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Inference for Superpopulation Parameters
Using Sample Surveys
Barry I. Graubard and Edward L. Korn

Abstract. Sample survey inference is historically concerned with finite-
population parameters, that is, functions (like means and totals) of the obser-
vations for the individuals in the population. In scientific applications, how-
ever, interest usually focuses on the “superpopulation” parameters associated
with a stochastic mechanism hypothesized to generate the observations in the
population rather than the finite-population parameters. Two relevant findings
discussed in this paper are that (1) with stratified sampling, it is not sufficient
to drop finite-population correction factors from standard design-based vari-
ance formulas to obtain appropriate variance formulas for superpopulation
inference, and (2) with cluster sampling, standard design-based variance for-
mulas can dramatically underestimate superpopulation variability, even with
a small sampling fraction of the final units. A literature review of inference
for superpopulation parameters is given, with emphasis on why these findings
have not been previously appreciated. Examples are provided for estimating
superpopulation means, linear regression coefficients and logistic regression
coefficients using U.S. data from the 1987 National Health Interview Survey,
the third National Health and Nutrition Examination Survey and the 1986
National Hospital Discharge Survey.

Key words and phrases: Cluster sampling, complex survey data, design-
based inference, model-based inference, random effects, stratified sampling.

1. INTRODUCTION

In the context of sample surveys, Deming and
Stephan (1941) considered a “superpopulation” to be
a hypothetical infinite population from which the fi-
nite population is itself a sample. An investigator sam-
ples the finite population and draws inferences from the
sampled values. In classical sampling theory, the tar-
gets of inference are finite-population parameters, for
example, the mean Y of the N unit values in the pop-
ulation. A stochastic model for the finite-population
values is sometimes used to evaluate and suggest sam-
ple designs and estimators; see, for example, Cochran
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(1939, 1946), Scott and Smith (1969), Ericson (1969),
Hartley and Sielken (1975), Cassel, Särndal and Wret-
man (1977, Chapters 4–6), Bellhouse, Thompson and
Godambe (1977) and Isaki and Fuller (1982). For ad-
dressing scientific questions (as opposed to adminis-
trative and quality assurance applications), however,
the parameters associated with the stochastic model are
typically of more interest than the finite-population pa-
rameters. Deming (1953) refers to inference for super-
population parameters as an “analytic” use of survey
data. A simple example of superpopulation inference is
when comparing two domain means, where it is of in-
terest to ask if the superpopulation means are equal, but
seldom of interest to ask if the finite-population means
are equal (since they rarely would be).

If the target of inference is a superpopulation para-
meter, then how should the inference be made? One
usual recommendation is not to use finite-population
correction factors when estimating variances of para-
meter estimators (Fuller, 1975; Cochran, 1977, page 39;
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Yates, 1981, page 178). In addition, the following
heuristic argument for means, which also applies to
more complex parameters, is sometimes given for ig-
noring the distinction between finite-population and
superpopulation inference (Skinner, Holt and Smith,
1989, page 14): under a superpopulation model in
which the Y1, . . . , YN are independent and identically
distributed with mean µ and variance σ 2, one has Y =
µ+Op(N

−1/2) and S2 = σ 2 +Op(N
−1/2), where S2

is the sample variance of the Y1, . . . , YN . Therefore,
there is little difference between a finite-population in-
ference for (Y , S2) or a superpopulation inference for
(µ,σ 2) when N is large.

This heuristic argument fails, of course, if terms
of order N−1/2 are important for the inference. This
would be the case if the sample size n did not satisfy
n � N , since then terms of order N−1/2 should not
be ignored when estimating the variability of the sam-
ple mean y. Even with n � N , the argument does not
apply when, as is typically the case, there are clusters
in the population. Under a reasonable superpopulation
model, one might expect in this situation that the dif-
ferences in finite-population parameters and superpop-
ulation parameters would be bounded by terms of order
K−1/2, where K is the number of clusters in the pop-
ulation. Since one may have the number of sampled
clusters k not satisfying k � K even though n � N ,
the inference for finite-population and superpopulation
parameters may differ even with n�N and N large.

This paper builds on the results of Korn and Grau-
bard (1998), which focused on inferences for super-
population means, by providing results (including data
examples) of more complex superpopulation quanti-
ties such as ratios and regression coefficients. An in-
vestigation is made of the relationship between super-
population inference and two-phase sampling. Addi-
tionally, this paper reviews the literature on inferences
for superpopulation parameters with attention paid to
why problems with finite-population variance estima-
tors discussed in this paper have not been previously
noted.

The structure of this paper is as follows. A super-
population model without clusters is considered in Sec-
tion 2. Using this model allows for a simple examina-
tion of many of the inference issues encountered. In
particular, with stratified sampling it is shown that ig-
noring finite-population correction factors is not suf-
ficient to yield correct inference for superpopulation
parameters. The relationship between inference for su-
perpopulation parameters and finite-population para-
meters associated with two-phase sampling is also dis-
cussed. The consideration of more realistic models

with clusters in Section 3 allows for the investigation
of the distribution of cluster effects on the inference.
It is shown that even if the sampling fraction of clus-
ters k/K is small, finite-population inference can be
misleading with certain commonly seen distributions
of cluster sizes. Section 4 reviews the literature on in-
ference for superpopulation parameters. Examples us-
ing three national health surveys of the United States
are given in Section 5. The results in this paper can be
viewed in light of the debate between proponents of
model-based versus design-based (randomization) in-
ference for survey data. The paper ends with a discus-
sion of this in Section 6.

2. MODEL WITHOUT CLUSTERS

Throughout this section and later sections we will
consider the properties of estimators that incorporate
both the randomness due to sampling of the population
and the randomness due to the generation of the popu-
lation by a model. Letting the subscript RS refer to the
(repeated) sampling randomness, the subscript F refer
to the model randomness, and no subscript refer to both
sources of randomness, one has the usual decomposi-
tions for the expectation and variance of an estimator θ̂
that will be used throughout: E(θ̂) = EF [ERS(θ̂ )],
Var(θ̂ )=EF [VarRS(θ̂)] + VarF [ERS(θ̂)].

In this section, population models without clusters
are considered. Although applications usually involve
clusters in the population, most of the important ideas
are already seen in the simpler unclustered model. The
population values are (Y1, η1), . . . , (YK,ηK), where
η is a stratum indicator with range {1, . . . ,L}. We
assume that the (Yi, ηi) are independent and identically
distributed, each with the same distribution as the
random vector (Y, η), which has bivariate distribution
function F . We restrict attention to stratified simple
random sampling throughout this section and consider
more general sampling schemes in Section 3.

In Section 2.1 we consider the case of estimating
a mean with Y univariate. It is shown that unbiased
variance estimation for the superpopulation mean in-
volves a between-strata component. This naturally sug-
gests the alternative possibility of ignoring the strat-
ification in order to obtain unbiased variance estima-
tors. This is shown not to work in Section 2.2, which
also considers variance estimation for a poststratified
mean. Sections 2.3 considers the estimation of super-
population ratios, and Section 2.4 considers linear re-
gression coefficient and other parameters. Section 2.5
considers the estimation of the superpopulation mean,
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but via a ratio estimator. Case–control sampling can be
viewed as a special case of stratified sampling, and this
is discussed in Section 2.6. To address concerns that the
sampling strata are not the same as the superpopulation
strata, a generalization of the superpopulation model
is discussed in Section 2.7. Section 2.8 indicates the
relationship of superpopulation inference with finite-
population inference using two-phase sampling.

2.1 Estimating a Superpopulation Mean

The target parameter is µ = EF(Y ), which is to
be estimated using stratified simple random sampling
without replacement. Let Kh be the known number of
observations in the hth stratum in the finite population,
h = 1, . . . ,L. Let kh be the number of sampled ob-
servations in the hth stratum, which can be a function
of {K1, . . . ,KL}. [Note that

∑L
h=1KhEF (Y |η = h) is

not defined as the target parameter, as this quantity is
not a superpopulation parameter because it depends on
the Kh.] The total number of observations sampled,
k = k1 + · · · + kL, is fixed. The stratified mean is

ȳ =
L∑

h=1

Kh

K
ȳh,(2.1)

where ȳh is the mean of the sampled observations
in stratum h. Under repeated sampling of the same
finite population, the stratified mean is an unbiased
estimator of the population mean Y . The repeated-
sampling variance estimator of ȳ is

v̂arwo(ȳ)=
L∑

h=1

K2
h

K2

Kh − kh

Kh

s2
h

kh
,(2.2)

where s2
h is the sample variance of the observations in

the hth stratum. Under repeated sampling of the same
finite population, v̂arwo(ȳ) is an unbiased estimator of
the variance of ȳ. In what follows, it will be useful
to consider the repeated-sampling variance estimator
treating the sample as if it had been a with-replacement
sample, namely,

v̂arwr(ȳ)=
L∑

h=1

K2
h

K2

s2
h

kh
.

Incorporating the randomness due to the sampling
and the distribution function F , we have ȳ is unbiased
for µ, and (in obvious notation)

Var(ȳ)= EF

[
VarRS(ȳ)

]+ VarF
[
ERS(ȳ)

]
= EF

[
L∑

h=1

K2
h

K2

Kh − kh

Kh

S2
h

kh

]
+ VarF [Y ]

= 1

K2

L∑
h=1

σ 2
hEF

[
Kh(Kh − kh)

kh

]

+ 1

K2

L∑
h=1

σ 2
hEF (Kh)

+ 1

K2 VarF

(
L∑

h=1

Khµh

)

= 1

K2

L∑
h=1

σ 2
hEF

[
K2
h

kh

]
+ 1

K
�betw,

(2.3)

where S2
h is the variance of the population values in the

hth stratum, µh and σ 2
h are the mean and variance of Y

in the hth stratum with respect to the F distribution and
the between-strata variability of the µh is

�betw =
L∑

h=1

πh(µh −µ)2,

where πh ≡ E(Kh/K) = P (η = h). (Note that µ =∑L
h=1πhµh.) The expected values of the variance

estimators are given by

E
[
v̂arwo(ȳ)

]= EF

[
ERS

[
L∑

h=1

K2
h

K2

Kh − kh

Kh

s2
h

kh

]]

= EF

[
L∑

h=1

K2
h

K2

Kh − kh

Kh

S2
h

kh

](2.4)

= 1

K2

L∑
h=1

σ 2
hEF

[
Kh(Kh − kh)

kh

]
(2.5)

and

E
[
v̂arwr(ȳ)

]= EF

[
L∑

h=1

K2
h

K2

S2
h

kh

]

= 1

K2

L∑
h=1

σ 2
hEF

[
K2
h

kh

]
.

(2.6)

The without-replacement variance estimator v̂arwo(ȳ)

underestimates the (total) variability of ȳ by the model
variability of Y , VarF [Y ]. The underestimation by the
with-replacement estimator v̂arwr(ȳ) is less, �betw/K .
Therefore, if �betw = 0, or if there is only one stra-
tum, v̂arwr(ȳ) unbiasedly estimates the variability of ȳ.
If the sampling fractions in the strata are not small and
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�betw is not small compared to the within-stratum vari-
ability of Y , then the underestimation of the variance
estimators is not small. The negative biases of v̂arwr(ȳ)

and v̂arwo(ȳ) are given by

Negative bias of v̂arwr(ȳ)= Var(ȳ)−EF

[
v̂arwr(ȳ)

]
Var(ȳ)

= �betw

�betw +∑L
h=1πhσ

2
h/fh

and

Negative bias of v̂arwo(ȳ)

= �betw +∑L
h=1 πhσ

2
h

�betw +∑L
h=1πhσ

2
h/fh

,
(2.7)

where fh is the sampling fraction in stratum h (as-
sumed to be nonrandom for these expressions). For ex-
ample, suppose the sampling fractions are 25% in each
of the strata and �betw =∑L

h=1πhσ
2
h . Then the nega-

tive bias of v̂arwr(ȳ) is 20% and of v̂arwo(ȳ) is 40%.
To obtain an unbiased variance estimator of ȳ, one

can add an unbiased estimator of VarF [Y ] to v̂arwo(ȳ)

or, equivalently, add an unbiased estimator of �betw/K

to v̂arwr(ȳ). In particular, let

v̂ar[Y ] = 1

K − 1

L∑
h=1

Kh

K
(ȳh − ȳ)2

+ 1

K

L∑
h=1

Kh

K

[
1 − K −Kh

(K − 1)kh

]
s2
h

(2.8)

and

�̂betw = K

K − 1

L∑
h=1

Kh

K
(ȳh − ȳ)2

−
L∑

h=1

Kh(K −Kh)

K(K − 1)

s2
h

kh
.

(2.9)

Then

E
[
v̂ar[Y ]]= EF

[
1

K − 1

L∑
h=1

Kh

K
(Yh − Y )2

]

+EF

[
1

K

L∑
h=1

Kh − 1

K − 1
S2
h

]
= VarF [Y ]

(2.10)

and E[�̂betw] =�betw. Therefore,

v̂arSP(ȳ)≡ v̂arwo(ȳ)+ v̂ar[Y ]

= v̂arwr(ȳ)+ �̂betw/K

(2.11)

is an unbiased estimator for Var(ȳ).

2.2 Stratified Simple Random Sampling
with Proportional Allocation and Simple
Random Sampling with Poststratification

Since the superpopulation variance estimator (2.11)
contains a between-strata component, a natural ques-
tion to ask is whether one can estimate this variance by
using a standard with-replacement variance estimator
that ignores the stratification (since this standard esti-
mator also contains a between-strata component). This
approach does not work, as easily seen by considering
the case of stratified simple random sampling without
replacement with proportional allocation, that is, strat-
ified simple random sampling with kh/Kh ≡ k/K . The
superpopulation variance estimator (2.11) reduces to

v̂arSP(ȳ)= 1

K − 1

L∑
h=1

Kh

K
(ȳh − ȳ)2 + 1

k

L∑
h=1

Kh − 1

K − 1
s2
h

≈ 1

K

L∑
h=1

Kh

K
(ȳh − ȳ)2 + 1

k

L∑
h=1

Kh

K
s2
h,

whereas the with-replacement simple-random-sampl-
ing estimator is given by

s2

k
= 1

k

k

k − 1

L∑
h=1

Kh

K
(ȳh − ȳ)2

+ 1

k

k

k − 1

L∑
h=1

(
Kh

K
− 1

k

)
s2
h

≈ 1

k

L∑
h=1

Kh

K
(ȳh − ȳ)2 + 1

k

L∑
h=1

Kh

K
s2
h,

which seriously overestimates the between-strata com-
ponent. [In some applications where the number of
sampled first-stage units is small, this overestima-
tion may be considered acceptable to be able to esti-
mate the variance with reasonable precision (Korn and
Graubard, 1995).]

With simple random sampling and poststratification,
the sampled units are classified into the strata after
the sampling. As the population sizes of the strata
are assumed known, the estimator (2.1) of the super-
population mean can still be calculated. We refer to
this estimator as the poststratified mean and denote it
by ȳps. The repeated-sampling variance of ȳps is given
by (Hansen, Hurwitz and Madow, 1953, page 232)

v̂arwo(ȳps)= 1

k

K − k

K

L∑
h=1

Kh

K
s2
h

+ 1

k2

K − k

K

L∑
h=1

K −Kh

K
s2
h.

(2.12)
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Note that the first term is the same as the variance es-
timator in the case of stratified simple random sam-
pling without replacement with proportional alloca-
tion. The second term is of smaller order and also
only involves within-stratum variability. Therefore, the
bias of v̂arwo(ȳps) as an estimator of the (superpopula-
tion) variability of ȳps would be expected to be similar
to the stratified sampling situation with proportional al-
location.

Using the decomposition

Var(ȳps)=EF

[
VarRS(ȳps)

]+ VarF
[
ERS(ȳps)

]
,

one can calculate v̂arSP(ȳps) as the sum of v̂arwo(ȳps)

and an estimator of Var(Y ). One such estimator of
Var(Y ) is s2/k, although one might also consider the
poststratified estimator

v̂ar(Y )= 1

K

k

k − 1

[(
L∑

h=1

Kh

K
ȳ2h

)
−
(

L∑
h=1

Kh

K
ȳh

)2]
,

where ȳ2h is the mean of the squares of the sampled y

observations in stratum h.

2.3 Estimating a Superpopulation Ratio

The above results can be applied to statistics more
complex than a mean by using linearization. The es-
timation of a ratio is considered here, and the estima-
tion of linear regression coefficients and other parame-
ters is considered in Section 2.4. The population val-
ues (Ui,Xi, ηi), i = 1, . . . ,K , are assumed to be inde-
pendent and identically distributed, each with the same
distribution as the random vector (U,X,η), which has
trivariate distribution function F . The target parame-
ter is the ratio ρ = µu/µx ≡ EF (U)/EF (X), with µx

assumed to be greater than 0. With stratified simple
random sampling without replacement, the estimator
of the ratio is

r̄ = ū

x̄
≡
∑L

h=1(Kh/K)ūh∑L
h=1(Kh/K)x̄h

,

where x̄h(ūh) is the mean of the sampled X(U) ob-
servations in stratum h. For the sampled observations,
the linearized variate is defined by zi = (ui − r̄xi)/x̄.
Analogously to (2.2), the repeated-sampling variance
estimator of r̄ is

v̂arwo(r̄)=
L∑

h=1

K2
h

K2

Kh − kh

Kh

s2
zh

kh
,(2.13)

where s2
zh is the sample variance of the z’s in the

hth stratum. [An alternative derivation defines zi =

[ui − (U/X)xi]/X where U and X are the population
means, calculates the variance of z̄, and then substitutes
r̄ for U/X and x̄ for X to obtain the variance estimator
(2.13).] Under repeated sampling of the same finite
population, v̂arwo(r̄) is an approximately unbiased
estimator of the variance of r̄ when the strata sample
sizes are large; see below. The repeated-sampling
variance estimator, treating the sample as if it had been
a with-replacement sample, is

v̂arwr(r̄)=
L∑

h=1

K2
h

K2

s2
zh

kh
.(2.14)

We consider asymptotic properties of the estimators
with L fixed as k, K → ∞, and kh/Kh → γh, h =
1, . . . ,L. Formally, a sequence of populations, sam-
ples and estimators is implicitly indexed by α →∞.
The approximately equal sign “∼=” below should be in-
terpreted as meaning that k times the difference of the
quantities on its right- and left-hand sides approaches
0 as α → ∞. (The limit of K Var(r̄) is also the vari-
ance of the asymptotic distribution of

√
Kr̄ if F has

finite first and second moments.) Incorporating the ran-
domness due to the sampling and the distribution func-
tion F , we have, analogously to (2.3), (2.5) and (2.6),

Var(r̄)∼= 1

K2

L∑
h=1

σ 2
zhEF

[
K2
h

kh

]

+ 1

K
�zbetw,

(2.15)

E
[
v̂arwo(r̄)

]∼= 1

K2

L∑
h=1

σ 2
zh

·EF

[
Kh(Kh − kh)

kh

](2.16)

and

E
[
v̂arwr(r̄)

]∼= 1

K2

L∑
h=1

σ 2
zhEF

[
K2
h

kh

]
,(2.17)

where

σ 2
zh = VarF

(
U − ρX

µx

| η = h

)
,

�zbetw =
L∑

h=1

πh

(
µuh − ρµxh

µx

)2

.

Here µuh and µxh are the expected values of U and X

in the hth stratum with respect to F .
The quantity �zbetw equals 0 if the within-stratum

ratio µuh/µxh does not vary across the strata. Under
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this condition, the with-replacement variance estimator
v̂arwr(r̄) is asymptotically unbiased for Var(r̄). Note
that whether the µuh, µxh or the within-stratum corre-
lation of U and X varies across the strata is irrelevant
to this conclusion. A second interesting thing to note
is that, unlike the case of estimating a simple mean,
the repeated-sampling variance estimators (2.13) and
(2.14) incorporate some additional variability when the
target parameter varies from strata to strata. This im-
plies that the negative bias of these variance estima-
tors when estimating the variance of a ratio will not be
as large as in the simple mean case. This is easiest to
see for the case of estimating a mean of a variable (Y )
over a subdomain (D) of the population. This is a spe-
cial case of a ratio estimator, as seen by letting Ui ≡
YiI (i ∈ D) and Xi ≡ I (i ∈ D). As an example, sup-
pose that (in obvious notation)

∑
πhσ

2
yh = ∑

(µyh −
µy)

2, that the probability that an observation is in D

is πD in each strata and that the sampling fractions
are 25% in each of the strata. Then the negative bias
of v̂arwr(r̄) is asymptotically πD/(8 − 3πD), which
can be notably smaller than the 20% when πD = 1,
for example, 7.7% when πD = 1/2.

To obtain an asymptotically unbiased estimator of
the variance of r̄ , one follows (2.11) and defines

v̂arSP(r̄)≡ v̂arwo(r̄)+ v̂ar[R]
= v̂arwr(r̄)+ �̂zbetw/K,

(2.18)

where R =U/X,

v̂ar[R] = 1

K − 1

L∑
h=1

Kh

K
z̄2
h

+ 1

K

L∑
h=1

Kh

K

[
1 − K −Kh

(K − 1)kh

]
s2
zh

and

�̂zbetw = K

K − 1

L∑
h=1

Kh

K
z̄2
h

−
L∑

h=1

Kh(K −Kh)

K(K − 1)

s2
zh

kh
.

Note that z̄= 0, so that the terms corresponding to ȳ in
(2.8) and (2.9) are not needed.

2.4 Estimating Superpopulation Linear Regression
Coefficients and Other Superpopulation
Parameters

The population values (Yi,Xi, ηi), i = 1, . . . ,K , are
assumed to be independent and identically distributed,

each with the same distribution as the random vector
(Y,X,η), which has a multivariate distribution func-
tion F . Here the Xi and X are p-dimensional row vec-
tors. The target parameter is the p-dimensional vector

β = [
EF(X

′X)
]−1

EF(X
′Y )≡ µ−1

xx µxy,

where µxx is assumed to be an invertible p × p ma-
trix. With stratified simple random sampling without
replacement, the estimator of β is

β̂ =
(

L∑
h=1

Kh

K
xxh

)−1 L∑
h=1

Kh

K
xyh,

where xxh = ∑kh
i=1 x

′
hixhi/kh and xyh = ∑kh

i=1 x
′
hi× yhi/kh are means over the sampled observations in

stratum h.
For the ith sampled observation in stratum h, the

linearized p-vector variate is defined by

zhi =
(

L∑
t=1

Kt

K
xxt

)−1[
x′
hi(yhi − xhiβ̂)

]
.

The repeated-sampling variance estimator of β̂ is given
by the right-hand side of (2.13), where now s2

zh is the
p × p sample covariance of the z’s in the hth stratum.
The repeated-sampling variance estimator, treating the
sample as if it had been a with-replacement sample,
v̂arwr(β̂) is given by the right-hand side of (2.14). The
asymptotic variance of β̂ and the asymptotic means
of the variance estimators are given by the right-hand
sides of (2.15), (2.16) and (2.17), where now

σ 2
zh = VarF

[
µ−1
xx (X

′Y −X′Xβ) | η = h
]

and

�zbetw =
L∑

h=1

πh
[
µ−1
xx (µxyh −µxxhβ)

]
· [µ−1

xx (µxyh −µxxhβ)
]′
.

Here µxxh and µxyh are the expected values of X′X
and X′Y in stratum h with respect to F .

The quantity �zbetw equals 0 if the within-stratum
regression coefficient vector µ−1

xxhµxyh does not vary
across the strata. Under this condition, v̂arwr(β̂) is as-
ymptotically unbiased for Var(β̂). Note that, in general,
the j th diagonal element of �zbetw corresponding to
the variance of the j th estimated coefficient of X will
not be 0 if the within-stratum regression coefficients of
the other independent variables vary across the strata.
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In particular, for a simple linear regression with an in-
tercept and one covariate, the constancy of the within-
stratum slopes across the strata is not sufficient to guar-
antee that the with-replacement variance estimator will
be asymptotically unbiased for the variance of the esti-
mated slope. What is required, in addition, is that either
(1) the within-stratum intercepts do not vary across the
strata or (2) the within-stratum means of the covariates
do not vary across the strata. On the other hand, if strata
effects are included completely in the linear regression
model (as L − 1 indicator variables), then �zbetw = 0
so that the with-replacement variance estimators can
be used for the estimated regression coefficients of the
other nonindicator covariates.

In general, an asymptotically unbiased estimator of
the variance of β̂ can be obtained analogously to the es-
timator (2.18) for the variance estimator of the super-
population ratio. The same approach works for other
parameters after the linearized variates are calculated
for the problem at hand. For example, for a logistic re-
gression analysis with p covariates (including the in-
tercept), the linearized p-vector variate is defined by

zhi =
(

L∑
t=1

Kt

K

1

k t

kt∑
i=1

x′
tixti p̂ti (1 − p̂ti )

)−1

· [x′
hi(yhi − p̂hi)

]
,

where p̂hi is the estimated predicted probability that
the outcome equals 1 for the ith sampled observation
in stratum h.

2.5 Estimating a Superpopulation Mean
with a Ratio Estimator

In many applications, information known about the
population values of variables related to the variable
of interest can be used to improve the estimation. In
this section, we consider the ratio estimation of µ =
EF(U) from a sample obtaining U and X information,
when certain population mean information about the
auxiliary variable X is known. The stochastic model
for the finite-population values is assumed to be the
same as in Section 2.3. Note, in particular, that this
model does not specify any particular relationship
between U and X.

With stratified simple random sampling, Cochran
(1977) suggests two possible ratio estimators, the com-
bined ratio estimator, ūR = (X/x̄)ū, and the separate
ratio estimator,

ūR = 1

K

L∑
h=1

Xh

x̄h
Khūh.

Here ū and x̄ are stratified estimators of the means,
and X (Xh) is the mean of X over all the population
units (in stratum h). For either estimator, we have the
decomposition

Var(ūR)= EF

[
VarRS(ūR)

]+ VarF
[
ERS(ūR)

]
so that the variance of ūR can be estimated from the
sum of a standard without-replacement variance es-
timator of ūR , v̂arwo(ūR), plus an estimator of the
(model) variance of U , v̂ar[U ]. One can use the esti-
mator (2.8) (replacing y’s with u’s) as an estimator of
v̂ar[U ]. One could also consider a ratio-type estimator
of v̂ar[U ], but ratio adjusting to the “wrong” covariate
can lead to a very inefficient estimator of v̂ar[U ]. (The
choice of whether to use the combined ratio estimator
or the separate ratio estimators typically depends on
what is known about the relationship between U and
X in different strata.)

2.6 Case–Control Sampling

In case–control sampling, risk factors are compared
for a sample of cases (diseased individuals) and a sam-
ple of controls (nondiseased individuals). This type of
sampling can be considered a special case of stratified
simple random sampling with two strata, the case stra-
tum and the control stratum. Consider comparing the
association of a risk factor and the disease by examin-
ing the difference in sample means, x̄case − x̄control. The
without-replacement finite-population variance esti-
mator, which is appropriate for inference about Xcase −
Xcontrol, will have finite-population correction factors.
Dropping these factors yields the with-replacement
variance estimator. Is this estimator appropriate for su-
perpopulation inference for µ̄case − µ̄control, or does
one need to add a between-strata component as in
(2.11)? Since x̄case and x̄control are uncorrelated, one
obtains the variance of the difference as the sum of
the variances of the separate means. Since each of the
means is estimating an unstratified subdomain mean,
there is no between-strata component and the with-
replacement variance estimator is the superpopulation
variance estimator.

Frequently, case–control data will be analyzed with
a logistic regression treating the case/control status
as the outcome Y . For the intercept in such a re-
gression to be estimating a meaningful quantity, the
sampling fractions should be utilized in the estima-
tion (Scott and Wild, 1986). Although not obvious,
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the with-replacement variance estimators can be used
for superpopulation inference for the regression coef-
ficients but not for the intercept. The superpopulation
variance estimator based on the linearized variate de-
scribed in Section 2.4 can be used for both the inter-
cept and the regression coefficients. However, it would
not be expected to be as stable a variance estimator
for the regression coefficients as the with-replacement
variance estimator.

The sampling could involve additional stratification
beyond the case/control stratification. For example,
within each of L “strata,” one might sample cases and
controls separately, yielding 2L sampling strata. The
variability of the estimated risk difference could be
estimated with a with-replacement variance estimator
if one assumes there is no between-strata variability
in the risk difference. However, the with-replacement
variance estimator of the estimated logistic regression
coefficient will generally be an underestimate of the
estimated coefficient’s superpopulation variability un-
less either (1) the coefficient and the intercept are con-
stant across the “strata” or (2) the coefficient is constant
across the “strata” and L− 1 indicator variables are in-
cluded in the model for the “strata” effects. A different
type of stratification is a stratified selection of cases
and/or a stratified selection of controls. In this situa-
tion, there is no option for including “strata” effects
in the model so that the with-replacement variance es-
timator will generally underestimate the superpopula-
tion variance of the estimated risk-factor difference or
the estimated logistic regression coefficient. The super-
population variance estimator based on the linearized
variate can be used in any of the above situations, but
may be less efficient than the with-replacement vari-
ance estimator when that estimator can be used because
of further model assumptions.

2.7 Model Strata Misspecification

To this point, it might appear that sampling strata
need to be defined in the superpopulation (by F ),
raising questions concerning the results if the sampling
strata and the superpopulation strata are not the same.
In fact, although it was convenient for quantifying bias
in Section 2.1, the following generalization shows it
is unnecessary to define strata in the superpopulation
for the unbiasedness of v̂arSP(ȳ) given by (2.11). Let η
be a (possibly multidimensional continuous) variable
that is observed on all finite population units and this
is used to determine the sampling strata in the finite
population. Note that the strata can be determined after

the finite population has been observed and need not be
defined in the superpopulation. Using (2.4), (2.10) and

Var(ȳ)= EF

(
1

K − 1

L∑
h=1

Kh

K
(Yh − Y)2

)

+EF

(
L∑

h=1

K2
h

K2

S2
h

kh

)

+EF

(
L∑

h=1

Kh −K

K2(K − 1)
S2
h

)
,

we still have the result that v̂arSP(ȳ) is an unbiased
estimator for Var(ȳ). For example, 20 equallysized
strata may be determined in the finite population by a
clustering algorithm using η. Another example is given
by case–control sampling, where Y is binary and η = Y

determines the two sampling strata.

2.8 Relationship with Two-Phase Sampling

In two-phase sampling (also known as double sam-
pling), an initial sample of the finite population is
drawn from which design variable information is ob-
tained on each sampled unit. A subsample of the initial
sample is then taken with a sample design that uses the
design variable information. The variable of interest is
recorded only on the subsample. For example, in two-
phase sampling for stratification, the initial sample may
be a simple random sample for which a stratification
variable is recorded. This stratification variable is used
to obtain a subsample using stratified simple random
sampling. In the present context, we note that if we as-
sociate the two-phase initial sample with our finite pop-
ulation, and the two-phase finite population with our
superpopulation (by letting its size approach ∞), then
two-phase variance estimators for the “finite popula-
tion” should yield our superpopulation variance esti-
mators. This indeed can be verified for stratified simple
random sampling; Cochran (1977, page 333), provides
the following formula for the variance of a mean ob-
tained from a two-phase stratified simple random sam-
ple:

v(ȳ)= K(NFP − 1)

(K − 1)NFP

[
L∑

h=1

whs
2
h

(
1

Kfh
− 1

NFP

)

+ g′

K

L∑
h=1

s2
h

(
wh

NFP
− 1

Kfh

)

+ g′

K

L∑
h=1

wh(ȳh − ȳ)2

]
,

(2.19)
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where NFP is the size of the two-phase finite popu-
lation, wh = Kh/K and g′ = (NFP − K)/(NFP − 1).
Letting NFP → ∞, (2.19) reduces to precisely the su-
perpopulation variance estimator (2.11). In theory, gen-
eral formulas for two-phase sampling (Särndal, Swens-
son and Wretman, 1992, page 351) could be similarly
modified for superpopulation inference involving more
complex sampling schemes.

3. MODEL WITH CLUSTERS

In this section we consider a model that accom-
modates multiple levels of clustering in the popula-
tion, although only two levels will need to be ex-
plicitly modeled. Detailed derivations and asymp-
totic results are given in Korn and Graubard (1998).
The population consists of K primary clusters, the
ith of which consists of Ni secondary clusters. In
the j th secondary cluster of the ith primary clus-
ter, there are Mij population values (Y ’s) with to-
tal Tij = Yij1 + · · · + YijMij

. The ith primary clus-
ter has associated with it a stratum variable ηi ∈
{1, . . . ,L} and a “size” variable Zi which will be
used for probability-proportional-to-size (pps) sam-
pling. We assume that the {(Mij , Tij ) | j = 1, . . . ,Ni}
are independent and identically distributed with mean
(αi, τi) and variances–covariances (σ11i , σ22i , σ12i)

and that the (αi, τi, σ11i, σ22i, σ12i,Ni,Zi, ηi) are in-
dependent and identically distributed from an eight-
dimensional random variable with distribution func-
tion G. The superpopulation mean is defined as µ =
EG(Nτ)/EG(Nα). We present only formulas in this
section for the superpopulation mean; extension to
other parameters via linearization is immediate.

Section 3.1 describes the multistage sampling con-
sidered and the notation for the estimation of the super-
population mean using a weighted mean. Section 3.2
presents methods of inference for the superpopulation
mean. The negative bias associated with using a finite-
population repeated-sampling variance estimator is de-
scribed in Section 3.3. We end in Section 3.4 with a
brief discussion of superpopulation model misspecifi-
cation.

3.1 Estimating a Superpopulation Mean
with Multistage Sampling

We assume initially that the multistage sampling is
consistent with the clustering just described for the
population; deviations are considered in Section 3.4.
At the first stage of sampling, kh primary clusters are
sampled from the Kh primary clusters in stratum h as

a pps sample without replacement. That is, the primary
clusters are the primary sampling units (PSUs), and the
inclusion probability of a given PSU in stratum h is
proportional to its Z value. Stratified simple random
sampling without replacement of PSUs is a special
case of this sampling. At the second stage of sampling,
we assume that nhi secondary clusters are sampled
with replacement from the ith sampled PSU from
stratum h. The schemes for the third to final stages of
sampling are left unspecified. However, we do assume
that the sample weights (i.e., inverses of the inclusion
probabilities) are known for all sampled observations.

Let

thij =
mhij∑
l=1

whij lyhij l and dhij =
mhij∑
l=1

whij l,

where yhij l and whij l are the population value and
sample weight of the lth sampled observation in the
j th sampled secondary cluster in the ith sampled PSU
of stratum h, and mhij is the number of sampled
observations in that secondary cluster. Letting

thi =
nhi∑
j=1

thij and dhi =
nhi∑
j=1

dhij ,

we assume that under repeated sampling of the popu-
lation

t =
L∑

h=1

kh∑
i=1

thi and d =
L∑

h=1

kh∑
i=1

dhi

are approximately unbiased estimators of the total of Y
and the population size, respectively. The weighted
estimator of Y and µ is ȳ = t/d .

3.2 Inference for the Superpopulation Mean

Under repeated sampling of the same finite popula-
tion, a variance estimator of ȳ is given by Korn and
Graubard (1998)

v̂arwo(ȳ)= 1

d2

{
L∑

h=1

kh∑
i=1

kh∑
j<i

[
λhiλhj

λhij
− 1

]

· [(thi − ȳdhi)− (thj − ȳdhj )
]2 +Ks2

w

}
,

where

s2
w = 1

K

L∑
h=1

kh∑
i=1

λhinhis
2
hi(3.1)
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and where λhi is the inclusion probability of the ith
PSU in stratum h, λhij is the joint inclusion probability
of the ith and j th PSUs in stratum h and

s2
hi =

1

nhi − 1

nhi∑
j=1

[
(thij − ȳdhij )− (thi − ȳdhi)/nhi

]2
.

To avoid the necessity of specifying the joint inclusion
probabilities for variance estimation, the sampling de-
sign is frequently approximated as a with-replacement
stratified pps sample of PSUs (Durbin, 1953). The
repeated-sampling variance estimator is given by

v̂arwr(ȳ)= 1

d2

L∑
h=1

kh

kh − 1

·
kh∑
i=1

[
(thi − ȳdhi)− 1

kh

kh∑
j=1

(thj − ȳdhj )

]2

.

To obtain an asymptotically unbiased estimator of
the variance of ȳ that incorporates the repeated-sam-
pling variability as well as the model variability G, one
can use v̂arSP(ȳ)= v̂arwo(ȳ)+ v̂ar[Y ], where

v̂ar[Y ] = 1

d2

[
K

K − 1

·
L∑

h=1

kh∑
i=1

λhi(thi − ȳdhi)
2 −Ks2

w

](3.2)

and s2
w is given by (3.1). The conditions for this asymp-

totic result include the case of increasing numbers of
sampled PSUs in a fixed number of strata and the case
of increasing numbers of strata with a small number of
PSUs (e.g., 2) sampled from each stratum.

An approximately unbiased variance estimator that
does not require specifying the joint inclusion prob-
abilities is given by v̂arSP−a(ȳ) = v̂arwr(ȳ) + v̂arb −
v̂arw , where

v̂arb = 1

d2

L∑
h=1

1

Kh

[
kh∑
i=1

(thi − ȳdhi)

]2

and

v̂arw = 1

d2

L∑
h=1

kh

Kh(kh − 1)

·
kh∑
i=1

[
(thi − ȳdhi)− 1

k h

kh∑
j=1

(thj − ȳdhj )

]2

.

In theory, both v̂ar[Y ] in (3.2) and v̂arb − v̂arw are
estimating nonnegative quantities and could be trun-
cated to 0 if negative. Although this is an area for fur-
ther study, we do not recommend truncation and prefer
to retain approximate unbiasedness. The properties of
v̂arSP(ȳ) and v̂arSP−a(ȳ) are discussed further in Korn
and Graubard (1998). Note that these estimators, like
v̂arwr(ȳ) but unlike v̂arwo(ȳ), do not require estimation
of the within-PSU variance component s2

w . [This term
cancels in the calculation of v̂arSP(ȳ).] This is advanta-
geous since the second-stage identifiers needed to cal-
culate s2

w are frequently not publicly available because
of confidentiality concerns.

An approximate 95% confidence interval for the
superpopulation mean is given by

ȳ ± td
[
v̂arSP(ȳ)

]1/2

or

ȳ ± td
[
v̂arSP−a(ȳ)

]1/2
,

where td is the 0.975 quantile of a t distribution with
d degrees of freedom. An open question is what is
the appropriate value for d? With with-replacement
sampling of PSUs and a set of strong assumptions,
d should be set equal to the number of sampled
PSUs minus the number of sampling strata (Korn and
Graubard, 1990). When the assumptions are weak-
ened, this nominal degrees of freedom is potentially too
large (Korn and Graubard, 1999, pages 197–199). With
without-replacement sampling, it is not clear what de-
grees of freedom to associate with v̂arwo(ȳ) for finite-
population inference; see Eltinge and Jang (1996) for
some recent work. Similarly, it is not clear the de-
grees of freedom to associate with superpopulation in-
ference. We use the following ad hoc approach: PSUs
sampled with certainty are assumed to all come from
the same single “certainty” stratum. The degrees of
freedom d are then taken to be the number of sampled
PSUs minus the number of strata. This is an area for
further research.

3.3 The Negative Bias of Repeated-Sampling
Estimators

To examine the effects of using a repeated-sampling
variance estimator of the variability of ȳ instead of
an estimator of Var(ȳ) [like v̂arSP(ȳ) or v̂arSP−a(ȳ)],
we consider a special case of stratified two-stage
cluster sampling with simple random sampling without
replacement at the first stage and simple random
sampling with replacement at the second stage. Let
Mij ≡ 1, Yij ≡ Tij and the population sizes and sample
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sizes of the PSUs be constant within each stratum,
denoted by Nh0 and nh0, respectively. The proportional
negative bias in using a repeated-sampling variance
estimator is

Negative bias = Var(ȳ)−EG

[
VarRS(ȳ)

]
Var(ȳ)

∼= VarG(Y )

VarG(Y )+EG

[
VarRS(ȳ)

] ,
where Var(ȳ) ∼= VarG(Y ) + EG[VarRS(ȳ)] since
ERS(ȳ)∼= Y . We have

VarG(Y)= VarGEG(Y |Kh)

+EG VarG(Y |Kh)∼= B +W,

with the between- and within-strata components given
by (using linearization)

B = 1

KE(N)2

L∑
h=1

πhN
2
h0
[
E(τ |h)−µ

]2
and

W = 1

KE(N)2

L∑
h=1

πhN
2
h0

[
E(σ22|h)
Nh0

+ Var(τ |h)
]
,

where E(N) = ∑L
h=1 πhNh0 and πh = P (η = h), the

proportion of PSUs in stratum h. Using

EG VarRS(ȳ)∼= 1

KE(N)2

L∑
h=1

πhN
2
h0

·
{(

1

fh
− 1

)[
E(σ22|h)
Nh0

+ Var(τ |h)
]

+ (Nh0 − 1)E(σ22|h)
Nh0fhnh0

}
,

where fh is the sampling fraction of PSUs in stratum h,
we have

Negative bias

∼= (B +W)

{
B + 1

KE(N)2

·
L∑

h=1

πhN
2
h0

fh

[
E(σ22|h)
Nh0

+ Var(τ |h)
]

+ 1

KE(N)2

L∑
h=1

πhNh0(Nh0 − 1)

fhnh0
E(σ22|h)

}−1

.

(3.3)

Note that if Nh0 ≡ 1 then (3.3) reduces to (2.7), ap-
propriate for stratified simple random sampling [asso-
ciating the E(τ |h) and E(σ22|h)+ Var(τ |h) here with

the µh and σ 2
h there]. If Nh0 ≡ N0 and B = W , then

(3.3) equals (2.7) provided that E(σ22|h) ≡ 0. Other-
wise, the negative bias (3.3) is less than the stratified
simple-random-sampling case and is approximately 0
if Nh0 � nh0. When the Nh0 vary with h, the nega-
tive bias depends on the particular parameter values.
For example, suppose 4% of the PSUs have Nh0 = 106

and are in strata with fh = 1 and the remaining 96%
of the PSUs have Nh0 = 5000 and are in strata with
fh = 1/16. We continue to assume that B = W and
now also assume that E(σ22|h)≡ c1 and Var(τ |h)≡ c2
for two constants, c1 and c2. If c1 = 0 then the negative
bias = 99.6%. If c2 = 0 and nh0 < 10,000 then the neg-
ative bias is close to 0. If c2 = c1/100, and nh0 ≡ 100,
then the negative bias is 66%. This example is impor-
tant because it shows that, even with a relatively small
overall sampling fraction of PSUs (10%), the negative
bias can be substantial when a small proportion of large
PSUs are sampled with high sampling fractions. This is
the situation in the surveys used in the examples given
in Sections 5.1 and 5.2 and is not uncommon.

3.4 Superpopulation Model Misspecification

For stratification, the model-misspecification issue
is the same as previously discussed for models with-
out clusters; there is no problem with strata misspec-
ification since one need not actually define the strata
in the superpopulation (although it is convenient for
examining the properties of the estimators); see Sec-
tion 2.7. For clustering, if the actual primary clusters
in the superpopulation do not correspond to the PSUs
(which are the modeled ones), then there can be bias
in the proposed variance estimators. For example, sup-
pose the PSUs are census tracts and they are modeled
as the primary clusters in the superpopulation model.
If there are larger clusters (e.g., counties) that are in-
ducing an intraclass correlation of the data from differ-
ent census tracts in the same county, then the proposed
variance estimators will be underestimates of true vari-
ability. On the other hand, clustering that occurs within
the PSUs does not lead to bias even when unaccounted
for in the superpopulation model. For example, the pro-
posed variance estimators will be approximately un-
biased even if there is intraclass correlation related
to blocks (within census tracts) that is not explicitly
modeled. The major concern with model misspecifi-
cation, therefore, is that there are larger clusters than
the PSUs that are inducing an intraclass correlation be-
tween PSUs. However, it can be shown that the mag-
nitude of the bias is a function of the population sizes
of these larger clusters times the intraclass correlation.
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In our experience, this product tends to be small, min-
imizing the potential for bias of our proposed variance
estimators; see Korn and Graubard (1998) for further
details.

4. RELATED WORK CONCERNING VARIANCE
ESTIMATORS FOR SUPERPOPULATION

PARAMETERS

Classical parametric statistics is concerned with sto-
chastic models for observed data as representative of
a population, and even classical nonparametric statis-
tics can be viewed in this context (Lehmann, 1975,
pages 55–65). However, we consider here only (pub-
lished) work where the targets of inference are para-
meters associated with stochastic models for the units
in a finite population, which is then sampled to ob-
tain the observed data [case 3 of Hartley and Sielken
(1975)]. We are especially interested in noting if au-
thors omit finite-population correction factors (like us)
and, if they consider stratification, whether they have a
between-strata component of their variance estimators
(as we do). We consider in turn previous work involv-
ing models without clusters and with clusters.

4.1 Models without Clusters

4.1.1 Means. Konijn (1962) considers the finite pop-
ulation to be sampled as a proportionate stratified sam-
ple from a superpopulation stratified into “classes.” His
target parameter is the weighted mean of the superpop-
ulation slopes from each class, where the weights are
the finite-population sizes of the classes. One of the
situations he considers is stratified simple random sam-
pling with the classes being treated as sampling strata.
For estimating a mean, where Konijn’s parameter esti-
mator and ours coincide, his variance estimators differ
from ours because he uses the finite-population sizes to
define his target parameter rather than the superpopula-
tion probabilities (the πh of Section 2.1). In particular,
his variance estimator does not have a between-strata
component.

The target parameter of Potthoff, Woodbury and
Manton (1992) is the sample-weighted mean of the
superpopulation means of the sampled units; see also
Bouza (1995) and Longford (1996). Like the model
of Konijn (1962), this parameter will vary depending
on the realized finite population. In addition, it will
vary depending on the particular sample obtained
(Kott, 1993), and thus it is very different from the
superpopulation parameters considered in this paper.

Porter (1973) considers each unit in the population
to have a vector of independent variables, a vector

of linear regression coefficients and a dependent vari-
able generated stochastically from a linear regression
model. His target parameter is the (vector) mean of the
regression coefficients over the units in the population.
Restricting attention to a linear regression model with
only an intercept, his target parameter can be consid-
ered a finite-population mean with allowance for mea-
surement error. Because of this, his variance estimator
of the sample mean for simple random sampling with-
out replacement differs from ours in that it contains a
finite-population correction factor for the component
of variance not associated with the measurement error.

Särndal (1980) considers the N finite population val-
ues to be independent random variables Y1, . . . , YN
with means µ1, . . . ,µN determined by a linear regres-
sion model. He discusses the differences between es-
timators of Y and (µ1 + · · · + µN)/N , but does not
discuss variance estimation. For a more general model,
Haslett (1985) discusses the variance estimation of
(µ1 + · · · + µN)/N , but his putative variance esti-
mators appear to include superpopulation parameters.
Koop (1986) discusses inference for the superpopula-
tion mean, but assumes a normal distribution for the
superpopulation values when considering variance es-
timation. Arnab (1992) allows for the superpopulation
values to be correlated, but does not consider variance
estimation.

4.1.2 Linear regression coefficients. Klein and Mor-
gan (1951) consider, associated with each unit in
the finite population, a vector of independent vari-
ables and a dependent variable generated stochasti-
cally from a linear regression model with indepen-
dent and homoscedastic errors. Their target parame-
ter is the common vector of (superpopulation) linear
regression coefficients. Assuming stratified sampling,
they consider estimating the regression coefficients
with standard weighted estimators. Implicitly assum-
ing noninformative sampling, they construct sandwich-
type variance estimators. Their variance estimators
do not have finite-population correction factors and
do incorporate a between-strata component, but dif-
fer from our variance estimators because they utilize
the noninformative-sampling and homoscedasticity as-
sumptions.

Fuller (1975) shows that, in the nonstratified unclus-
tered sampling situation, it is asymptotically correct
to used standard survey variance formulas without the
finite-population correction factors for inference about
superpopulation regression coefficients. This is con-
sistent with our results. (With stratified sampling, he
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presents results only for finite-population regression
coefficients.)

Thomsen (1978) considers each unit in the finite
population to have a dependent variable and indepen-
dent variables generated stochastically from a linear
regression model with homoscedastic errors. His tar-
get parameter is the (superpopulation) slope and inter-
cept. Restricting attention to noninformative sampling,
he utilizes ordinary-least-squares estimators and vari-
ance estimators.

DeMets and Halperin (1977) consider 3-dimensional
vectors (X1, X2, X3) in the finite population to have
a trivariate normal distribution. The target parameter
is the superpopulation coefficient of X2 from the
linear regression of X1 on X2. Assuming that the
observed data are sampled from the finite population
with probabilities that depend only on X3 and that
the values of X3 are known for all units in the
finite population, they derive the maximum likelihood
estimator of the superpopulation regression coefficient;
see also Holt, Smith and Winter (1980) and Chambers
(1986). Nathan and Holt (1980) and Quesenberry
and Jewell (1986) use the same framework except
they use weaker assumptions than trivariate normality:
Nathan and Holt (1980) assume that the conditional
expectations of X1 and X2, given X3, are linear in X3
and show that the normal-theory estimator of DeMets
and Halperin (1977) is asymptotically unbiased even
with this weaker assumption; see also Pfeffermann
and Holmes (1985). Quesenberry and Jewell (1986)
assume that the conditional expectations of X1 given
X2 and X3 given X2 are linear in X2. They derive an
estimator of the target parameter that depends on the
estimation of a (superpopulation) residual distribution.

The variance estimators of the maximum likelihood
estimators of Holt, Smith and Winter (1980) do not
contain finite-population correction factors. DeMets
and Halperin (1977), Nathan and Holt (1980) and
Pfeffermann and Holmes (1985) do not explicitly con-
sider variance estimators, although they could be con-
structed from their variance calculations. Presumably,
such variance estimators would also not have finite-
population correction factors. Chambers (1986), al-
though providing no explicit variance calculations,
suggests one might use a replication-based technique
like the jackknife. His approach would lead to variance
estimators for stratified sampling that have no between-
strata component. Quesenberry and Jewell (1986) do
not appear to suggest a variance estimator for their es-
timator of the key target parameter.

Besides considering a maximum likelihood approach,
Holt, Smith and Winter (1980) consider the (superpop-
ulation) variance of the usual weighted regression coef-
ficient under stratified sampling. However, they assume
the sampling fraction is small, so that the usual design-
based variance estimator (with finite-population cor-
rection factors and no between-strata component) is
reasonable.

In the context of stratified sampling, DuMouchel and
Duncan (1983) consider various possible target para-
meters associated with linear regression models, one
of which is the superpopulation regression coefficient
vector. Since they assume that the sampling fractions in
the strata are negligible, the issues concerning finite-
population correction factors and between-strata vari-
ance components do not arise.

Ten Cate (1986) considers each unit in the finite pop-
ulation to have a vector of independent variables and a
dependent variable generated stochastically from a lin-
ear regression model with independent and identically
distributed errors. His target parameter is the vector
of (superpopulation) linear regression coefficients. As-
suming the observed data are sampled from the finite
population with probabilities that can depend on the
dependent variable, he estimates the linear regression
coefficients with standard weighted estimators. His
variance estimators appropriately account for sampling
and model variability, but rely on the homoscedasticity
of the errors, and also apparently require the specifi-
cation of a parametric distribution for them. Hausman
and Wise (1981) and Jewell (1985) consider a simi-
lar framework but restrict attention to stratified sam-
pling. Hausman and Wise (1981) assume that the resid-
ual distribution is normal. Jewell (1985) estimates the
(superpopulation) residual distribution more generally
but provides no variance calculations.

4.1.3 Other regression coefficients. Scott and Wild
(1989, 1991) consider stratified case–control data an-
alyzed with logistic regressions. Their variance esti-
mators do not have finite-population correction factors
or a between-strata component. This is consistent with
our results because they assume that the sampling frac-
tions are negligible or that the strata effects are mod-
eled correctly.

Nordberg (1989) considers superpopulation parame-
ters in the setting of generalized linear models, but only
considers variance formulas for unweighted estima-
tors. The variance estimators he considers (with nonin-
formative sampling) do not have finite-population cor-
rection factors.
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Skinner (1994) considers superpopulation parame-
ters in a general regression setting. His estimation ap-
proach involves modeling the sample weights as a
function of the independent variables. He mentions
replication methods as a possibility for estimating the
variances of his parameter estimators. With stratified
sampling, these methods would not include a between-
strata component.

4.1.4 Other parameters. Patil and Rao (1978) con-
sider the finite-population values of the variable of in-
terest, as well as possibly a secondary variable, to be
realizations from random vectors with a parametric dis-
tribution function. Their target parameters are (a sub-
set of) the parameters associated with this distribution.
The finite population is sampled with probability pro-
portional to size, with the size variable being a known
function of the variable of interest or the secondary
variable. This framework induces a parametric distri-
bution on the sampled observations, which can be used
for inference; see also Rao (1965), Krieger and Pfef-
fermann (1992), Breckling et al. (1994) and Chambers,
Dorfman and Wang (1998). As the parametric distrib-
ution of the sampled observations is known (up to the
unknown parameters) with this “size-biased sampling,”
there is no need to consider finite-population correction
factors.

Cosslett (1981) discusses estimation of general pa-
rameters with choice-based sampling. He assumes that
the sampling fractions are negligible, so the issues dis-
cussed here do not arise.

Godambe and Thompson (1986) consider superpop-
ulation parameters in a general modeling setting by the
use of estimating equations; they do not discuss vari-
ance estimators.

4.2 Models with Clusters

With the “classes” of Konijn (1962) being clusters,
he considers two-stage cluster sampling with simple
random sampling at each stage. His target parameter
is the weighted mean of the superpopulation slopes
from each cluster, where the weights are the finite-
population sizes of the clusters. For estimating a mean,
where Konijn’s parameter estimator and ours coincide,
his variance estimator for the weighted mean has a
finite-population correction factor associated with the
sampling of the clusters (because his weights are the
finite-population sizes of the classes). Pfeffermann and
Nathan (1981) consider the target parameter to be
an (arbitrarily) weighted linear combination of the
superpopulation slopes from each cluster. The weight

of each cluster in the population is assumed known,
even if not sampled. They do not discuss variance
estimators.

Sedransk (1965), Campbell (1977), Holt and Scott
(1981), Scott and Holt (1982), Christensen (1984) and
Goldstein (1986) consider linear regression models for
the sampled observations that account for clustering
by using a random effect (Sedransk, 1965; Goldstein,
1986), a fixed effect (Christensen, 1984) or a (com-
mon) intracluster correlation of the residuals (Camp-
bell, 1977; Holt and Scott, 1981; Scott and Holt, 1982).
With noninformative sampling of the clusters and non-
informative sampling of the units within cluster, these
models for the sampled data can also be considered
models for the finite-population values. Their variance
formulas do not include finite-population correction
factors. [Christensen (1987) includes in his models in-
dependent variables that are cluster sample means of
unit-level variables. Even with noninformative sam-
pling, his models cannot be considered models for the
finite-population values.]

Graubard and Korn (1996a) and Pfeffermann et al.
(1998) consider models for the population values that
account for the clustering with a random effect. Their
variance estimators do not contain finite-population
correction factors. (They do not present variance es-
timators for stratified sampling.)

Kott (1991) accommodates stratified multistage sam-
pling and shows that when the sample weights are non-
informative the usual design-based with-replacement
variance estimators are appropriate. This is consistent
with our results, since he assumes that the superpopu-
lation regression coefficient vector (including the inter-
cept) is constant across the strata.

Magee (1998, Appendix B) accommodates “sub-
samples” (strata or clusters) with modified weighted
estimators. His weighted-least-squares-type variance
calculations assume that the regression coefficient vec-
tor (including the intercept) is constant across the
strata, and are therefore not comparable to our calcu-
lations.

5. EXAMPLES

We first consider examples of inference for super-
population means using three national health surveys
of the United States: the 1987 National Health Inter-
view Survey (NHIS), a household interview survey; the
third National Health and Nutrition Examination Sur-
vey (NHANES III), a medical examination survey; and
the 1986 National Hospital Discharge Survey (NHDS),
an institutional survey involving hospitals. This is fol-
lowed by examples of inference involving linear and
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logistic regression using the 1987 NHIS. These exam-
ples are meant to demonstrate the types of effects that
may be seen and some complicating issues and are not
meant to be substantive analyses. Each of the surveys
used in these examples has stratified cluster sample de-
signs. Therefore, we use the superpopulation model de-
scribed in Section 3. There is no need to assume that
the sample strata are the same as the superpopulation
strata (see Section 3.4). In these examples, we assume
that the primary clusters in the superpopulation corre-
spond to the PSUs. Section 3.4 shows that the super-
population variance estimators are robust with respect
to this assumption. The finite-population variances in
the examples (i.e., v̂arwo and v̂arwr) were calculated us-
ing SUDAAN (Shah, Barnwell and Bieler, 1997).

5.1 Means of Some Characteristics Measured in
the 1987 NHIS

The design of this survey was multistage with the
first stage involving the selection of PSUs consisting
of individual counties, two or more contiguous coun-
ties or metropolitan statistical areas (Massey, Moore,
Parsons and Tadros, 1989). Out of the 1894 PSUs com-
prising the population, 52 of the largest were sampled
with certainty. The remaining 1842 PSUs were classi-
fied into 73 strata, from each of which two PSUs were
sampled without replacement with probability propor-
tional to size. Within sampled PSUs, secondary sam-
pling units consisted of census enumeration districts,
which were further subsampled, leading eventually to

all eligible individuals in a sampled housing unit be-
ing interviewed. As part of the subsampling of some of
the sampled PSUs, geographic areas with the highest
concentrations of black persons were oversampled. For
the analyses here, we use data from the Cancer Con-
trol Supplement which was given to individuals aged
18 years or older for half the sampled housing units
(Schoenborn and Marano, 1988). We consider estimat-
ing the mean family income, mean height, proportion
of women reporting having mammograms in the past
year and the proportion of females in the population.
The analysis was restricted to women aged 40 years or
older for the mammogram variable.

Table 1 displays the weighted means for the selected
variables as well as their standard errors estimated in
different ways. It can be seen in lines 3 and 4 of the
table that the underestimation of the standard errors
based on the without-replacement variance estimators
as compared to the superpopulation variance estima-
tors can range from large (e.g., income) to negligible
(e.g., sex). The fact that there can be large differences
in these estimators may appear surprising because the
sampling fraction of PSUs is a relatively small 10%
(= 198/1894). However, over 80% of the population
is in the 52 PSUs that were sampled with certainty, so
large differences are possible; see the earlier discussion
in section 3.3. One suspects that the large difference
seen in variance estimators for income as compared to
the other variables is due to large between-strata dif-
ferences in income level as compared to the other vari-
ables; income was one of the variables used to form the

TABLE 1
Weighted means and standard errors for four variables using data from the 1987 National

Health Interview Survey

Income Height Mammograms Sex
(dollars) (inches) (proportion within proportion

last year) female)

Sample size 19,561 21,944 6,522 22,043
Weighted mean 28,064 66.9 0.16 0.53

Standard error estimator

Original data
[v̂arwo(ȳ)]1/2 193 0.0328 0.00518 0.00402
[v̂arSP(ȳ)]1/2 515 0.0496 0.00611 0.00437

Certainty PSUs paired
[v̂arwr(ȳ)]1/2 385 0.0461 0.00560 0.00417
[v̂arSP−a(ȳ)]1/2 516 0.0499 0.00611 0.00440

Certainty PSUs divided
[v̂arwr(ȳ)]1/2 197 0.0335 0.00518 0.00404
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strata in the 1987 NHIS. This suspicion was partially
confirmed with ad hoc components of variance models
for the variables (not shown). The small difference in
the variance estimators for sex and larger differences
for height and mammogram are because the sex dis-
tribution is very similar across geographical areas in
the US, but height is related to race (NHANES III http:
// www.cdc.gov/nchs/about/major/nhanes/hgtfem.pdf)
and mammogram rates are related to education (Breen
and Kessler, 1994); race (% Hispanic) and economic
variables (income and % below poverty), which cor-
relate with education, were used to form the sampling
strata.

We take 124 [= 73 + (52 − 1)] to be the de-
grees of freedom associated with the superpopulation
variance estimators. Therefore, for example, a 95%
confidence interval for the superpopulation mean in-
come is given by 28,064 ± 1.98 × 515. On the
other hand, a 95% confidence interval for the finite-
population mean income is given by 28,064 ± 1.98
× 193 [if we also associate 124 degrees of freedom
with v̂arwo(ȳ)].

The last three lines of Table 1 are based on with-
replacement variance estimators that would typically
be used when the PSU joint inclusion probabilities
were not available; the certainty PSUs were paired or
divided so that there were two or more pseudo-PSUs
in each pseudo-stratum. The with-replacement vari-
ance estimators that use the pairing of the certainty
PSUs into pseudo-strata incorporate some between-
strata variability; they therefore are intermediate to the
without-replacement and superpopulation estimators.
The approximate superpopulation variance estimators
in line 6, which are based on the with-replacement esti-
mators, are almost exactly equal to the superpopulation
estimators in line 4. The with-replacement variance es-
timators on line 7 treat each census enumeration dis-
trict in a certainty PSU as a pseudo-PSU.

5.2 Means of Some Characteristics Measured in
the NHANES III

This multistage survey was conducted between 1988
and 1994 with the first stage involving the selection
of PSUs consisting of counties or two or more adja-
cent counties (Ezzati et al., 1992; National Center for
Health Statistics, 1994). Out of the 2962 PSUs com-
prising the population, 13 large PSUs were sampled
with certainty. The remaining 2949 PSUs were classi-
fied into 34 strata, from each of which two PSUs were
sampled without replacement with probability propor-
tional to size. Within sampled PSUs, secondary sam-
pling units consisted of area segments consisting of

city or suburban blocks or other contiguous geographic
areas. Households within these segments were subsam-
pled, as well as individuals within the selected house-
holds. The sampling was done in a manner so that black
American and Mexican–American groups as well as
the very young and very old were sampled at higher
rates. Sampled persons completing a household inter-
view were invited to have a medical examination at
a mobile examination center. For the analyses here,
we use data from individuals aged 18 years or older.
We consider estimating the mean family income, mean
(self-reported) height, mean bone density (“bone min-
eral density of total region”), and the proportion of fe-
males in the population.

Table 2 displays the weighted means for the selected
variables as well as their standard errors estimated in
different ways. The only variable with a substantial
underestimation of its standard error based on the
without-replacement variance estimator as compared
to the superpopulation variance estimator is income.
Even with income, the underestimation is considerably
smaller than seen for income measured in the 1987
NHIS (Table 1). One possible cause of this is that the
between-strata variability of income could be larger in
the 1987 NHIS than in the NHANES III. However, an
ad hoc variance components model suggests that this
is not the case (not shown). Instead, we believe that
the smaller underestimation is because the estimated
percentage of the relevant population in certainty PSUs
is only 12% for the NHANES III (as opposed to
80% for the 1987 NHIS), and the overall sampling
fraction of PSUs is also smaller in the NHANES III,
3% (= 81/2962).

5.3 Percentage of Hospital Discharges in the
United States with Medicaid as the Principal
Source of Payment Measured in the 1986 NHDS

The NHDS samples nonfederal short-stay hospitals
and discharges from the sampled hospitals. It has
been in continuous operation since 1965. For 1986
and before, the design can be approximated by a
stratified simple random sample of hospitals, followed
by simple random samples of discharges from these
hospitals every year (Graves, 1988). The sampling
strata are given in Table 3 and were based on region
of the country and bed-size categories for the initial
sample of hospitals in 1965. For hospitals added to
the universe and sampled in later years, only bed-size
strata were used. For 1986, the sample consisted of
558 hospitals (out of a population of 8178 hospitals)
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TABLE 2
Weighted means and standard errors for four variables using data from the third National

Health and Nutrition Examination Survey

Income Height Bone density        Sex
(dollars) (inches) (gm/cm2) (proportion

female)

Sample size 17,513 18,724 14,646 19,618
Weighted mean 31,479 66.7 0.94 0.52

Standard error estimator

Original data
[v̂arwo(ȳ)]1/2 473 0.0501 0.00299 0.00435
[v̂arSP(ȳ)]1/2 533 0.0521 0.00309 0.00435

Certainty PSUs paired
[v̂arwr(ȳ)]1/2 557 0.0507 0.00306 0.00409
[v̂arSP−a(ȳ)]1/2 557 0.0523 0.00314 0.00430

Certainty PSUs divided
[v̂arwr(ȳ)]1/2 534 0.0507 0.00306 0.00425

TABLE 3
Number of hospitals in the 1986 National Hospital Discharge universe and

number of sampled responding in-scope hospitals by sampling strata

Hospitals sampled in 1965 Hospitals
sampled

Bedsize Northeast Midwest South West later

6–49 beds
Universe 199 830 1438 646 449
Sample 5 10 12 4 10

50–99 beds
Universe 288 442 587 306 326
Sample 8 13 16 8 16

100–199 beds
Universe 277 378 332 157 314
Sample 20 23 20 9 23

200–299 beds
Universe 182 151 134 85 90
Sample 23 19 12 9 13

300–499 beds
Universe 110 129 96 51 28
Sample 17 25 21 8 8

500–999 beds
Universe 42 46 28 13 6
Sample 13 16 10 7 3

≥1000 beds
Universe 9 3 5 1 0
Sample 8 3 5 1 0

of which 75 refused to participate and 65 were out
of scope. The sampling strata of the remaining 418
hospitals are given in Table 3; these hospitals provided
information on approximately 193,000 discharges (out
of a population of 34.3 million discharges).

The public-use data files for the 1986 NHDS contain
a sample weight for each discharge. These weights
incorporate various ratio and nonresponse adjustments
as well as representing the sampling rates (Simmons
and Schnack, 1970). We modify these weights to
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TABLE 4
Percentage of hospital discharges for which Medicaid was the principal expected source of payment, based on data from

the 1986 National Hospital Discharge Survey

Estimates using: Standard errors estimated using:

Original Modified v̂arwo(ȳ) v̂arSP(ȳ) v̂arSP−a(ȳ) v̂arwr(ȳ)
weights weights

All hospitals 10.400% 10.398% 0.429% 0.463% 0.463% 0.456%
Hospitals with bed size ≥500 11.993% 11.994% 0.917% 1.094% 1.094% 1.064%

be consistent with two-stage stratified simple random
sampling by setting all the weights for the discharges in
a given hospital to be equal to the mean sample weight
of these discharges. For the purposes of variance
estimation, the inclusion probabilities for the hospitals
are taken to be the inverses of the sampling fractions
given in Table 3, and the second-stage conditional
inclusion probabilities for the discharges are taken
as the inverses of the hospital inclusion probabilities
divided by the modified discharge weight. Note that,
for the calculation of the inclusion probabilities of the
hospitals, sampled nonresponding hospitals are treated
as if they were in the universe but unsampled. Thus,
with the usual missing data assumptions, the resulting
inferences are for all hospitals and not just for the
universe of hospitals that would respond if sampled. In
addition, the universe figures in Table 3 include some
hospitals that were out of scope in 1986. If information
had been available about which hospitals they were, we
would have reduced the universe figures accordingly.
Although we present point estimates using both the
original sample weights and the modified weights, the
variance estimators use the modified weights.

The first row of Table 4 contains estimates of the
percentage of discharges for which Medicaid was the
principal expected source of payment. The point esti-
mates using the original sample weights and the modi-
fied weights are almost identical. The finite-population
repeated-sampling standard error ([v̂arwo(ȳ)]1/2) is
7% smaller than the superpopulation standard error
([v̂arSP(ȳ)]1/2). To calculate the standard error based
on a with-replacement variance estimator [v̂arwr(ȳ)]
or based on the approximate superpopulation variance
[v̂arSP−a(ȳ)] requires at least two sampled hospitals
in each stratum. Since the largest bed-size stratum for
the western region has only one sampled hospital, we
pooled this stratum with largest bed-size stratum for
the southern region for calculation of these two stan-
dard errors. The standard error based on the approxi-
mate superpopulation variance (v̂arSP−a(ȳ)) is almost

identical to the one based on the superpopulation vari-
ance [v̂arSP(ȳ)], although there is no need for using the
approximation in this application since with stratified
simple random sampling the joint inclusion probabili-
ties are self-evident.

The second row of Table 4 displays results restricting
consideration to hospitals with 500 or more beds in
1986. (This set of 91 sampled hospitals is not exactly
the same as the set of 66 sampled hospitals with 500 or
more beds given in Table 3 because that table refers to
bed size at the time of sampling of the hospitals.) Since
the sampling fraction of the larger hospitals is larger,
the difference between the standard errors is larger—
the finite-population repeated-sampling standard error
is 16% smaller than the superpopulation variance
estimator.

5.4 Some Linear and Logistic Regressions Using
the 1987 NHIS

Table 5 presents the results from four simple lin-
ear regressions. The underestimation of the without-
replacement variance estimators is much smaller for
the regression coefficients in this table than for the sim-
ple means of income and height given in Table 1. The
inherent variability of all the variance estimators makes
any additional definitive statements suspect. However,
it does appear that regressing on sex eliminates the un-
derestimation more than regressing on race. This is un-
derstandable if one thinks that income (and height) lev-
els for men and women may be higher and lower to-
gether in primary sampling units, reducing between-
PSU differences in sex differences in income (and
height). Table 6 presents the results of the multiple lin-
ear regression of income on race and sex. The results
look similar to the results in Table 5.

Table 7 presents the results of the multiple linear
regression of income on race, sex and the race-by-
sex interaction. The interesting finding here is that the
superpopulation variance estimator appears consider-
ably smaller than the without-replacement estimator.
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TABLE 5
Weighted regression coefficients and standard errors for four simple linear regressions using data from

the 1987 National Health Interview Survey

Dependent variable Income Income Height Height

Race (white Sex (men vs. Race (white Sex (men vs.
Independent variable vs. nonwhite) women) vs. nonwhite) women)

Sample size 19,561 19,561 21,944 21,944
Weighted regression 7,102 3,138 0.67 5.71

coefficient

Standard error estimator

Original data
[v̂arwo(β̂)]1/2 488 290 0.0953 0.0435
[v̂arSP(β̂)]1/2 585 268 0.1107 0.0444

Certainty PSUs paired
[v̂arwr(β̂)]1/2 494 253 0.1153 0.0431
[v̂arSP−a(β̂)]1/2 516 271 0.1112 0.0454

Certainty PSUs divided
[v̂arwr(β̂)]1/2 585 293 0.0964 0.0435

TABLE 6
Weighted regression coefficients and standard errors for the multiple
linear regression of income on race and sex using data from the 1987

National Health Interview Survey (sample size = 19.561)

Race (white vs. Sex (men vs.
Independent variable nonwhite) women)

Weighted regression coefficient 7018 3047

Standard error estimator

Original data
[v̂arwo(β̂)]1/2 486 286
[v̂arSP(β̂)]1/2 580 259

Certainty PSUs paired
[v̂arwr(β̂)]1/2 500 250
[v̂arSP−a(β̂)]1/2 581 261

Certainty PSUs divided
[v̂arwr(β̂)]1/2 493 288

The with-replacement estimator with certainty PSUs
paired is also considerably smaller than the without-
replacement estimator, another counterintuitive find-
ing. Both findings are consistent with the variability of
a certain set of residuals between second-stage sam-
pling units within certainty PSUs being larger than
would be expected from the variability of these resid-
uals between PSUs. Extensive simulations may be re-
quired to understand which differences in variance es-
timators seen in Table 7 are real and which are just

due to the variability of the variance estimators. In any
case, note that the regression coefficient for the interac-
tion is small compared to its standard error, regardless
of the manner in which the standard error is esti-
mated.

Table 8 presents the results of logistic regressions
of the probability of mammogram in the last year
on race and income. For simple and multiple logistic
regressions, it appears that the without-replacement
variance estimator underestimates the variability of
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TABLE 7
Weighted regression coefficients and standard errors for the multiple linear regression

of income on race, sex and race × sex using data from the 1987 National Health
Interview Survey (sample size = 19.561)

Race (white Sex (men vs. Race × sex
Independent variable vs. nonwhite) women)

Weighted regression 7099 3067 149
coefficient

Standard error estimator

Original data
[v̂arwo(β̂)]1/2 654 308 810
[v̂arSP(β̂)]1/2 755 283 665

Certainty PSUs paired
[v̂arwr(β̂)]1/2 738 271 700
[v̂arSP−a(β̂)]1/2 758 288 680

Certainty PSUs divided
[v̂arwr(β̂)]1/2 662 314 830

TABLE 8
Weighted logistic regression coefficients and standard errors for two simple logistic regressions
and one multiple logistic regression of mammogram ( probability within the last year) on race

and income using data from the 1987 National Health Interview Survey

Simple logistic regressions Multiple logistic regression

Race (white Income Race (white Income
Independent variable vs. nonwhite) (×10−6) vs. nonwhite) (×10−6)

Sample size 6522 5620 5620
Weighted regression −0.290 24.4 −0.119 24.2

coefficient

Standard error estimator

Original data
[v̂arwo(β̂)]1/2 0.127 2.48 0.136 2.48
[v̂arSP(β̂)]1/2 0.178 2.57 0.192 2.53

Certainty PSUs paired
[v̂arwr(β̂)]1/2 0.141 2.82 0.143 2.78
[v̂arSP−a(β̂)]1/2 0.178 2.65 0.191 2.62

Certainty PSUs divided
[v̂arwr(β̂)]1/2 0.126 2.60 0.135 2.60

the race coefficient. This is also seen in the multiple
logistic regression that contains the race-by-income
interaction (Table 9).

To test or form a confidence interval for any single
regression coefficient in Tables 5–9, one uses a t dis-
tribution with 124 degrees of freedom with one of the
superpopulation variance estimators. For example, in
the simple logistic regression in Table 8, the associ-

ation of race with the probability of mammogram is
tested by comparing −1.629 (= −0.290/0.178) to a t
distribution with 124 degrees of freedom. Note that it
does not make sense to test this association in the finite
population. To simultaneously test two regression coef-
ficients in a multiple regression, for example, race and
the race-by-income interaction both being 0 in Table 9,
one uses an F test with 2 and 123 degrees of freedom
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TABLE 9
Weighted regression coefficients and standard errors for the multiple logistic regression
of mammogram ( probability within the last year) on race, income and race-by-income

using data from the 1987 National Health Interview Survey (sample size = 5620)

Race (white Income Race-by-Income
Independent variable vs. nonwhite) (×10−6) (×10−6)

Weighted regression 0.309 26.0 −17.2
coefficient

Standard error estimator

Original data
[v̂arwo(β̂)]1/2 0.210 2.66 7.72
[v̂arSP(β̂)]1/2 0.279 2.53 8.72

Certainty PSUs paired
[v̂arwr(β̂)]1/2 0.244 2.90 8.12
[v̂arSP−a(β̂)]1/2 0.282 2.65 8.84

Certainty PSUs divided
[v̂arwr(β̂)]1/2 0.212 2.78 7.92

with the 2×2 superpopulation covariance matrix of the
estimated coefficients (not shown).

6. DISCUSSION

The merits of model-based versus design-based
(randomization-based) inference for survey data have
been thoroughly discussed in the literature, for ex-
ample, Hansen, Madow and Tepping (1983). While
not intending to enter into the controversy, we real-
ize the suggestions in this paper may have some rel-
evance to these more general issues. In particular, we
have suggested for inference that standard (design-
based) weighted estimators should be used but with
variance estimators that incorporate both randomiza-
tion and superpopulation model variability. We briefly
examine the implications of this approach for some
of the more general issues: the choice of target para-
meter, the choice of estimator (especially the use of
sample-weighted estimators), the relevance of the ran-
domization distribution induced by the sampling and
the choice of conditioning statistics.

For the scientific applications on which we are focus-
ing, the target parameters are associated with stochas-
tic models for the finite-population values rather than
with functions of the finite-population values them-
selves. The stochastic models we utilize are relatively
simple marginal models that involve a few dependent
and independent variables, and can be implemented
with easy modifications of existing software. They are

not models that incorporate all the variables that de-
scribe the sampling or the population, that is, all the
variables involved in the sampling design, poststratifi-
cation and nonresponse adjustments, as well as vari-
ables defining the levels of clustering in the popula-
tion. We believe that the parameters associated with
these simple marginal models tend to be the ones of
most scientific interest. One could, in theory, develop
a comprehensive hierarchical model that incorporates
all the known sampling and population variables and
then define a marginal parameter based on that model.
This type of complex superpopulation modeling would
likely require extensive resources for each analysis. In
addition, this type of approach would not appear to of-
fer much statistical benefit (Pfeffermann and LaVange,
1989).

Since we are using a model for the population to de-
fine the target parameter, why incorporate the weights
derived from the sampling into the parameter esti-
mator? We use sample-weighted estimators because
they estimate the target parameter with a minimum
of assumptions. For example, to estimate the mean of
Y from a probability-proportional-to-size sample, one
can use the weighted mean, whereas the unweighted
mean will not estimate the superpopulation mean with-
out a further assumption such as the size variable be-
ing independent of Y . We do not rigidly recommend
weighted estimators; there are situations in which the
weights are so variable that some modeling is advisable
(Korn and Graubard, 1995; Magee, 1998). In general,
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however, we recommend weighted estimators because
we believe their model-free aspects outweigh their po-
tential inefficiency.

The third issue we address concerns the relevance
of the sampling distribution to superpopulation in-
ference. In particular, why are our superpopulation
variance estimators based on corrections to repeated-
sampling variance estimators? We used this approach
mainly for convenience; repeated-sampling variance
estimators for weighted parameter estimators are read-
ily available. However, note that in some cases less in-
formation is needed for the superpopulation variance
estimator than for the repeated-sampling variance esti-
mator (Section 3.2). Of course, if one is willing to make
enough model assumptions, then the sampling distri-
bution will become irrelevant in the sense that it can
be ignored when doing a model-based analysis. One
might presume that these additional model assump-
tions would lead to variance estimators with reduced
variability (when the assumptions hold); this has not
been our experience (Graubard and Korn, 1996a).

Finally, we consider the choice of conditioning sta-
tistics. Even with finite-population inference, there is
some question as to which, if any, auxiliary statistics
should be conditioned on for inference (Royall and
Cumberland, 1981; Rao, 1985). For example, when es-
timating a mean with a ratio estimator using stratified
simple random sampling, should one calculate vari-
ances conditional on the sample strata means of the
auxiliary variable, {x̄1, . . . , x̄L}? For superpopulation
inference (Section 2.5), we have suggested not only
not conditioning on {x̄1, . . . , x̄L}, but also not condi-
tioning on the finite-population means {X1, . . . ,XL}!
We are unapologetic about this, as we believe that this
is reasonable unless one is willing to rely on a stronger
model for the (Ui,Xi, ηi) than is given in Section 2.3.
Chambers (1986, page 170) suggests that an argument
for a completely unconditional analysis is “attractive
provided some sort of joint distribution for Y [our U ],
X and Z [our η] can be postulated.” He further states
“Unfortunately, this is rarely possible.” We note that,
for the estimators presented in this paper, it is unneces-
sary to specify this joint distribution.

The conditioning issue also arises in the context of
poststratification; should one condition on the strata
sample sizes when estimating the variance of a post-
stratified mean (Holt and Smith, 1979)? For estimat-
ing the variance of the poststratified mean around the
finite-population mean, the practical importance of this
question would seem to be limited to whether or not to

include the second term of (2.12), which is of small or-
der. [Conditioning on strata-specific subdomain sample
sizes can yield very wrong inferences for subdomain
means (Graubard and Korn, 1996b).] For superpopu-
lation inference, conditioning on strata sample sizes
would be a bad idea; with large sampling fractions this
conditioning approaches conditioning on the popula-
tion strata sizes which we have shown to underestimate
the superpopulation variability.

In summary, we believe design-based inference to be
an efficient and reasonably model-free approach for in-
ference about finite-population parameters. The simple
modifications of design-based variance estimators sug-
gested in this paper allow one to make inferences with
few model assumptions for superpopulation parame-
ters, which are frequently the ones of primary scientific
interest.
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