Satistical Science

2004, Vol. 19, No. 4, 644-651

DOI 10.1214/088342304000000521

© Institute of Mathematical Statistics, 2004

Nonparametric Methods in Reliability

Myles Hollander and Edsel A. Pefia

Abstract. Probabilistic and statistical models for the occurrence of a recur-
rent event over time are described. These models have applicability in the
reliability, engineering, biomedical and other areas where a series of events
occurs for an experimental unit as time progresses. Nonparametric inference
methods, in particular, the estimation of a relevant distribution function, are
described.
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1. INTRODUCTION lem is to estimate the common distribution of the MMC
periods if the IID renewal assumption is valid. For each
unit, there is a random monitoring period, and the ran-

engineering studies such as monitoring the status oy, number of event occurrences is determined by the
a repairable system; in biomedical and public health o hiay hetween the lengths of the successive peri-

settings, for example, keeping track of hospitalization ods and the length of the monitoring period. Further-
visits of a patient with a chronic disease; in economics more, for each unit the last MMC period is always
such as when there is a drop of 200 points in the Dow i+ censored since its length is only known to exceed

Jones index during a trading day; and in sociology Suchne monitoring length minus the (calendar) time of the
as the commission of a criminal act by a delinquent |t observed event occurrence.

youth. Therefore, it is imperative to have stochastic |, section 2 we discuss the problem of estimating the
models for the occurrence of a recurrent event and 0o mmon interevent distribution under the 11D renewal

have appropriate statistical methods for making infer- ,,o4el when data of the form in Figure 1 are available.
ence about model parameters. Before considering the estimation of the interevent dis-

Data that arise from monitoring recurrent events usu- tribution, which was the problem considered by Pefia,
ally come in the form depicted in Figure 1, which is - strawderman and Hollander (2001), we first point out
a pictorial representation of the successive migratory some subtleties inherent in the data structure. Section 3
motor complex (MMC) periods for 19 subjects in & geals with a more general model for recurrent event
gastroenterology study. This data set was analyzed byyata proposed and discussed by Dorado, Hollander
Aalen and Husebye (1991), and one of the questionsand Sethuraman (1997). This model, introduced in the
posed was whether the successive MMC periods havecontext of repairable systems, covers the 11D renewal
lengths that are independent and identically distributed, jyodel and includes as special cases other models in
the so-called 11D renewal assumption. Another prob- the literature. Nonparametric estimation of a distribu-

tion function for this general model will be discussed.

—_— o We have chosen to present the interconnected subjects
Myles Hollander is Robert O. Lawton Distinguished . . :
Professor and Chairman, Department of Statistics, of Sections 2.a-nd 3 because they are important topics
Florida Sate University, Tallahassee, Florida 32306, that are receiving a lot of attentlgn from research(?rs
USA (e-mail: holland@stat.fsu.edu). Edsel A. Pefia  Who are developing nonparametric methods for relia-
is Professor, Department of Satistics, University of bility and survival analysis, and for which additional
South Carolina, Columbia, South Carolina 29208, results, sparked by those described here, are currently
USA (e-mail: pena@stat.sc.edu). being developed.

Recurrent events are prevalent in reliability and
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To see this latter point, consider the case wheris

exponential with mean /b [i.e., F = EXP(1)]. Then

K; has a Poisson distribution with mea#. and, con-

i ditioning on K; = k;, (Si1, Si2, ..., Sik;)/t has the

e s same distribution as the order statistics of a sample

}‘ AR S bt ke = of size k; from a standard uniform distribution by

i : h : et virtue of a uniformity property of Poisson processes
(cf. Resnick, 1992). This implies th&t; is a sufficient

' ' . statistic forA, hence it carries all information abolt

— 5 Second, observe that there is always a right-censored

observation and, even if is independent of thé&;;’s,

" = e = = the censoring variable fdf; ¢, +1 is not independent of
o _ theT;;’s since this censoring variableds = ; — Sik; .
Fic. 1. P'?tor:a"MrCep@ergatljonl‘;f ”t‘)? MM% datal Fh?t con- Thus, the data accrual scheme leads to dependent and
tains successive perfods for 19 subjects. The multiplication .t mative censoring. These two traits make this re-
marks (x) indicate the end of monitoring periods for each of the . .
subjects. current event setting different from the usual random

censorship model typically considered in failure-time
analysis, and as such demand a more delicate treatment
2. ESTIMATION OF INTEREVENT DISTRIBUTION when making inference abo#t or its associated para-
meters. In particular, it is erroneous to treat Iigs as
complete data and the; — S;x;)’s as censored data in
the usual way and to apply estimation methods devel-

We now consider the problem of estimating the in-
terevent distribution when data of the form in Fig-
ure 1 are available. To introduce notation for this recur- oped under the random censorship model.

rent event data accrual, we suppose that for Linit For the nonparametric estimation of the interevent

of n units, the recurrent event process is observed OVelyistribution £, we define doubly indexed processes for
the random period0, t;], wheret;, i =1,2,...,n, theith unit via

are i.i.d. according to distributiod’. The successive

interevent times, denoted 4y;, j =1,2,..., are as- N (s)
sumed to be i.i.d. from an unknown continuous dis- (1)  Ni(s,t)= Y_ I{Tij <1},
tribution F. The successive calendar times of event Jj=1
occurrences for theth unit are denoted by NF(s-)

i Yits,n)= Y I{T; =1}
0=Sij0<Si1<Si2<8i3<--- with Sij=ZTij- (2) j=1

k=1

+I{(s AT = Sy =1}
The number of events that occurred on or before calen-

dar times for unit i is denoted le‘T(S)’ so The processVi(s, 1) represents the number of events
that occurred on or before time whose interevent
Nl.T(s) =maxj€{0,1,2,...}:8;j < (s A1)} times are at most, whereasYi(s: 1) represe_nts the
=~ number of events ovg0, s] whose interevent times are

_ Z 1S < (s AT, atleast plus a count on whether the right-censored last

interevent time is also at least Observe that both of
these processes have a random number of summands,
wherea A b = min{a, b}. We denote byK; = NiT(oo) sinceNiT(s) anle.T(s—) are both random. In addition,

the total number of observed events oyérr;] for  they are dependentontiig's and(s A ) — ;1.

Jj=1

theith unit. These dependencies, which arise because of the sum—
We first discuss some subtleties regarding such aquota accrual scheme, make this recurrent event setting
data accrual scheme. First, we note tKais informa- more difficult and interesting. For instance, as con-

tive about the distributiorF and, in some cases, con- tained in Theorem 1, the expected values of the above
ditionally on ;, it contains all information abouf . processes depend on the renewal functiof pivhich
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is defined according to

o0

@) p(t) =Y F*@),

k=1

whereF*k is thekth convolution ofF, the distribution
of S;x. In the sequel we denote hy(r) the cumulative
hazard function of'(¢).

THEOREM 1. Take Gs(1) = GWI{t < s} +
I{t > s} and G,4(t) = 1 — G4(¢). Then under the 11D
renewal model,

E{Ni(s,1)}

:/(;OO{F(w/\t)

+/(; F((w—v)/\t),o(dv)}Gs(dw)’

E{Yi(s, 1)} = y(s,1)
= F()Gy(t—)

. {1—}— Gs(l—)/t p(w —t)Gs(dw)}.

Inparticular, if F = EXP(A) and G = EXP(»), and we
let s — oo, we obtain
A
E{Ni(0c0,1)} = ;(1 —exp(—( +mt})

and

A
y(oo,t) = (1+ ;) exp{—( + )t}

which forms a renewal equation. Invoking the renewal
equation theorem (Resnick, 1992), the solution to this
equation is given by

H(w)=F(wAt) +/Ow F((w—v) At)p(dv).

Integrating out with respect to the distributieh (w),

we therefore obtain the first result. The particular
results associated with exponential distributions fol-
low routinely by noting that the renewal function for

EXP(L) is p(v) =iv. O

Notice that for the special case 6f= EXP()) and
G = EXP(n), since
t A t
/ y(oco, w)dw = (1+ —) / expl—(A + nwldw
0 n/Jo

1
= ;(1 —exp{— (A +n)t}),

we have thatE{N;(co,t) — A [§ ¥i(c0, w)dw} = O.
This is a particular manifestation of the more general
result that

E{N,-(s, t) — /Ot Yi (s, w)A(dw)} =0,

which motivates the Aalen—Nelson estimatof) and,
consequently, the product-limit estimatér which is
given subsequently.

The aggregated processes based: amits are de-
noted by

N(s,t)=>) _Ni(s,t) and Y(s,t)=> Yi(s,0).

PrRoOF The proofs of these results use renewal ar-
guments. We present here only the proof for the first
result, because that for the second result uses the sam€&he resulting product-limit type estimator of =
ideas. For a given, let 7;(s) = s A 7;, which has dis- 1 — F based on data that have accrued over the cal-
tribution G. By first conditioning or; (s) = w, we let endar timg0, s] for n units is
H,(w) = E{N;(t;(s), t)|7; (s) = w}. Then we obtain

i=1 i=1

2 ! N(s,d
@) FAxnzIIP—-%%i?}

w=0

H(w)
w
= /0 E{N;(w, )|T;1 = v}F(dv) Utilizing the ideas of Sellke (1988) and Gill (1980), the
following asymptotic properties of this product-limit
type estimator were established by Pefia, Strawderman

+f E{N:(w,)|T;1 = v} F(dv)
v and Hollander (2001).

:fow{l{v <t}
+ E{N;(7;(s),1)|7i(s) = w — v}} F(dv) + 0

THEOREM 2. If * € (0,00) is such that
y(s, ") > 0and A(t*) < oo, then, asn — oo:

(1) SUR</< |I£7,,(s, 1) — F(t)| convergesin probabil-

w
:F(w/\t)—l-/o Hy(w —v) F(dv), ity to zero;
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(i) the process {W,(s,t) = ﬁ[ﬁn(s,t) — F()]: bution for this frailty variable has the same shape and
0 <t < t*} converges weakly in Skorohod space scale parameter, and this is to achieve model identifi-
D[0,t*] to a zero-mean Gaussian process ability. GivenZ; = z, it is assumed that the interevent
{W>(s,1):0 <t < t*} whose variance function timesT;1, T;2, ... are i.i.d. with survivor function

is - _
(5) F(t|z) = P{T;j > t1Z; =z} = [Fo(O]*.
Var W™ (s, 1)} = o2(s, 1) = F(z)Z/t Aldw)
T AT 0 y(s,w)’ This is equivalent to postulating that the conditional
. pa— _ hazard function of7;;, given Z; = z, is A(tz) =
In particular, if £ = EXP(2) and G = EXP(y), then zAo(1), where Ag = —log Fp is the hazard function
A1) of Fp. As a consequence, the joint survivor function
2 _ 0 q ) J
, 1) = —————= exp{—2rt}(exp{ (A t}—1). ) .
o7(00, 1) (A +n)2 A HexplO: +mr) ) of (T;1, Tio, ..., T;;) for fixed k is given by
Aﬁpos&ble nonparametric estimator of the variance P{Tiy >, Tia> 2, ... Tix > 12}
of F, (s, t) is given by L z
o » a” a—1
5,,2(5, 1) :/O H Fo(t;) —l"(oz)z exp{—az}dz
j=1
- N(s, dw) ’
= Futs.0)? [ . o a
0 Y(s,w)[Y(s,w)— N(s, Aw)] = [ . } .
o+ Ao(t))

Together with the weak convergence result, this es-
timate of the variance could be utilized to form a From this, by setting; = ¢ and#; = 0,1 # j, we im-
100(1 — )% asymptotic confidence interval fa(z) mediately see that the interevent times are dependent
given by and the common marginal survivor function of the in-

- R terevent times is
[Fn(sv 1) & zy /20 (s, t)],

— o «

wherez, /2 is the 1091 —y /2)% percentile of the stan-  (6) F@)=P{Tij > 1} = [m} :
dard normal distribution. We note in passing that it is
possible to develop a Hall and Wellner (1980) simulta- The semiparametric estimation of this marginal sur-
neous confidence band in this recurrent event setting. Vvivor function was discussed by Pefia, Strawderman

Notice that the asymptotic results f(ﬁ (s.1) are ar_md Hollander (2001). Mimicking the ideas ofNieIsep,
analogous to properties of the product-limit estimator Cill: Andersen and Sgrensen (1992), the computation
for single-event settings, except that the limiting vari- of the estlmgtor relies onthe expectatlpn—maX|m|za'F|on
ance function in this recurrent event setting involves (EM) algorithm (see Dempster, Laird and Rubin,
the renewal functiorp of the distributionF. The en- 1977), where the frailty values are considered as miss-
try of this renewal function into the limiting variance ing values. Given values ofZi, Z>. ..., Z,), say
function is a manifestation of the sum—quota accrual (21,22, - .-, Zn), the first part of the M step of the algo-
Scheme, which forces the number of events forithe rithm is to obtain the conditional estimatemt) given
unit observed ovel0, 7;] to be informative and makes by
the censoring mechanism of the last event informative X EY L NG(s, dw)
and dependent as well. Ao(s,tl31, ... 2 = | S=L 12—

Pefia, Strawderman and Hollander (2001) also con- 0 Xi1Zi¥i(s, w)
sidered a model wherein the interevent times for a The second part of the M step of the algorithm is to

unit are correlated. This dependence among the in-maximize a marginal likelihood function far, given
terevent times is induced by an unobserved latent or5yes of A and ;. To describe this marginal likeli-

frailty variable. To describe this correlated recurrent 454 define

event model, it is postulated that there is an unob-

servedZ;, with Z1, Z», ..., Z, i.i.d. random variables Yl.T(s) =I{r;>s} and R(s)=GAT)—S 1t ..
L. . . . . . iN; (s—)

from a distributionH,, which is taken in particular to

be a gamma distribution with mean 1 and variange,1 ~ Note thatR;(s) is the backward recurrence time sat

wherea > 0 is unknown. Note that the gamma distri- Then the marginal likelihood for obtaining the estimate
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3

of « is given by

d { (e + N ()

1]

Lr(s;a) =] T

i=1

[ o }O!-FNI-T(S)
Lo+ 5 v @ dAolR: ()]

Y (v) d Aol R; (v)]7V 4
([ 1)

Survey Frozbiy Cxiram

o
Given [\O(S,Al’lzl, ey 2;1), dAO[Rz (U)] iS replaced by I-I| ||Ir 1 '.I-Ill :1j-r
the jump ofAg(s, -) atr = R;(v). The maximization of Rl Vacka Coraphes (HRG,) Torm, = rerms

this marginal likelihood with respect w is facilitated Fic. 2. Plots of the three survivor function estimates for the

by ite_rative procedures, such as the NeWton_Raphsor}leC data set: IIDPLE is the estimate obtained by assuming the
algorithm. On the other hand, the E step of the algo- no-frailty 11D renewal model; WCPLEis the estimate of Wang and

rithm proceeds by obtaining the values of tgs, Chang (1999);and FRMLE is the gamma frailty-based semipara-
givena and A, according to the formula metric estimate. The maximum likelihood estimate of the frailty
parameter o under the gamma frailty model is @ = 10.17562o0r,
A &+ NI.T(S) equivalently, £ = &/(1 + &) = 0.9105.
Zi = i=12,...,n.

N ’
@+ Jo ¥i (V) dhols. Ri(v)] Strawderman and Hollander (2001), the fact that the
The E and M steps are then iterated alternately until three curves are quite close to each other indicates
convergence is achieved. Finally, having obtained thethat there is no need for the frailty component and
estimateAo(s, -) anda, the estimate of the marginal that the renewal assumption is viable. The resulting

survivor functionF is estimate ofa obtained from the EM algorithm was
. 4 & a = 10.18, which was judged to indicate a weak as-
(7) F(s,t)= [A—] . sociation among the interevent times.
a+ Ao(s, 1)

A competing estimator that was proposed by Wang 3. REPAIR MODELS

and Chang (1999) applies even if the frailty compo- A more general model which subsumes the IID re-
nents are not gamma distributed; hence, their estimatomewal model considered in the preceding section is
is more general. In Pefia, Strawderman and Hollanderthat proposed by Dorado, Hollander and Sethuraman
(2001), these two estimators, as well as the estimator(DHS; 1997). Their general repair model also contains
that ignored the frailty components, were compared in many of the models in the literature and introduces
terms of their bias and mean-squared error functions.new models as well. They considered the family of sur-
It was found that if the gamma frailty model holds, Vival functions Ff (x) = F(0x + a)/F (a). The fam-
then the semiparametric estimator in (7) outperforms ily of distributions{F,} is stochastically ordered .
the Wang—Chang estimator. The comparisons, whichThat is,6 < 6’ implies F? > F[f' for eacha, so that
were done through computer simulation studies, alsopae(t) < Fa@/(t) for everyt. The DHS general repair
demonstrated that the estimator that ignored the frailty model depends on two sequen¢as};>1 and{f;};>1
components has a nonnegligible systematic bias andknown as the effective ages and life supplements, re-
hence, is not a viable estimator of the marginal survivor spectively. These sequences satisfy
function of the.interevent times. ' . A1=0, 61=1A;>0, 6;€(0,1],

The two estimators of the marginal survivor func- (8) e . . )
tion discussed above, together with the estimator of j=Aj1t0jal1, j=2
Wang and Chang (1999), were illustrated by Pefia, T_he joint distributions of the interfailure times are
Strawderman and Hollander (2001) using the gastroen-9ivén as
terology data set presented in Figure 1. The plots of P(T; <t|A1,...,A;,61,...,0;,T1,...,Tj_1)
the three survivor function estimates for this data set (9) 0.
are provided in Figure 2. As pointed out by Pefia, =FA’j(l)
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for t > 0, j > 1. From (8) and (9) we see that for The first inequality follows from the fact thak is

j =1, the effective age of the system after tith re- DMRL and that theA ;’s are increasing. The second
pair is less than the effective age d:efAj +6,T; just inequality holds since the;’s are increasing. [
before thejth failure, and sincé; <1, X is less than We now discuss the estimation of the distributin

the actual age§;. The use of the term “supplemental in this general repair model. In contrast to the situation
life” has the following motivation. If a minimal repair, in the preceding section, we postulate that the repair
which restores the unit to an effective age just before process is observed until a fixed tiriie The effective

it failed, was performed at the time of the first failure, ageX; prior to the jth failure isA; +6,(S; — S;_1)

T, would have the distributior. . A longer expected  if S; <T.1f S;_1 <T < S, we cannot observe ;

life for T» is provided, however, if we use the distrib- and the effective age of the system at tirifle |s

ution F;2 for somed; satisfying O< 62 < 1. Starting ~ A;j +6,(7 — S;—1), which can be written asy; A

with the dlstrlbutlonF92 for T» and applying minimal (AJ' + 91(T — §j-1)), a representation similar to that
repair after the secondlfallu@ would have the distri- encountered in censored data. We define the processes
bution Fj , whereAz = T1 + 62T%. If we seek alonger  n(r) = ZI(XJ' <t1,8;<T),

expected life foiT3, we can use the d|.~:,tr|but|ol?193 for j

some®s satisfying O< 63 < 1. By continuing in this

way, we obtam tghe supplemen)t/ed life mo%lel Under Y@= ZI(AJ <t =(XGALA; +0;(T = 5;-1)D).

this model, the system has a larger expected remain- !
ing life than it would have under minimal repair. Lets; =1(S; <T) and setX =X; N[A; +0;

It is also of interest to consider monotonicity prop- (7 — Sj 1]. Then the random Vaflab|e{5(X1,31)
erties of the expected interfailure times. Theorem 3, (X2, 42),...} can be thought of as observations com-
due to Dorado (1995), is a typical result. We first give ing from a censored model. A repair model observed
the definition of a decreasing mean residual life distri- during[0, T'] is similar to a survival study where a sub-

bution. The mean residual life (MRL) function corre- I€ct enters the study at; (the system at failure time
sponding toF is S;_1 Is repaired to effectlve agd ;) and either dies

during the study at ag& ; (a failure occurs) or leaves
the study byA; +6,;(T — S;_1) (the system that was
repaired at timeS; _; has not yet, by timd", suffered
its next failure). From this viewpointy () is the num-
ber of observed (uncensored) deaths by tiraedY (¢)
is the number at risk at time

Next, we define the process

ero = [ Fora} [Feo.

DEFINITION 1. A failure distributionF is said to
be a decreasing mean residual life (DMRL) distribution
if the meaner(0) is finite andep(s) > ep(¢) for all
O<s<rt.

t
THEOREM 3. Assume in the DHS model of (9) M(1) = N(1) _/o Y(s)dA(s).
that the {0;};>1 and {A;};>1 areincreasing sequences

X . o Typically, analogous to results in censored data theor
and F isDMRL. Then E(T}) isdecreasingin j. ypically g y

(Aalen, 1978; Fleming and Harrington, 1991), it is nat-

PrROOE We have that ural to try to establish tha is a martingale with re-
o spect to the history oiV. This proved to be difficult,
E(T)) :/ P(T; > t)dt but DHS (1997) were able to show that theprocess
0 does have the same mean and covariance structure as if
/ /oo F(e t+A; )d ip it were a martingale. They proved
= t
F(A)) (10) E(M(t)) =0,
o F @ t+ A At
/ / (F(: ’) Y yrdp (11) cov(M (1), M(1')) :/ E(Y)(1— AA)dA.
j-1 0
% F(f); A These results and techniques of Gill (1980) are suffi-
i—1t+Aj_1) \ . ) ; ;
< = dtdP cient to obtain asymptotic properties of the estimator
F(Aj-1) of F. We sketch the development here and refer the

= E(Tj-1). reader to DHS (1997) for details.
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We suppose that we obserxveindependent copies
of the processed’ andY on a finite interval[O, 7],
and letN,, andY, denote the sum of the firgtcopies.
We wish to estimate” based on these observations.
A natural estimator of the failure rate 18,/Y,, the
ratio of observed deaths at timéo the number at risk
at timet. Thus a natural estimator of the cumulative
hazard function is the Aalen—Nelson estimator

A= Do,
0o Y,

whereJ, (t) = I1(Y,(¢t) > 0) fort € (0, T]. Itis easy to
see thatr satisfiesF (1) = [5(1 — F(s—))dA(s) and
hence we want an estimaté}, of F to satisfyF,,(¢) =

Jo(L = Ey(s—))dA,(s). The solution of this Volterra
integral equation is

F () =[](1-dAn(s)),

s<t

where[],-,(1— dA,(s)) denotes the product integral
(see Gill and Johansen, 1990; Andersen, Borgan, Gill
and Keiding, 1993).

Let M, = N, — [Y,dA. This is the sum ofn
i.i.d. processes i[0, T'] with mean 0 and covariance
function given by (11). ThusW, (r) = n=Y2M, (1),

0 <t < T, converges to a Gaussian process if tightness
can be established. This was done in Theorem 5.1 of

DHS (1997), who showed that

F n(s=)Jn(s)

Fu(t)—F(t)
(12) 0 _/ F o) Unoyym )
Let
t dF
C(I):/o EY(1—F )

Assume thatF'(T) < 1 andF is an increasing failure
rate distribution. From the continuous mapping theo-
rem (see Billingsley, 1968) and a result on the uniform
convergence of the integrand in (12), Corollary 5.1 of
DHS (1997) shows

ﬁ(ﬁ”‘

F
) = B(C) onD[O,T],

whereB denotes the Brownian motion ¢@, oo). They
also proved

ﬁg(ﬁn — F)= B%K) onDI[0,T),

whereB? denotes a Brownian bridge ¢@, 1] andK =
C/(1+40C).

M. HOLLANDER AND E. A. PENA

Dorado, Hollander and Sethuraman (1997) also de-
rived a simultaneou§ confidence band fBr For
te[0,T], letL, =1(F,(t) <1) and set

A t A A
o) = /O JuLnd Ey/[(Ya/m) L — )]
and
Kn(t) = Co(0)/(1+ Ca(1)).

For 7 such thatF),(r) = 1, setk,(s) = 1. A nonpara-
metric asymptotic simultaneous confidence bandfor
with confidence coefficient at least 1A0- «)% is

(13) [Ey 0~ Y200 F /K],

where A, is such thatP(supgg 1 |B2()] < Aa) =
1 — «. Values ofi, can be obtained from Hall and
Wellner (1980) and Koziol and Byar (1975).

Let X(1), X2, ..., X() be the distinct ordered val-
ues of theX’s whose corresponding failure times are
within [0, T']. Also, lets; be the number of observa-
tions with valueX ;). Then for computational purposes
we can use the simplified formulas

Fo. =[] (1 °)
ﬁn(X(j)) - ﬁn(X(j—l))

X(j=t (X (p)
Xzt Yn(X)Fn(Xj)

In practice, it may be that the data obtained lead to
F,(to) = 1 for some O< rg < T. When this happens,
the data yield a confidence band only on the interval
[0,0), whereo =inf{r € [0, T]: F,,(¢t) = 1}.

Finally, note that if in Section 2 we let = T for all
i ands =T, whereT is the end of observation period
in the current section, and if in addition we sef =
0 and®; =1 for all j in the DHS model, then the
product limit estimators in these two settings reduce to
the estimator considered by Gill (1981).

and

Co(t)=n
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