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Comment: Fuzzy and Bayesian
p-Values and u-Values
Andrew Gelman

It is a pleasure to discuss this fascinating paper,
which presents a new way to express uncertainty in
p-values for composite null hypotheses. I particularly
like the graphical display above equation (1.2). I have
some brief comments about the confidence interval for
binomial proportions and then some more to say about
the relationship to Bayesianp-values.

Geyer and Meeden’s fuzzyp-values are related to
Bayesianp-values in that they recognize the uncer-
tainty inherent in testing a composite null hypothesis.
Fuzzy and Bayesianp-values also both allow for test
statistics to depend on missing data, latent data and
parameters, as well as on observed data. There is the
potential to generalize these ideas to graphical test sta-
tistics and connect to exploratory data analysis.

INFERENCE FOR BINOMIAL PROBABILITIES

For the practical problem of inference for binomial
probabilities, I believe methods such as described by
Agresti and Min (2005) should work well. I could
imagine standard practice being to use such an approxi-
mate method, supplemented by a fuzzy interval, to give
a sense of the range of possibilities. In more compli-
cated discrete-data models such as logistic regression,
I could once again imagine fuzzyp-values and inter-
vals playing a useful role in conveying the sensitivity
of likelihood-based estimates.

FUZZY AND BAYESIAN p-VALUES

I am sympathetic to the authors’ desire to define
fuzzyp-values non-Bayesianly. There are certainly go-
ing to be cases where a Bayesian approach is not de-
sired. From a Bayesian context, a posteriorp-value is
the probability, given the data, that a future observation
is more extreme (as measured by some test variable)
than the data. Mathematically, a Bayesianp-value
can be computed by averaging over the distribution

Andrew Gelman is Professor, Department of Statistics
and Department of Political Science, Columbia Uni-
versity, New York, New York 10027, USA (e-mail: gel-
man@stat.columbia.edu).

of p-values (with distribution induced by uncertainty
about unknown parameters, except in the special case
of a pivotal test statistic); see, for example, Gelman,
Meng and Stern (1996) and Bayarri and Berger (2000).
In contrast, the fuzzy method considers the distribu-
tion without averaging over it. This is similar to the
Bayesian giving you a single number, but at the cost of
requiring a prior distribution. It is good for both sorts
of methods to be available.

Fuzzy confidence intervals andp-values are not the
same as Bayesian posterior intervals andp-values (ex-
cept in the special case of pivotal test quantities), but
there are similarities, and indeed there could be hybrid
versions that average over some parameters and condi-
tion on others (by analogy with empirical Bayes meth-
ods; see, e.g., Morris, 1983). We have done some work
on graphical model checking using posterior predic-
tive checks for problems with missing and latent data
(Gelman et al., 2005). Perhaps these methods can be
connected to the ideas of Thompson and Geyer (2005)
for fuzzyp-values in latent variable problems.

p-VALUES AND u-VALUES

Finally, let me note that the classicalp-value, de-
fined from a point null hypothesis, can be generalized
in various ways when moving top-values that depend
on unknown parameters in composite hypotheses. In
the simplest setting, the classicalp-value has two prop-
erties:

(i) It is the probability that a test statistic in the
reference distribution exceeds its value in the data
[p.value(y) = Pr(T (y.rep) > T (y))].

(ii) It is a function of data,p.value(y), that is uni-
formly distributed under the reference distribution [i.e.,
p.value(y.rep)∼ U(0,1)].

With a composite null hypothesis characterized by
an unknown parameter theta, the two properties of
the p-values cannot both, in general, hold. From the
Bayesian perspective, as noted above, thep-value
can be defined by generalizing (i) to obtain: pos-
terior p.value(y) = Pr(T (y.rep,θ) > T (y, θ)|y). In-
stead, one can generalize (ii) and define ap-value as
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a function of data with a uniform distribution over
some averaged reference distribution. Gelman (2003)
refers to this second quantity, the uniformly distributed
data summary, as au-value, and notes that, even it if
averages over the posterior distribution, it cannot be
considered a posterior probability.p-values, as we de-
fine them, are not, in general,u-values (although there
are asymptotic connections; see Robins, van der Vaart
and Ventura, 2000), and which is preferred should de-
pend on the applied context. For the purpose of seeing
whether a particular misfit of model to data is surpris-
ing, I preferp-values (or, more generally, predictive
checks, which might be graphical), but for other pur-
posesu-values might be desired.

SUMMARY

In summary, I believe that the Geyer and Meeden
paper has the potential to improve statistical practice
for both simple and complex models, and I welcome
further developments in this area. I am particularly in-
terested in the graphical displays, especially for more
complex models, but the most practical use of the
methods might be as a backup, and alternative theo-
retical justification, for methods such as Agresti and
Min (2005) that give good approximate inferences in
discrete-data settings.
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