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Probability, Causality and the Empirical
World: A Bayes–de Finetti–Popper–
Borel Synthesis
A. P. Dawid

Abstract. This article expounds a philosophical approach to Probability and
Causality: a synthesis of the personalist Bayesian views of de Finetti and
Popper’s falsificationist programme. A falsification method for probabilistic
or causal theories, based on “Borel criteria,” is described. It is argued that this
minimalist approach, free of any distracting metaphysical inputs, provides
the essential support required for the conduct and advance of Science.
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1. INTRODUCTION

The neo-Bayesian revival of the 20th century was
stimulated by the contributions of such workers as
Ramsey (1926), de Finetti (1974–1975), Savage (1954)
and Lindley (1965), with their strong emphasis onper-
sonal probability (more often, but less appropriately,
called subjective probability)—an interpretation that
is, however, at best only implicit in the original mem-
oir of Bayes (1763). Conversely, there is relatively
little attention paid by personalist Bayesian statisti-
cians (although more by Bayesian philosophers: see,
e.g., Howson and Urbach, 1993) to what was arguably
Bayes’s principal purpose: to provide a machinery for
drawing causal conclusions. Thus if C is a possible
cause of an observed effectE, Bayes’s theorem pro-
vides exactly the requisite logic to assessP (C|E), the
believability of causeC in the light of the observa-
tion, in terms of the more basic ingredientsP (E|C),
the probability of obtaining the effectE when cause
C is in fact operating, andP (C), the prior believability
of C.

The personalist Bayesian viewpoint remains contro-
versial, even among Bayesians. The principal objection
has been that Science is, or should be, the search for ob-
jective facts and laws, together with an associated view
that the instruments and arguments used in that search
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should likewise have an objective status, independent
of any personal views of the Scientist. I myself have
been enormously influenced by the logical cohesion
and persuasiveness of the uncompromisingly person-
alist approach to Probability set out by de Finetti. At
the same time I do take seriously the criticism that, if
this theory is to be more than a branch of Psychology,
some further link with external reality is needed.

In this article I describe my attempt to relate personal
probabilities to the external world. In fact the scope
of this program is wider, since the personalist—or
any other—interpretation of probability is not essential
to it. I consider general scientific theories of the
world, expressed mathematically in a way that involves
probabilistic terms (supposed to satisfy Kolmogorov’s
axioms), and ask what it means for such a theory to do a
good or bad job of describing the world. The suggested
answer, based on Borel’s “single law of chance,” is
indirect and subtle, but I believe it serves the desired
purpose well.

I also consider here the empirical content and mean-
ing of causal probabilistic models. These have recently
attracted considerable interest in the general statistical
community (Rubin, 1978; Robins, 1989; Pearl, 2000;
Shafer, 1996). In Dawid (2000) I pointed out some
worrying metaphysical aspects of currently popular ap-
proaches and outlined an alternative decision-theoretic
approach which avoids these. This is a straightfor-
ward extension of regular probabilistic modelling and
is amenable to analysis by the identical methods and
tools. Consequently, we can apply the philosophical
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understandings developed for probabilistic models to
understand causal models also.

I have been developing the principal ideas described
here over many years. For the relationship between
probability modelling and reality, see Dawid (1982b,
1984c, 1985a–c), Seillier-Moiseiwitsch and Dawid
(1993), Dawid (1997) and Dawid and Vovk (1999).
For exchangeability and its extensions, see Dawid
(1977, 1982a, 1984b), Consonni and Dawid (1985) and
Dawid (1985c, 1986a, 1988). For causality, see Dawid
(1979, 1984a, 2000, 2002, 2003). The current article
attempts to provide a “position statement,” locating
these scattered contributions within a (reasonably)
coherent overall philosophy.

1.1 Preview

Section 2 briefly describes the two philosophies, due
respectively to de Finetti and Popper, that have in-
spired my own approach to understanding probabilis-
tic models of the world. Although these thinkers would
generally be regarded as having very different, even
mutually inconsistent, viewpoints, I believe that a syn-
thesis of their principal points of emphasis is both pos-
sible and valuable.

In Section 3, I review and exemplify various ideas
that have been propounded, from differing philosoph-
ical standpoints, on the meaning of probability and its
real-world interpretation. In particular, Section 3.3.4
describes an indirect approach achieving the desired
de Finetti–Popper synthesis. Section 4 then uses this as
a basis for a general method, based on “probability cal-
ibration,” for testing probabilistic models through ap-
propriate comparisons of theoretical probabilities and
observed frequencies. The argument is extended to
causal modelling in Section 5. Section 6 contains some
concluding remarks.

2. TWO PHILOSOPHIES

2.1 de Finetti

de Finetti’s philosophical approach might be de-
scribed as “Machian,” or “extreme positivist.” It as-
cribes meaning only to those events and quantities that
areobservable in the world and provides various mea-
suring instruments (e.g., gambling scenarios, proper
scoring rules, decision problems) that can be used to
quantify Your1 uncertainty about any such unknown

1 Following de Finetti, we denote by “You” the subject whose
uncertainty and personal probabilities areunder consideration.

quantity. In restricting the scope of uncertainty judg-
ments to genuine observables, de Finetti can himself be
regarded as following in the footsteps of Bayes (1763),
who derived the uniform prior distribution for an unob-
servable binomial probability parameter from the more
basic judgment of a discrete uniform predictive distri-
bution for the number of successes in the nextn trials.

de Finetti showed thatcoherence, a simple economic
behavioral criterion—essentially, that You ought to
avoid a combination of decisions that is guaranteed to
lead to loss—is all that is needed to ensure that Your
uncertainty can be represented and manipulated using
the mathematical theory of probability, including, as an
important special case, Bayes’s theorem.

2.1.1 Exchangeability. Perhaps the greatest and
most original success of de Finetti’s methodological
program is his theory ofexchangeability (de Finetti,
1937). When considering a sequence of coin-tosses,
for example, de Finetti does not assume—as would
typically be done automatically and uncritically—that
these must have the probabilistic structure of Bernoulli
trials. Instead, he attempts to understand when and why
this Bernoulli model might be reasonable. In accor-
dance with his positivist position, he starts by focusing
attention directly on Your personal joint probability
distribution for the potentially infinite sequence ofout-
comes (X1,X2, . . . ) of the tosses—this distribution
being numerically fully determined (and so, in particu-
lar, having no “unknown parameters”). Exchangeabil-
ity holds when this joint distribution is symmetric, in
the sense that Your uncertainty would not be changed
even if the tosses were first to be relabelled in some
fixed but arbitrary way (so that, e.g.,X1 now refers
to toss 5,X2 to toss 21,X3 to toss 1, etc.). In many
applied contexts You would be willing to regard this
as an extremely weak and reasonable condition to im-
pose on Your personal joint distribution, at least to
an acceptable approximation. de Finetti’s famous rep-
resentation theorem now implies that, assumingonly
exchangeability, we can deduce that Your joint dis-
tribution is exactly the sameas if You believed in a
model of Bernoulli trials, governed by some unknown
parameterp, and had personal uncertainty aboutp

(expressed by some probability distribution on[0,1]).
In particular, You would give probability 1 to the ex-
istence of a limiting relative frequency of H’s in the
sequence of tosses, and could take this limit as the de-
finition of the “parameter”p. Because it can examine
frequency conceptions of Probability from an external
standpoint, the theory of personal probability is able to
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cast new light on these—an understanding that is sim-
ply unavailable to a frequentist, whose very conception
of probability is already based on ideas of frequency.
Even more important, from this external standpoint
these frequency interpretations are seen to be relevant
only in very special setups, rather than being funda-
mental: for example, there is no difficulty in principle
to extending the ideas and mathematics of exchange-
ability to two-dimensional, or still more complicated,
arrays of variables (Dawid 1982a, 1985c).

2.2 Popper

The scepticism toward the personal Bayesian ap-
proach among many statisticians might be countered
by exhibiting some way of confronting Your psy-
chological uncertainty assessments with what actually
happens in the world. One such approach (see Dawid,
1986b) can be based on “proper scoring rules”—
quantative measures of the success of probability eval-
uations in the light of observed outcomes, which can
be used to compare rival evaluations. Here, however,
we shall be concerned with absolute, rather than rela-
tive, assessments of empirical adequacy.

The falsificationist approach of Karl Popper (1959)
takes this issue seriously. Popper classifies theories
as either “physical” or “metaphysical.” A physical
theory makes predictions about the real world that
can be tested by observation. If such a prediction
fails, the theory is discredited and must be discarded
or modified. However, passing such a test does not
in itself render the theory “proven” or “true” in any
sense—indeed, from a thoroughgoing falsificationist
standpoint (perhaps even more thoroughgoing than
Popper himself would have accepted), we can dispense
with such concepts altogether. It may well be the fate of
any theory we can ever devise to be eventually falsified;
we can only hope that our currently unfalsified theory
or theories will prove useful for understanding and
predicting the world, during their limited lifespan.
Popper’s approach takes seriously Hume’s argument
that there can be no noncircular argument justifying
induction, but, rather than throwing in the towel,
decides to get on with the job and hope for the best. It
is better described as a methodological program rather
than a philosophy. It is entirely agnostic about such
deep matters as the “truth” of intellectual theories.
Indeed, one does not have to subscribe to the view
that falsification is all there is to science to find it a
fruitful approach: it is in essence a minimalist program,
and any understandings that can be reached by this
means, without any further philosophical inputs or

assumptions, will have a correspondingly high degree
of robustness.

A theory that makes purportedly meaningful asser-
tions that cannot be falsified by any observation is
“metaphysical.”2 Whatever other valuable properties
such a theory may have, it would not, in Popper’s
view, qualify as ascientific theory. While Popper did
not disdain metaphysics, he wished to demarcate the
boundary between metaphysics and science, claiming
falsifiability as the defining feature of the latter, and
aiming to remove metaphysical concepts from scien-
tific theories as much as possible.3

Although Popper disagreed vehemently with induc-
tivist approaches to science such as that of de Finetti, at
a deep level it seems that both the positivist de Finetti
and the “negativist” Popper shared much the same em-
piricist view of the nature and importance of the rela-
tion between theory and reality.

3. THEORY AND REALITY

While there are many subtle philosophical issues in-
volved in putting Popper’s falsificationist program into
effect, I find the overall approach it embodies just as

2 We can distinguish various degrees of falsification of a
theoretical assertion, and correspondingly varying degrees of
(meta)physicality. Popper himselftalks of “basic statements,”
themselves expressible within the theory, whose truth would be in-
consistent with that theory—but leaves somewhat vague the em-
pirical status of such statements. When such a basic statement can
be interpreted as describing a currently possible, or at least con-
ceivable, measurement or set of measurements, we might call it
physical. A statement that is currently unfalsifiable, but might be-
come so by extensions to our theory and/or experimental abilities,
might be termedpotentially physical. A statement that could not, on
purely logical grounds, be falsifiable, even with such extensions, is
fundamentally metaphysical. The boundaries are not always clear:
for example, are statements aboutpropensities (see Section 3.3.2)
potentially physical or fundamentally metaphysical (I opt for the
latter, but could understand the other viewpoint)? However, I con-
sider some of the statements made in potential response theories
of causality (see Section 5.1) as, indubitably, fundamentally meta-
physical.

3 It is interesting that Popper himself pays great attention to such
metaphysical ideas as realism (which he accepts) and idealism and
instrumentalism (which he rejects, but which have been guiding
spirits behind my own program). Thus he was a firm believer in the
meaningfulness of the concept of thetruth of a scientific theory, and
even seems to have believed that some current scientific theories
were indeed true (although we could never know this for sure). It
seems to me that such considerations are simply irrelevant to his
falsificationist methodological program, which can be clarified and
strengthened by applying to it the the same exhortation to manage
without metaphysical concepts that it itself imposes on specific
scientific theories.
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compelling as de Finetti’s arguments for coherence of
personal probabilities. Over many years I have worked
toward forming a synthesis of these two approaches, by
developing falsification criteria to assess the empirical
performance of Your personal probability judgments.
Such a criterion can then be used more generally, to
assess (always purely tentatively) the empirical worth
of any proposed probability model, irrespective of its
origins, be they personalist or otherwise.

3.1 Two Universes

For sensible discussion of these issues, I regard
it as of vital importance to distinguish, carefully
and constantly, between two very different universes,
which I will term “intellectual” and “physical.”4

Any kind of scientific, mathematical or logical the-
ory is a purely intellectual construct. It will typically
involve a variety of symbols and concepts, together
with rules for manipulating them. The physical uni-
verse, on the other hand, just does its own thing,
entirely ignorant of, and careless of, any of our in-
tellectual theories. It manifests itself to us by means
of observations. I consider that failure to appreciate
which of these universes is appropriate to some topic
or term of discourse is a common cause of confusion,
with potentially seriously misleading consequences.

A specificallyscientific theory—unlike, for example,
a purely mathematical one—further purports to “say
something about” the physical universe. However, in
order for it to be able to do this there must first be es-
tablished some clearly understoodlink between the two
universes, intellectual and physical. Such a link will in-
volve explicit or implicit rules of interpretation. For
example, we might agree to interpret the symbolX in
a certain application of a certain theory as representing
the distance between the earth and the sun, as deter-
mined by a suitable measurement protocol.

3.2 Deterministic Theories

With important exceptions such as quantum mechan-
ics and Mendelian genetics, most modern scientific

4 The latter (“physical”) corresponds roughly to Popper’s
World 1 (Popper, 1982); the former (“intellectual”) could refer
equally to his World 2 (comprising subjective thought and expe-
rience) or World 3 (comprising “objective thought”). Our distinc-
tion might appear to presuppose a dualist philosophy, but this is
inessential: the “physical universe” could itself be given an ideal-
ist, even solipsistic, phenomenological interpretation, in terms of
Your perceptions of sense impressions, thus reducing World 1 to
World 2 (we here gloss over the difficulties involved in abstracting
from sense perceptions to supposed “real-world” quantities).

theories are deterministic. They involve terms whose
theoretical relationships can be understood, using the
relevant rules of interpretation, as relationships that
should be satisfied by certain measurements in the
physical universe. If we can make these measurements,
we can look to see whether or not the asserted re-
lationships hold. Any failure to do so would falsify
the model.

3.3 Probabilistic Theories

There are serious difficulties, however, in applying
the above naïve falsificationist program directly to a
probabilistic theory. Thus suppose that we are to toss a
given coin repeatedly, and observe the outcome, H or T.
Consider the theory wherein we represent the outcome
of the ith toss of this coin byXi , further representing
outcome H by 1 and T by 0; and model the(Xi) by
means of the joint probability distributionP under
which they are independent, withP (Xi = 1) = 0.5. We
call this the “fair coin model.”

How could we falsify such a probabilistic theory?
As a basis for this, we would first need to supply
appropriate rules of interpretation, linking the proba-
bilistic ingredients of the model to the physical uni-
verse. We now consider a number of ways in which
this task might be approached.

3.3.1 Personal probability. If the fair coin modelP
is interpreted as merely describing Your personal be-
liefs, it could be tested without even tossing the penny,
by observing Your behavior, for example in various
gambling scenarios. However, this purely psycholog-
ical falsifiability clearly misses the main point: that the
theory is intended to describe the external physical uni-
verse, rather than (or at least, in addition to) Your in-
ternal psychological state.

It is sometimes suggested that the theory of ex-
changeability, or its variations, supplies a way of
linking psychological and physical probabilities. Thus
in the case described in Section 2.1.1 of exchange-
able personal opinions about a sequence of coin tosses,
de Finetti’s theorem appears to prove, mathematically,
the existence of a limiting relative frequencyp con-
ditional on which the coin behaves according to a
Bernoulli model with probability parameterp—and
this quantityp would then seem to be a suitable candi-
date for the label “physical probability.” The fair coin
model can be regarded as obtained by combining ex-
changeability with the additional requirementp = 0.5,
and this latter requirement (together with other im-
plications of the Bernoulli model) could in principle
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be tested empirically (see Sections 3.3.3 and 3.3.4).
However, the basic assumption of exchangeability is
itself physically untestable. Furthermore the qualifica-
tion “with probability 1” governing the existence ofp

in de Finetti’s theorem is no mere technicality, but
refers to Your psychological belief state, which could
be quite out of touch with reality. All that de Finetti’s
theorem in fact shows is that, if You are coherent and
Your opinions about the coin tosses exhibit exchange-
ability, then this commits You tobelieve in (i.e., attach
probability 1 to) the existence ofp. But this quantity
still inhabits the intellectual universe: Your belief can
give no guarantee of theactual existence of a counter-
part ofp in the physical universe. Indeed, as we shall
see in Section 3.3.4, it is just this important distinc-
tion, between firmly held intellectual beliefs and phys-
ical reality, that is fundamental to our interpretation of
probability models. Failure to appreciate it is liable to
lead to serious misinterpretations (Kalai and Lehrer,
1993; Miller andSanchirico, 1999).

3.3.2 Propensity. In Popper’spropensity theory of
probability (Popper,1983), which superseded his ini-
tial frequency interpretation (Popper, 1959), there is
supposed to exist in the physical universe, and quite in-
dependent of our intellectual theorizing, a “propensity”
for a particular toss (say theith) of the penny to result
in H;5 this is taken as the intended external referent of
the theoretical termpi := P (Xi = 1) of the fair coin
model. This model would then necessarily be false if
the physical propensity to obtain H on toss 1 were not
in fact 0.5. Likewise, we might contemplate the phys-
ical existence of ajoint propensity to obtain the result
H on both tosses 1 and 2: the model would equally be
false if this joint propensity were not 0.25.

Unfortunately, it is difficult to see how to translate
this understanding offalsity into a workablefalsifi-
cation criterion—since we cannot construct or even
conceive6 of any measurement protocols to determine
directly any physical propensity, such as that of obtain-
ing H on toss 1 of the penny. It seems to me that Pop-
per would have to classify his own propensity theory
as metaphysical.

3.3.3 Frequency. A frequentist such as von Mises
(1939) would deny the physical existence of unique-
case propensities, while admitting the physical exis-
tence of a “generic” probability for the given coin to

5 More precisely, Popper considers a propensity as associated
with a particular “experimental arrangement,” detailing the condi-
tions under which the outcome is generated.

6 At any rate, I cannot—see footnote 2.

fall H in tosses of this kind. This could be defined
directly in terms of more basic physical observables
such as the limiting proportion of H’s obtained on toss-
ing the coin repeatedly. From this point of view, the fair
coin model would be falsified if this limit fails to exist
and to equal 0.5.

Refinements of this idea can be developed to ad-
dress, additionally, the importantindependence prop-
erty embodied in the fair coin model. Thus von Mises
requires that the sequence of observed outcomes satisfy
his “randomness postulate.” Informally, this means that
the property of yielding limiting relative frequency 0.5
should obtain, not just for the complete sequence of
outcomes, but also for subsequences,chosen by “place-
selection rules” whereby the decision whether or not to
include any particular toss in the subsequence can de-
pend on the outcomes of previous tosses. Although not
mathematically watertight in its original formulation,
this conception can be made rigorous (see, e.g., Dawid,
1985a, Section 2).

Sophisticated and imaginative though such approa-
ches are, it could be argued that they do not really
address the fair coin Bernoulli trials model directly, but
subject it to considerable reinterpretation and distortion
in their attempts to link it to the physical universe.

3.3.4 Borel criteria. My own favored approach
avoids completely any need to assume the physical ex-
istence of probabilities, however interpreted. I regard
“probability” as apurely theoretical term, inhabiting
the intellectual universe and without any direct phys-
ical counterpart. We might interpret such a theoreti-
cal probability as a personal degree of belief, or as
a propensity, but any such interpretation is irrelevant
to our purposes. Rather, weshould regard probabili-
ties as entering our scientific theories asinstrumental
terms, the link between theoretical probabilities and
the physical universe being indirect. This approach
to interpreting probabilistic models avoids many po-
tential philosophical pitfalls. In particular, by treating
probabilities as purely theoretical terms with only in-
direct implications for the behavior of observables, it
is able to eschew deep but ultimately irrelevant and
distracting philosophical inquiry into the “true nature
of Probability.”

We take as our falsifiability criterion (more precisely,
a family of criteria) a version of a principle that, in
one form or another, has been propounded by Bernoulli
(1713), Cournot (1843) (see Shafer and Vovk, 2001)
and Borel (1943), who called it “the Single Law of
Chance.” We regard a probabilistic theory as falsified
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if it assigns probability unity to some prespecified
theoretical eventA, and observation shows that the
physical counterpart of the eventA is in fact false. We
shall call such an eventA a “Borel criterion.” In the
minimalist7 version of this approach, only extreme
(i.e., 0 or 1) probabilities in a theory are regarded as
having any meaningful direct external referent, and
only such extreme probability statements can act as
potential falsifiers of the theory.

For example, for our fair coin model it is a mathe-
matical theorem that thetheoretical event

n−1
n∑

i=1

Xi → 0.5

hasP -probability 1.Hence, as a model of the physical
universe, P could be regarded as falsified if, on
observation, the corresponding physical property,

the limiting relative frequency of H in the
sequence of coin-tosses exists and equals 0.5,

is found to fail. In this simple case, this conclusion hap-
pens to agree with that of Section 3.3.3. The same rea-
soning can be used to justify the extensions mentioned
there to test independence, since these all refer to prop-
erties that are in fact assigned theoretical probability 1
by the Bernoulli modelP . Borel criteria, however, are
much more general: in particular, they need in no way
rely on any kind of “repeated trials” setup.

It is worth remarking that no Borel criterion could
ever be able to distinguish between two probabilistic
models,P andQ, that are mutually absolutely contin-
uous (P ≈ Q)—that is, which agree as to which events
are assigned probability 0 (although not necessarily
on other probabilities), and thus both pass or fail any
Borel falsifiability test together. This implies that, with
this approach, we can never home in on a unique “true
model” by eliminating all others. This is a strong, and
perhapsprima facie disturbing, instance of the extreme
falsificationist position that there is just no such thing
as “the true model” for (some aspect of ) the physi-
cal world.

For example, if, underQ, the(Xi) are taken as inde-
pendent, withQ(Xi = 1) = qi , where 0< qi < 1 and∑∞

i=1(qi − 0.5)2 < ∞, while P is the fair coin model,
then it follows mathematically thatP ≈ Q, so that no

7 Unlike personalist interpretations, or that of Popper (1983),
who regards Borel criteria as providing a “bridge” between empiri-
cal observations and a probabilistic theory interpreted as making
assertions about propensities, considered as meaningful (though
unobservable) real-world quantities.

Borel criterion will ever be able to distinguish between
P and Q.8 In particular, no specific nonextreme as-
signment of a valueqi to the probability of obtaining
H on tossi can ever be falsified. Typically only a com-
plete probabilistic theory, involving an infinite collec-
tion of probability assignments, can be falsified using
a Borel criterion.

Although the inability to discriminate between two
modelsP andQ whenP ≈ Q might seem to be a fun-
damental problem with this approach, it can be argued
that, from a pragmatic point of view, it is of no im-
portance. For it can be shown (Blackwell and Dubins,
1962) that when this absolute continuity holds, as the
current timeN → ∞, the conditional distribution of
(the remainder of ) the full sequenceX given the cur-
rently available information(X1, . . . ,XN) will be, in
a strong sense, asymptotically the same, whether it is
calculated underP or underQ—this property hold-
ing almost surely under bothP andQ. Consequently,
given enough data, bothP andQ will make essentially
identical predictions, and it simply will not matter
which one we use. This reassuring property is an in-
stance of what I have termed “Jeffreys’s law” (Dawid,
1984c): distinct theories that cannot eventually be dis-
tinguished empirically do not in fact need to be so
distinguished.

The above approach to the testing of probabilis-
tic models, using Borel criteria, takes very seriously
de Finetti’s motto “Probability does not exist”
(de Finetti, 1974–1975): that is to say, it denies—or
at any rate, has no use for—the idea that there is a
property of the physical world that is in direct cor-
respondence to the theoretical concept of probabil-
ity. This necessitates indirect application of Popper’s
hypothetico-deductive approach. We suppose that,
somehow or other,9 we have come up with one or
more theories, involving probabilities (perhaps, but not
necessarily, having a personalist interpretation) as the-
oretical terms. These are attached as attributes to other

8 In fact we can even allow dependence among the(Xi) un-
derQ. The general condition forP ≈ Q is

∑∞
i=1(qi − 0.5)2 < ∞

(Q-almost surely), where nowqi := Q(Xi = 1|X1, . . . ,Xi−1).
9 I do not propose that the falsificationist methodological pro-

gram laid out here is in any way relevant to the important, but sepa-
rate, issues ofhypothesis generation andhypothesis interpretation.
My own preference is for hypotheses that can be interpreted as ten-
tative personalist views of the world, but this is inessential. I would
not deny that a variety of interpretations (e.g., based on a realist
view of Nature, ascribing truth or meaning to terms that are later
regarded purely instrumentally for falsificationist purposes) can be
fruitful in suggesting interesting models and hypotheses.
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terms that name well-specified physically observable
quantities and events. For such a model, we construct
an appropriate Borel “test event” that is assigned prob-
ability 1 by that model; and we reject, or modify, any
model that fails its test.10 Any remaining models can
then be used, albeit tentatively, for prediction, or other
such purposes—although these, too, may also eventu-
ally be rejected. We have no need to believe in the ex-
istence of a true model, describing the physical world
perfectly (which is to say, never being rejected by
our falsification criterion); and even were this to be
the case, such a “true” model would typically not be
unique! However, Jeffreys’s law suggests that all mod-
els that survive sufficiently intensive testing should be
essentially equivalent for predictive purposes.11

3.4 An Example

To elaborate further the differences between the
above viewpoints, we consider a slightly more com-
plicated problem (Dawid, 1985c). Suppose that it is
possible to sample coins from the potentially infinite
production of a mint, and to toss any one of these as
often as desired. LetXij , coded 0 or 1 as before, repre-
sent the outcome of tossj of coin i.

3.4.1 Personal probability. As a personalist, You
might structure Your personal opinions having regard
to Your perceptions of symmetries in the problem.
Thus, in an extension of the idea of exchangeabil-
ity (see Section 2.1.1), You might consider using a
joint distributionP for all the (Xij ) that would be un-
changed if someone were first to permute the ordering
of the coins, or to permute the ordering of the tosses
of any fixed coin. These personal judgments would be
reflected in Your indifference between bets, whether
placed before or after the application of such permu-
tations. This observable property could be used to test
the validity of P as a model of Your internalpsycho-
logical state, but not its externalphysical validity.

Now it can be shown (Dawid, 1985c) that the above
symmetry assumptions alone (in particular, without
imposing any further assumptions, such as indepen-
dence) are sufficient to justify thehierarchical model M
described by the following three stages:

10We admit, as a potentially serious conceptual and practical
difficulty, that typically to conduct such a definitive test will require
an infinite number of observations. Within our framework there
seems to be no way of avoiding this problem (Dawid, 1985a).

11This solves, or at any rate sidesteps, Goodman’s “new riddle
of induction” (Goodman, 1954, Chapter III) since sufficiently
intensive testing over time would serve to distinguish between the
nonequivalent theories “all emeralds are green” and “all emeralds
are grue.”

1. A distribution� over[0,1] is determined (possibly
randomly, by some given process).

2. Conditional on�, quantities pi (i = 1,2, . . . )
in [0,1] are generated independently from the
distribution�.

3. Conditional on� andp := (p1,p2, . . . ), theXij are
independent with

prob(Xij = 1|�,p) = pi.

The resulting marginal joint probability distribution of
the(Xij ) will then clearly have the desired symmetries;
and in fact any such symmetric distribution can be re-
garded as having been generated in this way. From the
personalist point of view of Section 3.3.1, the model M
is no more nor less than a probabilistic representation
of Your perceived symmetries in the collection(Xij )—
in particular, the quantities� and(pi) can be regarded
as purely “instrumental fictions” for structuring Your
joint uncertainty for the observables.

An extension of the above symmetry modelling
approach to apply to more general analysis of variance
type problems can be found in Dawid (1988).

3.4.2 Propensity. How might we interpret the
above model M from the propensity viewpoint of Sec-
tion 3.3.2?

We might first think of the theoretical termp1
in M as referring to the physical propensity that the
first coin will fall H on the first toss—although this
interpretation is somewhat muddied by the fact that
the (pi) are themselves being modelled as random.
We could perhaps go on to regard� as referring to a
“second-order propensity distribution,” again living in
the physical universe, that governs the assignment of a
value to the propensity, represented byp1, that the first
coin will fall H on the first toss.

Now consider the collection of allfirst tosses of
all the coins. Under the model M the corresponding
quantities (Xi1) (i = 1,2, . . . ) behave as Bernoulli
trials with probability parameter

p∗ :=
∫ 1

0
ud�(u).

The theoretical quantityp∗ appears to be just as strong
a candidate as the quantityp1 to act as the theoretical
counterpart of the physical propensity that the first toss
of the first coin will result in H. However, in general
p∗ �= p1, whereas the above propensity, being assumed
to exist in the physical universe, must necessarily have
a unique value. Since, as noted earlier, there appear to
be no instruments for measuring propensities, it is not
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clear how this ambiguity in propensity theory could be
resolved.12

3.4.3 Frequency. The frequentist position of Sec-
tion 3.3.3 is strongly tied to models involving repeated
trials under identical conditions. In level 3 of model M
we do have such a situation for each individual coini.
Then we can regardpi as referring to the limiting rela-
tive frequency of H in tosses of coini.

Since M does not assign a specific value top1,
we cannot use this as the basis of a falsification
test; however, we can apply the extensions mentioned
in Section 3.3.3 to see whether we can falsify the
implicit assumption of independence between tosses of
the coin.

At level 2 of model M, we can consider the collec-
tion (pi) of all the observed limiting relative frequen-
cies, across all coins, and look to see whether this is
consistent with our model assumption that these arise
by repeated sampling from the distribution�. (If � is
not itself fully specified by level 1, we can at least
examine the “independent and identically distributed”
assumption.)

Since there is no replication at level 1 of our model,
there is no possibility of falsifying it at that level by
any frequentist criterion.

3.4.4 Borel criteria. The procedure described in
Section 3.4.3 seems to be an essentially straightforward
extension of the frequentist approach to deal with
this more complex “nested” structure. However, this
frequentist logic cannot be naturally extended to more
complex structures, such as a cross-classified layout,
which do not involve any obvious embedded “repeated
trials.” By contrast, the approach of Section 3.3.4 does
not rely on any repeated trials structure and can be
applied equally well to such more general structures.

For a wide variety of problems, the theory of
extreme-point modelling (Lauritzen, 1988) can be used
to pass from broad-brush personal judgments (e.g.,
Dawid, 1982a, in a generalization of the theory of
exchangeability, from perceptions of invariance un-
der a relevant transformation group; or Diaconis and
Freedman, 1980, from considerations of sufficiency)
to corresponding statistical models. This theory can
be used to justify the hierarchical model M of Sec-
tion 3.4.1 (with� regarded as a nonrandom parameter),

12One attempted solution might be to say that the two propen-
sity values refer to different experimental conditions: but if the ex-
periment involves selecting one coin at random and tossing it once,
it is not clear how its conditions change merely by changing the
sequence within which we consider this toss embedded.

as well as models for cases such as a cross-classified
layout (Aldous, 1981; Lauritzen, 2003) and still more
complex extensions.

Once an appropriate joint probability model has
been constructed, we can analyze it mathematically to
identify suitable probability-1 events to use as Borel
criteria for falsification tests. However, this analysis
may be nontrivial, and the choice between different
Borel criteria nonobvious.

4. CALIBRATION AND EXTENSIONS

How, in general, might we select the test eventA to
use as a Borel criterion? In Dawid (1985a) I suggested
that a suitable test could be based on the property
of computable calibration. This applies directly when
quantities are observed in sequence, although it can
also be applied much more generally by first ordering
the quantities somehow—the exact ordering being
asymptotically unimportant.

Suppose thatP is an arbitrary joint distribution
for a potentially infinite sequenceX := (X1,X2, . . . )

of quantities, for simplicity here supposed binary,
and that we wish to test the suitability ofP as a
model, in the light of a sequencex := (x1, x2, . . . ) of
empirical outcomes. We introduce the random quantity
�i := P (Xi = 1|X1, . . . ,Xi−1), a function of the
quantities(X1, . . . ,Xi−1) which also depends on the
modelP , and its observed valueπi := P (Xi = 1|X1 =
x1, . . . ,Xi−1 = xi−1), which depends both on the
observed values(x1, . . . , xi−1) and on the modelP .
Without needing to impose any further conditions,
such as independence, it can be shown (Dawid, 1985a)
thatP assigns probability 1 to the event

C0: “XN − �N → 0 asN → ∞,”

where XN := (1/N)
∑N

i=1 Xi , etc. Using this event
to construct our Borel criterion, we could regard the
modelP as falsified by the empirical observations if,
in fact,xN − πN �→ 0. This property, “overall calibra-
tion,” requires that, in the long run, the average of all
the actually emitted sequential probability forecastsπi

should agree with the relative frequency of outcome 1
among the observed values(xi) of the(Xi).

The above test is relatively crude and undiscrimi-
nating: for example, it would not reject the fair coin
model, with its constant forecast sequence(0.5,0.5,

0.5, . . . ), when the actual outcome sequence alternated
as(0,1,0, . . . )—looking very far from random.

To construct more refined tests, for eachi let �i be
a function of (X1, . . . ,Xi−1) taking values in{0,1}.
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We can collect together these functions as a single
function (place-selection rule)� defined on all fi-
nite strings, with�(x1, . . . , xi−1) := �i(x1, . . . , xi−1).
For any infinite sequencex = (x1, x2, . . . ), � deter-
mines a subsequencex� := (xi : δi = 1), whereδi :=
�(x1, . . . , xi−1)—picking out terms in a way that can
depend (in an essentially arbitrary fashion) on previ-
ous outcomes.

Define, for anyN ,

N� :=
N∑

i=1

�i, X� :=
∑N

i=1 �iXi

N�

,

�� :=
∑N

i=1 �i�i

N�

.

Thus the variablesN�, �X� and ��� are respectively
the total count, the relative frequency and the average
probability forecast, up to real timeN , in the subse-
quenceX�. We denote the realized values ofN� etc.,
for an observed data-sequencex = (xi), by n� etc.

Now consider the event

C�: “N� → ∞ �⇒ X� − �� → 0,”

which essentially asserts the limiting equality of the
average forecast and average outcome over this sub-
sequence (whenever it is infinite). It can be shown that,
for any place-selection rule�, P assigns probability 1
to the eventC�; so again, we could regardP as
falsified if, for the empirically realized data-sequencex,
n� → ∞ while x� − π� �→ 0.

The “P -almost sure” property is clearly retained
if we require such subsequence calibration for every
member of some countable collection of place-
selection rules�. The most incisive such criterion,
computable calibration, uses as its Borel test criterion
the eventC∗ := ⋂

�∈D C�, where D is the count-
able collection of place selection rules such that� is
a computable function on its domain (of all finite
strings). Then we can regard the probability modelP

as falsified, in the light of a stringx of observations, if
the subsequence calibration propertyC� fails to hold
for some computable place-selection rule� applied
to x.

The criterion of computable calibration can be re-
garded as an extension of von Mises’s frequentist ap-
proach (Dawid, 1985a). Applied to the Bernoulli trials
model, it is equivalent to testing the appropriateness of
that model by checking whether or not the outcome se-
quence satisfies the “randomness postulate” (see Sec-
tion 3.3.3). However, the general calibration criterion is

not restricted to Bernoulli trials: it applies to probabil-
ity models of arbitrary structure and complexity, with
no further assumptions such as independence. The only
restriction is that we must first order the variables.

4.1 Gambling Systems

An alternative criterion that is still more incisive,
and perhaps even more natural, than calibration can be
based on the “martingale” approach of Ville (1939).
Consider an adversary A, who is trying to discredit
Your probability modelP . At time i, when you have
both observedX1 = x1, . . . ,Xi−1 = xi−1, You would
regardπi = P (Xi = 1|X1 = x1, . . . ,Xi−1 = xi−1) as
a “fair exchange price” for the still-to-be-observed
quantity Xi . That is, You would regard as fair a
gamble that transfers an amountci(Xi − πi) from You
to A, whatever the sizeci , be it positive or negative,
of the gamble. Moreover, this attitude should not be
affected even if A were to adjust the sizes(ci) of his
bets in the light of previous outcomes, takingci =
σi(x1, . . . , xi−1) for some strategy σ = (σ1, σ2, . . . )

(a real-valued function on finite strings). For any such
strategy, You should be happy to accept A’s sequence
of bets.

Assume that A starts with capitalK0 = 1 and
operates a strategyσ ; then A’s capital just after time
N is KN := 1 + ∑N

i=1 σ(X1, . . . ,Xi−1) (Xi − �i).
It can be shown that, so long asσ is constructed so
that Ki ≥ 0 for any possible outcome sequence (A is
not allowed to risk losing more than he possesses),
the distributionP assigns probability 1 to the event
that KN will remain bounded above asN → ∞: that
is, if You only take on gambles You regard as fair, You
do not expect that you will lose Your whole fortune.
Taking this property as our Borel criterion, we can thus
regard the distributionP as empirically discredited,
in the light of a specific observed sequencex of
outcomes, if

∑N
i=1 ci(xi − πi) → ∞, that is (without

ever risking going negative), the adversary’s betting
strategy succeeds in wiping You out. Once again, we
can extend this by allowing some such computable
adversary to succeed against You.

This martingale criterion is in some sense the stron-
gest that can be applied, in that when it is satisfied so
too are other Borel criteria such as computable cal-
ibration. A form of the criterion (without, however,
invoking computability) has been taken as the “fun-
damental interpretive principle” underlying the game-
theoretical approach toprobability theory expounded
by Shafer and Vovk (2001). This approach can be used
to derive many familiar limit theorems (such as the law
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of the iterated logarithm, Dawid and Vovk, 1999), now
guaranteed to hold, not merely with probability 1, but
for every individual data-sequence for which the un-
derlying probability model is not falsified (by allowing
some adversary to become infinitely rich).

4.2 Empirical Probability

The calibration criterion is thoroughly investigated
in Dawid (1985a). In particular it is shown that, if
P andQ are two computable joint probability distri-
butions for the sequenceX, and bothP andQ pass the
computable calibration test for a certain empirical data-
sequencex, then we must have essential agreement of
the forecasts(πi) and (κi) respectively produced by
P andQ for that data-sequence:πi − κi → 0.13 This
is another variant of Jeffreys’s law.14 These asymp-
totically unique calibrated forecast probabilities might
then be considered as having some objective existence
in the physical universe. However, it can be shown
(Dawid, 1985b) that there is no computable procedure
to discover the values of these “empirical probabilities”
for any given data-sequence. And it is possible thatno
sequence of forecasts will be computably calibrated for
a given data-sequence (Schervish, 1985).

These considerations can be extended to cases where
additional information may be available, over and
above the values of pastX’s, when each newXi is
to be forecast; then the place-selection rules entering
the computable calibration requirement must also be
allowed to take this information into account. Again
it can be shown that all computably calibrated com-
putable forecast systems must be in asymptotic agree-
ment; but the implied “objective” probability forecasts
will vary with the nature and extent of the available
information. This conception of physical probability
is thus a subtle and fundamentally relativistic one. In
particular, there is no logical contradiction in believ-
ing in deep determinism (the case in which, for some
suitably detailed information base, the asymptotically
valid probability forecasts would all be 0 or 1), at the
same time associating nonextreme probabilities with
the outcomes at the less refined level of actually avail-
able information.

13The same conclusion must likewise hold whenP andQ both
pass the stronger martingale test of Section 4.1.

14Note, however, that no property anything like as strong as
absolute continuity betweenP andQ is required here; in particular,
nothing is assumed or asserted about whetherP andQ agree, in
any sense, for data-sequences other than the one actually observed.

5. CAUSALITY

Certain probabilistic scientific theories that we might
consider could also contain other, nonprobabilistic,
terms not relating directly to observables, and so not
directly falsifiable. So long as we use such terms in a
purely instrumental fashion, and regard as meaningful
outputs of our theory only those assertions that do
relate (according to our accepted rules of interpre-
tation) to genuinely observable quantities, such ad-
ditional terms can be accommodated in our general
approach without handicap, and can sometimes sim-
plify theoretical manipulations. However, care must be
taken not to impart meaning to theoretical terms that
do not correspond to observable quantities, and this is
often harder than one might at first suppose. This prob-
lem arises in an especially acute form in the area of
causal inference.

5.1 Potential Responses

Much current statistical work in causal inference lies
within the framework of “potential response” mod-
elling (Rubin, 1978; Dawid, 2000); a closely related
approach is based on deterministic “structural rela-
tions” (Pearl, 2000; Dawid, 2002). A causal model
constructed from such a standpoint might contain a
term,Y1 say, to represent “the duration of my current
headache if I take aspirin” and another term,Y0 say,
for “its duration if I do not.” It is clear what I have
to do if I wish to observe either of these quantities:
I either take, or refrain from taking, aspirin, and then
I measure how long my headache lasts. In this sense,
bothY1 andY2 are (separately) empirically observable
and meaningful. However, since, as a matter of logic,
I can never simultaneously both take and not take as-
pirin, there is no conceivable measurement procedure
that could evaluate, say,Y1 − Y0, which is thus a the-
oretical term with no physical counterpart. This lack
of any link with the physical universe gives rise to
grave philosophical and practical difficulties if, as is
commonly done, one attempts to base causal inference
on assertions about quantities such asY1 − Y0. In par-
ticular, as pointed out by Dawid (2000), it is possi-
ble in these frameworks to set up distinct theoretical
models that make identical assertions about all phys-
ically observable quantities—models that thus could
never be distinguished on an empirical basis in any
circumstances—but which imply different “causal con-
clusions” when these are phrased in terms of unob-
servable quantities such asY1 − Y0. This behavior is
in strong defiance of both Jeffreys’s law and common
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sense. These ambiguitiescannot be removed except
by imposing equally arbitrary and unfalsifiable addi-
tional constraints, such as “treatment-unit additivity.”
For these reasons I regard much of the current enter-
prise of causal inference as “fundamentally metaphys-
ical.” It cannot be disputed that much work of great
value and importance has emerged, but that can largely
be credited to the triumph of sound intuition over an
inappropriate and cumbersome framework. And even
a strong intuition may not be enough to locate unfail-
ingly the delicate dividing line between those theo-
retical assertions that are empirically meaningful and
those that (although equally well-formed mathemati-
cally) are scientific nonsense.

5.2 A Falsificationist Approach

Traditionally, statisticians shied away from any con-
cern with causal analysis. Now that this enterprise is
being taken more seriously, the prevalent view is that
essentially new tools—such as joint modelling of po-
tential responses—are required to take on this task. I do
not subscribe to this view. I consider that the standard
tools of probability and statistical theory are adequate
for causal investigations—so long as the subtle rela-
tionships between model and reality, as already con-
sidered above, are kept clearly in mind. To paraphrase
de Finetti: “Causality does not exist.” That is, while
we may find uses for causal terms within our theories
in the intellectual universe, there are no direct exter-
nal referents of such terms within the physical uni-
verse. Thus our understanding and interpretation of
causal models of the world must again be indirect.
However, no new ideas are needed: these tasks can
be undertaken using the same falsificationist approach,
based on Borel criteria, already developed for proba-
bilistic modelling.

In my view, causal modelling and inference do not
differ in any qualitative way from regular probabilistic
modelling and inference. Rather, they differ quantita-
tively, because they have a more extended scope and
ambition: namely, to identify and utilize relationships
that arestable over a shifting range of environments
(“regimes”). For example, we might entertain a col-
lection of probability models for different economies,
in different countries and different times, but relate
these all together by assuming that they all share cer-
tain specified common probabilistic features—such as
the distribution of the inflation rate, conditional on the
central bank’s base interest rate and the demand for and
supply of manufactured goods. This is a causal theory,
which might or might not be a good description.

Frequently, though by no means invariably, we
are concerned with regimes that differ by virtue of
possibleinterventions by an external agent, such as:
give aspirin to, or withhold aspirin from, a patient;
or recommend that the patient does or does not take
aspirin; or simply observe whether or not the patient
takes aspirin. For this reason we sometimes refer to
this approach as “decision-theoretic,” although this
should not be understood as restricting its scope to
interventional problems.

Often You will be able to conceive of many in-
stances of each regime—instances that You would hap-
pily regard as exchangeable. For a generic instance of
regime i there would be a multivariate collectionXi

of observable quantities, with specific versionXij for
instancej of regimei. Under exchangeability across
instances within each regime, an appropriate model
would take all the(Xij ) as independent, being iden-
tically distributed, with joint distributionPi say, for
all instancesj of regime i—the (Pi) perhaps be-
ing subject to additional specification of their qualita-
tive or quantitative structure and relationships. Such a
model is falsifiable, using either the general approach
of Section 3.3.4 or, in this case, the simpler frequen-
tist approach of Section 3.3.3. We can interpretPi in
terms of limiting relative frequencies across many in-
stances of regimei. Alternatively, if our model encom-
passes a potentially infinite collection of regimes, but
only a finite number of instances of each, we could
use a calibration-type Borel criterion to test its empiri-
cal validity.

A causal model imposes relationships between the
variousPi describing the different regimes. For exam-
ple, letT = 1 or 0 refer to the taking or not taking of
aspirin, andY to the duration of headache. In regime 1
(resp. 0) the patient is made to take (resp. not take) as-
pirin; in regime “∗”, the patient makes his own self-
medication decision. We introduce conjectured joint
probability distributionsP1, P0 andP∗ for (T ,Y ) in
each of these regimes [for consistency of interpreta-
tion we requireP1(T = 1) = P0(T = 0) = 1]. A possi-
ble causal model might then assert that the conditional
distributions ofY given T are the same in all three
regimes. Equivalently, usingp1 to represent a den-
sity underP1, etc., we requirep∗(y|T = 1) = p1(y),
p∗(y|T = 0) = p0(y). That is to say, we are assert-
ing that, so far as its predicted effect onY is con-
cerned, it does not matter how the treatment came to
be administered. Such causal assertions are phrasable
entirely within standard probabilistic language. They
can be very naturally expressed and manipulated using
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the notation and calculus of conditional independence,
with or without associated graphical representations
(Dawid, 2002); however, this is in no way fundamental.

The above model could be tested and possibly fal-
sified in a straightforward fashion, by comparing the
relevant relative frequencies across the three regimes.
While there would often be severe practical imped-
iments to gathering data under one or more of the
regimes of interest, in principle at least it is clear
what has to be done. This gives a clear empirical
meaning to causal assumptions. When they can be
regarded as valid, such assumptions can be used to
support transfer of probabilistic information from one
regime to another: an important purpose and use for
causal analysis.

If we find that our causal model does not describe
the physical world well, we might try and elaborate it
until it does. One common approach is to try to identify
some additional variable,U say, such that conditioning
on U restores the desired invariance across regimes:
p∗(y|T = 1, u) ≡ p1(y|u), p∗(y|T = 0, u) ≡ p0(y|u).
Such a variableU is a “potential confounder.” When
U is unobserved or otherwise omitted, the invariance
structure may well disappear, destroying or severely
limiting the possibility of information transfer across
regimes. An analysis of the problem of confounding
from the decision-theoretic viewpoint can be found in
Dawid (2002); Dawid (2003) studies what information
can still be transferred incertain problems confounded
by incomplete patient compliance with the doctor’s
treatment recommendations.

5.3 Causal Relativism

As is the case for our conception of Probability
(see Section 4.2), an important feature of our approach
to Causality is its relativism. We may choose to de-
scribe the world at various coarser or finer levels of
detail. At any such level we might discover proba-
bilistic invariances across different regimes, which we
could term “causal.” In some cases these might be
reflections of causal relations (possibly deterministic,
although this should not be assumed without good ev-
idence) at a deeper level; but in general there need be
no connections between the different levels of analy-
sis. This means that a reductionist program, while often
valuable and fruitful, cannot be universally success-
ful: certain properties of coarse-grained systems may
be genuinely emergent. Note that this understanding
would simply not be available if, following most philo-
sophical discussion of causation to date, we insisted on

understanding all causal models in deterministic, rather
than probabilistic, terms.

This minimalist decision-theoretic approach allows
us to talk about causality in a simple common sense
way, without needing to concern ourselves with issues
of deep determinism or free will, or taking a fatalistic
view of the world (Dawid, 2000). While philosophers
may balk at its journeyman neglect of such issues, I feel
that it liberates scientists to get on with doing useful
things, without being sidetracked by metaphysical ir-
relevancies.

6. CONCLUSION

I have outlined a minimalist empiricist approach to
Probability and Causality. In this view, probability and
causality “do not exist.” Rather, they are purely theo-
retical concepts, relating only indirectly to the phys-
ical universe. Probability assignments can be tested
empirically, in the large rather than individually, by
means of Borel falsifiability criteria such as calibra-
tion. Probability forecasts that are empirically valid at-
tain a degree of objectivity: they are asymptotically
unique (though typically unknowable). However, even
this degree of objectivity remains relative, since the ap-
propriate values depend on the nature and extent of the
information available. Causal theories are nothing but
ambitious probabilistic theories, positing certain com-
mon patterns of behavior across a range of different
contexts, and raise no new issues of principle.

This program makes no metaphysical assumptions
about the true nature or behavior of Probability or
Causality, and is equally agnostic about such issues
as deep determinism; but it does support a straight-
forward approach to building, testing, using and inter-
preting probabilistic theories of the world. When taken
seriously, it necessitates some serious rethinking, or at
least reinterpretation, of familiar patterns of argument:
such as the assumption, underlying much of statisti-
cal inference, that there exists a “true (probabilistic)
data-generating process” and that the task of inference
is to learn something about it; or, in economic ratio-
nal expectations theory (Muth, 1961) and game theory
(Kalai and Lehrer, 1993), that an agent’s or player’s
personal probability distribution over events should be
the same as, or absolutely continuous with respect to,
“Nature’s true distribution.” Although our approach is
based on excluding from discussion any concept of a
“true distribution,” such hypotheses can be rephrased
in our framework, as requiring agreement (as assessed
by, e.g., calibration) between some probabilistic the-
ory and actualoutcomes in the world. Doing this then



56 A. P. DAWID

enables us to consider more critically exactly what is
being assumed or asserted by such a hypothesis, and
thus how reasonable it might be.
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