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Quantile Probability and Statistical
Data Modeling
Emanuel Parzen

Abstract. Quantile and conditional quantile statistical thinking, as I have
innovated it in my research since 1976, is outlined in this comprehensive
survey and introductory course in quantile data analysis. We propose that a
unification of the theory and practice of statistical methods of data model-
ing may be possible by a quantile perspective. Our broad range of topics of
univariate and bivariate probability and statistics are best summarized by the
key words. Two fascinating practical examples are given that involve positive
mean and negative median investment returns, and the relationship between
radon concentration and cancer.

Key words and phrases:Mid-distribution transform, percent function,
percentile function, quantile function, monotone transform, parameter in-
verse pivot quantile function, confidenceQ–Q curve, quantile–quartile
function QIQ(u), density quantile, quantile density, conditional quantile,
comparison distribution, comparison density, Bayesian inference using quan-
tile simulation, bivariate dependence, component correlations.

0. PHILOSOPHY

Quantile and conditional quantile statistical meth-
ods are not widely practiced in introductory statistics
courses. They were pioneered by Galton (1889), who
computed medians and quartiles of conditional distrib-
utions of heights of sons given heights of parents, and
discovered that they had constant scale and linear lo-
cation. Galton thus pioneered regression, correlation,
bivariate normal distributions and conditional normal
distributions. Many facts about quantiles have a long
history and were known before 1900 (see Hald, 1998).

Quantile statistical thinking, as I have innovated it in
my research since Parzen (1979), is outlined in this pa-
per. My teaching philosophy has as its maxim: to earn
more, learn more, and believe that learning a lot (an-
swering all related questions) is easier than learning
little (answering only the questions asked).

I teach that statistics (done the quantile way) can be
simultaneously frequentist and Bayesian, confidence
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intervals and credible intervals, parametric and non-
parametric, continuous and discrete data. My first step
in data modeling is identification of parametric models;
if they do not fit, we provide nonparametric models
for fitting and simulating the data. The practice of sta-
tistics, and the modeling (mining) of data, can be el-
egant and provide intellectual and sensual pleasure.
Fitting distributions to data is an important industry
in which statisticians are not yet vendors. We believe
that unifications of statistical methods can enable us to
advertise, “What is your question? Statisticians have
answers!”

1. PROBABILITY LAW OF RANDOM VARIABLE Y

Concepts to describe the probability distribution
of a random variableY include distribution function
F(y) = P [Y ≤ y], quantile functionQ(u) = F−1(u),
probability mass functionp(y) = P [Y = y], probabil-
ity density functionf (y) = F ′(y) and mid-distribution
functionF mid(y) = F(y) − 0.5p(y).

To denote the distinct concepts ofp(y) and f (y),
the same letter should not be used; using the same let-
ter is detrimental to quantile domain and Bayesian rea-
soning. A discrete random variable can be described
by p(y) and a continuous variable can be described
by f (y).
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Important examples of continuous distributions are
standard exponentialf (y) = e−y andF(y) = 1− e−y ,
and standard normalφ(y),�(y). Location–scale mod-
els for continuous random variablesY representY =
µ + σY0, whereY0 has standard distributionF0(y).
ThenF(y) = F0((y − µ)/σ). The Normal(µ,σ ) dis-
tribution hasF(y) = �((y − u)/σ).

2. MID-DISTRIBUTION TRANSFORM

The mid-distribution function conceptF mid(y) is
important for discrete distributions, especially sam-
ple distribution functions. WhenF is continuous,
U = F(Y ) is Uniform(0,1). When F is discrete we
use the mid-distribution transformW = F mid(Y ); it
has meanE(W) = 0.5 and variance

Var(W) = 1
12

(
1− E[p2(Y )]).

This elegant formula for Var(W) is important for appli-
cations to data with ties (cf. Heckman and
Zamar, 2000). Proof of the mean and variance ofW can
be obtained by definingY to have valuesyj with prob-
ability pj , uj = p1 + · · · + pj andumid

j = uj − 0.5pj .
Verify

(u2
j − u2

j−1)/2 = pju
mid
j ,

(u3
j − u3

j−1)/3 = pj (u
2
j + ujuj−1 + u2

j−1)/3

= pj |umid
j |2 + p3

j /12.

3. SAMPLE DISTRIBUTION FUNCTION

A sampleY1, . . . , Yn has: (1) a sample distribution
function

F̃ (y) = P̃ [Y ≤ y] = 1

n

n∑
t=1

I (Yt ≤ y),

where I (Y ≤ y) = 1 or 0 as Y ≤ y or Y > y;
(2) a sample probability mass functioñp(y) =
P̃ [Y = y]; and (3) a sample mid-distribution func-
tion F̃ mid(y) = F̃ (y) − 0.5p̃(y). A continuous ver-
sion F̃ c(y) of the discrete sample distributioñF(y)

is defined below.

4. PERCENT FUNCTION

The distribution function can be denotedu =
F(y) = u(y) and called the percent function since
u(y) is the percent of the population whose values are
less than or equal toy. Percent is similar to thep value
of the statisticT under a null hypothesisH0 about the
distribution ofT .

5. PERCENTILE FUNCTION

The percentile or quantile function is the inversey =
Q(u) = F−1(u) = y(u) of u = F(y) = u(y). We call
u the percent ofy and cally the percentile ofu.

To rigorously definey = Q(u) suppose first thatu is
in the range ofF ; there exists a valuey such thatu =
F(y). Definey = Q(u) to be the smallesty such that
u = F(y) andF(Q(u)) = u. The general definition of
quantile function, for 0≤ u ≤ 1, is

Q(u) = F−1(u) = inf
(
y :F(y) ≥ u

)
.

The graph ofy = Q(u) is a rotation of the mirror
image of the graph ofu = F(y). Experts on perception
report that rotating a picture often helps us see patterns.
Verify geometrically that∫ ∞

−∞
|F1(y) − F2(y)|dy =

∫ 1

0
|Q1(u) − Q2(u)|du.

The quantiley = Q(u) of the standard exponential
is

u = F(y) = 1− e−y, y = Q(u) = − log(1− u).

The quantile of standard Normal(0,1) is �−1(u). An
excellent approximation forν large of quantileQν(u)

of Gamma(ν)/ν is given by the Wilson–Hilferty trans-
formation

Qν(u) ≈
((

1− 1

9ν

)
+ 1

3

1

ν0.5�−1(u)

)3

.

6. QUANTILE FORMULA FOR MEAN
AND VARIANCE

E(Y ) =
∫ ∞
−∞

y dF(y) =
∫ 1

0
Q(u)du,

Var(Y ) =
∫ 1

0

(
Q(u) − E(Y )

)2
du.

For a sampleY1, . . . , Yn, the sample mean̄Y should be
computed NOT by

Ȳ = 1

n

n∑
t=1

Yt ,

but by

Ȳ = 1

n

n∑
j=1

Y(j ;n) =
∫ 1

0
Q̃(u) du,

whereY(1;n) ≤ · · · ≤ Y(n;n) are the order statistics
of the sample and̃Q(u) is the sample quantile function.
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Quantile thinking defines statistics as summation done
by sorting (ranking) data before adding.

A mean can be a misleading summary of a distrib-
ution; one should always plot the quantile function to
learn skewness and tails, and outliers (see Appendix 1
for a very practical example).

The sample mean̄Y = µ̃ = Ẽ[y] is the mean of the
sample distribution. The sample variance should be de-
fined as the variance of the sample distribution, that is,

σ̃ 2 = 1

n

n∑
t=1

(Yt − Ȳ )2.

We believe teaching statistics is made difficult by the
popular definition of sample variance as

S2 =
n∑

t=1

(Yt − Ȳ )2

n − 1
;

S2 should be called the adjusted sample variance and
accompanied by our general definition of sample vari-
ance.

7. PERCENTILE METHOD OF SIMULATION

Quantile functionQ(u) can be used to simulateY
from U , which is Uniform(0,1) by Y=dQ(U). One
can show

P [Q(U) ≤ y] = P [U ≤ F(y)] = F(y) = P [Y ≤ y].

8. CREDIBLE INTERVALS

A 1 −α credible interval forY can be obtained from

P
[
y(α/2) = Q(α/2)

≤ Y ≤ Q
(
1− (α/2)

) = y
(
1− (α/2)

)]
= 1− α.

Let θ be a parameter of a probability model forY .
Given a prior distribution, one can compute the quan-
tile function Q(u) of the posterior distribution ofθ
given data. One can express the Bayesian credible in-
terval forθ , with credibility 1− α, as

P
[
θ(α/2) = Q(α/2)

≤ θ ≤ Q
(
1− (α/2)

) = θ
(
1− (α/2)

)|data
]

= 1− α.

9. CONFIDENCE INTERVAL AND PARAMETER
INVERSE PIVOT QUANTILE FUNCTION

Let θ be a parameter of a probability modelf (y|θ).
Regardθ as a constant to be estimated. Assume we can
form a pivot T̃ (θ) that (1) is a function ofθ and the
data, which is increasing inθ , and (2) has a distribu-
tion, whenθ is the true parameter value, that is iden-
tical with the distribution of random variableT with
quantile functionQT (u). Defineθ(u),0< u < 1, by

T̃ (θ(u)) = QT (u), θ(u) = T̃ −1(QT (u)).

We callθ(u) the parameter inverse pivot quantile func-
tion. It satisfiesFT [T̃ (θ(u))] = u.

Conventional confidence intervals and hypothesis
tests can be expressed in terms ofθ(u). A 1 − α con-
fidence interval forθ is

θ(α/2) ≤ θ ≤ θ
(
1− (α/2)

)
,

because whenθ is the true parameter value, the set of
samples for which

QT (α/2) = T̃ (θ(α/2))

≤ T̃ (θ) ≤ T̃
(
θ
(
1− (α/2)

))
= QT

(
1− (α/2)

)
has probability 1− α. The rejection regionθ0 ≤ θ(α)

has probabilityP [T̃ (θ0)) ≤ QT (α)] = α under the hy-
pothesisH0 : θ = θ0.

Our conceptθ(u) should be compared with the
concept θ̂α , which is defined in the bootstrap per-
centile method of confidence intervals (see Davison
and Hinkley, 1997, page 193) as a random variable
that is an endpoint of a confidence interval. Davison
and Hinkley definedP [θ < θ̂α] = α; the probability
functionP should be denotedPθ to emphasize that it
is calculated under the assumption thatθ is the true
parameter value. Our more rigorous definition ofθ(u)

writes the probability statement

Pθ

[
T̃ (θ) ≤ T̃ (θ(u))

] = P [T ≤ QT (u)] = u.

The concept of parameter inverse pivot quantileθ(u)

facilitates computation of confidence intervals for sev-
eral confidence levels between 0.5 and 0.99 in order
to discover any asymmetry in the confidence interval
about the point estimator ofθ .
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10. QUANTILE FUNCTION OF
MONOTONE TRANSFORMATIONS

A distribution functionF(y) is nondecreasing and
continuous from the right. A quantile function is non-
decreasing and continuous from the left. Forg(y) non-
decreasing and continuous from the left we define
g−1(z) = sup{y :g(y) ≤ z}. A beautiful and powerful
property of quantile functions is the formula for the
quantile function ofg(Y ):

Qg(Y)(u) = g(QY (u)).

11. INVERSE PROPERTIES OF QUANTILES
UNDER INEQUALITIES

To prove the monotone transform theorem we use the
fact that, in general, the inverse properties of quantile
functions hold under inequalities:F(Q(u)) ≥ u,

F(y) ≥ u if and only if y ≥ Q(u).

Similarly, forg(y) nondecreasing and continuous from
the left,

g(y) ≤ t if and only if y ≤ g−1(t).

The formula forQg(Y)(u) follows from

Fg(Y )(t) = P [g(Y ) ≤ t]
= P [Y ≤ g−1(t)]
= FY (g−1(t))

and equivalently the inequalities

Fg(Y )(t) ≥ u, FY (g−1(t)) ≥ u,

g−1(t) ≥ QY (u), t ≥ g(QY (u)).

12. SAMPLE QUANTILE FUNCTION

For theory we use the sample quantile function de-
fined by ỹ(u) = Q̃(u) = F̃−1(u); it is piecewise con-
stant and can be expressed in terms of order statistics
Y(1;n) ≤ · · · ≤ Y(n;n) of the sample:

Q̃(u) = Y(j ;n), (j − 1)/n < u ≤ j/n.

We can think of sample percentile as a fractional or-
der statistic

ỹ(u) = Y([un];n),

where[un] = j if j − 1< un ≤ j .
For practice we would like a definition of sample

quantile whose sample medianỹ(0.5) agrees with the
usual definition: ifn = 2m + 1, ỹ(0.5) = Y(m + 1;n);

if n = 2m, ỹ(0.5) = 0.5(Y (m;n)+Y(m+1;n)). A de-
finition of sample quantile function which yields these
formulas is the continuous version sample quantile
Q̃c(u). If the sample consists of distinct values, define
Q̃c(u) as piecewise linear connecting values

Q̃c((j − 0.5)/n
) = Y(j ;n).

Many computer programs (such as SPlus and Excel)
use ad hoc definitions,

Q̃c((j − 1)/(n − 1)
) = Y(j ;n),

Q̃c(j/(n + 1)
) = Y(j ;n),

Q̃c((j − a)/(n + 1− 2a)
) = Y(j ;n)

for some constanta. For example, 9, 10, 11, 21, 26,
48, 56, 60, 60, 99 has a sample lower quartile 11 by
definitiona = 0.5 and 13.5 by definitiona = 1.

Our definition extends to the case of ties in the
sample. Denoting distinct values in the sample by
y1, . . . , yr , defineQ̃c as piecewise linear connecting

Q̃c(F̃ mid(yj )) = yj .

We consider ỹ(u) = Q̃c(u) to be a definition of
fractional order statistic. A continuous version sam-
ple distributionF̃ c(y) is defined as piecewise linear
connectingF̃ c(yj ) = F̃ mid(yj ).

13. CONFIDENCE INTERVAL FOR
QUANTILE FUNCTION

Let Y be continuous. The parameterθ = Q(p) can
be defined fromF(y) by F(θ)−p = 0. An estimator̂θ
of θ is defined to satisfy

F̃ c(θ) − p = 0;
therefore,θ̂ = Q̃c(p). A confidence interval forθ can
be obtained by defining a pivot̃T (θ), a function ofθ
and data, by

T̃ (θ) = F̃ c(θ) − p

(p(1− p)/n)0.5
d=Z,

whose distribution independent ofθ is approximately
Z Normal(0,1). We are using the asymptotic distri-
bution of T̃ (θ) when θ is the true parameter value.
The parameter inverse pivot quantile functionθ(u),
0 ≤ u ≤ 1, is defined to satisfy

T̃ (θ(u)) = QZ(u);
explicitly,

Q̂(p;u) = θ(u) = Q̃c(p + (
p(1− p)/n

)0.5)
QZ(u).
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We claim that (1) a conventional large sample 1− α

confidence interval forθ = Q(p) can be expressed as

θ(α/2) ≤ θ ≤ θ
(
1− (α/2)

);
(2) a 1− α significance test of hypothesisθ = θ0 is
rejected ifθ0 ≤ θ(α) or θ0 ≥ θ(1 − α), depending on
whether the alternative hypothesis isθ0 ≤ θ or θ ≤ θ0;
(3) point estimation ofθ is θ(0.5) = Q̃c(p). For exten-
sions, see Rosenkrantz (2000).

14. QUARTILES, MEDIAN, QUARTILE,
LOCATION AND SCALE

Important summary of a quantile functionQ(u) are
quartilesQ1 = Q(0.25),Q3 = Q(0.75), and median
Q2 = Q(0.5). Nonparametric measures of location are
Q2 and midquartile

MQ= 0.5(Q1+ Q3).

A measure of scale is interquartile rangeIQR =
Q3 − Q1. As a measure of scale we prefer twice the
interquartile range:

IQR2= 2(Q3− Q1).

A measure of skewness is(Q2 − MQ)/IQR2; its ab-
solute value is bounded by 0.25.

General measures of scale have the form
∫ 1
0 J0(u) ·

Q(u)du for suitable score functionsJ0(u) such as
J0(u) = �−1(u) or J0(u) = u − 0.5.

The Shapiro–Wilks statistic to test normality of a
random variableY is a sample version of the squared
correlation

ρ2(Q(u),�−1(u)
) = [∫ 1

0 �−1(u)Q(u)du]2∫ 1
0 [Q(u) − ∫ 1

0 Q(s)ds]2 du
.

As a test statistic, we recommend logρ2 because it is
compared with zero and is an entropy difference statis-
tic since it is the difference of two estimators of logσ 2.

15. SAMPLE Q–Q PLOT

A sampleQ–Q plot compares a sample with a con-
tinuous quantileQ0(u), representing a model by plot-
ting quantile functions(

Q0(F̃
mid(yj ), yj )

) = (
Q0(u

mid
j ), Q̃c(umid

j )
)
,

wherey1 < · · · < yr are distinct values in the sample
and umid

j = F̃ mid(yj ). We believe these widely used
plots are difficult to interpret. It helps to align the
plots by making the functions equal atu = 0.25 and

u = 0.75. This is accomplished by plotting quantile–
quartile functions (defined in the next section)(

Q0IQ0(u
mid
j ), Q̃cI Q̃

c
(umid

j )
)
.

We outline ideas for research on the concept of “con-
fidenceQ–Q curves” to compare a modelQ0 with
sample quantileQ̃ of dataY . The lower confidence
Q–Q curve joins linearly (using notation from Sec-
tion 13),(

Q0(F̃
mid(yj )), Q̂(F̃ mid

0 (yj );α/2)
);

the upper confidenceQ–Q curve joins linearly,(
Q0(F̃

mid(yj )), Q̂
(
F̃ mid

0 (yj );1− (α/2)
))

,

Model Q0 fits dataQ̃c if a line exists between lower
and upper confidenceQ–Q curves. If the graph ofy =
g(x) fits between the confidence curves, we conclude
Y =d g(X) since QY (u) = g(Q0(u)), where X has
quantileQ0(u). An important goal is to identify trans-
formations of the data to normality or exponential.
For a positive random variableY , the hazard func-
tion H(Y) has the property that it is exponential (see
Parzen, 1979). Of related interest is the shift function
�(x) = G−1(F (x)) − x studied by Doksum (1974).

16. QUANTILE–QUARTILE FUNCTION QIQ(u)

We define quantile–quartile functionQIQ(u) of
quantileQ(u) as

QIQ(u) = Q(u) − 0.5(Q(0.25) + Q(0.75))

2(Q(0.75) − Q(0.25))
.

Verify thatQIQ(0.25) = −0.25 andQIQ(0.75) = 0.25.
If QIQ(u) > 1 or QIQ(u) < −1, we callu a Tukey

outlier, since the valuey = Q(u) lies outside the fences
as defined by John Tukey in his pioneering work on
exploratory data analysis. The measure of skewness is
QIQ(0.5). The measures of tail behavior areQIQ(0.05)
andQIQ(0.95) (see Table 1).

TABLE 1
Quantile–quartile diagnostics of tail

QIQ diagnostic

Left tail
Short −0.5< QIQ(0.05) < −0.25
Medium −1< QIQ(0.05) < −0.5
Long QIQ(0.05) < −1

Right tail
Short 0.25< QIQ(0.95) < 0.5
Medium 0.5< QIQ(0.95) < 1
Long 1< QIQ(0.95)
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17. FOLIO OF QIQ PLOTS AND DATA MODELING

For data analysis, we plot the sample quantile–
quartile function Q̃cIQ̃c(u). From this normalized
graph, we can identify the shape of probability mod-
els to fit to the data. To compare the fit of a location–
scale modelQ(u) = u + σQ0(u), we plot the sample
quantile–quartile function andQ0IQ0(u) on the same
graph.

From the sample quantile–quartile function, we can
diagnose symmetry and the tail behavior of the data,
identify a standard distribution that might fit the data,
and diagnose goodness of fit of models to the data. The
study of a folio ofQIQ plots would enable a statistician
to identify distributions that fit the data, and identify
distributions (especially Normal) that do NOT fit the
data. An example is studied in Appendix 2.

18. DENSITY QUANTILE AND QUANTILE
DENSITY FUNCTIONS

If F is continuous,F(Q(u)) = u for all u. Taking
derivatives,

f (Q(u))Q′(u) = 1.

Define the density quantile functionf Q(u) =
f (Q(u)), the quantile density functionq(u) = Q′(u)

and the score function

J (u) = −(f Q(u))′ = −f ′(Q(u))

f (Q(u))
.

In practice we assume representation near 0 and 1 as
regularly varying functions:

f Q(u) = uα0L(u),

f Q(1− u) = uα1L(u),

whereL(u) is a slowly varying or loglike function that
satisfies, for fixedy > 0,

L(yu)/L(u) → 1 asu → 0.

An example of a slowly varying function isL(u) =
(− logu)β .

We call α0 andα1 tail exponents; they are used to
classify tail behavior as short(α < 1), medium(α = 1)

or long(α > 1). The concept of tail behavior is widely
used by statisticians to describe nonnormal distribu-
tions; tail exponents provide rigorous concepts of tail
behavior.

19. ASYMPTOTIC DISTRIBUTION OF
SAMPLE QUANTILES

WhenY is continuous,U = FY (Y ) is Uniform(0,1)

andY = QY (U). The sample quantile ofY can be rep-
resented as

Q̃Y (u) = QY (Q̃U(u)).

By the delta method of large sample theory,

n0.5(Q̃Y (u) − Q(u)
) − qY (u)n0.5(Q̃U (u) − u

) P→ 0.

We can show

n0.5(Q̃U (u) − u
) d→ B(u),

where B(u),0 ≤ u ≤ 1, is a Brownian bridge,
a zero mean Gaussian process with covariance kernel
E[B(u1)B(u2)] = min(u1, u2) − u1u2. We can con-
clude that

n0.5fY QY (u)
(
Q̃Y (u) − QY (u)

) d→ B(u).

The parametersµ and σ in a location scale model,
QY (u) = µ + σQ0(u), fY QY (u) = 1

σ
f0Q0(u), then

satisfy approximately a regression model

f0Q0(u)Q̃Y (u)

= µf0Q0(u) + σf0Q0(u)Q0(u) + σ√
n
B(u).

Using the reproducing kernel Hilbert space theory of
continuous parameter regression we can derive asymp-
totically efficient estimatorŝµ andσ̂ , which are linear
combinations of order statistics. We can also solve data
compression problems of selecting a small number of
valuesu1, . . . , uk such thatQ̃(u1), . . . , Q̃(uk) have as
much information for estimation and modeling as the
whole quantile function.

20. CONDITIONAL QUANTILE FUNCTION

When observing(X,Y ), the mean and variance ap-
proach to statistical reasoning emphasizes conditional
meanE[Y |X = x] and conditional variance, which are
mean and variance of the conditional distribution

FY |X=x(y) = P [Y ≤ y|X = x].
The conditional quantile is defined as

QY |X=x(u) = F−1
Y |X=x(u).

We call this formula a brute force approach to cal-
culating conditional quantile. An alternative can be
developed using the fact that conditional probability
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has properties analogous to the properties of probabil-
ity. Therefore, forg(y) nondecreasing and continuous
from the left,

Qg(Y)|X=x(u) = g(QY |X=x(u)).

We can show thatF(Q(u)) = u if u is in the range
of F , andQ(F(y)) = y if y is in the range ofQ. A ran-
dom variableY is in the range ofQ with probability 1.
Therefore we have:

THEOREM 1. The powerful representation isY =
QY (FY (Y )) with probability1.

Note thatY is equal in distribution toQ(U), where
U is Uniform(0,1). WhenY is discrete,F(Y ) is not
uniform; still Y = Q(F(Y )). The representation ofY
as a transform ofF(Y ) yields:

THEOREM 2. The conditional quantile representa-
tion is

QY |X=x(u) = QY (s),

wheres = QF(Y)|X=x(u).

To computes we write

u = FF(Y )|X=x(s) = P [F(Y ) ≤ s|X = x]
= P [Y ≤ QY (s)|X = x] = FY |X=x(QY (s)).

The relationship betweenu ands is a special case of
the concept of comparison distribution.

21. COMPARISON DISTRIBUTION P –P PLOTS

A fundamental problem of statistics is comparison
of two distributionsF andG, and testing hypothesis
H0 :F(y) = G(y).

If we let u = G(y) andy = G−1(u), we can express
the hypothesis as

H0 :F(G−1(u)) = u.

We can writeH0 :D(u;G,F) = u, whereD(u;G,F)

is the comparison distribution function whose def-
inition is given for (1) F and G both continuous,
(2) F andG both discrete, and (3)F discrete (data)
andG continuous (model). A comparison distribution
was called a relative distribution by Handcock and
Morris (1999).

WhenF andG are both continuous with probabil-
ity densitiesf (y) andg(y), we assume alsoF � G,
definedg(y) = 0 impliesf (y) = 0. Then

D(u) = D(u;G,F) = F(G−1(u))

satisfiesD(0) = 0 andD(1) = 1. The comparison den-
sity is defined as

d(u;G,F) = f (G−1(u))/g(G−1(u)).

When F and G are discrete with probability mass
functionspF (y) andpG(y), we assumepG(y) = 0 im-
plies pF (y) = 0, and define first the comparison den-
sity function

d(u;G,F) = pF (G−1(u))/pG(G−1(u)).

The comparison distribution is defined as

D(u) = D(u;G,F) =
∫ u

0
d(s;G,F)ds.

We verify thatD(u) is piecewise linear between its val-
ues atuj = G(yj ), wherey1 < · · · < yr are probability
mass points ofG and

D(uj ) = F(G−1(uj )) = F(yj ).

The graph ofD(u) joins (G(yj ),F (yj )) and is called
aP –P plot.

22. COMPARISON DENSITY
REJECTION SIMULATION

The graph ofd(u) provides a rejection method
of simulation, which generates a sampleY1, . . . , Yn

fromF as an acceptable subset of a sampleX1, . . . ,Xm

from G when there exists a boundc, d(u) ≤ c for
all u. Generate independent Uniform(0,1) U1 andU2.
If U2 ≤ d(U1)/c, acceptX = G−1(U1) as an observed
value of Y ; otherwise rejectX. The probability of
acceptance is 1/c. To prove the acceptance–rejection
rule, verify that the area underd(u) from 0 to G(y)

equals D(G(y)) = F(y). The probability that
U1 ≤ G(y) andU2 ≤ d(U1)/c has probabilityF(y)/c.
The eventY ≤ y can be shown to have probabil-
ity F(y).

23. BAYESIAN THEOREM FOR
POSTERIOR DISTRIBUTIONS

Parametric statistical inference assumes a probabil-
ity model that depends on a parameterθ to be esti-
mated. Bayesian inference assumes a prior distribution
for the parameterθ , which is a probability mass func-
tion p(θ) if θ is discrete and is a probability density
f (θ) if θ is continuous. The model forY given θ is a
probability mass functionp(Y |θ) if Y is discrete and
is a probability density functionf (Y |θ) if Y is contin-
uous.
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TABLE 2
Bayes’ formula

Y discrete Y continuous

θ discrete p(θ |Y )/p(θ) = p(Y |θ)/p(Y ) p(θ |Y )/p(θ) = f (Y |θ)/f (Y )

θ continuous f (θ |Y )/f (θ) = p(Y |θ)/p(Y ) f (θ |Y )/f (θ) = f (Y |θ)/f (Y )

The posterior distribution ofθ given dataY is
described byp(θ |Y) or f (θ |Y). To compute it we
apply Bayes’ theorem, which we state as a general-
ization of the basic statement of Bayes’ theorem for
eventsA andB: P [A|B]/P (A) = P [B|A]/P [B]. See
Table 2.

24. BAYESIAN INFERENCE USING
QUANTILE SIMULATION

The most informative way to compute the pos-
terior distribution is by the posterior quantile func-
tion Qθ |Y (u) using

Qθ |Y (u) = Qθ(s),

s = D−1(u;Fθ,Fθ |Y ),

u = D(s;Fθ,Fθ |Y ).

We can simulate a sample from the posterior distribu-
tion using a sample from the prior distribution via re-
jection simulation and a formula for the comparison
densityd(s;Fθ,Fθ |Y ).

Whenθ andY are both continuous,

d(s) = d(s;Fθ,Fθ |Y ) = fθ |Y (Qθ(s))/fθ (Qθ(s))

= fY |θ=Qθ(s)(Y )/fY (Y ).

Monte Carlo simulation chooses independent
Uniform(0,1) S andU ; acceptθ = Qθ(S) if

d(S)

maxs d(s)
= fY |θ=Qθ(S)(Y )

maxθ fY |θ (Y )
≥ U.

We compare the likelihood ofY underθ = Qθ(S) with
the maximum likelihood ofY .

25. BIVARIATE DEPENDENCE DENSITY AND
COMPONENT CORRELATIONS

To model and measure the dependence of bivariate
data(Y,X), general tools are dependence density (or
copula density)

dY,X(s, t) = d
(
s;FY ,FY |X=QX(t)

)
and component correlations

CY,X(j, k) =
∫ 1

0

∫ 1

0
ds dt dY,X(s, t)φY,j (s)φX,k(t)

for suitable orthonormal score functions. Note∫ 1

0
ds dY,X(s, t)φY,j (s)

= E[φY,j (FY (Y ))|X = QX(t)],
CY,X(j, k)

= E[φY,j (FY (Y ))φX,k(FX(X))].
One way to construct orthonormal score functions is

φY,j (s) = gj (F
−1
Y (s)),

wheregj (u) are orthonormal functions ofy.
Empirical component correlations, estimated from

data, are

CY,X(j, k) = Ẽ
[
φY,j (F̃

mid
Y (Y ))φX,k(F̃

mid
X (X))

]
.

To estimatedY,X(s, t) we recommend logistic re-
gression to estimate it as a function oft for s fixed.
Apply it as a function ofs for fixed t to compute
the conditional quantileQY |X=QX(t)(u),0 < u < 1, by
rejection simulation from the unconditional quantile
QY (s),0< s < 1.

The asymptotic joint distribution of

n0.5fY QY (s)
(
Q̃Y (s) − QY (s)

)
and

n0.5fXQX(t)
(
Q̃X(t) − QX(t)

)
is bivariate normal with zero means and a covariance
matrix of indicator random variablesI (FY (Y ) ≤ s)

andI (FX(X) ≤ t).

APPENDIX 1: INVESTMENT STRATEGY WITH
POSITIVE MEAN GAIN AND NEGATIVE

MEDIAN GAIN

Investors should be aware that a stock market trad-
ing strategy can result in a positive mean gain, but neg-
ative gains for most investors. Each week an investor
invests in an IPO (initial public offering) and sells af-
ter a week with gain 80% with probability 0.5 and loss
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60% with probability 0.5. LetY denote profit after two
trades (2 weeks) with an initial investment of $10,000:

Y =




22,400 if both trades gain,

−2800 if one trade gains, one trade loses,

−8400 if both trades lose.

The probability mass function and mid-distribution
of Y are

y p(y) F mid(y)

−8,400 1/4 1/8
−2,800 1/2 1/2
22,400 1/4 7/8

The average gainE(Y ) = 2100; the median
Q2= −2800. In other words, the strategy is “win-
ning,” since the mean is positive, but actually losing
since the median is negative.

Quartiles are found by interpolation.Q1 = 6533,
Q3 = 21,000; quantile–quartile analysisMQ =
7233.5, IQR2= 55,066,(MIN−MQ)/IQR2 = −0.284
and (MAX − MQ)/IQR2 = 0.275. These diagnostics
indicate very short tails, which occur when we have
bimodality (two groups of small observed values and
large observed values).

APPENDIX 2: EXPLORATORY DATA ANALYSIS
COMPARISON OF TWO SAMPLES

Is high indoor radon concentration related to cancer
of children in the home? To study this question radon
concentration was measured in two types of houses:
houses in which a child diagnosed with cancer had
been residing and houses with no recorded cases of
childhood cancer. From Devore (2004, page 43, Ex-
ample 1.20) we obtained the following data on radon
concentration in cancer and noncancer houses (num-
bers in parentheses indicate the number of repetitions
of the value):

Cancer houses: 3 5 6 7 8 9(2) 10(3) 11(4) 12 13(2)
15(3) 16(3) 17 18(3) 20 21(2) 22(2) 23(2) 27 33 34
38 39 45 57 210
Noncancer houses: 3(2) 5 6(2) 7(3) 8(2) 9(4) 11(5)
12(2) 13 14 17(2) 21(2) 24(2) 29(4) 33 38 39
55(2) 85

Table 3 lists summary quantiles of the two samples.
The conclusions of our data analysis follow:

Compare the location(means, medians)of the two
samples: Cancer houses radon has a greater location
parameter than do noncancer houses radon. What can

TABLE 3
Numerical summary and diagnostics for radon concentration in

cancer and noncancer homes

Cancer houses Noncancer houses

Sample sizen 42 39
Number of distinct 26 19

values
Sample mean̄Y 22.8 19.2
Sample SD 31.7 17.0
S/

√
n 4.8 2.7

Sample MIN 3 3
Sample MAX 210 85
Next to MIN 5 5
Next to MAX 57 55
Q1 11 8
Q2 16 12
Q3 22 26.5
MQ 16.25 17.25
IQR2 22 36
Q2−MQ

IQR2 −0.02 −0.15
Conclusion Symmetric Skew
Upper fence 38.5 53.5

= MQ+ IQR2
Upper outliers 39,45,57,210 55,55,85
MIN−MQ

IQR2 −0.61 −0.40
Conclusion Normal with Exponential

outliers

be done about an extreme observation of 210 in cancer
houses that inflates the mean?

Compare scale: The interquartile range (preferred
to standard deviation) indicates that the variability of
radon in noncancer homes is greater than the variabil-
ity of radon in cancer homes.

Side by side box plots(which the reader can draw
using Table 3): Radon in noncancer homes has a skew
distribution, whereas radon in cancer homes is sym-
metric. Noncancer radon variability is greater than can-
cer radon variability.

Identification of probability laws: Noncancer homes
diagnostics indicate fit by exponential distribution;
cancer homes diagnostics indicate fit by normal dis-
tribution with outliers.

Comparison of two samples: The most general way
to compare distributions of radon in cancer homes and
noncancer homes is to plot a comparison distribution
or P –P plot of(

Fradon|cancer(yj ),Fradon|nocancer(yj )
)

evaluated at valuesyj obtained by pooling the values
in each sample. Intuitively we considerFradon|cancer(y)
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FIG. 1. Plots of QIQ(u) for exponential and normal distributions,
and sample distribution of radon in noncancer homes. Our specu-
lation that the exponential fits the data is strengthened by this plot
of the QIQ curves.

to be the conditional distributionFY |X=x(y) of Y =
radon concentration givenX = type of home, can-
cer or noncancer. Theory discussed in Parzen (1999)
leads us to recommend as the most general method that

FIG. 2. Plots of QIQ(u) for exponential and normal distribu-
tions, and sample distribution of radon in cancer homes. This plot
of the QIQ curves supports our speculation that normal with out-
liers fits the data, but also suggests that for a better fit we should
consider as a model a Weibull distribution. The dots on the sample

QIQ curve represent the distinct valuesy
Q
j in the sample plotted

at uj = F̃mid(yj ); we defineyQ
j = (yj − MQ)/IQR2. These val-

ues are connected linearly to form sample QIQ(u). Note that sam-
ple QIQ plots always have dots at(0.25,−0.25), (0.75,0.25) and
(0.5,QIQ(0.5)) which diagnose skewness. We do not usually plot
the quantile functionQ(u) because information about shape comes
from QIQ(u).

FIG. 3. Tests of the hypothesis that the two samples(radon in
noncancer and cancer homes) have the same distribution byP –P

plot of the two sample distribution functions which estimate the
comparison distributionD(u;Fcancer,Fnocancer).

one plot

(
Fradon(yj ),Fradon|nocancer(yj )

)
,

where Fradon(y) is the distribution of radon in the
pooled sample.

Quantile–quartileQIQ plots and comparison distrib-
ution plots are given in Figures 1–4.

FIG. 4. Plots of an estimate ofD(u;Fpooledsample,Fnocancer).
Studying the plots in Figures3 and 4 shows why we believe the
second graph may be more useful as well as able to be plotted in
general. Both graphs are plotted at the distinct values in the pooled
sample.
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