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Some Statistical and Computational
Challenges, and Opportunities
in Astronomy
G. Jogesh Babu and S. George Djorgovski

Abstract. The data complexity and volume of astronomical findings have
increased in recent decades due to major technological improvements in in-
strumentation and data collection methods. The contemporary astronomer is
flooded with terabytes of raw data that produce enormous multidimensional
catalogs of objects (stars, galaxies, quasars, etc.) numbering in the billions,
with hundreds of measured numbers for each object. The astronomical com-
munity thus faces a key task: to enable efficient and objective scientific ex-
ploitation of enormous multifaceted data sets and the complex links between
data and astrophysical theory. In recognition of this task, the National Virtual
Observatory (NVO) initiative recently emerged to federate numerous large
digital sky archives, and to develop tools to explore and understand these
vast volumes of data. The effective use of such integrated massive data sets
presents a variety of new challenging statistical and algorithmic problems
that require methodological advances. An interdisciplinary team of statis-
ticians, astronomers and computer scientists from The Pennsylvania State
University, California Institute of Technology and Carnegie Mellon Univer-
sity is developing statistical methodology for the NVO. A brief glimpse into
the Virtual Observatory and the work of the Penn State-led team is provided
here.
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sky surveys, classification.

1. INTRODUCTION: HISTORICAL RELATIONSHIP

Astronomy was perhaps the most widely studied
field of natural science from antiquity until the 18th
century. Observational and deductive astronomy led
to the foundations of many important concepts in
mathematical statistics, such as least squares, the
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theory of errors, curve fitting and minimax theory.
A brief history is given here.

The estimation of the error using the range of dis-
crepant astronomical observations was perhaps the
most important early encounter with a statistical con-
cept. Hipparchus (2nd century BC) realized that his
estimate of the length of a year was not without er-
ror, and he used the range to estimate the error. Other
early astronomers, until Tycho Brahe (1546–1601),
took the liberty of using the “best” of several discrepant
observations. Brahe’s use of the mean increased the
accuracy of his results, assisting Johannes Kepler
(1571–1630) in his rejection of circular models and
the discovery of his laws on elliptical planetary orbits
(Hald, 1990). In his 1632Dialogue of Two Chief World
Systems, Galileo Galilei included a detailed discussion
of what he called “observational” errors and a statis-
tical analysis of the “new star” (supernova) of 1572.
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Galileo recommended the value that required “the min-
imum amendments and smallest corrections” possi-
ble to the data, effectively the median. Thus Galileo’s
analysis already had the rudiments of least absolute
deviation estimation. Adrien Legendre published a
volume in 1805 on new methods for determining the
orbits of comets, which required estimation of a few
unknowns from a large system of linear equations. He
proposed minimizing sum of squares of errors. Laplace
(1747–1827) and Gauss (1777–1855) contributed to
the development of this “least squares method” and
the mathematical theory of errors over the next several
decades.

This relationship weakened during the later half of
the 19th century as astronomers turned principally to-
ward astrophysics, gaining insight into the physical
aspects of the universe, and statistics turned to applica-
tions in social sciences and industry. However, during
the last few decades, a resurgence of interest in statisti-
cal methods has emerged among astronomers, although
with different emphases than in the past. One major
factor is the flood of data produced by large astronom-
ical surveys at many wave bands. The application of
astronomical data to astrophysical questions is becom-
ing increasingly complex, outpacing the capabilities of
traditional statistical methods.

The summaries above represent only a small sam-
ple of the problems in modern observational astronomy
that require sophisticated statistical and data analyti-
cal techniques. Given the weak connections between
the statistical and astronomical communities in recent
decades, there is a need for improved communication
of existing statistical methods and the concerted devel-
opment of new methods for astronomy. It should be
mentioned here that there are isolated groups of col-
laborating astronomers and statisticians.

Recent cross-disciplinary efforts in astrostatistics
have produced valuable resources. A number of con-
ferences have been held in Europe (e.g., Rolfe, 1983;
Jaschek and Murtagh, 1990; Subba Rao et al., 1997)
and the United States (Feigelson and Babu, 1992,
2003; Babu and Feigelson, 1997), astrostatistical ses-
sions at large meetings are being organized, and an
introductory monograph on astrostatistics (Babu and
Feigelson, 1996) and a monograph on spatial statistics
in cosmology (Martinez and Saar, 2001) have emerged.

Today, astronomy is becoming one of the most
exciting and rapidly developing field of physical sci-
ences, creating new opportunities for collaborative
efforts with statistics. A brief introduction to the op-
portunities for collaborative work is provided in this
article.

2. ASTRONOMICAL SURVEYS

Astronomy is the field devoted to the study of physi-
cal objects beyond the Earth: our planetary system, the
Sun and stars, collectives of stars such as the Milky
Way galaxy, galaxies distributed throughout the Uni-
verse, including their active galactic nuclei such as
quasars, material between these structures, variously
called the interplanetary, interstellar and intergalac-
tic media, and cosmology, study of the Universe as a
whole. With rare exceptions, astronomical data are de-
rived from observations of electromagnetic radiation
produced by distant objects made with telescopes on
or in orbit around Earth. Some telescopes are placed
into orbit to get above the Earth’s atmosphere, which
absorbs or deteriorates most wavelengths of electro-
magnetic radiation. Observational astronomy is “big
science,” with major ground-based telescopes costing
hundreds of millions of dollars and space-based obser-
vatories costing billions of dollars.

Astronomical data from telescopes are first reduced
to usable forms, including images (bivariate integer or
real functions representing electromagnetic radiation
intensity as a function of location in the sky), spectra
(univariate intensities as a function of wavelength of
electromagnetic radiation) or time series (univariate
intensities as a function of observing time). These data
structures often mix these forms: for example, a radio
interferometer produces a data cube of electromagnetic
radiation intensity versus location and wavelength;
an X-ray telescope produces a four-dimensional data
set of individual photons as a function of location,
wavelength and time.

An important intermediate data product between
the raw telescope data and scientific investigation
is the astronomical survey. Common forms for sur-
veys are atlases of sky images at a particular
wavelength and multivariate data bases that give prop-
erties (columns) for each object (row) observed. Many
important surveys are commonly referred to in the
astronomical community by their acronyms. Exam-
ples of some of the current and forthcoming surveys
across the electromagnetic spectrum include FIRST
[faint images of the radio sky at twenty centimeters
(wavelength)] and NVSS [new VLA (very large ar-
ray) sky survey] radio surveys (106 sources); MAP
(microwave anisotropy probe) and Planck (formerly
known as COBRAS/SAMBA—cosmic background ra-
diation anisotropy satellite/satellite for measurement of
background anisotropies) microwave band all-sky im-
ages; IRAS (infrared astronomical satellite) and SIRTF
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(space infrared telescope facility) mid/far-infrared sur-
veys (105 objects); 2MASS (2-micron all-sky survey)
and DENIS [deep near infrared survey (of the south-
ern sky)] near-infrared surveys (108 objects); USNO
(United States Naval Observatory), SDSS (Sloan dig-
ital sky survey) and DPOSS (digital Palomar Obser-
vatory sky survey) visible band surveys (109 objects);
ROSAT (Röntgen satellite), Chandra and XMM (X-ray
multi-mirror satellite) X-ray surveys (105 sources);
and CGRO (Compton gamma-ray observatory) and
GLAST (gamma-ray large area space telescope)
gamma-ray surveys (103 sources). For details on
NASA’s astrophysics data environment, see Bredekamp
and Golombek (2003).

3. MAJOR DATA AVALANCHE

Astronomy has become an immensely data-rich field
and is growing. A paradigm shift is underway in the
very nature of observational astronomy. Whereas in
the past a single astronomer or small group might
observe a handful of objects, today large digital sky
surveys are becoming the norm. Data are already
streaming in from surveys such as the 2MASS and
the SDSS, which are providing maps of the sky at
infrared and optical wavelengths, respectively. The
synoptic sky surveys [e.g., solar system patrols such
as NEAT (near Earth asteroid team) or LONEOS
(Lowell Observatory near Earth object search), GRB
patrols such as LOTIS (Livermore optical transient
imaging system) or ROTSE (robotic optical transient
search experiment), microlensing experiments such
as MACHO (massive compact halo object search)
and OGLE (optical gravitational lensing experiment),
etc.] will add another dimension—time—to the data.
Thus, the large digital sky surveys are becoming the
dominant source of data in astronomy. There are more
than 100 terabytes of data in major archives and
it is growing rapidly. A typical sky survey archive
has approximately 10 terabytes of image data and
a billion detected sources (stars, galaxies, quasars,
etc.), with hundreds of measured attributes per source.
These surveys span the full range of wavelengths,
radio through gamma-ray, yet they are just a taste of
the much larger data sets to come. Yearly advances
in electronics bring new instruments that double the
amount of data collected each year and lead to the
exponential growth of information in astronomy. Thus
data sets orders of magnitude larger, more complex
and more homogeneous than in the past are on the
horizon. In comparison, the size of the human genome

is about 1 gigabyte and that of the Library of Congress
is about 20 terabytes.

Consequently, the data volumes here are several or-
ders of magnitude larger than what astronomers and
statisticians are used to dealing with. These massive
data sets are also much more complex (e.g., tens or
hundreds of measured attributes per source) and higher
dimensional in nature than what we are used to. This
great opportunity comes with a commensurate tech-
nological challenge: how to optimally store, manage,
combine, analyze and explore these vast amounts of
complex information, and do it quickly and efficiently?
Some powerful techniques that already exist can be
tested in these new astronomical applications; others
will have to be developed, in collaboration, by as-
tronomers, statisticians and computer scientists. The
range of astrostatistical challenges is truly vast. A few
of these issues are discussed later.

4. PANCHROMATIC VIEW OF THE UNIVERSE

The current and forthcoming data (> 100 terabytes)
spans the full range of wavelengths, radio through
X-ray and beyond, and potentially provide a panchro-
matic and less biased view of the universe. The sky
looks differently at different wave bands. X-rays and
other wave bands such as radio, infrared, ultraviolet
and gamma, cannot be seen with the human eye, so
they do not have any color in the usual sense. To see in-
visible wavelengths, detectors such as the instruments
on Chandra that are specially designed to see these
other wavelengths are needed. Images taken by detec-
tors that see invisible colors are called false color im-
ages. The colors used by astronomers to construct a
composite picture are notreal, but are chosen to bring
out important details.

Observations at different wavelengths carry impor-
tant information about the nature of celestial objects.
Figure 1 shows X-ray and optical images of two gi-
ant galaxy clusters, located 2.5 and 3.1 billion light
years from Earth, respectively. The Chandra data (left)
provide a detailed temperature map for the hot gas
and allow astronomers to precisely determine the to-
tal masses of the clusters. Most of the mass is in the
form of dark matter. The Hubble data (right) place in-
dependent constraints on the masses of the clusters that
confirm the Chandra results. A panchromatic approach
to the universe reveals a more complete physical pic-
ture. Figure 2 shows views of the Crab Nebula (a su-
pernova remnant and pulsar that was first sighted by
Chinese astronomers in 1054 AD) at X-ray, optical, in-
frared and radio. Chandra’s X-ray image of the Crab
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FIG. 1. X-ray/optical sets of two giant galaxy clusters, Abell 2390 and MS2137.3-2353, located 2.5 and 3.1 billion light years from
Earth, respectively. Chandra’s large scale X-ray images (left) show hot gas filling the two giant galaxy clusters, while Hubble’s smaller scale
optical images (right) show the distribution of galaxies in the central regions of the same clusters. X-ray images courtesy of NASA/IOTA/Allen
et al.; optical images courtesy of the HST.

FIG. 2. Multiwavelength views of the Crab Nebula, a supernova remnant and pulsar that was first sighted by Chinese astronomers
in 1054 AD. It is 6000light years from Earth. Images courtesy of NASA/CXC/SAO.
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FIG. 3. A panchromatic view of the Crab Nebula seen in Figure 2.
Image courtesy of NASA/CXC/SAO.

Nebula directly traces the most energetic particles be-
ing produced by the pulsar. This amazing image re-
veals an unprecedented level of detail about the highly
energetic particle winds and will allow astronomers
to probe deep into the dynamics of this cosmic pow-
erhouse. As time goes on and the electrons move
outward, they lose energy to radiation. The diffused
optical light comes from intermediate energy particles
produced by the pulsar. The infrared radiation comes
from electrons that have energies lower than those that
produce the optical light. Radio waves come from the
lowest energy electrons. They can travel the greatest
distance and define the full extent of the nebula. The
composite picture in Figure 3 was constructed by over-
laying the data from the four wavelengths in Figure 2.
Astrophysical phenomena generated by these objects
can be understood only by combining data at several
wave bands. This requires federation of different sky
surveys, matching the source objects in different wave-
lengths.

Another phenomenon revealed by multiwavelength
studies is exemplified by Figure 4 (Hornschemeier
et al., 2000). Using NASA’s Chandra X-ray observa-
tory, astronomers have made the first long-duration
X-ray survey of the Hubble Deep Field North [a small
patch of the sky, selected for unprecedented deep imag-
ing by the Hubble Space Telescope (HST) in the visible
light and then followed by other deep observations
on other wavelengths, including X-ray]. They detected
X-rays from six of the galaxies in the field and were
surprised by the lack of X-rays from some of the most
energetic galaxies in the field. The X-ray emitting ob-
jects discovered by the research team are a distant
galaxy thought to contain a central giant black hole,
three elliptically shaped galaxies, an extremely red dis-
tant galaxy and a nearby spiral galaxy. However, it

was very surprising to find that none of the X-ray
sources lined up with any of the submillimeter-wave
sources. The submillimeter sources are extremely lu-
minous, dusty galaxies that produce large amounts of
infrared radiation. This is an example of an astrophys-
ical process where truncation/censoring is present in
one or more coordinates. There are no counterparts to
nonparametric methods such as product limit estima-
tion in higher dimensions. There is very little work
in the statistical literature to handle multivariate data
where truncation and/or censoring is present in one or
more dimensions. More work needs to be done by sta-
tisticians in this area for effective analysis of current
and forthcoming astronomical data.

Typically, astronomical data start as digital images
over a certain portion of the sky at a certain wave-
length. Instrumental effects are removed from the data
to produce a quantifiable image of flux (light energy
per square centimeter per second) as a function of the
two spatial coordinates (projected on the sky); in some
rare cases, data cubes rather than two-dimensional im-
ages are produced, where the third dimension is the
wavelength or time. Some source-finding algorithm is
then run, which identifies individual (discrete) astro-
nomical sources (e.g., stars, galaxies and quasars) and
parametrizes the way their flux is distributed spatially,
in wavelength and so forth. The number of independent

FIG. 4. Results of the first long-duration X-ray survey of the
Hubble Deep Field North. Chandra detected X-rays from six of
the galaxies in the field. A surprise result that must be studied
further is the lack of X-rays from some of the extremely luminous
galaxies at huge distances (over 10 billion light years) from
Earth. The Chandra results raise questions about the current
theories used to explain the high energy output of these objects.
Optical images courtesy of NASA/HST; X-ray images courtesy of
NASA/Pennsylvania State University.
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measured parameters for each source then defines the
dimensionality of a parameter space, and each source
can be represented as a point in this parameter space of
observed properties. Examples of parameters include
fluxes, flux ratios (also known as colors), sizes, mea-
sures of the image shapes and concentrations. Some
of the modern digital sky surveys measure hundreds
of attributes for each detected source. This parameter
space representation then, in principle, contains all the
information present in the original data, but in a con-
densed form: it is associated with the detected sources
and ignores the “empty” pixels. Furthermore, the data
(which start as panoramic imagery) are transformed
into a quantitative form suitable for statistical analysis.

The systematic, panchromatic approach will enable
new science, in addition to what can be done with
individual surveys. It will enable meaningful, effective
experiments within these vast data parameter spaces.

5. THE NATIONAL VIRTUAL OBSERVATORY

Many astronomical observations (especially the
more traditional ones) consist of measurements of
properties of individual, preselected sources or samples
thereof (e.g., flux measurements at some wavelength
for a sample of 100 nearby spiral galaxies, which for
some reason the astronomer wants to know). Such ob-
servations, obtained with many different telescopes,
instruments, integration times and so forth, are very
heterogeneous in their properties (depth, wavelength
coverage, spatial resolution, etc.), and as such are not
easily converted into homogeneous data sets suitable
for a proper statistical analysis. In the recent past, ob-
servational astronomy involved such pointed heteroge-
neous observations (∼megabyte–gigabyte) with small
samples of objects (∼10–1000). The current trend
is toward large, homogeneous sky surveys (multiter-
abytes, with 106–109 sources) that lead to archives of
pointed homogeneous observations. As mentioned ear-
lier, forthcoming projects and sky surveys are expected
to deliver data volumes measured in petabytes with re-
peated, multiple-epoch measurements for billions of
sources. For each object, a few to∼100 parameters are
measured, most (but not all) with quantifiable errors
and missing data in one or more dimensions. Individu-
ally each of these surveys will lead to many advances in
our understanding of the physical processes that drive
the formation and evolution of the Universe. As seen in
the examples above, in combination they will provide
the first digital map of the local and distant Universe
across many decades of wavelength of the electromag-
netic spectrum.

The astronomical community thus faces a key task:
to enable efficient and objective scientific exploitation
of enormous multifaceted data sets. The National Vir-
tual Observatory (NVO) initiative recently emerged,
in recognition of this need and in response to a top
priority recommendation by the National Academy of
Sciences’ Decadal Report on astronomy for 2000–
2010 (Taylor and McKee, 2000), to federate numer-
ous large digital sky archives, both ground based and
space based, and to develop tools to explore and under-
stand these vast volumes of data. The effective use of
such integrated massive data sets presents a variety of
new challenging statistical and algorithmic problems
that require methodological advances. A major effort
is needed by cross-disciplinary teams of astronomers,
computer scientists and statisticians to bring advances
in these fields into the toolbox of observational astron-
omy. The concept of a Virtual Observatory (VO) is now
being pursued worldwide; several major projects are
under way in Europe and elsewhere.

The concept of the Virtual Observatory, its goals,
challenges and possible approaches are described,
for example, in the report of the National Virtual
Observatory Science Definition Team (available at
http://nvosdt.org), in a white paper (available at
http://www.arXiv.org/abs/astro-ph/0108115) and in nu-
merous articles in the volumes edited by Brunner,
Djorgovski and Szalay (2001) and Banday, Zaroubi
and Bartelmann (2001). Also see the articles on mas-
sive data sets by Djorgovski et al. (2003), Nichol
et al. (2003), Strauss (2003), Szalay and Matsubara
(2003) and others in the proceedings of the confer-
ence titled Statistical Challenges in Modern Astron-
omy III (Feigelson and Babu, 2003). Many articles on
the current status of the NVO appear in the proceedings
of the ESO/ESA/NASA/NSF Astronomy Conference
(June 2002, Garching, Germany),Toward an Interna-
tional Virtual Observatory (http://www.eso.org/
gen-fac/meetings/vo2002/).

Implementation of the NVO involves significant
technical challenges on many fronts. Significant efforts
deal with applied computing science and information
technology aspects, but scientific discovery requires
more than effective storage and distribution of infor-
mation. How can a data set that comprises hundreds of
millions of objects each with dozens of attributes be ex-
plored? How can correlations and anomalies within the
data sets be identified? How can the detected sources
to isolate subpopulations of astrophysical interest be
classified? How can the data to constrain astrophysi-
cal interpretation, which often involve highly nonlinear
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parametric functions derived from fields such as phys-
ical cosmology, stellar structure or atomic physics, be
used?

The challenges posed by the analysis of large and
complex data sets expected in the NVO-based research
are driven both by the size and the complexity of the
data sets (billions of data vectors in parameter spaces
of tens or hundreds of dimensions), by the heterogene-
ity of the data and measurement errors, by selection ef-
fects (Figure 4) and censored data, and by the intrinsic
clustering properties (functional form, topology) of the
data distribution in the parameter space of observed at-
tributes. The technological challenges for the NVO in-
clude development of efficient data base architectures
and query mechanisms, and data standards. Techniques
are needed for systematic exploration of the observ-
able parameter spaces of measured source attributes
from federated sky surveys to search for rare or even
new types of objects. These will include supervised
and unsupervised classification and clustering analysis
techniques. Scientific questions one may wish to ad-
dress include objective determination of the numbers
of object classes present in the data, and the member-
ship probabilities for each source; searches for unusual,
rare, or even new types of objects and phenomena;
and discovery of physically interesting (generally mul-
tivariate) correlations which may be present in some of
the clusters.

A key challenge for the NVO will be developing
ways to simultaneously analyze data from several of
the dozens of astronomical data bases available today.
Each of these data bases is organized differently, which
makes it quite difficult to perform analyses of data from
several collections simultaneously. The NVO would
not only link the major astronomical data assets into an
integrated, but virtual, system to allow automated mul-
tiwavelength search and discovery among all cataloged
astronomical objects, but also would provide advanced
statistical and data analysis methods for the astronom-
ical community.

Enormous opportunities exist for sustained statistical
research. It will create data standards and tools for
mining data, and provide a link between the exciting
astronomical data and the academic communities in
many disciplines including statistics. Most importantly,
the NVO will provide access to powerful new resources
to scientists and students everywhere, who could do
first-rate observational astronomy regardless of their
access to large ground-based telescopes. The NVO also
will facilitate the inclusion of new massive data sets,

and optimize the design of future surveys and space
missions.

The challenges posed by the analysis of massive
data sets in astronomy (e.g., in the context of a
VO) are common to many or all information-intensive
sciences today, with potential uses in many other
modern fields of endeavor: technology, commerce,
national security and so forth. Thus, the tools and
the methodologies developed in this context are likely
to find useful applications elsewhere, with potentially
great interdisciplinary and societal benefits.

6. CURRENT NVO RELATED STATISTICAL AND
DATA ANALYTIC EFFORTS

Our team, consisting of statisticians, computer sci-
entists and astronomers from Penn State, Carnegie
Mellon and Caltech, is addressing some of the crit-
ically important statistical challenges raised by the
NVO. A brief description of our team’s efforts on a
few of these issues is presented here. Our aim is not to
present detailed statistical analysis, but to point to work
in progress by the collaborative teams.

6.1 Low-Storage Percentile Estimation for
Streaming Massive Data

In dealing with massive or streaming data sets,
conventional statistical methods of testing hypotheses
and building models for prediction may not be viable.
When the data are streaming in from telescopes, we
do not have access to the entire data set at once;
we only have access to the data points sequentially.
Even the computation of test statistics and estimates of
parameters such as the simple median, which requires
sorting of the entire data, may pose difficulty in such
cases. Standard sorting algorithms often require that
the entire data set be placed into memory. When
confronted with data bases containing millions or
billions of objects, this may be impossible due to the
limitations on memory storage and CPU.

Liechty, Lin and McDermott (2003) recently de-
veloped a sequential procedure to estimate apth
quantile (0< p < 1). It is a low-storage sequential al-
gorithm that uses estimated ranks and weights to calcu-
late scores that determine the most attractive candidate
data points to keep as the estimate of the quantile. This
method requires storing only a fixed number, saym, in
memory for sorting and ranking. Initially, each of these
points is given a weight and a score based onp. Now a
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new point from the data set is put into the array and all
the points in the existing array above it have their ranks
increased by 1. The weights and scores are updated for
thesem + 1 points. The point with the largest score is
then be dropped from the array and the process is re-
peated. See Liechty, Lin and McDermott (2003) for the
details.

Figure 5 shows simulation results for estimation of
the median withm = 50. In this example, data of
sizen = 100,000 points are generated from a standard
Cauchy distribution. In addition to the estimates of the
median, the sample median based on the points seen
up to any given stage is also computed sequentially
for comparison purposes. The figure indicates that the
estimates obtained by this method converge very fast.
The method is extended to estimate a number of quan-
tiles, including those in the tail region, simultaneously.
These estimates can now be used to estimate the prob-
ability density function. Density estimation based on
this procedure and a multivariate extension are under
investigation. The multivariate extension will help in
the clustering analysis when the data are streaming.

FIG. 5. Sequential plot of the difference between the median
estimated using the low-storage method and the sample median for
a Cauchy data set based on 100,000points.

6.2 Multivariate Classification

Large multivariate astronomical data bases frequent-
ly contain mixtures of populations which must be dis-
tinguished from each other. The main point here is that
astronomers want to know how many distinct classes
of sources there are on the basis of some statistical cri-
terion. Ultimately, the goal is to get a model which fits
the data in some defined way. Typically, astronomers
do not have a specific mathematical model in mind.
Typical scientific questions posed include:

• How many statistically distinct classes of objects
are in this data set and which objects are to be
assigned to which classes, along with association
probabilities? Are previously unknown classes of
objects present?

• Are there rare outliers, individual objects with a low
probability of belonging to any one of the dominant
classes? Discovery of previously unknown types of
objects is possible.

• Are there interesting correlations among the prop-
erties of objects in any given class and what are
the optimal analytical expressions of such correla-
tions? Some of the correlations may be spurious
(e.g., driven by sample selection effects) or simply
uninteresting (e.g., objects brighter in one optical
bandpass will tend to be brighter in another optical
bandpass).

Several complications may arise. The object classes
from multivariate “clouds” in the parameter space may
have a power law or exponential tails in some or all
of the dimensions, and some may have sharp cutoffs.
The clouds may be well separated in some of the
dimensions, but not in others. How can we objectively
decide which dimensions are irrelevant and which ones
are useful? Thetopology of clustering may not be
simple: there may be clusters within clusters, holes in
the data distribution, multiply connected clusters and
so forth (Djorgovski et al., 2003; Nichol et al., 2003).

A classical approach to multivariate classification in-
volves maximizing a likelihood; the expectation maxi-
mization (EM) algorithm is a widely used method for
this purpose. A mixture model ofN Gaussians, where
N is determined from the data, to adaptively smooth
and parametrize complex, multidimensional astronom-
ical data sets is being addressed. Such nonparametric
density estimators are computationally impractical for
today’s enormous data bases. The strategy is to use fast
multiresolutional,k-dimensional (mrKD) tree codes.
Figure 6 shows an example of a mrKD tree which is an
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FIG. 6. A k-dimensional tree. The data are represented as a tree of nodes; each node has two daughter nodes as one splits the data in two
(along the axis with the largest dimension). On the left are the nodes for the third level of the tree (the top level has one node; the second
level has two nodes). The right side plot shows level 5 in the tree. The individual datum points in this two-dimensional space are shown as
dots, while the bounding boxes of the nodes are shown as lines. The cached statistics, mean and covariance, are plotted as a large dot and
ellipse. Images courtesy of Robert Nichol.

optimal index scheme that utilizes the emerging tech-
nology ofcached statistics in computer science to store
sufficient statistics for the EM calculation at each node
in the tree. For various counting queries, one does not
need to traverse the whole tree, but simply use these
stored statistics to rapidly return the necessary count.

Genovese and Wasserman (2000) developed a sta-
tistical theory to study the behavior of complex mix-
ture models. When the number of components of the
mixture is allowed to increase as sample size increases,
the model is called a mixture sieve. Standard penalized
likelihoods, such as the Bayesian information crite-
rion (BIC) or Akaike information criterion (AIC), may
not always be suitable for astronomical data. A gen-
eral jackknife type (leave-one-out) likelihood proce-
dure that reduces bias substantially and works better
than AIC and BIC is under development. For high en-
ergy astronomy, most detections reside in the Poisson
regime where Gaussian mixture models may be less
appropriate.

Most astronomical applications include two types
of noise: (1) random projection of uninteresting astro-
nomical objects or detector background on top of the
signal under study and (2) measurement errors, which
often are correlated with signal intensity. The first type
can be treated with a smooth component in the mixture
model, while the second type requires the incorpora-
tion of errors into the data of the mixture model.

6.3 Search for Rare Objects

The concept of exploring the universe through a sys-
tematic study of the observable parameter space was
pioneered by Zwicky in the 1930s (Zwicky, 1957).
Some astronomical objects such as high-redshift
quasars are rare to locate. How do we systematically
search in massive data bases and classify rare ob-
jects? Figure 7 illustrates an example of discoveries
of high-redshift quasars and type-2 quasars (quasars
where the luminous “central engine” and the region
close to it, from which the characteristic broad emis-
sion lines originate, are obscured by a dusty disk or a
torus, leaving only some indirect or subtle observable
signatures that such a luminous object is present in an
otherwise inconspicuous galaxy) in the digital Palomar
observatory sky survey (DPOSS). Density estimation
using EM–AIC scoring in color space helps in out-
lier detection. A color is defined as the ratio of fluxes
(brightness) at two different wavelengths; it does not
depend on the distance to the source. These ideas ex-
tend to arbitrary dimensional color space (space whose
axes are object colors), where the ability to visual-
ize data without projecting down to a lower dimen-
sionality subspace is lost. These quasars were selected
in a very unsophisticated manner in this color space.
Since the distribution is very clearly non-Gaussian, the
best fit Gaussian from the core of the stellar locus
is evaluated using the quartiles. Whereas quasars are
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FIG. 7. An example of a color parameter space selection of as-
trophysically interesting types of objects (high-redshift and type-2
quasars) from DPOSS. The dots are normal stars with r ∼ 19 mag.
Solid circles are some of the high-redshift (z > 4; z is the customary
notation for the redshift, which is a nonlinear measure of distance
in cosmology) quasars; open circles are some of the type-2 quasars
found in this survey.

morphologically indistinguishable from ordinary stars,
this color parameter space offers good discrimination
among these types of objects (Djorgovski et al., 2001).
For high energy astronomy, most detections reside in
the Poisson regime, where Gaussian mixture models
may be less appropriate. Mixture models based on
other profiles including Poisson, mixtures of Gaussian
with very different variances but the same means (used
to model the point spread functions of telescopes), and
galaxy profile functions need to be examined.

Another approach to outlier detection that involves
Bayesian networks and mixture modeling is under in-
vestigation. Rather than using a single joint probabil-
ity function, which would require a prohibitively large
number of parameters to fit, a Bayesian network fac-
tors the representation into smaller conditional proba-
bility representations for subsets of the variables. The
factored model has fewer parameters than would be
necessary to model the full density function directly.
Bayes nets are most useful when their structure can be
estimated from data. Estimation occurs at two levels.
The outer loop of the algorithm searches for the best
top level structure. Then, for each candidate top level
structure, the model for each variable and its parents
must be estimated.

7. CONCLUSIONS

The technical and methodological challenges that
are faced by the virtual observatory are common to
most data-intensive sciences today (commerce, in-
dustry, security). Interdisciplinary exchanges between
fields such as astronomy, physics, biology and earth
sciences are highly desirable to avoid wasteful duplica-
tion of effort and cost. The old research methodologies,
geared to deal with data sets many orders of magni-
tude smaller and simpler, are no longer adequate. The
size of the data set affords us the opportunity to an-
swer many interesting cosmological questions, but also
presents many interesting statistical and computational
challenges. For example, in searching for clusters of
galaxies, we must account for background clutter, mea-
surement error and the presence of unusual shapes
such as filaments and sheets. Effective techniques are
needed to deal with these problems on a large scale.
The key issues are methodological: we have to learn to
ask the new kinds of questions enabled by the massive
data sets and the current technology.

Astronomers’ need for advanced statistical methods
is reciprocated by statisticians’ need for interaction
with practicing scientists in many fields. Confrontation
with astrostatistical challenges nurtures the develop-
ment of statistical methodology that will have poten-
tial applications to other areas. This is especially true
for the methods developed to analyze large data bases,
which may find applications in market research, low-
storage sequential signal processing and multimedia
traffic flows. Although relatively few statisticians have
seriously engaged in astrostatistical research or con-
sulting to date, a number of leading statisticians believe
that the ground is unusually fertile for growth. Hun-
dreds of studies of methodological interest are pub-
lished annually in astronomy, and some of the most
critical astrophysical questions of the 21st century have
a major astrostatistical component. Effective visualiza-
tion of high-dimensional parameter spaces and mul-
tivariate correlations is needed. Our favorite graphics
package is not enough to handle such massive high-
dimensional data. A hybrid/interactive clustering and
visualization approach is needed.

Great opportunities for collaborations and partner-
ships between astronomers, applied computer scien-
tists and statisticians exist. Problems and challenges
posed by the new astronomy may enrich and stim-
ulate new computer science and statistical develop-
ments. The NVO will serve asan engine of discovery
for astronomy in the 21st century.
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