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Positions and QQ Plots
John I. Marden

Abstract. Quantile–quantile (QQ) plots for comparing two distributions are
constructed by matching like-positioned values (i.e., quantiles) in the two dis-
tributions. These plots can reveal outliers, differences in location and scale,
and other differences between the distributions. A particularly useful appli-
cation is comparing residuals from an estimated linear model to the normal.
A robust estimate, such as the Sen–Theil estimate, of the regression line is
important. Extensions to two-dimensional QQ plots are presented, relying on
a particular notion of multivariate position.

Key words and phrases: Quantile, QQ plot, spatial rank, spatial quantile,
Sen–Theil estimate.

1. INTRODUCTION

The objective of this paper is to present some sim-
ple nonparametric graphical methods for comparing a
sample to a theoretical distribution or for comparing
two samples. We concentrate on the quantile–quantile
(QQ) plot, which, when comparing two distributions,
matches quantiles of one with the same quantiles of
the other. These plots are good at revealing location
and scale differences, as well as identifying outliers;
see Section 3.

The QQ plots are often used to compare residuals to
the normal distribution in linear regression. To find a
good estimate of the residuals, we need a robust es-
timate of the regression line. We use the Sen–Theil
estimate for this task (presented in Section 3.2).

We end (Section 5) by extending QQ plots to mul-
tivariate data. Throughout, we use the notion of “posi-
tion” of a point among other points, which we define
in Section 2 in the univariate case to be a centering and
scaling of the usual ranks of the data. Section 4 extends
positioning to multivariate data.

2. UNIVARIATE POSITIONS

One concept that will be useful throughout this pa-
per is the position of a pointz relative to a set of
points or relative to a distributionF . Consider a sample
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Xn = {x1, . . . , xn} of points on the real line and another
point z. Imagine that you are standing at the pointz.
Imagine also that each of the observations is equipped
with an arrow of length 1 pointing toward you, so that
the observations to the left are pointing up (+1) and the
observations to the right are pointing down (−1). Your
position among the data is then the average of those
arrows. The formal definition follows.

DEFINITION 1. The position ofz ∈ R relative to
the sampleXn is

pos(z;Xn) = 1

n

n∑
i=1

Sign(z − xi),(1)

where Sign(w) is the sign of the numberw, that is,

Sign(w) =


−1, if w < 0,
0, if w = 0,
1, if w > 0.

If F is a distribution function, then the position ofz

relative toF is

pos(z;F) = E[Sign(z − X)], whereX ∼ F.(2)

Note that pos(z;Xn) = pos(z; F̂n), whereF̂n is the
empirical distribution function of thexi ’s. The sum-
mation in (1) counts+1 for each pointz is above and
−1 for each pointz is below, so pos(z;Xn) is the pro-
portionz is above minus the proportionz is below:

pos(z;Xn) = #{xi |z > xi} − #{xi |z < xi}
n

.

The pos(x;F) is similar, replacing proportions with
probabilities:

pos(z;F) = P [z > X] − P [z < X].
606
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In either case,−1 ≤ pos≤ 1, where the largerz is, the
closer its position is to+1. The median has position 0;
values above the maximum have position+1 and val-
ues below the minimum have position−1.

The positions of thexi ’s themselves are centered and
scaled versions of their ranks. That is, Rank(xj ) = k

if xj is thekth smallest of thexi ’s and the ranks are
related to the positions via

pos(xj ;Xn) = 2 · Rank(xj ) − n − 1

n
.(3)

If there are ties among thexi ’s, then (3) holds for Rank
being the midrank. The analogous formula that relates
position relative toF andF itself is

pos(z;F) = 2 · F(z) − 1.(4)

3. UNIVARIATE QQ PLOTS

We wish to compare a sampleXn = {x1, . . . , xn} to
a theoretical distributionF or compare one sample
to another. (One could also compare two theoretical
distributions, but we do not specifically address this
issue.) We present the QQ plot, which compares like-
positioned elements from the two distributions. For
example, to compare the sampleXn to a theoretical dis-
tributionF , we could compare eachxj to the valueηj ,
whereηj has the same position relative toF that xj

has relative to the sampleXn. That is,

pos(xj ;Xn) = pos(ηj ;F).(5)

Using (4), and assuming thatF is continuous and
strictly increasing, theηj in (5) is

ηj = F−1
(

pos(xj ;Xn) + 1

2

)
,

which means thatηj is the qj th quantile ofF for
qj = (pos(xj ;Xn) + 1)/2. Also, xj is theqj th quan-
tile of the sample. TheQQ plot plots theηj ’s ver-
sus thexj ’s. If the sample is a reasonable facsimile of
the distributionF , then thexj ≈ ηj , so that the points
should be close to the linex = η.

To illustrate, we use data onn = 136 students who
were asked the fastest speed they had ever driven a car.
Figure 1 is a stem-and-leaf plot of the data. The slowest
speed was 50 mph and the fastest was 150 mph. Notice
most of the values are rounded to a 5. The distribution
looks a little skewed to the faster speeds and there is a
small bump around 140–150 mph.

We wish to compare the sample to a normal distribu-
tion. One should first decide on which normal distribu-
tion, because it is clear that we do not expect these data

FIG. 1. Stem-and-leaf plot of 136students’ responses to the ques-
tion, “What is the fastest you have ever driven a car?” (The decimal
point is 1 digit(s) to the right of the |.)

to beN(0,1). Because we are looking at a location–
scale family, we can use the fact that ifξ is the qth
quantile of aN(0,1), thenη = µ+σξ is theqth quan-
tile of a N(µ,σ 2). Thus if the data are like a nor-
mal sample, the observations should lie approximately
along a straight line,xj ≈ µ+σξj , whereξj is theqj th
quantile of aN(0,1).

Table 1 shows the calculations for four selected ob-
servations,xj = 50,90,100,150. The second column
has their positions, the third has the correspondingqj

and the fourth has theqj th quantiles for theN(0,1).
Figure 2 plots theξj versus thexj ’s for the entire data
set. The straight line in the plot isx = µ̂ + σ̂ ξ , where
µ̂ = median(Xn) = 95 and σ̂ = mad(Xn) = 14.826.
The mad is the median absolute deviation, defined
as mad(Xn) = 1.4826 · median|xi − µ̂|. The con-
stant 1.4826 ensures that if the data are normal, then
σ̂ is a consistent estimator ofσ . One could also es-
timate the parameters by fitting a straight line to the
QQ plot; see Barnett (1975). The last column in Table 1
contains the estimateŝηj = µ̂+ σ̂ ξj . If the data are ap-
proximately normal, then thexj ’s should be close to
their respectivêηj ’s. The first three are fairly close, but
the fourth is not as close.

TABLE 1

xj pos(xj ;Xn) qj ξj η̂j

50 −0.993 0.004 −2.680 55.26
90 −0.316 0.342 −0.407 88.96

100 0.301 0.651 0.387 100.74
150 0.993 0.996 2.680 134.74
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FIG. 2. The QQ plot that compares the driving speed data
with the N(0,1). The curved lines indicate the estimates line
±2 · (standard error).

We have added approximate error bars in Figure 2 as
well. If the data are a sample from the distributionF ,
and if x�nq� (for a real numberz, �z� is the smallest
integer greater than or equal toz) andηq are theqth
sample and theoretical quantiles, respectively, then as
n → ∞,

√
n
(
x�nq� − ηq

) → N

(
0,

q(1− q)

f (ηq)2

)
,(6)

wheref is the density forF , and we assume thatf is
continuous and positive atηq . The two curved lines in
the figure are plots of̂µ + σ̂ ξj ± 2 · sej , where

sej =
√

qj (1− qj )

n

σ̂

φ(ξj )

andφ is theN(0,1) density.
Consider the plot. The points generally follow the

line fairly well, except for the upper tail, where there
are seven or so points that are substantially larger
than the line. Thus it appears that the data deviate
from the normal by having too many very large values
around 140–150. The rest of the points are basically be-
tween the error bars, although there is some curvature
in the middle.

In addition to being good at identifying outliers and
heavy tails, QQ plots can reveal characteristics such
as skewness and bimodality, and can be effective even
for small samples. Wilk and Gnanadesikan (1968) gave
a thorough introduction to QQ plots and Cleveland
(1993) provided numerous examples of their use.

3.1 Comparing Two Samples

Consider the driving speed data again, but now sep-
arate the values by sex. There aren1 = 100 women

andn2 = 36 men. Denote these subsamples byX(1)
n1 =

{x(1)
1 , . . . , x

(1)
n1 } for the women andX(2)

n2 = {x(2)
1 , . . . ,

x
(2)
n2 } for the men. A QQ plot chooses some values

for the men, sayη(2)
1 , . . . , η

(2)
K , and then finds the val-

uesη
(1)
j which have the same position relative to the

women that theη(2)
j have relative to the men, that is,

pos
(
η

(1)
j ;X(1)

n1

) = pos
(
η

(2)
j ;X(2)

n2

)
,

(7)
j = 1, . . . ,K.

Because of the lack of continuity of the pos function
for a sample, it is likely that (7) cannot be solved ex-
actly, so we use linear interpolation. The choice of the
η

(2)
j ’s is arbitrary, but typically one chooses the data so

that K = n2 andη
(2)
j = x

(2)
j . We are also consciously

using the smaller sample, because using more points
than there are observations in the smaller sample seems
shaky.

For eachx(2)
j , we find the position among the men,

pos(x(2)
j ;X(2)

n2 ), and then find (approximately) theη(1)
j

that solves pos(η(1)
j ;X(1)

n1 ) = pos(x(2)
j ;X(2)

n2 ). For ex-

ample, pos(80;X(2)
n2 ) = −0.9444= pos(68.98;X(1)

n1 )

and pos(120;X(2)
n2 ) = 0.4444= pos(91.60;X(1)

n1 ); thus
a man with 80 mph is in approximately the same po-
sition among men as a woman driving 68.98 mph is
among women. Similarly, 120 among men is matched
with 91.60 among women.

The QQ plot plots thex(2)
j ’s versus theη(1)

j ’s. Fig-
ure 3 has the plot, along with the line fit to the data us-
ing the Sen–Theil procedure introduced in Section 3.2,

FIG. 3. The QQ plot that compares the men to the women on their
driving speeds.
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η(1) = 33.96+ 0.5356x(2). The fact that this line is far
from η(1) = x(2) shows that the two samples are differ-
ent in (at least) location and scale. If the samples are
independent samples from distributions that differ by
only location and scale (i.e., both distributions have the
same shape, such as normal), then the QQ plot should
be close to a straight lineη(1) = a + bx(2), where the
slopeb is the ratio of scales, and the difference in loca-
tion can be measured by the differences in medians. For
our data, the slope 0.5346 suggests that the women’s
distribution is about half as spread out as the men’s.
The sample median of the men is 110, so the estimate
of the difference in medians, women minus men, is
a + (b − 1)110 = 33.96 − 0.4644(110) = −17.12.
The women (reportedly) drive much more slowly and
their speeds are much less spread out than those of the
men.

The closer the points are to the straight line, the more
similar the shapes of the distributions. The points in the
plot are fairly close to the line, suggesting that there
is not much reason to believe the shapes of the dis-
tributions are much different, at least compared to the
±2 · (standard error) lines. The standard errors are cal-
culated assuming the two distributions are normal. This
assumption tends to be conservative in the tails, that is,
the standard errors for the tail quantiles are larger than
they would be for a heavier tailed distribution. We need
to take into consideration uncertainty in both samples;
hence, the standard errors are

sej = σ̂1

√
qj (1− qj )

φ(zj )

√
1

n1
+ 1

n2
,

where σ̂1 is an estimate of the standard deviation of
the women’s distribution, which we take to be the
mad(X(1)

n1 ) = 7.413,qj = (pos(xj )+1)/2 andzj is the
qj th quantile of theN(0,1).

3.2 QQ Plots for Residuals

A common use for QQ plots is to check the residuals
in linear regression to see if they are reasonably nor-
mal. The simple linear regression model that relates the
explanatory variablex to the dependent variabley is

yi = α + βxi + ei, i = 1, . . . , n,

whereα andβ are the (unknown) intercept and slope
parameters, respectively, and theei ’s are the residu-
als. We assume that thexi ’s are fixed and the residu-
alsei are independent and identically distributed, with
E[ei] = 0 and Var[ei] = σ 2, and entertain the addi-
tional assumption that theei ’s are normally distributed.

To check the residuals, we first need estimates
α̂ and β̂ of the intercept and slope. Then the resid-
ualei is estimated bŷei = yi − α̂ − β̂xi . It is important
to use fairly robust estimates of the parameters; other-
wise the estimated residuals may not adequately reflect
the structure of theei ’s. In keeping with the nonpara-
metric approach, we base estimation of the slopeβ on
the pairwise slopes, that is, the slopes between pairs of
points:

bij = yi − yj

xi − xj

if xi 
= xj .

Becausebij = bji , we look at just the slopesbij for
i < j . TheSen–Theil estimate of the slope is the me-
dian of these pairwise slopes. See Theil (1950) and Sen
(1968) for development of this estimator and an associ-
ated confidence interval procedure. The estimate of the
intercept we use is the median of theyi − β̂xi ’s:

β̂ = median{bij } and α̂ = median{yi − β̂xi}.
To illustrate, we use data from Rousseeuw and Leroy

(1987) on the average body weight (in kilograms)
and brain weight (in grams) for 28 animal species.
Figure 4 plots the logs of the data. Here there are(28

2

) = 378 pairwise slopes, with median̂β = 0.6739.
The α̂ = 2.2827. We also find the least squares es-
timate of (α,β), which is the(a, b) that minimizes∑

(yi − a − bxi)
2, in this case being(2.5549,0.4960).

The figure indicates the Sen–Theil and least squares es-
timates of the line. Note the three points to the lower
right. They are dinosaurs, who have relatively small
brains for their body size. One can see how these points

FIG. 4. The scatterplot of the animals data. The solid line is the
Sen–Theil estimate of the regression line; the dotted line is least
squares.
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FIG. 5. The QQ plot of the residuals from the body and brain
weight data.

pull the least squares line toward them, relative to the
Sen–Theil line.

Figure 5 shows the QQ plot of the residuals from
the Sen–Theil fit, comparing the residual to the normal
distribution. We can see clearly the three outliers. The
plot from the least squares line also shows these three,
though not quite as vividly.

Next we remove the three dinosaurs from the data
set, leaving us with mammals. Figure 6 shows the
QQ plot from the resulting Sen–Theil fit, 1.999 +
0.7514xi . Now there are four outliers, all primates,
suggesting that they have relatively large brains for
their bodies. There is one more primate, the gorilla,
that does not appear as an outlier. We note that without
the dinosaurs, the Sen–Theil and least squares lines are
very similar.

FIG. 6. The QQ plot of the residuals from the body and brain
weight data without the dinosaurs.

It turns out that the least squares estimate ofβ can
be written as a weighted average of thebij ’s,

β̂LS =
∑∑

1≤i<j≤nbij (xi − xj )
2∑∑

1≤i<j≤n(xi − xj )2 .

(To be precise, the summations are over only thosei, j

with xi 
= xj .) The slopes are heavily weighted if their
correspondingxi ’s are far apart. Thus the least squares
estimate is sensitive to outliers inyi ’s that are associ-
ated withxi ’s at the extremes, leading to lack of robust-
ness. Another estimator more robust than least squares
is the least absolute deviation estimate, which chooses
the (a, b) to minimize

∑ |yi − a − bxi |. It is interest-
ing that at least one solution to the minimization occurs
atb = bij for some(i, j), anda = median{yi − bxi}.

In simple linear regression, it is usually not too hard
to spy outliers on the original plot. The use of robust
estimators of the parameters coupled with QQ plots of
the residuals is particularly useful in multiple regres-
sion. See Rousseeuw and Leroy (1987) and Cook and
Weisberg (1997) for general regression graphics.

4. BIVARIATE POSITIONS

So far, comparisons between distributions have been
based on one variable. The QQ plots can be extended
to multivariate data. For example, the data set on the
students’ driving speed includes other variables such
as height, weight and age. One may wish to compare
the two distributions (male and female) on height and
weight simultaneously. The idea is the same as in the
univariate example: We match up each male, say, with
the like-positioned female. First, we have to define po-
sition in a bivariate sense. There are many approaches,
but we present just one, which is fairly simple. See
Liu, Parelius and Singh (1999) and Rousseeuw, Ruts
and Tukey (1999) for other multivariate graphical tech-
niques. Serfling (2002) reviewed possible multivariate
quantiles and gave some criticism of the one we use.

A bivariate analog of the univariate position is to
imagine you are at pointz in the plane in the midst
of some bivariate data. For each observation, you look
at the arrow (of length 1) pointing from the obser-
vation toward you. Your position is then the average
of these arrows. To illustrate, Figure 7 shows the plot
of 37 men’s performances on written assignments and
exams in a statistics course. (These are different stu-
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FIG. 7. Assignments versus exams for the men.

dents from those in Section 3.) Three points are noted
for future reference. Figure 8 repeats the data, adding
the pointz = (60,70) and arrows pointing from each of
the observations toz. Becausez is relatively low, most
of the arrows are pointing to the lower left. “Averaging”
the arrows means averaging the unit vectors parallel to
the arrows, so that the arrow from the pointxj to z has
corresponding unit vector(z−xj )/‖z−xj‖, where for

a vectory = (y1, . . . , yd), ‖y‖ =
√

y2
1 + · · · + y2

d . For
this z, the average is(−0.6916,−0.5161). Thus the
position of this point relative to the data is in the lower
left. The “spatial median” is thez that has position 0.
Figure 9 adds the arrows pointing to the spatial median
for these data, which is(84.5539,85.8202). One can
imagine that those arrows do indeed average to 0.

Formally, the position for bivariate or, in general,
multivariate data is directly analogous to the univariate

FIG. 8. Assignments versus exams for the men, adding the arrows
pointing toward the point z = (60,70).

FIG. 9. Assignments versus exams for the men, adding the arrows
pointing toward the spatial median (84.5539,85.8202).

definition (1), once we define the multivariate version
of the sign function (2) to be the unit vector above.

DEFINITION 2. The position ofz ∈ R
d among the

pointsXn = {x1, . . . , xn} ⊂ R
d is

pos(z;Xn) = 1

n

n∑
i=1

Sign(z − xi),(8)

where Sign(w) is the multivariate sign of the vectorw
given by

Sign(w) =


w

‖w‖ , if w 
= 0,

0, if w = 0.

If F is a distribution function, then the position ofz

relative toF is

pos(z;F) = E[Sign(z − X)], whereX ∼ F.

See Small (1990), Koltchinskii (1997), Chaudhuri
(1996) and Möttönen, Oja and Tienari (1997) for more
details.

Notice that if the dimensiond = 1, then this defini-
tion is the same as the original Definition 1. The posi-
tion function in Definition 2 is often called thespatial
rank or geometric rank. We prefer the term “position”
here because “rank” may connote a univariate ordering
of bivariate data.

Figure 10 plots the positions of the data points.
Comparing the points labeledA, B andC in Figures
7 and 10, note that the outlierA in the raw data is
still on the periphery in the positions plot, but has been
brought in relative to the other points. PointB stays
on the edge and pointC is still somewhere in the mid-
dle. Generally, the points that were close together are
spread out in the positions plot and the ones far away
have joined the rest.
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FIG. 10. Bivariate positions of the assignments versus exams
data for the men. The labeled points are the positions of the
same-labeled points in Figure 7.

5. BIVARIATE QQ PLOTS

Using the bivariate positions from the previous sec-
tion, it is straightforward to match observations in one
sample with the observations with the same positions
in another. To illustrate, consider the data from Sec-
tion 3, but use the variables height in inches and weight
in pounds. LetX(2)

n2 = {x(2)
1 , . . . , x

(2)
36 } be the height

and weight vectors for the 36 men. As in Definition 2,
we find the positions of these observations relative to
the sample,qj = pos(x(2)

j ;X(2)
n2 ), where theqj ’s are

two-dimensional vectors. For the women, we find the
corresponding positions, that is, we solve forη

(1)
j in

the equationqj = pos(η(1)
j ;X(1)

n1 ). [The solutionη to
q = pos(η;Xn) is often called theqth spatial quantile;
see Koltchinskii (1997) and Chaudhuri (1996) for the-
oretical properties.] Now we have eachx

(2)
j matched

with its η
(1)
j . Table 2 shows four such matchups. The

women tend to be smaller than the men, but the amount
smaller is not constant. Thus the small man (5 ft
4 inches, 120 pounds) is matched with a women 2
inches shorter and 15 pounds lighter, while the big man

TABLE 2

Men Women

Height Weight Height Weight

64 120 62.02 104.97
68 167 64.00 135.00
72 140 65.92 111.99
75 244 67.14 161.14

FIG. 11. Bivariate QQ plot that compares men and women on
height and weight.

(6 ft 3 inches, 244 pounds), is matched with a woman
almost 8 inches shorter and over 80 pounds lighter.

Figure 11 graphs the matchings by drawing arrows
pointing from the men’sx(2)

j ’s to the women’sη(1)
j ’s.

Indeed, the arrows are generally pointing to the lower
left, where the larger the men, the longer the arrows.
The differences in lengths suggest that men and women
may differ proportionally rather than additively, which
leads to the QQ plot in Figure 12 based on the logs of
the data. In this plot, the arrows are all very similar,
both in direction and length, which suggests that in log
terms, the women and men differ primarily in location.

The average of these arrows is(0.06730,0.2380),
which means on average the women are 0.067 smaller
in log height and 0.238 in log weight. If we aug-
ment the women’s values by adding 0.067 to each

FIG. 12. Bivariate QQ plot that compares men and women on
log(height) and log(weight).
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FIG. 13. Bivariate QQ plot that compares men and women on
log(height) and log(weight), with the women shifted.

woman’s log height and 0.238 to log weight, we ob-
tain Figure 13. Now the bulk of the arrows are very
small, suggesting that the difference between men and
women is just a shift for those values, but for the ex-
tremes, the women are less extreme than the men. That
is, the smaller men are associated with larger aug-
mented women and the larger men are associated with
smaller augmented women. Thus the tails of the men’s
distribution are larger than the tails of the women’s
distribution.

As suggested by this example, if one distribution
is simply a shift of the other, then the arrows on the
QQ plot will all be the same length and pointing in the
same direction. If the two distributions differ only in
scale, then the arrows from the larger distribution to
the smaller will be pointing in toward the center, with
longer arrows emanating from the points farther from
the center.

Another example uses the assignment and exam
data. Figure 14 shows the QQ plot, with the arrows
pointing from the men to the women. Overall, the ar-
rows tend to point to the lower right, which means
that the women tend to do better on the assignments
and worse on the exams. However, the pattern is more
complicated than a direct shift. The arrows are quite
small when the men’s assignment scores are above
about 85, while much larger when those scores were
less than 85. Table 3 extracts what the plot suggests,
comparing the median scores for the men and women
split on the men’s assignment scores. For the higher as-
signment scores, the men do only 1 point better on ex-
ams and 3 points worse on assignments, while for the
lower assignment scores, the men do 3 points higher
on the exams, but 10 points worse on the assignments.

FIG. 14. Bivariate QQ plot that compares men and women on
assignments and exams.

Additional examples can be found in Marden (1998),
including QQ plots that compare samples to the bivari-
ate normal.

We remark that the multivariate positions depend
on the relative scales of the variables. That is, chang-
ing the scales of the variables will change the positions
and the spatial quantiles. For the data we used, the vari-
ables did not have wildly differing scales, but in prac-
tice it may be a good idea to first normalize the data,
for example, divide each variable by its mad. Alter-
natively, one could use coordinatewise positions: for
vector w, the ith component in its position vector is
the univariate position of thewi among the values of
theith variable for the observations. This vector has the
same relationship with the coordinatewise ranks given
in (3) for the univariate position. [It also arises from (8)
when using coordinatewise signs.] The coordinatewise
positions are invariant under separate scale changes for
the variables, but unlike our positions (Definition 2),
do not preserve the spatial arrangement of the data.
That is, multiplying the data by an orthogonal matrix
changes the picture. Chakraborty (2001) gave an ap-
proach that handles scale as well as rotation changes
by using affine invariant multivariate quantiles for the
QQ plots; see also Visuri et al. (2003).

TABLE 3

Men’s assignment > 85 Men’s assignment ≤ 85

Assignments Exams Assignments Exams

Women 93.55 86.51 79.41 82.34
Men 90.16 87.58 69.15 85.34
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6. CONCLUDING REMARKS

The purpose of this paper is to present QQ plots for
comparing distributions. The main tool is positioning,
used for QQ plots as well as for obtaining the Sen–
Theil estimate of the slope in linear regression. At each
stage, there are many choices to be made. We make
what we believe are reasonable choices, but certainly
not the only reasonable ones. Other procedures for es-
timating parameters robustly and defining multivariate
ranks or positions are certainly available, and everyone
is encouraged to try a variety of methods.

The data sets we use to illustrate the methods are
quite small, both in dimension and number of obser-
vations. The methods here easily apply to large sam-
ple sizes, but especially for bivariate QQ plots, one
should be circumspect in the number of points and ar-
rows plotted. That is, plotting more than 40 or 50 ar-
rows will likely make the plot unreadable, so if both
sample sizes are quite large, one should make a ju-
dicious choice ofη(2)

j ’s in (7) to use. One could ran-
domly choose 40, say, from one of the samples, but
a more systematic choice that covers the range of the
data more uniformly would be preferable.

For dimensionsd > 2, the arrows will be ind space,
so will be more difficult to visualize. One could project
the arrows to the various bivariate planes determined
by pairs of variables, create three-dimensional plots
(preferably dynamic) or use projection pursuit ideas to
project to the plane which maximizes the lengths (say)
of the projected arrows.

In any case, there is definite room for further work in
this area.
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