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Nonparametric Methods in Reliability
Myles Hollander and Edsel A. Peña

Abstract. Probabilistic and statistical models for the occurrence of a recur-
rent event over time are described. These models have applicability in the
reliability, engineering, biomedical and other areas where a series of events
occurs for an experimental unit as time progresses. Nonparametric inference
methods, in particular, the estimation of a relevant distribution function, are
described.
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1. INTRODUCTION

Recurrent events are prevalent in reliability and
engineering studies such as monitoring the status of
a repairable system; in biomedical and public health
settings, for example, keeping track of hospitalization
visits of a patient with a chronic disease; in economics
such as when there is a drop of 200 points in the Dow
Jones index during a trading day; and in sociology such
as the commission of a criminal act by a delinquent
youth. Therefore, it is imperative to have stochastic
models for the occurrence of a recurrent event and to
have appropriate statistical methods for making infer-
ence about model parameters.

Data that arise from monitoring recurrent events usu-
ally come in the form depicted in Figure 1, which is
a pictorial representation of the successive migratory
motor complex (MMC) periods for 19 subjects in a
gastroenterology study. This data set was analyzed by
Aalen and Husebye (1991), and one of the questions
posed was whether the successive MMC periods have
lengths that are independent and identically distributed,
the so-called IID renewal assumption. Another prob-
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lem is to estimate the common distribution of the MMC
periods if the IID renewal assumption is valid. For each
unit, there is a random monitoring period, and the ran-
dom number of event occurrences is determined by the
interplay between the lengths of the successive peri-
ods and the length of the monitoring period. Further-
more, for each unit the last MMC period is always
right-censored since its length is only known to exceed
the monitoring length minus the (calendar) time of the
last observed event occurrence.

In Section 2 we discuss the problem of estimating the
common interevent distribution under the IID renewal
model when data of the form in Figure 1 are available.
Before considering the estimation of the interevent dis-
tribution, which was the problem considered by Peña,
Strawderman and Hollander (2001), we first point out
some subtleties inherent in the data structure. Section 3
deals with a more general model for recurrent event
data proposed and discussed by Dorado, Hollander
and Sethuraman (1997). This model, introduced in the
context of repairable systems, covers the IID renewal
model and includes as special cases other models in
the literature. Nonparametric estimation of a distribu-
tion function for this general model will be discussed.
We have chosen to present the interconnected subjects
of Sections 2 and 3 because they are important topics
that are receiving a lot of attention from researchers
who are developing nonparametric methods for relia-
bility and survival analysis, and for which additional
results, sparked by those described here, are currently
being developed.
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FIG. 1. Pictorial representation of the MMC data that con-
tains successive MMC periods for 19 subjects. The multiplication
marks (×) indicate the end of monitoring periods for each of the
subjects.

2. ESTIMATION OF INTEREVENT DISTRIBUTION

We now consider the problem of estimating the in-
terevent distribution when data of the form in Fig-
ure 1 are available. To introduce notation for this recur-
rent event data accrual, we suppose that for uniti out
of n units, the recurrent event process is observed over
the random period[0, τi], where τi , i = 1,2, . . . , n,
are i.i.d. according to distributionG. The successive
interevent times, denoted byTij , j = 1,2, . . . , are as-
sumed to be i.i.d. from an unknown continuous dis-
tribution F . The successive calendar times of event
occurrences for theith unit are denoted by

0≡ Si0 < Si1 < Si2 < Si3 < · · · with Sij =
j∑

k=1

Tij .

The number of events that occurred on or before calen-
dar times for unit i is denoted byN†

i (s), so

N
†
i (s) = max

{
j ∈ {0,1,2, . . . } :Sij ≤ (s ∧ τi)

}
=

∞∑
j=1

I {Sij ≤ (s ∧ τi)},

wherea ∧ b = min{a, b}. We denote byKi = N
†
i (∞)

the total number of observed events over[0, τi] for
theith unit.

We first discuss some subtleties regarding such a
data accrual scheme. First, we note thatKi is informa-
tive about the distributionF and, in some cases, con-
ditionally on τi , it contains all information aboutF .

To see this latter point, consider the case whereF is
exponential with mean 1/λ [i.e., F = EXP(λ)]. Then
Ki has a Poisson distribution with meanτiλ and, con-
ditioning on Ki = ki , (Si1, Si2, . . . , SiKi

)/τi has the
same distribution as the order statistics of a sample
of size ki from a standard uniform distribution by
virtue of a uniformity property of Poisson processes
(cf. Resnick, 1992). This implies thatKi is a sufficient
statistic forλ, hence it carries all information aboutλ.
Second, observe that there is always a right-censored
observation and, even ifτi is independent of theTij ’s,
the censoring variable forTiKi+1 is not independent of
theTij ’s since this censoring variable isCi = τi −SiKi

.
Thus, the data accrual scheme leads to dependent and
informative censoring. These two traits make this re-
current event setting different from the usual random
censorship model typically considered in failure-time
analysis, and as such demand a more delicate treatment
when making inference aboutF or its associated para-
meters. In particular, it is erroneous to treat theTij ’s as
complete data and the(τi − SiKi

)’s as censored data in
the usual way and to apply estimation methods devel-
oped under the random censorship model.

For the nonparametric estimation of the interevent
distributionF , we define doubly indexed processes for
the ith unit via

Ni(s, t) =
N

†
i (s)∑

j=1

I {Tij ≤ t},(1)

Yi(s, t) =
N

†
i (s−)∑
j=1

I {Tij ≥ t}
(2)

+ I
{
(s ∧ τi) − S

iN
†
i (s−)

≥ t
}
.

The processNi(s, t) represents the number of events
that occurred on or before times whose interevent
times are at mostt , whereasYi(s, t) represents the
number of events over[0, s] whose interevent times are
at leastt plus a count on whether the right-censored last
interevent time is also at leastt . Observe that both of
these processes have a random number of summands,
sinceN

†
i (s) andN

†
i (s−) are both random. In addition,

they are dependent on theTij ’s and(s ∧ τi)−S
iN

†
i (s−)

.

These dependencies, which arise because of the sum–
quota accrual scheme, make this recurrent event setting
more difficult and interesting. For instance, as con-
tained in Theorem 1, the expected values of the above
processes depend on the renewal function ofF , which
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is defined according to

ρ(t) =
∞∑

k=1

F ∗k(t),(3)

whereF ∗k is thekth convolution ofF , the distribution
of Sik . In the sequel we denote by�(t) the cumulative
hazard function ofF(t).

THEOREM 1. Take Gs(t) = G(t)I {t < s} +
I {t ≥ s} and Ḡs(t) = 1 − Gs(t). Then under the IID
renewal model,

E{Ni(s, t)}
=

∫ ∞
0

{
F(w ∧ t)

+
∫ w

0
F

(
(w − v) ∧ t

)
ρ(dv)

}
Gs(dw),

E{Yi(s, t)} = y(s, t)

≡ F̄ (t)Ḡs(t−)

·
{

1+ 1

Ḡs(t−)

∫ ∞
t

ρ(w − t)Gs(dw)

}
.

In particular, if F = EXP(λ) and G = EXP(η), and we
let s → ∞, we obtain

E{Ni(∞, t)} = λ

η

(
1− exp{−(λ + η)t})

and

y(∞, t) =
(

1+ λ

η

)
exp{−(λ + η)t}.

PROOF. The proofs of these results use renewal ar-
guments. We present here only the proof for the first
result, because that for the second result uses the same
ideas. For a givens, let τi(s) = s ∧ τi , which has dis-
tributionGs . By first conditioning onτi(s) = w, we let
Ht(w) ≡ E{Ni(τi(s), t)|τi(s) = w}. Then we obtain

Ht(w)

=
∫ w

0
E{Ni(w, t)|Ti1 = v}F(dv)

+
∫ ∞
w

E{Ni(w, t)|Ti1 = v}F(dv)

=
∫ w

0

{
I {v ≤ t}
+ E{Ni(τi(s), t)|τi(s) = w − v}}F(dv) + 0

= F(w ∧ t) +
∫ w

0
Ht(w − v)F (dv),

which forms a renewal equation. Invoking the renewal
equation theorem (Resnick, 1992), the solution to this
equation is given by

Ht(w) = F(w ∧ t) +
∫ w

0
F

(
(w − v) ∧ t

)
ρ(dv).

Integrating out with respect to the distributionGs(w),
we therefore obtain the first result. The particular
results associated with exponential distributions fol-
low routinely by noting that the renewal function for
EXP(λ) is ρ(v) = λv. �

Notice that for the special case ofF = EXP(λ) and
G = EXP(η), since∫ t

0
y(∞,w)dw =

(
1+ λ

η

)∫ t

0
exp{−(λ + η)w}dw

= 1

η

(
1− exp{−(λ + η)t}),

we have thatE{Ni(∞, t) − λ
∫ t
0 Yi(∞,w)dw} = 0.

This is a particular manifestation of the more general
result that

E

{
Ni(s, t) −

∫ t

0
Yi(s,w)�(dw)

}
= 0,

which motivates the Aalen–Nelson estimator�(t) and,
consequently, the product-limit estimatorF which is
given subsequently.

The aggregated processes based onn units are de-
noted by

N(s, t) =
n∑

i=1

Ni(s, t) and Y(s, t) =
n∑

i=1

Yi(s, t).

The resulting product-limit type estimator of̄F =
1 − F based on data that have accrued over the cal-
endar time[0, s] for n units is

ˆ̄F n(s, t) =
t∏

w=0

[
1− N(s, dw)

Y (s,w)

]
.(4)

Utilizing the ideas of Sellke (1988) and Gill (1980), the
following asymptotic properties of this product-limit
type estimator were established by Peña, Strawderman
and Hollander (2001).

THEOREM 2. If t∗ ∈ (0,∞) is such that
y(s, t∗) > 0 and �(t∗) < ∞, then, as n → ∞:

(i) sup0≤t≤t∗ | ˆ̄Fn(s, t) − F̄ (t)| converges in probabil-
ity to zero;
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(ii) the process {Wn(s, t) = √
n[ ˆ̄Fn(s, t) − F̄ (t)] :

0 ≤ t ≤ t∗} converges weakly in Skorohod space
D[0, t∗] to a zero-mean Gaussian process
{W∞(s, t) : 0 ≤ t ≤ t∗} whose variance function
is

Var{W∞(s, t)} = σ 2(s, t) ≡ F̄ (t)2
∫ t

0

�(dw)

y(s,w)
.

In particular, if F = EXP(λ) and G = EXP(η), then

σ 2(∞, t) = λη

(λ + η)2 exp{−2λt}(exp{(λ + η)t} − 1
)
.

A possible nonparametric estimator of the variance

of ˆ̄Fn(s, t) is given by

σ̂ 2
n (s, t)

= ˆ̄Fn(s, t)
2
∫ t

0

N(s, dw)

Y (s,w)[Y(s,w) − N(s,�w)] .

Together with the weak convergence result, this es-
timate of the variance could be utilized to form a
100(1 − γ )% asymptotic confidence interval for̄F(t)

given by [ ˆ̄Fn(s, t) ± zγ/2σ̂n(s, t)
]
,

wherezγ/2 is the 100(1−γ /2)% percentile of the stan-
dard normal distribution. We note in passing that it is
possible to develop a Hall and Wellner (1980) simulta-
neous confidence band in this recurrent event setting.

Notice that the asymptotic results for̄̂F (s, t) are
analogous to properties of the product-limit estimator
for single-event settings, except that the limiting vari-
ance function in this recurrent event setting involves
the renewal functionρ of the distributionF . The en-
try of this renewal function into the limiting variance
function is a manifestation of the sum–quota accrual
scheme, which forces the number of events for theith
unit observed over[0, τi] to be informative and makes
the censoring mechanism of the last event informative
and dependent as well.

Peña, Strawderman and Hollander (2001) also con-
sidered a model wherein the interevent times for a
unit are correlated. This dependence among the in-
terevent times is induced by an unobserved latent or
frailty variable. To describe this correlated recurrent
event model, it is postulated that there is an unob-
servedZi , with Z1,Z2, . . . ,Zn i.i.d. random variables
from a distributionHZ , which is taken in particular to
be a gamma distribution with mean 1 and variance 1/α,
whereα > 0 is unknown. Note that the gamma distri-

bution for this frailty variable has the same shape and
scale parameter, and this is to achieve model identifi-
ability. GivenZi = z, it is assumed that the interevent
timesTi1, Ti2, . . . are i.i.d. with survivor function

F̄ (t |z) = P {Tij > t |Zi = z} = [F̄0(t)]z.(5)

This is equivalent to postulating that the conditional
hazard function ofTij , given Zi = z, is �(t |z) =
z�0(t), where�0 = − logF̄0 is the hazard function
of F0. As a consequence, the joint survivor function
of (Ti1, Ti2, . . . , Tik) for fixed k is given by

P {Ti1 > t1, Ti2 > t2, . . . , Tik > tk}

=
∫ ∞

0

[
k∏

j=1

F̄0(tj )

]z
αα


(α)
zα−1 exp{−αz}dz

=
[

α

α + ∑k
j=1 �0(tj )

]α

.

From this, by settingtj = t and tl = 0, l 
= j , we im-
mediately see that the interevent times are dependent
and the common marginal survivor function of the in-
terevent times is

F̄ (t) = P {Tij > t} =
[

α

α + �0(t)

]α

.(6)

The semiparametric estimation of this marginal sur-
vivor function was discussed by Peña, Strawderman
and Hollander (2001). Mimicking the ideas of Nielsen,
Gill, Andersen and Sørensen (1992), the computation
of the estimator relies on the expectation–maximization
(EM) algorithm (see Dempster, Laird and Rubin,
1977), where the frailty values are considered as miss-
ing values. Given values of(Z1,Z2, . . . ,Zn), say
(ẑ1, ẑ2, . . . , ẑn), the first part of the M step of the algo-
rithm is to obtain the conditional estimate of�0 given
by

�̂0(s, t |ẑ1, . . . , ẑn) =
∫ t

0

∑n
i=1 Ni(s, dw)∑n
i=1 ẑiYi(s,w)

.

The second part of the M step of the algorithm is to
maximize a marginal likelihood function forα, given
values of�̂0 and ẑi . To describe this marginal likeli-
hood, define

Y
†
i (s) = I {τi ≥ s} and Ri(s) = (s ∧ τi) − S

iN
†
i (s−)

.

Note thatRi(s) is the backward recurrence time ats.
Then the marginal likelihood for obtaining the estimate
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of α is given by

LF (s;α) =
n∏

i=1

{

(α + N

†
i (s))


(α)

·
[

α

α + ∫ s
0 Y

†
i (v) d�0[Ri(v)]

]α+N
†
i (s)

·
(∏

v≤s

[
Y

†
i (v) d�0[Ri(v)]

α

]N
†
i (�v)

)}
.

Given �̂0(s, t |ẑ1, . . . , ẑn), d�0[Ri(v)] is replaced by
the jump of�̂0(s, ·) at t = Ri(v). The maximization of
this marginal likelihood with respect toα is facilitated
by iterative procedures, such as the Newton–Raphson
algorithm. On the other hand, the E step of the algo-
rithm proceeds by obtaining the values of theZi ’s,
given α̂ and�̂0, according to the formula

ẑi = α̂ + N
†
i (s)

α̂ + ∫ s
0 Y

†
i (v) d�̂0[s,Ri(v)] , i = 1,2, . . . , n.

The E and M steps are then iterated alternately until
convergence is achieved. Finally, having obtained the
estimate�̂0(s, ·) and α̂, the estimate of the marginal
survivor functionF̄ is

ˆ̄F (s, t) =
[

α̂

α̂ + �̂0(s, t)

]α̂

.(7)

A competing estimator that was proposed by Wang
and Chang (1999) applies even if the frailty compo-
nents are not gamma distributed; hence, their estimator
is more general. In Peña, Strawderman and Hollander
(2001), these two estimators, as well as the estimator
that ignored the frailty components, were compared in
terms of their bias and mean-squared error functions.
It was found that if the gamma frailty model holds,
then the semiparametric estimator in (7) outperforms
the Wang–Chang estimator. The comparisons, which
were done through computer simulation studies, also
demonstrated that the estimator that ignored the frailty
components has a nonnegligible systematic bias and,
hence, is not a viable estimator of the marginal survivor
function of the interevent times.

The two estimators of the marginal survivor func-
tion discussed above, together with the estimator of
Wang and Chang (1999), were illustrated by Peña,
Strawderman and Hollander (2001) using the gastroen-
terology data set presented in Figure 1. The plots of
the three survivor function estimates for this data set
are provided in Figure 2. As pointed out by Peña,

FIG. 2. Plots of the three survivor function estimates for the
MMC data set: IIDPLE is the estimate obtained by assuming the
no-frailty IID renewal model; WCPLE is the estimate of Wang and
Chang (1999);and FRMLE is the gamma frailty-based semipara-
metric estimate. The maximum likelihood estimate of the frailty
parameter α under the gamma frailty model is α̂ = 10.17562or,
equivalently, ξ̂ = α̂/(1+ α̂) = 0.9105.

Strawderman and Hollander (2001), the fact that the
three curves are quite close to each other indicates
that there is no need for the frailty component and
that the renewal assumption is viable. The resulting
estimate ofα obtained from the EM algorithm was
α̂ = 10.18, which was judged to indicate a weak as-
sociation among the interevent times.

3. REPAIR MODELS

A more general model which subsumes the IID re-
newal model considered in the preceding section is
that proposed by Dorado, Hollander and Sethuraman
(DHS; 1997). Their general repair model also contains
many of the models in the literature and introduces
new models as well. They considered the family of sur-
vival functions F̄ θ

a (x) = F̄ (θx + a)/F̄ (a). The fam-
ily of distributions{Fθ

a } is stochastically ordered inθ .

That is, θ ≤ θ ′ implies Fθ
a

st≥Fθ ′
a for eacha, so that

Fθ
a (t) ≤ Fθ ′

a (t) for every t . The DHS general repair
model depends on two sequences{Aj }j≥1 and{θj }j≥1
known as the effective ages and life supplements, re-
spectively. These sequences satisfy

A1 = 0, θ1 = 1, Aj ≥ 0, θj ∈ (0,1],
Aj ≤ Aj−1 + θj−1Tj−1, j ≥ 2.

(8)

The joint distributions of the interfailure times are
given as

P(Tj ≤ t
∣∣A1, . . . ,Aj , θ1, . . . , θj , T1, . . . , Tj−1)

(9)
= F

θj

Aj
(t)
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for t > 0, j ≥ 1. From (8) and (9) we see that for
j ≥ 1, the effective age of the system after thej th re-

pair is less than the effective ageXj
def= Aj + θjTj just

before thej th failure, and sinceθj ≤ 1, Xj is less than
the actual ageSj . The use of the term “supplemental
life” has the following motivation. If a minimal repair,
which restores the unit to an effective age just before
it failed, was performed at the time of the first failure,
T2 would have the distributionF 1

T1
. A longer expected

life for T2 is provided, however, if we use the distrib-
ution F

θ2
T1

for someθ2 satisfying 0< θ2 < 1. Starting
with the distributionFθ2

T1
for T2 and applying minimal

repair after the second failure,T3 would have the distri-
butionF 1

A3
, whereA3 = T1 + θ2T2. If we seek a longer

expected life forT3, we can use the distributionFθ3
A3

for
someθ3 satisfying 0< θ3 < 1. By continuing in this
way, we obtain the supplemented life model. Under
this model, the system has a larger expected remain-
ing life than it would have under minimal repair.

It is also of interest to consider monotonicity prop-
erties of the expected interfailure times. Theorem 3,
due to Dorado (1995), is a typical result. We first give
the definition of a decreasing mean residual life distri-
bution. The mean residual life (MRL) function corre-
sponding toF is

εF (x) =
{∫ ∞

x
F̄ (y) dy

}/
F̄ (x).

DEFINITION 1. A failure distributionF is said to
be a decreasing mean residual life (DMRL) distribution
if the meanεF (0) is finite andεF (s) ≥ εF (t) for all
0≤ s ≤ t .

THEOREM 3. Assume in the DHS model of (9)
that the {θj }j≥1 and {Aj }j≥1 are increasing sequences
and F is DMRL. Then E(Tj ) is decreasing in j .

PROOF. We have that

E(Tj ) =
∫ ∞

0
P(Tj > t) dt

=
∫
�

∫ ∞
0

F̄ (θj t + Aj)

F̄ (Aj )
dt dP

≤
∫
�

∫ ∞
0

F̄ (θj t + Aj−1)

F̄ (Aj−1)
dt dP

≤
∫
�

∫ ∞
0

F̄ (θj−1t + Aj−1)

F̄ (Aj−1)
dt dP

= E(Tj−1).

The first inequality follows from the fact thatF is
DMRL and that theAj ’s are increasing. The second
inequality holds since theθj ’s are increasing. �

We now discuss the estimation of the distributionF

in this general repair model. In contrast to the situation
in the preceding section, we postulate that the repair
process is observed until a fixed timeT . The effective
ageXj prior to thej th failure isAj + θj (Sj − Sj−1)

if Sj ≤ T . If Sj−1 ≤ T < Sj , we cannot observeXj

and the effective age of the system at timeT is
Aj + θj (T − Sj−1), which can be written asXj ∧
(Aj + θj (T − Sj−1)), a representation similar to that
encountered in censored data. We define the processes

N(t) = ∑
j

I (Xj ≤ t, Sj ≤ T ),

Y (t) = ∑
j

I
(
Aj < t ≤ (Xj ∧ [Aj + θj (T − Sj−1)])).

Let δj = I (Sj ≤ T ) and setX̃j = Xj ∧ [Aj + θj ·
(T − Sj−1)]. Then the random variables{(X̃1, δ1),

(X̃2, δ2), . . . } can be thought of as observations com-
ing from a censored model. A repair model observed
during[0, T ] is similar to a survival study where a sub-
ject enters the study atAj (the system at failure time
Sj−1 is repaired to effective ageAj ) and either dies
during the study at ageXj (a failure occurs) or leaves
the study byAj + θj (T − Sj−1) (the system that was
repaired at timeSj−1 has not yet, by timeT , suffered
its next failure). From this viewpoint,N(t) is the num-
ber of observed (uncensored) deaths by timet andY(t)

is the number at risk at timet .
Next, we define the process

M(t) = N(t) −
∫ t

0
Y(s) d�(s).

Typically, analogous to results in censored data theory
(Aalen, 1978; Fleming and Harrington, 1991), it is nat-
ural to try to establish thatM is a martingale with re-
spect to the history ofN . This proved to be difficult,
but DHS (1997) were able to show that theM process
does have the same mean and covariance structure as if
it were a martingale. They proved

E(M(t)) = 0,(10)

cov
(
M(t),M(t ′)

) =
∫ t∧t ′

0
E(Y )(1− ��)d�.(11)

These results and techniques of Gill (1980) are suffi-
cient to obtain asymptotic properties of the estimator
of F . We sketch the development here and refer the
reader to DHS (1997) for details.
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We suppose that we observen independent copies
of the processesN and Y on a finite interval[0, T ],
and letNn andYn denote the sum of the firstn copies.
We wish to estimateF based on these observations.
A natural estimator of the failure rate isNn/Yn, the
ratio of observed deaths at timet to the number at risk
at time t . Thus a natural estimator of the cumulative
hazard function is the Aalen–Nelson estimator

�̂n(t) =
∫ t

0

Jn dNn

Yn

,

whereJn(t) = I (Yn(t) > 0) for t ∈ (0, T ]. It is easy to
see thatF satisfiesF(t) = ∫ t

0(1 − F(s−)) d�(s) and
hence we want an estimatorF̂n of F to satisfyF̂n(t) =∫ t
0(1 − F̂n(s−)) d�̂n(s). The solution of this Volterra

integral equation is

ˆ̄F (t) = ∏
s≤t

(
1− d�̂n(s)

)
,

where
∏

s≤t (1 − d�̂n(s)) denotes the product integral
(see Gill and Johansen, 1990; Andersen, Borgan, Gill
and Keiding, 1993).

Let Mn = Nn − ∫
Yn d�. This is the sum ofn

i.i.d. processes inD[0, T ] with mean 0 and covariance
function given by (11). ThusWn(t) = n−1/2Mn(t),
0≤ t ≤ T , converges to a Gaussian process if tightness
can be established. This was done in Theorem 5.1 of
DHS (1997), who showed that

F̂n(t) − F(t)

F̄ (t)
=

∫ ˆ̄F n(s−)Jn(s)

F̄ (s)(Yn(s)/n)
dMn(s).(12)

Let

C(t) =
∫ t

0

dF

EY(1− F−)
.

Assume thatF(T ) < 1 andF is an increasing failure
rate distribution. From the continuous mapping theo-
rem (see Billingsley, 1968) and a result on the uniform
convergence of the integrand in (12), Corollary 5.1 of
DHS (1997) shows

√
n

(
F̂n − F

F̄

)
⇒ B(C) onD[0, T ],

whereB denotes the Brownian motion on[0,∞). They
also proved

√
n
K̄

F̄
(F̂n − F) ⇒ B0(K) onD[0, T ],

whereB0 denotes a Brownian bridge on[0,1] andK =
C/(1+ C).

Dorado, Hollander and Sethuraman (1997) also de-
rived a simultaneous confidence band forF . For
t ∈ [0, T ], let Ln = I (F̂n(t) < 1) and set

Ĉn(t) =
∫ t

0
JnLn dF̂n/[(Yn/n)(1− F̂n)]

and

K̂n(t) = Ĉn(t)/
(
1+ Ĉn(t)

)
.

For t such thatF̂n(t) = 1, setK̂n(t) = 1. A nonpara-
metric asymptotic simultaneous confidence band forF

with confidence coefficient at least 100(1− α)% is[
F̂n ± n−1/2λα

ˆ̄F n/K̂n

]
,(13)

where λα is such thatP(supt∈[0,1] |B0(t)| ≤ λα) =
1 − α. Values ofλα can be obtained from Hall and
Wellner (1980) and Koziol and Byar (1975).

Let X(1),X(2), . . . ,X(r) be the distinct ordered val-
ues of theX’s whose corresponding failure times are
within [0, T ]. Also, let δj be the number of observa-
tions with valueX(j). Then for computational purposes
we can use the simplified formulas

ˆ̄F n(t) = ∏
X(j)≤t

(
1− δj

Yn(X(j))

)
and

Ĉn(t) = n
∑

X(j)≤t

F̂n(X(j)) − F̂n(X(j−1))

Yn(X(j))
ˆ̄F n(X(j))

.

In practice, it may be that the data obtained lead to
F̂n(t0) = 1 for some 0< t0 < T . When this happens,
the data yield a confidence band only on the interval
[0, σ ), whereσ = inf{t ∈ [0, T ] : F̂n(t) = 1}.

Finally, note that if in Section 2 we letτi = T for all
i ands = T , whereT is the end of observation period
in the current section, and if in addition we setAj =
0 and�j = 1 for all j in the DHS model, then the
product limit estimators in these two settings reduce to
the estimator considered by Gill (1981).
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