basis for an approxi-
mate conditional likelihood. After approximating
the marginal density for X¢ by the p* formula (2.1),
the resulting conditional log-likelihood is given by

(5.8) ler(¥) = U(y, )Ahp) - %log [ Jan (¥, )A\lp)l,

where (i, A) is the likelihood function based on the
joint density f(x; ¥, A). The construction of Icgr(¥)
follows the conditioning pattern of (5.1); that is, no
fixed value ¢, of ¢ is involved. A version that follows
(5.4) was also suggested in Cox and Reid (1987).

In order to compute the conditional density, we
need the Jacobian of a one-to-one transformation
from y to (a, )A\‘,,), and in (5.8) this has been ignored.
An important consequence of this is that Iggr(¢) is
not invariant under one-to-one reparametrizations
of the nuisance parameter A that leave the parame-
ter of interest fixed. Cox and Reid (1987) suggested
computing (5.8) using an orthogonal nuisance pa-
rameter A, that is, one satisfying the property
E{-3%1(y, \)/dy IA} = 0. Such a parametrization
can always be found in the special case that ¢ is a
scalar.

The lack of invariance can be avoided by using
the modified profile likelihood of Barndorff-Nielsen
(1983), which is given by

N 1 . N
Ipn(¥) = U(d, Ay) — 5 log [jan(¥s Ayl
2

5.9)
+ log

N b

W

where the final term adjusts for the reparametriza-
tion in A. This likelihood was derived in Barndorff-

Nielsen (1983) as an approximation to the marginal-

likelihood of s, under the factorization f(y; ¢, A) =
f(s9; ) (s1]82; ¥, A). Several related constructions
are discussed in Barndorff-Nielsen (1987). When A
and ¢ are orthogonal parameters, the final term in
(5.9) is O(n~1), whereas the two leading terms are
O(n) and O(1), respectively.

All the constructions of (5.9) and (5.8) involve an
approximation to the marginal density of )A\‘,,, and as
noted in Section 5.1 a likelihood constructed from
this density is not well defined, because the differ-
ential for the density contains ¢-dependence that
is ignored. Attempts to address this were made in
Kalbfleisch and Sprott (1970) and Fraser and Reid
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(1989), but no satisfactory resolution seems to be
available. Some further points related to this are
discussed in Cox (1993).

The derivation of (5.9) in Barndorff-Nielsen
(1983) and of (5.8) in Cox and Reid (1987) shows
that (5.8) can, at least under parameter orthogonal-
ity, provide an approximation to either a conditional
or a marginal log-likelihood (ignoring difficulties
with the differential mentioned above). In the spe-
cial cases of the exponential model in Section 4.2
and the transformation model in Section 4.3,
where pivotal conditioning or marginalizing is
not needed, (5.8) provides an approximation to
the exact conditional or marginal log-likelihood
to O(n=3/?), as described at (4.1) and (4.4). In
(4.1) the orthogonal parametrization is defined by
n = de(, A)/dA, and the right-hand side of (4.1)
becomes I(y, 1,) — (1/2)log|j,,(¥, )| after this
parameter transformation is made.

Several aspects of (5.8) have been studied re-
cently, and an overview is given in Reid (1992).
Although it is often referred to as an approximate
conditional likelihood, in many cases it actually
approximates the appropriate marginal likelihood
as is clear from the construction described in
Barndorff-Nielsen (1983). In fact from one point
of view it is a simplification of Barndorff-Nielsen’s
modified profile likelihood. Other simplifications
of Barndorff-Nielsen’s modified profile likelihood
are suggested in McCullagh and Tibshirani (1990),
DiCiccio and Stern (1993b) and Barndorff-Nielsen
(1994).

A promising use of adjusted likelihoods is in
Neyman—Scott—type problems such as described in
Example 3.5. Example 3.5 is discussed from this
point of view in Barndorff-Nielsen (1983) and in
McCullagh and Tibshirani (1990). While the esti-
mate of the common odds ratio from [cg or lgy is
not consistent either (as £ — 00), numerical work
indicates that it is not as “badly inconsistent” as
the usual maximum likelihood estimate. Another
example, from Cox and Reid (1992), considers k&
pairs of independent exponential observations with
means A; and ¢/A;, respectively. The maximum
likelihood "estimate of ¢ is ¢ = k71 X (y;15,2)"/%
which converges to mwi/4. The estimate obtained
by maximizing lcg is (4/3)y, which converges to
wy/3.

To use log () or lgn(¥) in a tail area formula such
as (2.3) or (2.9), it is necessary to understand how
it depends on the data, as well as on the parame-
ter, and outside the cases outlined in Sections 4.2
and 4.3 this is fairly difficult. Some progress can be
made for the case of a ratio of exponential family pa-
rameters, but only by using the linear exponential
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structure of (5.4) in an exponential type approxima-
tion as in (4.2) (Jensen, 1986b).

However, recent results have shown that the de-
pendence on the data of the log-likelihood (or a
conditional or marginal log-likelihood) is needed
for approximations accurate to O(n~3/2), but not
for approximations accurate to O(n~!), which is
still an improvement on the usual first-order ap-
proximations, which are accurate only to O(n~1/2).
DiCiccio and Martin (1993) describe a tail area ap-
proximation derived from [up accurate to O(n~1),
and Barndorff-Nielsen and Chamberlin (1994)
discuss tail area approximations from [gy, also
accurate to O(n™1).

5.4 Exponential Regression

Although somewhat specialized, the exponen-
tial regression model illustrates several of the
points discussed in Sections 4 and 5. Assume that
we have a sample of n independent observations
(¥15-.-5¥,), each following an exponential dis-
tribution with mean u;. The likelihood function
is

Wwsy)=—Y logu; — u'Y y;.

A regression model for the means is assumed to
take the generalized linear model form g(u;) = 8,
where x; is a vector of explanatory variables associ-
ated with y;. We will simplify the following discus-
sion by assuming that there is just one explanatory
variable, so that g(u;) = B¢ + B1%;-

If we assume g(u;) = pu; !, then

1(Bo, B1;¥) = Y _log(Bo+B1x:)—Bo Y ¥i—B1 Y ¥i%x;

is the likelihood function for an exponential fam-
ily with canonical parameters 8, and B;. Inference
for B,, treating B, as a nuisance parameter, is con-
structed from the conditional distribution of } y;x;
given Y_ y;. Although exact calculation of this distri-
bution is difficult, the conditional likelihood function
can be approximated as in (4.1):

l.(B1) = 1(30(31% B1) + (%) log jﬁoﬁo(:éo(ﬁl)y B1),

where f,(B,) is defined by {Bo(B:) + B1x;} ™! =
S ¥;, and jg,(B) = X(Bo + B1x;) 2 This approxi-
mate conditional log-likelihood function can be used
in the tail area approximations described in Sec-
tion 4.2 to construct a confidence interval for B; or
to test the hypothesis 8; = 0. There is no difficulty,
in principle, in extending to a multiple regression of
the form ;1 = By+Bxy;+- -+ B pX p;; inference for
any component, say, 8, can be constructed from the
exact or approximate conditional distribution given

CCyi X yi%es - 2 Vi%p_1,i)-

In many applications it will be more natural to
assume g(w;) = logu;. The log-likelihood function
is then

1(Bo» B1) = —nBo—B1Y_x;—)_ y;exp{—(Bo+B1%;)},

which is an exponential family with noncanoni-
cal parameters of interest. There is no dimension
reduction by sufficiency available, and no obvious
ancillary statistic using exponential family theory
is available. However, the exponential regression
model is a location-regression model on the log
scale. Writing z; = log y;, we have

z; = Bo + Bix; + &,

where f(&) = exp(e — exp ¢), and the exact density
for ( ﬁq , ﬁl)Aconditional on the ancillary statistic a =
(21— Bo — Bi%1, - - -, 2, — Bo — B1%,) is given by the
p* formula, as described in Section 2.1.

The marginal density of 3; can be obtained ex-
actly as well (cf. Lawless, 1982, Section 6.3) and the
log-likelihood corresponding to this exact marginal
density is just the profile log-likelihood

1,(B1) =1,(B1) = —nlog) exp{a; + (B, — By)x;}
= —nlog)_ y; exp(—B1x;).

The same expression for the marginal log-likelihood
is obtained from the Laplace approximation (4.4),
which in this case is exact.

The approximate conditional likelihood of Cox
and Reid (1987) is readily computed. Centering
the x’s (i.e., assuming ) x; = 0) ensures that the
parameters B, and B; are orthogonal, and in fact
jﬁoﬁo(30(31)> B1) = n, which does not depend on ;.
As a result [og(B;) is the same as the profile log-
likelihood. It is easily shown as well that Ign(B;)
is equal to the profile likelihood (Barndorff-Nielsen
and Cox, 1994, Example 8.8). However, if Iog(B1)
is computed using the nuisance parametrization
A = exp Py, then it is equal to {(n — 1)/n}l,(B1)
(Barndorff-Nielsen and Cox, 1994, Example 4.8),
highlighting the potential difficulty with the lack of
invariance of Iog(-). No such difficulty arises with
Ion (9.

Extending the regression for z; to a multiple
regression is again straightforward, and the ex-
act marginal log-likelihood for (B, ..., B8,) having
integrated out B, is again given by the profile
log-likelihood. Further exact or approximate inte-
gration is required for inference about a component
parameter; alternatively multiparameter methods
mentioned in Section 4.4 can be used for inference
about some or all the regression coefficients.

Introducing an additional shape parameter into
the model for y; can be done in a variety of ways; the
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two most obvious being Weibull and gamma models.
For example, if we assume y; ~ I'(v, 1;) and we use
the canonical link u;! = B, + B;x;, the resulting
exponential family log-likelihood is

I(Bos B1,v; y) = —vBoS1 — VB1S2 + vs3
+v)_log(Bo + B1%;)
+nvlogv — nlogl'(v),

where s; =3 ¥;, 89 = > x;¥; and s3 = )_log y;. The
shape parameter v is a component of the canonical
parameter, and the method outlined in Example 3.3
and Section 4.2 applies directly. The regression pa-
rameter $3; is a ratio of canonical parameters, and
exact conditonal inference can be constructed as de-
scribed in Section 5.2. Computation of the approxi-
mate conditional likelihood is straightforward.

In the model with the link function logu; =
Bo + B1x;, a shape parameter can be introduced by
assuming a Weibull distribution for y;, or equiv-
alently by assuming a model of the form (5.6) for
z; = log y;, with f(¢) the extreme value distribu-
tion given above, and the discussion of Example 5.3
applies directly. Inference based on the general-
ized gamma distribution, for which the Weibull is
a special case, is discussed in Lawless (1982, Sec-
tion 6.6), and provides an example of the extension
described by (5.7).

5.5 Approximate Sufficiency and Ancillarity

It would seem quite natural in the light of the
development of higher order approximations to con-
sider local ancillarity and sufficiency in the presence
of nuisance parameters. For example, in the pattern
of factorization (3.2), if f(sq|sqg;#, Ay + en~1/2) =
F(s1189; ¥, Ag){1 + O(n71)}, we could say that s,
is second-order locally sufficient for A. Similarly,
if f(sg; 0 + 6072, 1) = f(s9; 0, {1 + O(n"1)},
Sy is second-order locally ancillary for . An ap-
proach to defining local cuts this way is described
in Christensen and Kiefer (1994). These ideas are

also considered in Severini (1993, 1994a), using

slightly different definitions from those given here.
In Severini (1994a) the dependence of the distribu-
tion of the conditioning statistic s, is defined via
local power of a certain test statistic, rather than
by requiring its distribution to be approximately
free of the parameter of interest.

In Barndorff-Nielsen (1986), the result

FRy,rlstr, 0)
(5.10) i . 32
= o(r})p*(AyIr}; M{1 4 O(n™?)}

is established, where )A\l/, is the restricted maximum
likelihood estimate of the nuisance parameter, and
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ry, is the modified likelihood ratio statistic computed
from the profile likelihood, via formula (2.8). [See, in
particular, his equations (3.6) and (3.12). A simpler
expression than (3.12) for u is given in Barndorft-
Nielsen (1991).] This result is similar to the com-
plementary expression to that given at (5.3); that is,
the joint density factors as f(s1|s(¥); A)f(s(¢¥)) and
is an extension of the result of McCullagh (1984) on
the local sufficiency of the likelihood root.

Barndorff-Nielsen’s result (5.10) assumes that in
the full model f(y;y,A) it is possible to find an
approximate ancillary statistic so that the p* for-
mula for the distribution of (i, A) holds to order
O(n~3/2), as described briefly in Section 2.3. A gen-
eral construction of such ancillaries, suitable for ap-
proximating tail probabilities, is given in Fraser and
Reid (1995). The same construction is used in the
submodel obtained by fixing ¢ to find an approxi-
mate ancillary for the nuisance parameter A, and
the marginal distribution of this statistic is used
for inference about . It is easier to find an ap-
proximate ancillary for use in tail area approxima-
tions, as it is only necessary to find the direction
in which to take the sample space derivative of the
log-likelihood function [cf. (2.5)], and this does not
require complete specification of the ancillary statis-
tic. This is one advantage that tail area approxima-
tions have over the p* approximation.

As a referee has pointed out, (5.10) gives a third-
order result based on the profile likelihood, rather
than any adjusted version of profile likelihood
(cf. the double saddlepoint approximation of Sec-
tion 4.2). Approximations to O(n!) can be obtained
from the profile likelihood that do not require spec-
ification of an approximate ancillary; several such
are discussed in DiCiccio and Martin (1993) and
Barndorff-Nielsen and Chamberlin (1994). How-
ever, numerical work in those papers and in Pierce
and Peters (1992) does suggest that tail area ap-
proximations based on adjusted log-likelihoods are
more accurate.

5.6 Information and Estimating Equations

An approach to justifying conditional inference
under factorization (3.2) and marginal inference
(for A) under (3.6) is to try to show that the infor-
mation about the parameter of interest contained in
the conditional or marginal density that is ignored
is negligible. Several methods of quantifying this
information were presented in Barndorff-Nielsen
(1978, Chapter 4). These are reviewed and extended
in Jorgensen (1993).

When the conditional or marginal statistic of in-
terest is a pivotal, and consequently the conditional
or marginal likelihood is not well defined, it is also
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not clear how to define quantities derived from the
likelihood, such as Fisher information. The problem
of defining information in a pivotal quantity also
arises in the theory of estimating equations, which
are by definition functions of the data and the pa-
rameter. The information in an estimating equation
is usually defined by projection (Godambe, 1980;
Liang, 1983; Efron, 1977; Bhapkar, 1991).

The construction of estimating equations in the
presence of nuisance parameters typically assumes
a factorization of the form (3.2) or (5.2). Godambe
(1976) established the optimality of the score equa-
tion from f(sq|sy;¢¥) in the setting expressed in
(3.2), where there exists a sufficient statistic for
the nuisance parameter. His optimality result did
not entail conditions on the amount of informa-
tion in the marginal density f(sg; ¥, A), but did
entail conditions on the class of estimating equa-
tions. It is an estimating equation analogue of the
result mentioned in Section 3 that the class of tests
with size not depending on A must be constructed
from the conditional distribution f(si|sy; ). Both
results require the family of densities for sy to be
complete.

Lindsay (1982, 1983) considered optimality in the
more general setting where the sufficient statistic
for A depends on the parameter of interest. The op-
timal score function is obtained from f(s;|s(¢)) as
in (5.4) and typically depends on A. Recent work
in Lindsay and Waterman (1992) considers approx-
imations to the optimal score function. A review
of the estimating function approach to eliminating
nuisance parameters is given in Liang and Zeger
(1995).

6. OTHER ROLES OF CONDITIONING
6.1 Conditioning for Convenience

Conditional distributions are much easier to com-
pute than marginal distributions, and some recent
developments have used conditional distributions
either in place of or as approximations to marginal
distributions.

Possibly the most fruitful example of this is the
use of sequences of conditional densities in Markov
‘chain Monte Carlo methods to generate samples
from desired joint and/or marginal distributions. A
thorough survey is given in Besag, Green, Higdon
and Mengersen (1995). This approach has been es-
pecially useful in Bayesian inference for comput-
ing marginal posteriors in high-dimensional prob-
lems. An introductory account is given in Casella
and George (1992).

An earlier example of conditioning for conve-
nience is the construction of the partial likelihood

for the proportional hazards model (Cox, 1972,
1975). This is obtained from a product of con-
ditional distributions, each of which is free of
the nuisance parameter. A similar approach was
suggested in Besag (1975) to construct a pseudolike-
lihood for spatial models. A survey of examples and
efficiency results for these and similar likelihoods
is given in Lindsay (1988).

Fraser and Massam (1985) suggested testing hy-
potheses about a vector parameter, by means of con-
ditioning for convenience, as follows. To test H: 0 =
0y in the model f(y; 0), let U(6,) be the score vector
dlog f(y;6)/90 and ||U(6,)|| its (Euclidean) length.
An observed level of significance is defined as

o)

1T (6)!]

and measures the probability of a departure as large
as or larger than the observed departure in mag-
nitude, conditional on the direction of departure.
Skovgaard (1988) provides a Lugannani—Rice—type
approximation which can be applied to this problem.
Note that the departure of the data from the hy-
pothesized value is measured in only one direction:
that indicated by the observed data value. Fraser
and Massam (1985) referred to these tests as con-
ical tests; the name directional was suggested in
Skovgaard (1988). Cheah, Fraser and Reid (1994)
apply this idea to multiparameter testing in expo-
nential models.

If a conditional density turns out not to depend
on the conditioning event, then it is of course a
marginal density. In Fraser, Lee and Reid (1990)
this idea is exploited to obtain an appproximation to
the marginal density of the ¢-pivotal in regression
model (5.6). A conditional density is constructed
which is approximately constant as a function of
the conditioning variable. Fraser, Lee and Reid
(1990) discuss how the dependence of the approx-
imating conditional density can be assessed by a
Monte Carlo procedure.

Kolassa and Tanner (1994) combine asymptotic
theory and the Gibbs sampler by using Skovgaard’s
(1987) saddlepoint approximation to the conditional
distribution of interest and then constructing a
Markov chain by sampling from this approximation
to the conditional distribution. Skovgaard’s approx-
imation is a double saddlepoint approximation, as
described in Section 4.2. The sequential saddle-
point approximation is usually more accurate, but
perhaps too computationally cumbersome to use as
part of the Markov chain Monte Carlo algorithm.

Although conditional distributions are easier
to compute, not requiring evaluation of high-
dimensional integrals, they are not easy to simulate

6.1)  p(8) = Pr{nU(eo)u > g
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from, and simulation-based inference is arguably
easier to do unconditionally. An approach to condi-
tional simulation tailored to a specific example is
outlined in Davison and Hinkley (1988). A system-
atic approach is described in detail in Booth, Hall
and Wood (1992).

6.2 Conditioning and Power

A point often made in discussions of conditional
inference is that conditional tests are less power-
ful than unconditional tests. An interesting simple
example is given in Cox and Hinkley (1974, Exam-
ple 4.6). This point is often raised in discussions of
the 2 x 2 table, although there the problem is largely
caused by the discreteness of the sample space. In a
discrete sample space, the set of achievable a-levels
or p-values will be smaller for a conditional test
than for an unconditional test, because the condi-
tioning defines a partition of the sample space, and
there are fewer points in the subspace defined by the
conditioning than there are in the full sample space.
This is not a problem with conditioning per se, but
rather with the interpretation given to p-values. As
discussed in Agresti (1992), it seems likely that the
problem can be largely alleviated by the use of some
smoothing of p-values.

Even in continuous sample spaces, though, a
given conditional procedure may be less powerful
than an unconditional procedure. While this is rel-
evant to a long-run assessment of the procedure
over the variety of circumstances modelled by the
full sample space, it does not seem particularly rel-
evant in individual instances. Of course the usual
Neyman—Pearson-type arguments can be used in
principle to construct conditional tests that are ex-
actly or approximately optimal among the class of
all conditional tests. .

A related issue is the conditional properties of a
given unconditional procedure. From the point of
view of the approximation theory considered in this
paper, this question is addressed in Severini (1990).
More generally, there is a large literature on inves-
tigating the conditional properties of a given proce-
dure by establishing the existence or nonexistence
of relevant subsets of the sample space, that is,
subsets determined typically by an ancillary statis-
tic, within which an unconditional property such as
a confidence limit is invalid. This approach is re-
viewed in Casella and Goutis (1995).

6.3 Conditional and Bayesian Inference

Conditioning on ancillary statistics or on suffi-
cient statistics for nuisance parameters, in addition
to being convenient for the implementation of
accurate approximations, is related to the idea of

N. REID

making long-run frequency properties of inference
statements such as significance levels or confi-
dence limits relevant to an individual instance.
The Bayesian approach avoids the dilemma of
maintaining a long-run frequency interpretation
while looking for relevance in a particular instance,
although one could argue that the problem has
simply been shifted from establishing relevance
to that of choosing a prior. This latter problem is
similarly difficult to solve purely by mathematical
techniques.

On a more technical level, in transformation mod-
els Bayesian inference with “flat” priors is the same
as inference from the conditional distribution given
the ancillary statistic (see, e.g., Lawless, 1982, Ap-
pendix G); that is, the Bayes posterior interval with
probability 1 — «a, say, is exactly the same as the
1 — a confidence interval obtained from the condi-
tional density. This is implicit in expression (2.2)
and its generalization to transformation models.

As expression (2.2) is a restatement of the p*
formula for location models, one might expect that
approximate confidence intervals obtained from p*
and r* formulas in general models have an approx-
imate Bayesian interpretation as well, and this has
been investigated in a number of recent papers.
From one point of view the goal is to identify pri-
ors for which the Bayesian posterior distribution
is also an accurate frequentist solution (Welch and
Peers, 1963; Stein, 1985; Tibshirani, 1989; Nicolau,
1993). Another aspect is that p* does itself have
a Bayesian interpretation (Davison, 1986); and, as
was pointed out in Barndorff-Nielsen (1987) and
Sweeting (1987), the approximate conditional like-
lihood (5.8) can also be derived as an approxima-
tion to the log of the marginal posterior density for
¢ by using a Laplace approximation and assuming
the priors for ¢ and A are independent or that the
prior for A given ¢ is free of ¢, at least near )A\l,,.
A systematic approach to the relationship between
Bayesian and frequentist asymptotics is outlined in
Sweeting (1995a, b). An interesting approach to ap-
proximate ancillarity based on Bayesian inference
is proposed in Severini (1994b): a statistic is called
Bayes-ancillary if the posterior distribution for 6
is the same in the conditional and unconditional
models.

The foundational aspects of conditioning have
been much debated. Particular emphasis is often
given to Birnbaum’s theorem (Birnbaum, 1962) that
the principles of conditioning on ancillary statis-
tics and marginalizing to sufficient statistics imply
that all the information that the data can offer is
summarized in the likelihood function. In fact the
so-called conditionality principle alone entails the
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likelihood principle (Evans, Fraser and Monette,
1986). Berger and Wolpert (1984) discuss these
results in some detail and argue that the most ef-
fective strategy for implementing the likelihood
principle is a Bayesian approach. A relatively re-
cent discussion of some foundational issues is given
in Brown (1990) and the discussion therein.

7. CONCLUSION

It is not possible to cover in any depth all the
roles of conditioning in inference, and, in particular,
Section 6 is quite sketchy and incomplete. The close
relationship between conditional distributions and
developments in the theory of higher-order asymp-
totics have been very fruitful for the theory of infer-
ence, and I have tried to outline what I think are
the essential ideas in this relationship.

There are certainly many new things still to be
learned, particularly in connection with approxi-
mate ancillarity and sufficiency in general models,
and properties of approximate conditional and
marginal likelihoods. At the same time, the ex-
istence of relatively accurate approximations for
fairly wide classes of problems will have an impact
on statistical methodology, particularly as computer
programs become available for easy implementa-
tion.
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