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Comment: Fuzzy and Randomized
Confidence Intervals and P-Values

Elizabeth A. Thompson

Geyer and Meeden are to be congratulated for a ma-X given W, which may itself be subject to consider-
jor idea on how to express uncertainty in classical fre- able uncertainty. The second key point made by Geyer
quentist statistics. Their development of the trinity of and Meeden is that the distribution function of the ab-
fuzzy test functions, confidence intervals ahevalues  stract randomized (fuzzy®-value that results from an
brings a new coherence to the relationship amonganalysis of data should be reporteithout additional
these statistical entities when the test is randomized. Inand arbitrary randomization. Likewise, in the latent

Geyer and Meeden, the uncertainty or randomizationvariable case, a solution other than averaging over the
is due to the discreteness of data random variables, butincertainty irv (W) givenX is clearly desirable.
another form of uncertainty or randomness arisesinla-  Thompson and Basu (2003) first attempted to ad-

tent variable problems and may be treated in an analo-gress this problem by considering the distribution over
gous fashion. In this discussion, | will focus on fuzzy x, of probabilities of the form

P-values in that context.

Following the notation of Geyer and Meeden,Yet (1)  Q(X, Xo) = Pr(z(W) > t(Wo)|X, Xo),
denote the observed daf[a random _varl_a_blgs, but SUPwhere X is independent oX and has the distribu-
pose there are latent variabls of scientific interest, tion of X under the null hvpothesidVa is indepen-
so that the ideal test statistici6X, W), a function of dent of W. and the distrigue[ion OW’ 0 ven Xp s
both X andW. Many examples of this situation arise ' e 049 0
in the analysis of genetic data, whéié may be un- that of W given X under the null hypothesis. Un-
observable DNA types or paths’ of descent of DNA to Fier the nul! hypothesis, the distributipn F(X, Xo)
the observed individuals of a pedigree or population. s symmetric about 2. Furthermore, if the structure

Indeed, in this case the hypothesis of interest often Of_ the_ data is such thak (XO.) Ie_aves litle uncer-
concerns the probability distribution &% and hence  t@inty in7(W) [1(Wo)], the distribution of the function

the ideal test statistic is a function B¥ alone. The  2(X,Xo) of the random variablXo will take extreme
data random variabl¥ is only of interest for the in-  Values. In the limit, where(W) ands(Wo) are deter-
formation it provides aboutV through some proba- mlnlstlc functions ofX a_ndXo, respectively, the distri-
bility model PIX|W). For convenience, we consider Pution of 0 has two-point suppor0, 1}. At the other
here the case where the latent test statist) is a  €xtreme, wherX andXo provide no information about
function only ofW and assume the random variaie W andWo, Q is identically equal to 2.
to be continuous. The discrete case is considered by The probability distribution o2 (X, Xo) overXg for
Thompson and Geyer (2005). the given datX goes some way toward differentiating
In the area of statistical genetic methodology, a stan-the evidenceX provides aboutV from the evidenc&V
dard procedure has been to average over the latentprovides about the null hypothesis. However, the con-
variable uncertainty and form test statistg (W) |X) struction of (1) has several disadvantages. The distri-
(Whittemore and Halpern, 1994; Kruglyak, Daly, butions must normally be estimated by Monte Carlo
Reeve-Daly and Lander, 1996). However, there appearmethods, and realizations ofg and then ofWq for
to be neither theoretical justification nor optimality each realizeXg are required. The result is clearly de-
properties for such a proceeding. Moreover, the dis- pendent on the assumed model ¥4. Furthermore,
tribution of such a test statistic is not only hard or im- rigorous interpretation of the distributions ¢f is un-
possible to obtain, but depends on the distribution of clear. As seen from the two extreme cases of the pre-
vious paragraph@Q is not a P-value: it does not have
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FUZZY CONFIDENCE INTERVALS AND P-VALUES

let
s(w) = Pr{t(Wp) >t (W)}

be theP-value of the test where the valueof W is to
be observed. We refer taqW) as thelatent P-value.
Equivalently, we may write

)

The random variable (W) is the fuzzy P-value and
has distribution function

®3)

Exactly as in (1.6) and (1.7) of Geyer and Meeden, it-
erated conditional expectation provides that, uridgr
the unconditional expectation &f(«) is «.

Note that the (distribution of the) fuzzg-value is a
function of the observed dada. The distribution oiX
under the null hypothesis (0fp) does not enter into
the computation. This not only greatly facilitates com-

s(W) = Pr{r(Wo) = 1(W)|W}.

F(x) =Pr{s(W) < «|X}.

putation, but also provides robustness to assumptions

with regard to the marginal distribution &f.

Finally, we return again to the telling plea of Geyer
and Meeden that the fuzz9-value distribution be pro-
vided by data analystsyithout additional randomiza-
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tion. In the latent variable case, a classidalvalue
confounds the evidence in dataabout the latent vari-
ablesW with the evidence thaX [through (W)]
provides about the hypothesis of interest. Like the
probabilities of (1), the fuzzyP-value of (2) sepa-
rates the evidence that provides about the latent
test statistia (W) from the evidence that the data pro-
vide for inference. Unlike the probabilities of (1), the
fuzzy P-values of (2) are rigorously interpretable as
P-values that have a uniform distribution under the
null hypothesis (3). Clearly, the latter provide a better
solution.
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