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Spline Adaptation in Extended
Linear Models
Mark H. Hansen and Charles Kooperberg

Abstract. In many statistical applications, nonparametric modeling can
provide insights into the features of a dataset that are not obtainable
by other means. One successful approach involves the use of (univariate
or multivariate) spline spaces. As a class, these methods have inherited
much from classical tools for parametric modeling. For example, stepwise
variable selection with spline basis terms is a simple scheme for locating
knots (breakpoints) in regions where the data exhibit strong, local features.
Similarly, candidate knot configurations (generated by this or some other
search technique), are routinely evaluated with traditional selection criteria
like AIC or BIC. In short, strategies typically applied in parametric model
selection have proved useful in constructing flexible, low-dimensional
models for nonparametric problems.

Until recently, greedy, stepwise procedures were most frequently sug-
gested in the literature. Research into Bayesian variable selection, however,
has given rise to a number of new spline-based methods that primarily rely
on some form of Markov chain Monte Carlo to identify promising knot lo-
cations. In this paper, we consider various alternatives to greedy, determin-
istic schemes, and present a Bayesian framework for studying adaptation in
the context of an extended linear model (ELM). Our major test cases are
Logspline density estimation and (bivariate) Triogram regression models. We
selected these because they illustrate a number of computational and method-
ological issues concerning model adaptation that arise in ELMs.

Key words and phrases: Adaptive triangulations, AIC, BIC, density estima-
tion, extended linear models, finite elements, free knot splines, GCV, linear
splines, multivariate splines, regression.

1. INTRODUCTION

Polynomial splines are at the heart of many popu-
lar techniques for nonparametric function estimation.
For regression problems, TURBO (Friedman and Sil-
verman, 1989), multivariate adaptive regression splines
or MARS (Friedman, 1991) and � (Breiman, 1991)
have all met with considerable success. In the con-
text of density estimation, the Logspline procedure
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of Kooperberg and Stone (1991, 1992) exhibits ex-
cellent spatial adaptation, capturing the full height of
spikes without overfitting smoother regions. And fi-
nally, among classification procedures, classification
and regression trees (CART) (Breiman, Friedman, Ol-
shen and Stone, 1984) is a de facto standard, while
the more recent PolyMARS models (Kooperberg, Bose
and Stone, 1997) have been able to tackle even large
problems in speech recognition. Stone et al. (1997) and
a forthcoming monograph by Hansen, Huang, Kooper-
berg, Stone and Truong are the prime references for
the application of polynomial splines to function es-
timation. In this paper, we review a general method-
ological framework common to procedures like MARS
and Logspline, and contrast it with several Bayesian
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approaches to spline modeling. We begin with some
background material on splines.

1.1 Splines

Univariate, polynomial splines are piecewise poly-
nomials of some degree d . The breakpoints marking
a transition from one polynomial to the next are re-
ferred to as knots. In this paper, we will let the vector
t = (t1, . . . , tK) ∈ R

K denote a collection of K knots.
Typically, a spline will also satisfy smoothness con-
straints describing how the different pieces are to be
joined. These restrictions are specified in terms of the
number of continuous derivatives, s, exhibited by the
piecewise polynomials. Consider, for example, piece-
wise linear curves. Without any constraints, these func-
tions can have discontinuities at the knots. By adding
the condition that the functions be globally continu-
ous, we force the separate linear pieces to meet at
each knot. If we demand even greater smoothness (say,
continuous first derivatives), we loose flexibility at the
knots and the curves become simple linear functions.
In the literature on approximation theory, the term “lin-
ear spline” is applied to a continuous, piecewise linear
function. Similarly, the term “cubic spline” is reserved
for piecewise cubic functions having two continuous
derivatives, allowing jumps in the third derivative at
the knots. In general, it is common to work with splines
having maximal smoothness in the sense that any more
continuity conditions would result in a global polyno-
mial.

Given a degree d and a knot vector t, the collection
of polynomial splines having s continuous derivatives
forms a linear space. For example, the collection of
linear splines with knot sequence t is spanned by the
functions

1, x, (x − t1)+, . . . , (x − tK)+,(1)

where (·)+ = max(·,0). We refer to this set as the
truncated power basis of the space. In general, the
basis for a spline space of degree d and smoothness s

is made up of monomials up to degree d together with
terms of the form (x − tk)

s+j
+ , where 1 ≤ j ≤ d − s.

Using this formula the classical cubic splines have
d = 3 and s = 2 so that the basis has elements

1, x, x2, x3, (x − t1)
3+, . . . , (x − tk)

3+.(2)

From a modeling standpoint, the truncated power basis
is convenient because the individual functions are tied
to knot locations. In the expressions (1) and (2), there
is exactly one function associated with each knot, and
eliminating that function effectively removes the knot.

This observation is at the heart of many statistical
methods that involve splines and will be revisited
shortly.

The truncated power functions (1) and (2) are known
to have rather poor numerical properties. In linear
regression problems, for example, the condition of
the design matrix deteriorates rapidly as the num-
ber of knots increases. An important alternative rep-
resentation is the so-called B-spline basis (de Boor,
1978). These functions are constructed to have sup-
port only on a few neighboring intervals defined by
the knots. (For splines having maximal smoothness,
this means d+ 1 neighboring intervals.) A detailed de-
scription of this basis is beyond the scope of this pa-
per, but the interested reader is referred to Schumaker
(1993). For the moment, assume we can find a basis
B1(x; t), . . . ,BJ (x; t) for the space of splines of de-
gree d with smoothness s and knot sequence t so that
any function in the space can be written as

g(x;β, t)= β1B1(x; t)+ · · · + βJBJ (x; t),(3)

for some coefficient vector β = (β1, . . . , βJ )
t . If we

are dealing with spline spaces of maximal smoothness,
then J = K + d + 1, as we have seen in (1) and (2).
Given this structure, we now briefly describe a broad
collection of estimation problems that admit relatively
natural techniques for identifying good fitting func-
tions g.

1.2 Extended Linear Models

Extended linear models (ELMs) were originally de-
fined as a theoretical tool for understanding the prop-
erties of spline-based procedures in a large class of es-
timation problems (Hansen, 1994; Stone et al., 1997;
Huang, 1998, 2001). This class is extremely rich, con-
taining all of the standard generalized linear models
as well as density and conditional density estimation,
hazard regression, censored regression, spectral den-
sity estimation and polychotomous regression. To de-
scribe an ELM, we begin with a probability model
p(W |h) for a (possibly vector-valued) random vari-
able W ∈W that depends on an unknown (also pos-
sibly vector-valued) function h. Typically, h represents
some component of the probability model about which
we hope to make inferences. For example, in a nor-
mal linear model, h is the regression function; while
for density estimation, we take h to be the log-density.

Let l(W |h) = logp(W |h) denote the log-likelihood
for an ELM, and assume that there exists a unique
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function φ that maximizes the expected log-likelihood
El(W |h) over some linear space of real-valued func-
tions H . The maximizer φ defines “truth,” and is the
target of our estimation procedures. [In Stone et al.
(1997) a slightly more general notion of “truth” is de-
veloped to handle ANOVA-like functional decompo-
sitions.] We refer to this set-up as an extended linear
model for φ. In this case, the term “linear” refers to our
use of a linear model space H . The class H is chosen
to capture our beliefs about φ, and is commonly de-
fined through smoothness conditions (e.g., we might
assume that the true regression function in a linear
model has two continuous, bounded derivatives). These
weak assumptions about φ tend to result in classes H

that are infinite dimensional. Therefore, for estima-
tion purposes we choose to work with flexible, finite-
dimensional spaces G that have good approximation
properties. That is, the elements g ∈G can capture the
major features of functions φ ∈H , or ming∈G ‖g − φ‖
is small in some norm for all φ ∈ H . Splines are one
such approximation space.

Given a series of observations W1, . . . ,Wn from the
distribution of W , we estimate φ by maximizing the
log-likelihood

l(g)=∑
i

l(Wi|g) where g ∈G.(4)

Our appeal to maximum likelihood in this context does
not imply that we believe p(W |φ) to be the true, data-
generating distribution for W . Rather, p may be chosen
for computational ease in the same way that ordinary
least squares can be applied when the assumption of
strict normality is violated. In theoretical studies, it
is common to let the dimension of G depend on the
sample size n. For example, if G is a spline space with
K knots, we let K = K(n)→∞ as n→∞. As we
collect more data, we are able to entertain more flexible
descriptions of φ. Asymptotic results describing the
number of knots K(n) and their placement needed to
achieve optimal mean squared error behavior are given
in Stone (1985), Stone (1994), Hansen (1994), and
Huang (1998, 2001), and Stone and Huang (2002).

An ELM is said to be concave if the log-likelihood
l(w|h) is concave in h ∈ H for each value of w ∈W
and if El(W |h) is strictly concave in h [when restricted
to those h for which El(W |h) > −∞]. Strict concav-
ity holds for all of the estimation problems listed at the
beginning of this section. Now, let G be a spline space
with knot sequence t so that any g ∈G can be written
in the form (3). Then since g(·) = g(·;β, t), the log-
likelihood (4) can be written as l(β, t). Because of con-

cavity, the maximum likelihood estimates (MLEs) β̂
for the coefficients β and a fixed t can be found ef-
ficiently in reasonably-sized problems through simple
Newton–Raphson iterations. Therefore, it is possible to
compute

l(t)=max
β

l(β, t).(5)

After making the dependence on t explicit in this
way, we can consider adjusting the knot locations
t1 < · · · < tK to maximize the log-likelihood. It is
intuitively clear that the knot sequence t= (t1, . . . , tK)

controls the flexibility of elements in g to track local
features: tightly-spaced knots can capture peaks, while
widely-separated knots produce smooth fits.

However, even in the simplest case, linear regression
with a single univariate predictor, maximizing (5) over
knot sequences is a difficult optimization problem. To
see this, we first translate univariate regression into
an ELM: let W = (X,Y ) and define p(W |φ) via the
relationship

Y = φ(X)+ ε,

for an unknown regression function φ. The error ε

is assumed independent of X with a normal distribu-
tion having mean zero and variance σ 2. For a spline
space G, the negative log-likelihood for β is propor-
tional to the regression sum of squares

RSS(β, t)=∑
i

(
Yi − g(Xi;β, t)

)2

=∑
i

(
Yi − β1B1(Xi; t)− · · ·

−βJBJ (Xi; t))2
.

If we hold t fixed, then

l(t)∝−RSS(t)=max
β
{−RSS(β, t)}

= −RSS(β̂, t),
(6)

where β̂ is the ordinary least squares estimate of β .
Jupp (1978) demonstrated that −RSS(t) has local
maxima along lines of the form tk = tk+1, making
the solution to (6) difficult for standard optimization
software. Not surprisingly, this problem persists in
even more exotic ELMs.

Several authors have considered special transforma-
tions, penalties or ad hoc optimization schemes to max-
imize the log-likelihood with respect to t (Jupp, 1978;
Lindstrom, 1999; Kooperberg and Stone, 2002). In this
paper, we will instead consider an approximate solu-
tion that begins by connecting knot placement with
model selection.
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1.3 Model Selection

The concavity of an ELM together with the asso-
ciation of knot locations to terms in the truncated
power basis suggests simple approximations to maxi-
mizing (5) based on fast, stepwise approaches to model
selection. Consider splines of degree d having max-
imal smoothness and knot sequence t. According to
Section 1.1, this means that s = d − 1 and each knot
point tk in t is associated with only one of the trun-
cated monomials (x− tk)

d+; the linear (1) and cubic (2)
splines are two examples. Therefore, moving tk ef-
fects only one basis element in G, and in fact remov-
ing tk entirely is equivalent to deleting (x − tk)

d+ from
the model. Many existing spline methods use this idea
in some form. It was originally proposed by Smith
(1982a, b) and it has been the workhorse of many
procedures suggested since (TURBO, DKCV, MARS,
PolyMARS).

Returning to the problem of maximizing (5), sup-
pose we have a finite set of candidate knots T =
{t ′1, . . . , t ′K ′ }, from which we want to select a subset of
size K , t = (t1, . . . , tK), K ≤ K ′. The connection be-
tween knots and basis functions suggests that finding a
good sequence t is really a problem in model selection
where we are choosing from among candidate basis
functions of the form (x− t)d+, t ∈ T . For linear regres-
sion and moderate numbers of candidate knots K ′, we
can find the sequence of length K that minimizes (6)
using traditional branch-and-bound techniques. How-
ever, when K ′ gets large, or when we have a more
exotic ELM requiring Newton–Raphson iterations to
evaluate (5), this approach quickly becomes infeasible.

For computational efficiency, the algorithms dis-
cussed by Stone et al. (1997) take a stepwise ap-
proach, introducing knots in regions where the un-
known function φ exhibits significant features, as eval-
uated through the log-likelihood, and deleting knots
in regions where φ appears relatively smooth. More
formally, starting from a simple spline model, knots
are added successively, at each step choosing the lo-
cation that produces the greatest increase in the log-
likelihood. This is followed by a pruning phase in
which unnecessary knots are removed, at each stage
eliminating the basis element that results in the small-
est change in the log-likelihood. Because we are al-
ways taking the best single alteration to the current
model, these schemes are often referred to as greedy.
To prevent this process from tracking spurious patterns
in the data, it is common to impose constraints on the
initial model, the size M of the largest model fit dur-
ing addition, and the minimal number of data points

between each knot. These restrictions are defined in
terms of allowable spaces, a topic we will discuss in
more detail in the next section.

Several facts about ELMs make this approach attrac-
tive computationally. Consider placing a single knot in
a linear regression model. Then, among all basis sets
of the form 1, x, (x − t)+, we want to find the one
that minimizes the criterion (6), which in this case is
a function of t . It is not hard to show that RSS(t) is
a piecewise smooth function of t , with breaks in the
first derivative at each of the data points. This means
we can derive fast heuristics to guide the search for
new knots during the addition phase without having to
evaluate all the candidates. Next, the concavity of the
ELMs listed in Section 1.2 means that we can quickly
approximate the change in log-likelihood from either
adding or deleting a knot without actually fitting each
candidate model. We now describe each alteration or
“move” in more detail.

Knot addition. Let G be a J -dimensional spline
space with a given knot sequence, t, and let β̂ denote
the MLE of β. When using the truncated power basis
inserting a new knot is equivalent to adding a single
basis function to G, taking us to a new (J + 1)-
dimensional space G1 with coefficient vector β1 and
knot sequence t1 (where we let BJ+1 be the basis
function associated with the new knot). To evaluate
the improvement, we employ a Taylor expansion of
the log-likelihood l(β1, t1) around β1 = (β̂,0), which
specifies a function in G1. This approximation yields
the well-known Rao (score) statistic and is convenient
because it allows us to entertain a large number of
candidate knot locations without having to compute the
MLE β̂1 in each candidate space.

Knot deletion. Again, let G be a given spline space
and β̂ the associated MLE. Removing a knot from G

reduces the dimension of G by one and takes us to a
space G0. To evaluate the impact of this alteration, we
again employ a Taylor expansion, this time around β̂ . If
a ∈ R

J represents the linear constraint that effectively
removes a given knot, this expansion yields the Wald
statistic for testing the hypothesis that atβ = 0. For the
truncated power basis, a is a binary vector with a single
nonzero entry. With this approach, we can compare the
impact of removing each knot in G without having to
compute the MLE in these reduced spaces.

Alternating phases of knot addition and deletion
produces a sequence of models, from which we select
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the single best according to some selection criterion
like generalized cross validation (GCV)

GCVa(t)= RSS(t)
n

/[
1− a(J (t)− 1)

n

]2

,(7)

or a variant of the Akaike information criterion (AIC)

AICa(t)=−2l̂(t)+ aJ (t)(8)

(Akaike, 1974), where J (t) is the dimension of the
spline space. The parameter a in each of these ex-
pressions controls the penalty assigned to models with
more knots and is introduced to offset the effects of
selection bias (Friedman and Silverman, 1989; Fried-
man, 1991). In Stone et al. (1997) the default value of a
in (8) is logn, resulting in a criterion that is commonly
referred to as BIC (Schwarz, 1978).

Notice that our search for good knot locations
based on the log-likelihood (5) has led to a heuristic
minimization of a selection criterion like (7) or (8).
Several comments about this reduction are in order.
First, greedy schemes are often criticized for not
exploring a large enough set of candidate models. In
the stepwise algorithms of Stone et al. (1997), for
example, the simple two-pass scheme (knot addition
to a model of size M followed by deletion) evaluates
essentially 2M different knot sequences. These 2M
candidates are also highly constrained, representing a
potentially narrow path through the search space. As a
result, when we identify the “best model” according
to some selection criterion, we have visited at most
a handful of its “good-fitting” neighbors, those spline
spaces with about the same number of knots found
during either addition or deletion. However, as is
typical with variable selection problems, many spline
models offer essentially equivalent fits (in terms of AIC
or GCV).

Despite these caveats, examples in Stone et al. (1997)
and other papers show that greedy algorithms for knot
selection can work quite well. They lead to a surprising
amount of spatial adaptivity, easily locating extra knots
near sharp features, while removing knots in smooth
areas. It is natural, however, to question whether or not
alternative methods might prove more effective. In the
discussion following Stone et al. (1997), for example,
the Bayesian framework of Smith and Kohn (1996) is
shown to approximately minimize the same objective
function (8), but with a stochastic search algorithm.
In general, the recent work on Bayesian model selec-
tion offers interesting solutions to the shortcomings of
greedy methods.

1.4 A Bayesian Approach

The desire to compare alternative search schemes
is half the motivation for this paper. As mentioned
earlier, a major source of inspiration comes from the
recent work on Bayesian model selection and the
accompanying Markov chain Monte Carlo (MCMC)
methods for identifying promising models. To date,
several Bayesian spline methods have appeared that
make the connections with model selection listed
above. The first was Halpern (1973), who constructed
a hierarchical model for regression with linear splines.
This application necessarily focused on small problems
with a limited number of potential knots, succumb-
ing to the computational resources of the day. More
modern research in this area has followed a similar ap-
proach in terms of prior assignment, but makes use of
MCMC to sample from a (possibly very) large set of
candidate knots. Perhaps the first such procedure was
exhibited by Smith (1996) and Smith and Kohn (1996)
for univariate and additive regression models. Simi-
lar in spirit are the Bayesian versions of TURBO and
CART proposed by Denison et al. (1998a, b), which
employ reversible jump MCMC (Green, 1995).

In a Bayesian setup, model uncertainty comes from
both the structural aspects of the space G—knot
placement—as well as from our selection of members
g ∈G—determining coefficients in expression (3). We
now spell out a simple hierarchical formulation that we
will revisit in the next section. At the first level of the
hierarchy, we assign a prior distribution p(G) to some
set of candidate models G. In the setup for univariate
regression using linear splines, for example, we would
typically do that by first choosing a prior distribution
on the number of knots p(K), and then by choosing an
additional prior on the collection of knots t given K ,
p(t|K). Through p(t|K) we can prevent knots from
getting too close, reducing the chance that the fitted
model will track spurious features in the data. Next,
given a space G, we generate elements g according to
the distribution p(g|G). Consistent with our motiva-
tion for modeling with splines in the first place, our
priors on K, t and g should somehow reflect our be-
liefs about the smoothness of the underlying function
of interest in an ELM, φ. In the literature on smooth-
ing splines we find a class of priors for g that given
a basis for G and an expansion (3) involves the coef-
ficients β = (β1, . . . , βJ ). This amounts to a partially
improper, normal distribution for β (Silverman, 1985;
Wahba, 1990; and Green and Silverman, 1994), which
we will return to in Section 2.
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Given a prior for spline functions g, we can gener-
ate a sample from the posterior distribution of g us-
ing MCMC. In particular, in Sections 2 and 3 we will
use the reversible jump algorithm of Green (1995) for
Logspline density estimation and Triogram regression,
respectively. Details about how to choose priors and
how to tune algorithms are discussed in these sections.
When properly tuned, these stochastic methods can
identify many more good-fitting knot configurations
than their greedy, deterministic competitors. By focus-
ing their search in regions of model space that have
high posterior probabilities, the MCMC schemes listed
above visit many more “promising” configurations.

The second major motivation for this paper is the
form of the final function estimate itself. Since deter-
ministic searches identify a very small number of us-
able models, the unknown function is typically esti-
mated by straight maximum likelihood applied to some
basis for the identified spline space. Suppose for the
moment, that the function being estimated is smooth in
some region, perhaps requiring not more than a single
knot to adequately describe the curve. From the point
of view of mean squared error, there are many roughly
equivalent ways to place this knot in the region. There-
fore, if given a number of good knot configurations, it
might be more reasonable to combine these estimates
in some way. This is roughly a spline or knot-selection
version of the classical motivation for Bayesian model
averaging. In later versions of the Gibbs sampling ap-
proach of Smith and Kohn (1998) and the Bayesian
versions of TURBO and MARS by Denison, Mallick
and Smith (1998a, b), the final function estimate is a
posterior mean.

In this paper, we compare greedy (stepwise) al-
gorithms with nongreedy (stochastic, Bayesian) algo-
rithms for model selection. We evaluate different ap-
proaches to adaptation by examining strategies for both
knot placement and coefficient estimation. We focus on
four classes of methods: greedy, stepwise procedures
with maximum likelihood estimates in the final spline
space; MCMC for selecting a single model; model av-
eraging using maximum likelihood estimates of the co-
efficients; and finally a fully Bayesian approach with
model and coefficient averaging. Our two main es-
timation problems will be Logspline density estima-
tion and (bivariate) Triogram regression. We selected
these because they illustrate a number of computational
and methodological issues concerning model adapta-
tion that arise in ELMs.

In Section 2 we discuss greedy and Bayesian model
selection approaches in the context of Logspline den-
sity estimation. In Section 3 we turn to Triogram re-
gression, contrasting it with Logspline. Finally, in Sec-
tion 4 we identify areas of future research. Our goal in
preparing this paper was not to advocate one scheme
over another, but rather to investigate the performance
of various approaches to model selection in the con-
text of univariate and multivariate nonparametric esti-
mation with splines.

2. LOGSPLINE DENSITY ESTIMATION

Recall that density estimation is an example of an
ELM. In the notation of the previous section, the target
of our analysis, φ, is a log-density, and W = Y , a ran-
dom variable taking values in some interval (L,U). If
the density of Y has infinite support, then L,U will
be ±∞. In Stone and Koo (1986), Kooperberg and
Stone (1991, 1992) and Stone et al. (1997), a tech-
nique known as Logspline is developed in which φ

is modeled with a natural cubic spline. Like the or-
dinary cubic splines in (2), these functions are also
twice continuously differentiable, piecewise polynomi-
als defined relative to a knot sequence t= (t1, . . . , tK).
Within each interval [t1, t2], . . . , [tK−1, tK ], natural cu-
bic splines are cubic polynomials, but on (L, t1] and
[tK,U) they are forced to be linear functions. It is not
difficult to see that this tail constraint again yields a
linear space, but with dimension K . Also, the space
will contain spline terms providing we have at least
K ≥ 3 knots (otherwise we have only linear or con-
stant functions). In this application, we use a basis of
the form 1,B1(y; t), . . . ,BJ (y; t), where J = K − 1.
We chose to make the constant term explicit in this
way because it disappears from our model; recall that
each density estimate is normalized to integrate to one.
Therefore, let G denote the J -dimensional span of the
functions B1, . . . ,BJ . So that g ∈ G is of the form
g(y;β, t)= β1B1(y; t)+ · · · + βJBJ (y; t).

A column vector β = (β1, . . . , βJ )
T ∈ R

J is said to
be feasible if

C(β, t)= log
(∫ U

L
exp

(
β1B1(y; t)+ · · ·

+βJBJ (y; t))dy)
<∞.

Let B denote the collection of such feasible column
vectors. Given β ∈ B , we define a family of positive
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density functions on (L,U) of the form

f (y;β, t)= exp
(
g(y;β, t)−C(β, t)

)
= exp

(
β1B1(y; t)+ · · · + βJBJ (y; t)
−C(β, t)

)
, L < y <U.

(9)

Now, given a random sample Y1, . . . , Yn of size n

from a distribution on (L,U) having an unknown
density function exp(φ), the log-likelihood function
corresponding to the Logspline model (9) is given by

l(β, t)=∑
i

logf (Yi;β, t)

=∑
i

∑
j

βjBj (Yi; t)− nC(β; t), β ∈B.

The maximum likelihood estimate β̂ is given by β̂ =
arg maxβ∈B l(β, t), corresponding to ĝ(y) = g(y;
β̂, t) for L< y <U .

Stepwise knot addition begins from an initial model
with Kinit knots, positioned according to the rule
described in Kooperberg and Stone (1992). Given a
knot sequence t1, . . . , tK , the addition scheme finds
a location for a candidate knot corresponding to the
largest Rao statistic. For numerical stability, we do
not allow the breakpoints t1, . . . , tK to be separated
by fewer than nsep data points. We say that in this
context, a space G is allowable, providing the knot
sequence satisfies this condition. Stepwise addition
continues until a maximum number of knots Kmax is
reached. Knot deletion is then performed according to
the outline in the previous section, and a final model is
selected according to the generalized AIC criterion (8)
with parameter a = logn.

2.1 A Bayesian Framework

We set up the framework for a Bayesian approach
to Logspline density estimation by selecting several
priors: first a prior p(G) on the structure of the model
space G, and then a prior p(g|G) on the splines g in a
given space. In addition, we will need to specify how
we sample from the posterior distributions.

Priors on model space. For Logspline we choose
to specify p(G) by creating a distribution on knot se-
quences t formed from some large collection of candi-
dates T = {t ′1, . . . , t ′K ′ }. We construct p(G) hierarchi-
cally, first choosing the number of knots K < K ′ (in
this case recall that the dimension J of G is K − 1)
according to p(K), and then given K , we generate
t from the distribution p(t|K). Regularity conditions
on the structural aspects of the associated spline space

G can be imposed by restricting the placement of
t1, . . . , tK through p(t|K). While other authors have
also considered a discrete set of candidate knot se-
quences (Denison, Mallick and Smith, 1998a; Smith
and Kohn, 1996), we could also specify a distribution
that treats the elements of t as continuous variables
(e.g., Green 1995). In our experiments we have found
that for Logspline density estimation the discrete ap-
proach is sufficient, and we consider those spaces G

for which all K knots are located at data points. This
restriction is purely for convenience, but represents lit-
tle loss of flexibility especially in the context of den-
sity estimation (where peaks in the underlying density
naturally produce more candidate knots). For numeri-
cal stability, we require that there are at least nsep data
points in between any two knots.

This leaves us with the task of specifying p(K).
To the extent that the number of knots also acts as
a smoothing parameter, this distribution can have a
considerable effect on the look of the final curves
produced. We explore several of the proposals that have
appeared in the literature. The first is a simple Poisson
distribution with mean γ suggested by Green (1995).
Denison et al. (1998a) take the same distribution for
more general spline spaces and argue that their results
are somewhat insensitive to the value of γ . The next
prior we will consider was suggested by Smith and
Kohn (1996). Either by greatly reducing the number
of candidate knots or by scaling the prior on the
coefficients, these authors suggest that K be distributed
uniformly on the set Kmin, . . . ,Kmax.

The final proposal for p(K) is somewhat more ag-
gressive in enforcing small models. To properly moti-
vate this distribution, we think of the model selection
procedure as two stages: in the first we find the poste-
rior average of all models with k knots by integrating
out t and g, to obtain, say ḡk and its posterior probabil-
ity p(ḡk|Y1, . . . , Yn,K = k). Suppose that we consider
ḡk to have k degrees of freedom (an admittedly ques-
tionable assumption). If we now were to use an AIC-
like criterion to choose among the ḡk , we would select
the model that minimized

−2 logp(ḡk|Y1, . . . , Yn,K = k)+ ak,

compare (8). On the other hand, using the posterior to
evaluate the best model suggests maximizing

p(ḡk|Y1, . . . , Yn,K = k)p(K = k).

If we take p(K = k) ∝ exp(−ak/2) these two ap-
proaches agree. Thus, taking a geometric distribution
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for p(K) implies an AIC-like penalty on model dimen-
sion. In particular a = logn and q = 1/

√
n imposes the

same cost per knot as AIC with penalty logn. For rea-
sonable settings of Kmin and Kmax, however, the ex-
pected prior number of knots under this prior will tend
to zero with n. While it is certainly intuitive that the
prior probability of K decreases monotonically with k,
this drop may be at a faster rate than we would expect!
If a ≥ 2 then p(K = k + 1)/p(K = k)≤ 1/e.

Priors on splines in a given space. We parameterize
p(g|G) through the coefficients β in the expansion (3),
and consider priors on β that relate to our assumptions
about the smoothness of g. Recall that as the solution to
a penalized maximum likelihood fit, smoothing splines
(Wahba, 1990) have a straightforward Bayesian inter-
pretation (Silverman, 1985). In univariate smoothing,
for example, G is a space of natural splines (given
some knot sequence t), and the “roughness” of any
g ∈ G is measured by the quantity

∫ U
L (g′′)2. Expand-

ing g in a basis, it is not hard to see that∫ U

L
(g′′)2 = β ′Aβ

where Aij =
∫ U

L
B ′′i (x)B ′′j (x) dx

for 1≤ i, j ≤ J.

(10)

The traditional smoothing spline fit maximizes the
penalized likelihood

arg max
β
{l(β)+ λβ ′Aβ},

for some parameter λ. Silverman (1985) observes
that the solution to this problem can be viewed as
a posterior mode, where β is assigned a partially
improper, normal prior having mean 0 and variance-
covariance matrix (λA)−1. This setup has the favorable
property that it is invariant to our choice of basis. This
is desirable, as the choice of the basis will often be
made for computational reasons.

In our simulations we will compare this smoothing
prior to the scheme of Denison et al. (1998a) in which
no stochastic structure is assigned to the coefficients β
once G is selected. Instead, these authors employ
maximum likelihood to make a deterministic choice
of β.

Markov chain Monte Carlo. In order to treat a va-
riety of estimation problems simultaneously, we have
chosen the reversible jump MCMC scheme developed
by Green (1995). Denison et al. (1998a) implement this

technique in the context of general univariate and ad-
ditive regression. We refer to these papers for the de-
tails of the scheme, and we instead focus on the type
of moves that we need to implement the sampler. In
general, we alternate (possibly at random) between the
following moves.

• Increase model dimension. In this step, we intro-
duce a new knot into an existing collection of break-
points. Given the concavity properties of ELMs the
change in the log-likelihood could either be computed
exactly or approximated using the appropriate Rao sta-
tistic. In our experiments we have computed the change
in the log-likelihood exactly. The new knot is selected
uniformly from among the set that yields an allowable
space.
• Decrease model dimension. As with the greedy

scheme, knots are deleted by imposing a constraint
on one or more coefficients in the spline expansion.
We can either evaluate the drop in the log-likelihood
exactly, or through the Wald statistics. Any knot can
be removed at any time (assuming we have more than
Kmin breakpoints to chose from).
• Make structural changes to G that do not change

dimension. Unlike our standard greedy scheme, non-
nested steps like moving a knot are now possible.
Moving a knot from tk to t∗k technically involves
deleting tk and then inserting a new breakpoint at t∗k .
With smart initial conditions on the Newton–Raphson
steps, we can calculate the change in the log-likelihood
exactly and still maintain an efficient algorithm.
• Update ( possibly) g. In a nonlinear model like

Logspline, we can either apply a suitable approxima-
tion to the posterior and integrate with respect to the
coefficients β , or we can fold sampling them into our
Markov chain.

Following Green (1995) and Denison et al. (1998a),
we cycle between proposals for adding, deleting and
moving knots, assigning these moves probabilities bJ ,
dJ and 1− bJ − dJ (see Denison et al., 1998a). New
knots can be positioned at any data point that is at
least nsep data points removed from one of the current
knots. Subject to this constraint, knot addition follows
a simple two step procedure. First, we select one of
the intervals (L, t1), (t1, t2), . . . , (tK,U) uniformly at
random (where the tk are the current breakpoints).
Within this interval, the candidate knot is then selected
uniformly at random from one of the allowable data
points. When moving a knot, we either propose a large
move (in which a knot is first deleted, and then added
using the addition scheme just described) or a small
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move (in which the knot is only moved within the
interval between its two neighbors). Each of these two
proposals have probability (1− dJ − bJ )/2.

After each reversible jump step, we update the
coefficients β. To do this, we use the fact that for a
given set of knots, we have a parametric model, and
that the posterior distribution of β given G and the
data is thus approximately multivariate normal with
covariance matrix 1 = (λA+H)−1, and mean 1H β̂,
where β̂ is the maximum likelihood estimate of β in G,
and H is the Hessian of the log-likelihood function
at β̂. An observation from this distribution is used as
a proposal in a Metropolis step. Because we are using
(partially improper) smoothing priors, the acceptance
ratio for this proposal is formally undetermined (recall
that the prior covariance matrices are degenerate). We
solve this problem by “canceling” the zero eigenvalue
in the numerator and the denominator (see also Besag
and Higdon, 1999).

2.2 A Simulation Study

To compare the performance of the various possible
implementations of Logspline density model selection
procedures, we carried out a simulation study. We
generated data from three densities:

• normal—the standard normal density;
• slight bimodal—f (y) = 0.5fZ(y;1.25,1) + 0.5

fZ(y;−1.25,1.1), where fZ(y;µ,σ) is the normal
density with mean µ and standard deviation σ ;
• sharp peak—f (y) = 0.8g(y) + 0.2fZ(y;2,

0.07), where g(Y ) is the density of the lognormal ran-
dom variable Y = exp(Z/2) and Z has a standard nor-
mal distribution.

These three densities are displayed in Figure 1. From
each we generated 100 independent samples of size
n= 50, 200, 1,000 and 10,000. We applied a variety of
Logspline methods, see Table 1. For all the Bayesian
methods we estimated the posterior mean by a simple
pointwise average of the MCMC samples. Otherwise,
the Bayesian approaches differ in two aspects:

FIG. 1. Densities used in the simulation study.

TABLE 1
Versions of Logspline density estimation used in

the simulation study

Model size Parameters

(i) Greedy optimization of AIC
proposed by Stone et al. (1997)

(ii) Simulated annealing optimization
of AIC (SALSA)

(iii) Geometric ML
(iv) Poisson (5) ML
(v) Uniform λ= 1/n

(vi) Uniform λ= 1/
√
n

(vii) Uniform λ= 1
(viii) Geometric λ= 1/n

• the prior on the model size—we used the geomet-
ric prior with parameter p = 1 − 1/

√
n, the Poisson

prior with parameter 5, and a uniform prior;
• parameter estimates β̂—we took either the maxi-

mum likelihood (ML) estimate, or we assigned a mul-
tivariate normal prior to β (for one of several choices
for λ).

Table 1 summarizes the versions of Logspline which
are reported here.

For simulated annealing (ii) (termed SALSA for
“Simulated Annealing LogSpline Approximation”) we
ran the same MCMC iterations as for version (iii), but
rather than selecting the mean of the sampled den-
sities, we chose the density which minimizes AIC.
As described above this is very similar to taking the
density with the largest a posteriori probability (the
mode), except that we ignore the prior on knot loca-
tions given the number of knots, K . This would have
changed the penalty in the AIC criterion from K logn

to K logn + 1
2 log

(n
K

)
. Since version (ii) begins with

the fit obtained by the greedy search (i), it is guaran-
teed to improve as far as AIC is concerned. Version (iii)
uses the same penalty structure as version (ii), but av-
erages over MCMC samples. Version (iv) is included
since a Poisson (5) prior was proposed by Denison et
al. (1998a). It applies a considerably smaller penalty
on model size. Versions (v)–(viii) experiment with
penalties on the coefficients. Generating the parame-
ters using a multivariate normal prior distribution im-
plies smoothing with a AIC-like penalty. As such, we
would expect that using λ= 1/n with a uniform prior
[version (v)] may give reasonable results, but that us-
ing a geometric prior [version (ix)] would smooth too
much. Choosing λ too large, as in versions (vi)–(vii),
leads to oversmoothing, while choosing λ too small
tends to produce overly wiggly fits.
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TABLE 2
Mean integrated squared error (MISE) for the simulation study

Version

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Distribution n MISE Ratio of MISE over MISE of the greedy version (i)

Normal 50 0.02790 0.73 1.52 1.84 0.66 0.40 0.26 0.67
Normal 200 0.01069 0.49 0.60 1.23 0.79 0.50 0.24 0.66
Normal 1,000 0.00209 0.59 0.58 1.33 0.87 0.90 0.42 0.73
Bormal 10,000 0.00020 0.33 0.49 1.45 1.35 1.10 0.80 0.87
Slight bimodal 50 0.02502 0.88 1.09 1.34 0.48 0.36 0.36 0.50
Slight bimodal 200 0.00770 0.80 0.61 1.14 0.70 0.38 0.46 0.61
Slight bimodal 1,000 0.00164 0.57 0.60 1.13 0.89 0.66 0.40 0.77
Slight bimodal 10,000 0.00020 0.77 0.61 0.88 0.71 0.82 0.51 0.84
Sharp peak 50 0.15226 0.97 0.78 0.81 0.68 0.90 1.12 0.72
Sharp peak 200 0.03704 0.89 0.75 0.94 0.93 2.02 3.62 1.13
Sharp peak 1,000 0.00973 0.81 0.67 0.81 0.67 2.01 8.90 0.74
Sharp peak 10,000 0.00150 0.72 0.57 0.57 0.64 0.58 21.43 0.76

Average 1.00 0.71 0.74 1.12 0.78 0.89 3.21 0.75

For versions (iii) and (iv) we ran 600 MCMC
iterations, of which we discarded the first 100 as burn-
in. Some simple diagnostics (not reported) suggest that
after 100 iterations the chain is properly mixed. For
versions (v)–(viii) each structural change was followed
by an update of the coefficients β .

In Table 2, we report ratios of integrated squared er-
rors between the greedy scheme and the other methods
outlined above. In addition, we feel that it is at least as
important for a density estimate to provide the correct
general “shape” of a density as to have a low integrated
squared error. To capture the shape of our estimates,
we counted the number of times that a scheme pro-
duced densities having too few, too many and the cor-
rect number of modes. These results are summarized
in Tables 3 and 4. Table 5 calculates the “total” lines of

Tables 3 and 4. Note that for simulations of a normal
distribution it is not possible for an estimate to have too
few modes.

From Table 2 we note that most methods show a
moderate overall improvement over the greedy ver-
sion of Logspline, except for (vii). This scheme over-
smoothes the data, so that the details (like the mode in
the sharp-peaked distribution) are frequently missed.
We note that version (iii), choosing the mode of a
Bayesian approach, is the only version that outper-
forms the greedy version for all 12 simulation setups.
Otherwise, the difference between versions (ii), (iii),
and (viii) seems to be minimal. In particular, if we had
chosen another set of results than those for (i) to nor-
malize by, the order of the average MISE for these four
methods was often changed.

TABLE 3
Number of times out of 100 simulations that a Logspline density estimate had too few modes

Version

Distribution n (i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Slight bimodal 50 45 52 4 0 21 74 99 31
Slight bimodal 200 6 22 13 0 1 18 96 19
Slight bimodal 1,000 5 17 19 0 7 6 45 16
Slight bimodal 10,000 4 12 4 1 3 4 2 10
Sharp peak 50 24 38 1 0 9 56 99 13
Sharp peak 200 0 1 0 0 0 0 89 1
Sharp peak 1,000 0 0 0 0 0 0 0 0
Sharp peak 10,000 0 0 0 0 0 0 0 0

Total 84 142 41 1 41 158 430 90
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TABLE 4
Number of times out of 100 simulations that a Logspline density estimate had too many modes

Version

Distribution n (i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Normal 50 18 11 94 100 49 5 0 28
Normal 200 34 9 38 100 81 21 0 24
Normal 1,000 26 4 15 91 68 54 32 32
Normal 10,000 4 1 7 61 31 29 1 17
Slight bimodal 50 4 1 84 99 6 0 0 4
Slight bimodal 200 16 1 19 99 55 4 0 5
Slight bimodal 1,000 15 1 13 93 51 31 1 17
Slight bimodal 10,000 6 1 8 68 33 39 0 6
Sharp peak 50 15 8 90 93 3 1 0 2
Sharp peak 200 36 19 46 94 43 5 0 5
Sharp peak 1,000 28 14 30 77 32 12 1 9
Sharp peak 10,000 25 12 15 31 20 30 11 7

Total 227 82 459 1006 472 231 46 156

From Table 3 we note that version (vii), and to a
lesser extent (ii) and (vi), have trouble with the slight
bimodal density, preferring a model with just one peak.
Versions (vi) and (vii) find too few modes, leading us
to conclude that λ should be chosen smaller than 1/

√
n

when using a uniform prior on model size. On the other
hand, the Poisson prior leads to models exhibiting too
many peaks, as do versions (iii) and (v).

Overall, it appears that the greedy, stepwise search
is not too bad. It is several orders of magnitude faster
than any of the other methods. The greedy approach,
as well as SALSA have the advantage that the final
model is again a Logspline density, which can be
stored for later use. For the other methods, we must
record the posterior mean at a number of points. This
has the potential of complicating later uses of our
estimate. Among the Bayesian versions that employ
ML estimates, version (iii) seems to perform best
overall, while among those that put a prior on the
coefficient vector, versions (v) and (viii) (both of which
set λ = 1/n) are best. It is somewhat surprising that
version (viii) performs so well, since it effectively
imposes twice the AIC penalty on model size: one

coming from the geometric prior, and one from the
normal prior on the parameters. Kooperberg and Stone
(1992) argue that the Logspline method is not very
sensitive to the exact value of the parameter, possibly
explaining the behavior of version (viii). In Kooperberg
and Stone (2002) a double penalty is also employed in
the context of free knot Logspline density estimation.

2.3 Income Data

We applied the nine versions of Logspline used
for the simulation study to the income data discussed
in Stone et al. (1997), and the results are displayed
in Figure 2. For the computations on the income
data we ran the MCMC chain for 5000 iterations in
which a new model was proposed, after discarding the
first 500 iterations for burn-in. For the versions with
priors on the parameters we alternated these iterations
with updates of the parameters. The estimates for
versions (ii), which was indistinguishable from version
(iii), and versions (viii) which was indistinguishable
from version (v) are not shown. In Kooperberg and
Stone (1992) it was argued that the height of the peak
should be at least about 1. Thus, it appears that versions

TABLE 5
Number of times that a Logspline density estimate had an incorrect number of modes

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Too few modes 84 142 41 1 41 158 430 90
Too many modes 227 82 459 1,006 472 231 46 156
Total 311 224 500 1,007 513 389 476 246
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FIG. 2. Logspline density estimates for the income data.

(vi) and (vii) have oversmoothed the peak. On the other
hand, version (iv) seems to have too many small peaks.

It is interesting to compare the number of knots for
the various schemes. The greedy estimate (version i)
has 8 knots, and the simulated annealing estimate (ver-
sion ii) has 7 knots. The Bayesian versions (iii), (v)
and (viii) have an average number of knots between 5
and 8, while the three versions that produced unsatis-
factory results (iv, vi and vii) have an average number
of knots between 14 and 17.

The MCMC iterations can also give us informa-
tion about the uncertainty in the knot locations. To
study this further, we ran a chain for version (iii) with
500,000 iterations. Since the knots are highly corre-
lated from one iteration to the next (at most one knot
moves at each step), we only considered every 250th
iteration. The autocorrelation function of the fitted log-
likelihood suggested that this was well beyond the time
over which iterations are correlated. This yielded 2,000
sets of knot locations: 1,128 with five knots, 783 with
six knots, 84 with seven knots, and 5 with eight knots.
When there were five knots, the first three were always
located close to the mode, the fourth one was virtually
always between 0.5 and 1.25, and the last knot between
1 and 2. The locations of the first three knots overlap
considerably. When there are six knots, the extra knot
can either be a fourth knot in the peak, or it is beyond
the fifth knot.

3. TRIOGRAM REGRESSION

When estimating a univariate function φ, our “piec-
es” in a piecewise polynomial model were intervals
of the form (tk, tk+1). Through knot selection, we
adjusted these intervals to capture the major features
in φ. When φ is a function of two variables, we
have more freedom in how we define a piecewise
polynomial model. In this section we take our separate
pieces to be triangles in the plane, and consider data-
drive-techniques that adapt these pieces to best fit φ.
Our starting point is the Triogram methodology of
Hansen et al. (1998) which employs continuous, piece-
wise linear (planar) bivariate splines. Triograms are
based on a greedy, stepwise algorithm that builds on
the ideas in Section 1 and can be applied in the
context of any ELM where φ is a function of two
variables. After reviewing some notation, we present a
Bayesian version of Triograms for ordinary regression.
An alternative approach to piecewise linear modeling
was proposed in Breiman (1993) and given a Bayesian
extension in Holmes and Mallick (2001).

Let � be a collection of triangles δ (having disjoint
interiors) that partition a bounded, polygonal region
in the plane X = ⋃

δ∈�δ. The set � is said to be a
triangulation of X. Furthermore, � is conforming if
the nonempty intersection between pairs of triangles in
the collection consists of either a single, shared vertex
or an entire common edge. Let v1, . . . ,vK represent the
collection of (unique) vertices of the triangles in �.
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Over X, we consider the collection G of continuous,
piecewise-linear functions which are allowed to break
(or hinge) along the edges in �. It is not hard to show
that G is a linear space having dimension equal to
the number of vertices K . A simple basis composed
of “tent functions” was derived in Courant (1943):
for each j = 1, . . . ,K , we define Bj(x;�) to be
the unique function that is linear on each of the
triangles in � and takes on the value 1 at vj and 0
at the remaining vertices in the triangulation. The set
B1(x;�), . . . ,BK(x;�) is a basis for G. Also notice
that each function Bj(x;�) is associated with a single
vertex vj , and in fact each g ∈G

g(x;β,�)=
K∑

j=1

βjBj (x;�),(11)

interpolates the coefficients β = (β1, . . . , βK) at the
points v1, . . . ,vK .

We now apply the space of linear splines to estimate
an unknown regression function. In the notation of an
ELM, we let W = (X, Y ), where X ∈ X is a two-
dimensional predictor and Y is a univariate response.
We are interested in exploring the dependence of Y

on X by estimating the regression function φ(x) =
E(Y |X = x). Given a triangulation �, we employ
linear splines over � of the form (11). For a collection
of (possibly random) design points X1, . . . ,Xn taken
from X and corresponding observations Y1, . . . , Yn,
we apply ordinary least squares to estimate β. That is,
we take β̂ = arg maxβ

∑
i[Yi − g(Xi;β,�)]2, and use

ĝ(x)= g(x; β̂,�) as an estimate for φ.
As with the univariate spline models, we now con-

sider stepwise alterations to the space G. Following
Hansen, Kooperberg and Sardy (1998), the one-to-one
correspondence between vertices and the “tent” ba-
sis functions suggests a direct implementation of the
greedy schemes in Section 1. Stepwise addition in-
volves introducing a new vertex into an existing tri-
angulation, thereby adding one new basis function to
the original spline space. This operation requires a rule
for connecting the new point to the vertices in � so
that the new mesh is again a conforming triangulation.
In Figure 3, we illustrate three options for vertex addi-
tion: we can place a new vertex on either a boundary
or an interior edge, splitting the edge, or we an add a
point to the interior of one of the triangles in �. Given
a triangulation �, candidate vertices are selected from
a regular triangular grid in each of the existing trian-
gles, as well as a number of locations on each of the
existing edges (for details see Hansen et al., 1998).

FIG. 3. Three “moves” that add a new vertex to an existing
triangulation. Each addition represents the introduction of a single
basis function, the support of which is colored gray.

We impose constraints on our search by limiting, say,
the area of the triangles in a mesh, their aspect ratio,
or perhaps the number of data points they contain. As
with Logspline, spaces satisfying these restrictions are
referred to as allowable. At each step in the addition
process, we select from the set of candidate vertices
(that result in an allowable space), the point that maxi-
mizes the decrease in residual sum of squares when the
Triogram model (11) is fitted to sample data. (In re-
gression, the Rao and Wald statistics are the same and
reduce to the change in the residual sum of squares be-
tween two nested models.)

Deleting a knot from an existing triangulation can
be accomplished most easily by simply reversing one
of the steps in Figure 3. Observe that removing a
vertex in one of these three settings is equivalent
to enforcing continuity of the first partial derivatives
across any of the “bold edges” in this figure. Such
continuity conditions are simple linear constraint on
the coefficients of the fitted model, allowing us to once
again apply a Wald test to evaluate the rise in the
residual sum of squares after the vertex is deleted.

3.1 A Bayesian Framework

Priors on model space. As with univariate spline
models, a prior on the space of Triograms is most easily
defined by first specifying the structure of the approx-
imation space, which in this case is a triangulation �.
For any�, we need to select the number of vertices K ,
their placement v, and the triangles that connect them.
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FIG. 4. Additional structural moves for the reversible jump MCMC scheme. Note that these two proposals result in a nonnested sequence
of spaces.

Each set v can be joined by a number of different trian-
gulations (assuming v has more than 3 points). Sibson
(1978) shows that by starting from one triangulation
of v, we can generate any other by a sequence of “edge
swaps.” (This operation is given in Figure 4 and will
come up later when we discuss MCMC for bivariate
splines.) Unfortunately, a closed-form expression for
the number of triangulations associated with a given
set of vertices does not exist. Computing this number
for even moderately sized configurations is difficult be-
cause two sets each with K vertices can have different
numbers of triangulations.

To see how this complicates matters, suppose we fol-
low the strategy for Logspline and propose a hierarchi-
cal prior of the form

p(�|v,K)p(v|K)p(K),(12)

where � is a triangulation of the vertices v= {v1, . . . ,

vK}. Assigning any proper distribution to � given v
introduces a normalizing constant in p(�|v,K) that
involves enumerating the different triangulations of v.
Therefore, when taking ratios of (12) for two different
sets of vertices, we are usually left with a prohibitively
expensive computational problem. MCMC methods
for exploring the model space are not possible.

To avoid this problem, we will use a tractable
prior on triangulations developed by Nicholls (1998).
This distribution depends on a pair of Poisson point
processes, one that generates vertices on the interior
of X and one for the boundary. As constructed, there
is one parameter β that controls the intensity of this
process, where larger values of β produce triangula-
tions with more vertices. Nicholls (1998) avoids count-
ing triangulations by normalizing across all triangu-
lations obtainable from all vertex sets generated by
this point process, and produces a distribution p(�).
Bounds on the number of triangulations obtainable
from a given vertex set are used to show that this kind
of normalization is possible. This construction also has
the advantage that restrictions on the size and shape

of triangles are easily enforced and only change the
(global) normalization constant in p(�). In our experi-
ments, we set β so that the expected number of vertices
for this base process is 5. We then adapted Nicholls’s
approach, so that the underlying point process pro-
duces a geometric (with parameter 1− 1/

√
n) or a uni-

form (on Kmin, . . . ,Kmax) number of vertices, follow-
ing the simulation setup in the previous section.

Priors on splines in a given space. Unlike the Log-
spline example, we do not have a single obvious choice
for the smoothing prior for linear splines g ∈G defined
relative to a triangulation �. Dyn, Levin and Rippa
(1990a, b) propose several criteria of the form∑

e

s2(g, e) for g ∈G,

where the summation is over all edges in �. Their cost
function s(g, e) evaluates the behavior of g along an
edge, assigning greater weight when the hinged lin-
ear pieces are farther from a single plane. Koenker
and Mizera (2001) elegantly motivate a cost function
s(g, e)= ‖ � g+e −�g−e ‖·‖e‖, where �g+e and �g−e
are the gradients of g computed over the triangles that
share the common edge e having length ‖e‖. This is
similar to the approach taken by Nicholls (1998) who
derived an edge-based smoothness penalty for piece-
wise constant functions defined over triangulations.

We choose to work with the cost function of Koenker
and Mizera (2001). It is not hard to show that this
gives rise to a quadratic penalty on the coefficient
vector β = (β1, . . . , βK) which can be written β tAβ
for a positive-semidefinite matrix A. Since constant
and linear functions have zero roughness by this
measure, A has two zero eigenvalues. As was done for
Logspline, we use A to generate a partially improper
normal prior on β (with prior variance σ 2/λ, where σ 2

is the error variance). Following Denison et al. (1998a),
we assign a proper, inverse-gamma distribution to σ ,
and experiment with various fixed choices for λ that
depend on sample size.
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Markov chain Monte Carlo (MCMC). Our approach
to MCMC for Triograms is similar to that with Log-
spline except that we need to augment our set of
structural changes to � to include more moves than
simple vertex addition and deletion. In Figure 4,
we present two additional moves that maintain the
dimension of the space G but change its structure.
The middle panel illustrates swapping an edge, an
operation that we have already noted is capable of
generating all triangulations of a given vertex set
v. Quak and Schumaker (1991) use random swaps
of this kind to come up with a good triangulation
for a fixed set of vertices. In in the final panel of
Figure 4, we demonstrate moving a vertex inside
the union of triangles that contain it. These changes
to � are non-nested in the sense that they produce
spline spaces that do not differ by the presence or
absence of a single basis function. For Triograms, the
notion of an allowable space can appear through size
or aspect ratio restrictions on the triangulations, and
serves to limit the region in which we can place new
vertices or to which we can move existing vertices.
For example, given a triangle, the set into which we
can insert a new vertex and still maintain a minimum
area condition is a subtriangle, easily computable in
terms of barycentric coordinates (see Hansen et al.,
1998). As with Logspline, we alternate between these

structural moves and updating the model parameters,
following essentially the recipe in Denison et al.
(1998a). Because we are working with regression, we
can integrate out β and only have to update σ 2 at each
pass. This approach allows us to focus on structural
changes as was done by Smith and Kohn (1996) for
univariate regression. [Of course, we can also integrate
out σ 2, but to retain consistency with Denison et al.
(1998a) we chose to sample.]

3.2 Simulations

In Figure 5, we present a series of three fits to
a simulated surface plotted in the upper lefthand
corner. A data set consisting of 100 observations
was generated by first sampling 100 design points
uniformly in the unit square. The actual surface is
described by the function

f (x)= 40 exp{8[(x1 − 0.5)2+ (x2− 0.5)2]}
· (exp{8[(x1− 0.2)2+ (x2− 0.7)2]}
+ exp{8[(x1 − 0.7)2+ (x2− 0.2)2]})−1

,

to which we add standard Gaussian errors. This func-
tion first appeared in Gu et al. (1989), and it will be
hereafter referred to as simply GBCW. The signal-to-
noise ratio in this setup is about 3. In the lower left-
hand panel in Figure 5, we present the result of apply-
ing the greedy, Triogram algorithm. As is typical, the

FIG. 5. In the top row we have the true surface (left) and the fit resulting from model averaging (right). In the bottom row we have two
isolated fits, each a “minimal” BIC model, the leftmost coming from a greedy search, and the rightmost produced by simulated annealing
(the triangulations appear at the top of each panel ).
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procedure has found a fairly regular, low-dimensional
mesh describing the surface (the MISE is 0.31). For
the fit plotted in the lower righthand panel, we em-
ployed a simulated annealing scheme similar to that
described for Logspline. The geometric prior for � is
used to guide the sampler through triangulations, and
in each corresponding spline space G we consider ĝ,
the MLE (or in this case the ordinary least squares fit).
In this way, the objective function matches that of the
greedy search, the generalized AIC criterion (8). The
scheme alternates between (randomly selected) struc-
tural changes (edge swaps and vertex moves, additions
and deletions) and updating the estimate σ̂ 2 of the
noise variance. After 6,000 iterations, the sampler has
managed to find a less regular, and marginally poorer-
fitting model (the MISE is 0.32). In the context of tri-
angulations, the greedy search is subject to a certain
regularity that prevents configurations like the one in
Figure 5. We can recapture this in the MCMC simula-
tions either by placing restrictions on the triangulations
in each mesh (say, imposing a smallest allowable size
or aspect ratio) or by increasing the penalty on dimen-
sion, specified through our geometric prior.

In the last panel, we present the result of model
averaging using a uniform prior on model size and
a smoothing prior on the coefficients (λ = 1/n). The
sampler is run for a total of 6,000 iterations, of which
1,000 are discarded as burn-in. We then estimate the
mean as a pointwise average of the sampled surfaces.
The final fit is smoother in part because we are
combining many piecewise-planar surfaces. We still
see sharp effects, however, where features like the
central ridge are present. The model in the lower
righthand panel is not unlike the surfaces visited by
this chain. As spaces G are generated, the central spine
(along the line y = x) of this surface is always present.
The same is true for the hinged portions of the surface

TABLE 6
Versions of Triogram used in the simulation study

Model size Parameters

(i) Greedy optimization of AIC
(ii) Simulated annealing optimization of AIC

(iii) Poisson (5) ML
(iv) Geometric ML
(v) Uniform λ= 1/n

along the lines x = 0 and y = 0. With these caveats
in mind, the MISE of the averaged surface is about
half of the other two estimates (0.15). We repeated
these simulations for several sample sizes, taking n=
100, 500 and 1000 (100 repetitions for each value of
n). In Table 6, we present several variations in the
prior specification and search procedure. In addition to
GBCW, we also borrow a test function from Breiman
(1991), which we will refer to as Exp. Here, points
X = (X1,X2) are selected uniformly from the square
[−1,1]2. The response is given by exp(x1 sin(πx2)) to
which normal noise is added (σ = 0.5). The signal-to-
noise ratio in this setup is much lower, 0.9. The results
are presented in Table 7. It seems reasonably clear that
the simulated annealing approach can go very wrong,
especially when the sample size is small. Again, this
argues for the use of greater constraints in terms of
allowable spaces when n is moderate. It seems that
model averaging with the smoothing prior (λ = 1/n)
and the Poisson/ML prior of Denison et al. (1998a)
perform the best. A closer examination of the fitted
surfaces reveals the same kinds of secondary structure
as we saw in Figure 5. To be sure, smoother basis
functions would eliminate this behavior. It is not clear
at present, however, if a different smoothing prior on
the coefficients might serve to “unkink” these fits.

TABLE 7
Mean integrated squared error (MISE) for two smooth test functions

Version

(i) (ii) (iii) (iv) (v)

Distribution n MISE Ratio of MISE over (i)

GBCW (high snr) 100 0.31 1.35 0.85 0.78 0.77
GBCW (high snr) 500 0.10 1.0 0.64 0.76 0.80
GBCW (high snr) 1,000 0.08 0.91 0.82 0.94 0.79
Exp (low snr) 100 0.15 0.90 0.52 0.51 0.49
Exp (low snr) 500 0.04 0.85 0.46 0.50 0.47
Exp (low snr) 1,000 0.03 0.51 0.32 0.40 0.46
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TABLE 8
Mean integrated squared error (MISE) for two piecewise-planar test functions

Version

(i) (ii) (iii) (iv) (v)

Distribution n MISE Ratio of MISE over (i)

Model 1 50 0.16 0.97 0.70 0.35 0.80
Model 1 200 0.04 0.82 0.95 0.52 0.62
Model 1 1,000 0.01 0.63 0.72 0.76 0.40
Model 3 50 0.70 1.40 0.86 0.51 0.50
Model 3 200 0.17 0.85 0.63 0.27 0.30
Model 3 1,000 0.03 0.34 0.45 0.21 0.20

The performance of the Poisson (5) distribution is
somewhat surprising. While for Logspline this choice
led to undersmoothed densities, it would appear that
the Triogram scheme benefits from slightly larger mod-
els. We believe that this is because of the bias involved
in estimating a smooth function by a piecewise-linear
surface. In general, these experiments indicate that tun-
ing the Bayesian schemes in the context of a Triogram
model is much more difficult than univariate set-ups.
One comforting conclusion, however, is that essentially
each of the schemes considered outperform the simple
greedy search.

As a final test, we repeated the simulations from
Hansen et al. (1998). We took as our trial functions
two piecewise-planar surfaces, one that the greedy
scheme can jump to in a single move (Model 1), and
one that requires several moves (Model 3). In this
case, the model averaged fits (iv) were better than
both simulated annealing and the greedy procedure.
The estimate built from the Poisson prior tends to
spend too much time in larger models, leading to its
slightly poorer MISE results, while the geometric prior
extracts a heavy price for stepping off of the “true”
model. (Unlike the smooth cases examined above, the
extra degrees of freedom do not help the Poisson
scheme.) The simulations are summarized in Table 8.
One message from this suite of simulations, therefore,
is that a posterior mean does not oversmooth edges,
and in fact identifies them better than the greedy
alternatives.

4. DISCUSSION

Early applications of splines were focused mainly
on curve estimation. In recent years, these tools have
proved effective for multivariate problems as well. By
extending the concepts of “main effects” and “interac-
tions” familiar in traditional d-way analysis of variance

(ANOVA), techniques have been developed that pro-
duce so-called functional ANOVAs. Here, spline basis
elements and their tensor products are used to construct
the main effects and interactions, respectively. In these
problems, one must determine which knot sequence to
employ for each covariate, as well as what interactions
are present.

In this paper we have discussed a general frame-
work for adaptation in the context of an extended linear
model. Traditionally, model-selection for these prob-
lems is accomplished through greedy, stepwise algo-
rithms. While these approaches appear to perform rea-
sonably well in practice, they visit a relatively small
number of candidate configurations. By casting knot
selection into a Bayesian framework, we have dis-
cussed an MCMC algorithms that sample many more
promising models. We have examined various tech-
niques for calibrating the prior specifications in this
setup to more easily compare the greedy searches and
the MCMC schemes. An effective penalty on model
size can be imposed either explicitly (through a prior
distribution on dimension), or through the smoothness
prior assigned to the coefficient vector. In general, we
have demonstrated a gain in final mean squared er-
ror when appealing to the more elaborate sampling
schemes.

We have also gone to great lengths to map out con-
nections between this Bayesian method and other ap-
proaches to the knot placement problem. For example,
a geometric prior distribution on model size, has a nat-
ural link to (stepwise) model selection with BIC, while
we can choose a multivariate normal prior on the co-
efficients to connect us with the penalized likelihood
methods employed in classical smoothing splines. In
addition, the Bayesian formalism allows us to account
for the uncertainty in both the structural aspects of our
estimates (knot configurations and triangulations) as
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well as the coefficients in any given expansion. Model
averaging in this context seems to provide improve-
ment over simply selecting a single “optimal” model
in terms of say BIC. The disadvantage of this approach
is that we do not end up with a model based on one set
of knots (or one triangulation).

While running our experiments, we quickly reached
the conclusion that the priors play an important role:
an inappropriate prior can easily lead to results that are
much worse than the greedy algorithms. However, in
our experiments we found out that, when the priors are
in the right ballpark, Bayesian procedures do perform
somewhat better than greedy schemes in a mean
squared error sense. This improvement in performance
is larger for a relatively “unstable” procedures such
as Triogram, while the improvement for a “stable”
procedure such as Logspline is smaller.

For the Triogram methodology there is an addi-
tional effect of model averaging: the average of many
piecewise-planar surfaces will give the impression of
being smoother. Whether this is an advantage or not
probably depends on the individual user and her/his
application: when we gave seminars about the origi-
nal Triogram paper, there were people who saw the
piecewise-planar approach as a major strength, while
others saw it as a major weakness of the methodology.
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Comment
Hugh A. Chipman, Edward I. George and Robert E. McCulloch

This paper uses ideas for stochastic search imple-
mentations of adaptive Bayesian models, such as those
outlined in Denison, Mallick and Smith (1998a, b) and
Chipman, George and McCulloch (1998a) and effec-
tively applies these ideas to logspline density estima-
tion and triogram regression. Interesting comparisons
are made to assess the effect of greedy search, stochas-
tic search and model averaging. Such comparisons are
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valuable, since readily available computing power en-
ables the construction of many methods, and an under-
standing of what works is important in developing new
methodology.

It is very important to note the role of the prior
when adaptive models are used in conjunction with
stochastic searches. Inevitably, priors guide and temper
our wandering in a large space of models. This benefit
comes with a price: the need to select a prior that is
appropriate for the problem at hand. It is important
to acknowledge the simple fact that a prior choice
represents a bet on what kind of models we want to
consider.

If we skip to the end of the paper and read the
discussion, what lessons have been learned? We have
that (i) “ . . . we have demonstrated a gain . . . when
appealing to the more elaborate sampling schemes”
(relative to simple greedy search) and that (ii) “priors
play an important role.” These things we know to be



SPLINE ADAPTATION IN ELMs 21

true in general from much experience. The question is:
what should be done in practice?

In general, a practical approach usually involves first
getting the prior specification down to a few hyper-
parameters (about which we hopefully have some un-
derstanding) and then developing a scheme for mak-
ing reasonable choices. At one end of the spectrum
we can use automatic methods such as cross-validation
to choose hyperparameters that are appropriate for the
problem at hand. At the other end of the spectrum we
choose “reasonable values” based on our understand-
ing and prior beliefs. Often, compromise strategies that
combine a peek at the data with some judgment are ef-
fective and somewhat in the spirit of empirical Bayes.
We believe Chipman, George and McCulloch (2002) is
a good example of this middle ground approach.

We have some general Bayesian insights that help us
understand the effects of these hyperparameters. Often
we can think of prior in two stages: p(Mk) a prior on
“models;” and p(θk|Mk) a prior on the parameters of a
given model. A set of hyperparameters would specify
a choice for each of these components. In Section 2
of the paper, θ corresponds to the coefficients β , and
Mk would be (K, t). Both choices can be important.
Often we choose p(Mk) to express the belief that the
model is not too large. More subtle is the effect of a
choice p(θ |Mk). If we make the prior too tight, we will
miss parameter values that give good fit to the data,
diminishing the posterior probability on model Mk. If
we make the prior too spread out, the likelihood will
be washed out and again we diminish the posterior
probability. These are the basic facts of odds ratio
calculations.

In Section 2 of the paper, the choices of A and λ

are the hyperparameters that determine the spread
of the prior given the model. We know from the
general insight outlined above that these choices will
be influential. The paper discusses these choices in
terms of penalties and the AIC. We find the basic
Bayesian intuition about odds ratio calculations is also
helpful in understanding what is going on. It may be
helpful to recall that the AIC is just a (very poor)
approximation to the odds ratio calculation.

Table 2 compares the performance of algorithms for
various values of λ. We see that the choice of λ matters.
What choice is best? It depends. Based on Table 2, the
authors state that choice (vii) is bad, yet it is best in
several scenarios! The question remains: how do you
choose λ?

While the authors consider the impact of different
prior choices (e.g., for λ), methods for selection of

the prior are not considered. Without such choices, the
use of MCMC technology for stochastic search non-
Bayesian is more limited.

One of the most important advantages of Bayesian
methods in adaptive modeling problems is the effec-
tiveness of stochastic search methods such as MCMC.
In applications where the model space is complicated,
constructing an effective chain can be challenging. For
example, in the triogram regression problem, models
are arranged somewhat hierarchically, with regions re-
cursively subdivided into smaller and smaller triangles.
Hierarchical structure makes the construction of an ef-
fective chain challenging because it constrains the pos-
sible set of proposals that can be made. Proposals mak-
ing small local changes are easiest to make and most
likely to be accepted, but a long succession of simple
proposals may need to be accepted for the stochas-
tic search to move on to a different posterior mode.
With this dilemma in mind, we appreciate the impor-
tance of using good proposal steps in effective explo-
ration of the model space. These transitions need to
work within the model constraints (e.g., hierarchy in
triograms) while not being so constrained as to have
difficulty moving. Hansen and Kooperberg have effec-
tively accomplished this by developing a set of pro-
posal steps which move around the space in a natural
way while respecting the nested nature of the models.
In some problems, such as logspline density estima-
tion, it may be easier to move around the space. In that
case, the knots do not depend on the order in which
they are added.

The authors use a single long chain to explore the
model space, which can be an issue if the posterior
on models has many sharp local peaks. In such situ-
ations, MCMC methods can tend to gravitate toward
a single mode and have difficulty in moving to other
regions of the model space. We expect such issues to
arise in the triogram regression problem, for example.
Denison, Mallick and Smith (1998b) use single chains
as well and, by carefully controlling the early stages
of the chain, achieve an algorithm which seems to ex-
plore a region of the model space around a single local
maximum. We have found that another effective tech-
nique is to use multiple chains as a means of more fully
exploring the space. Single and multiple chains were
explored on a simulated dataset in Chipman, George
and McCulloch (1998a) and the use of multiple chains
resulted in a more complete exploration of the model
space.

The authors examine the performance of Bayesian
model averaging, which is an appealing and natural
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means of improving predictive accuracy. We are not
surprised that greedy methods can be improved upon
by a better search and model averaging. What does sur-
prise us is the omission of a trivial (and often effec-
tive) frequentist competitor: bootstrapping. The boot-
strap has been used as a method of generating multi-
ple models for model averaging (Breiman, 1996) and
as an easy way to improve upon greedy search algo-
rithms (Tibshirani and Knight, 1999). In this approach,
multiple pseudodatasets are generated by resampling
with replacement the rows of the data matrix, and a
(often greedy) modeling algorithm is applied to each
bootstrap dataset. Bootstrapping the data and averag-

ing over models is an effective and easy way to model
average. It enhances the search by perturbing the data
and letting the greedy algorithm converge to different
local maxima. Predictions are improved by averaging
across all the different models. We have carried out
some experiments with bootstrapping in the context
of Bayesian CART (Chipman, George and McCulloch,
1998b). In the example we considered, we found that
bootstrapping identified a wider variety of good mod-
els than a single greedy search, but the models iden-
tified by a bootstrap algorithm were still a subset of
those identified by Bayesian stochastic search proce-
dures.

Comment
C. C. Holmes

Mark Hansen and Charles Kooperberg have done
an excellent job in tying (or should I say knot-
ting) together the various methodological and philo-
sophical approaches to random regression splines.
My personal experience in this area derives from
a fully probabilistic (Bayesian) standpoint and my
comments will reflect this view. While I am aware
that the authors may be familiar with much of what
I am about to say I hope that the reader will benefit
from the insights and subjective observations that fol-
low.

1. INTRODUCTION

It is well known empirically that model averaging
over flexible regression models tends to produce more
accurate predictions. This is especially true when the
individual model is “nonsmooth” such as for the tri-
ogram model described in Section 3. Flexible mod-
els typically show high variance to the data which the
averaging tends to counter. The term “high variance”
refers to the fact that small changes or perturbations to
the data can lead to large changes in the form or out-
put of the selected model. In this article Hansen and
Kooperberg, hereafter H&K, consider some averaging
methods using penalized likelihood. In the field of ma-
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chine learning, algorithms such as Boosting, Bagging
and Stacked Regression are popular methods to imple-
ment this strategy; see Hastie, Tibshirani and Fried-
man (2001), Chapters 8 and 10, for details and refer-
ences.

In contrast to these mainly empirically motivated
approaches, the probabilistic (Bayesian) modeller is
forced into model averaging by the requirement to
remain coherent. Bayesian inference is an axiomatic
system; if you buy into the axioms you must follow
the rules and the rules state that when fully quanti-
fying measures of uncertainty in a response variable
you should report the marginal distribution p(y|x); this
is subsequently combined with a loss function when
reporting point estimates. The Bayesian approach re-
quires a priori that we quantify, via probability distri-
butions, measures of uncertainty in all aspects of the
model.

Bayesian inference provides us with a rich modelling
paradigm with probability as its central pillar. How-
ever, this richness comes with a price. In defining prob-
ability distributions over complex model spaces we
must be careful about the implications on the joint mar-
ginal prior distribution p(Y ). I shall expand on this last
point in Section 3 with reference to the precision para-
meter λ used in H&K. The Bayesian and non-Bayesian
methods presented in H&K appear to be doing some-
thing similar, namely model averaging. However, the
procedures behind them are very different. In the next
section I will highlight what I believe to be the key dif-
ference.



SPLINE ADAPTATION IN ELMs 23

2. BAYESIAN INFERENCE AND PENALIZED
LIKELIHOOD

In the averaging procedure of the non-Bayesian
methods the weight given to each model is

w(t)∝max
β̂

(β̂, t)+ aJ (t),

where a model is characterized by a knot configu-
ration t that records the number and position of the
splines, max

β̂t
l(β̂t, t) is the profile log likelihood of

model t and J (t) denotes the dimension of t. The cor-
responding weight given to t in the Bayesian procedure
is

w(t)∝ l(t)+ p(t),

where l(t) is the marginal likelihood and p(t) the prior.
Matching the user-defined quantities p(t) = aJ (t) we
see that the central difference between the procedures
lies in the use of the marginal or profile likelihood. The
marginal likelihood is special to Bayesian inference
and is defined as

l(t)= p(Y = y|t)
=

∫
p(Y = y|β, t)p(β|t) dβ,

where Y denotes the observed data and the measure
p(Y = y|t) is also known as the prior predictive as
it records the probability of observing the data before
the data arrived. In contrast the profile likelihood
conditions on the observed data through the maximum
likelihood estimate β̂t.

The prior predictive contains a natural penalty
against overly complex models which is a direct con-
sequence of using a fully probabilistic approach. Com-
plex models spread their probability measure over
a wide space of possible data generators (possible real-
izations Y = y). By definition this distribution is nor-
malized (integrates to 1) and hence the actual quantity
p(Y = y|t) will be diluted as the space spanned by the
model increases. Accordingly, simple models that are
consistent with the observed data have greater marginal
likelihood. The exact opposite is true of the profile like-
lihood.

It is worth stating now that I do not consider
the “Bayesian ML” models considered by H&K as
Bayesian. They do not relate to proper probabilistic
models and do not use the marginal likelihood in
their inference. Moreover, in Bayesian inference we
are typically interested in reporting the full distribution
p(y|x) not just reporting the mean. By not taking into

account uncertainty in β these will be artificially tight
if ML is used.

The form of the marginal likelihood l(t) highlights
another important issue, namely the significant role
played by the prior distribution p(β|t) within the pos-
terior inference. This is noted in the results in H&K
in their comparison of models (v)–(vii) given in Ta-
ble 1. Throughout, the prior distribution p(β|t) is taken
to be multivariate normal, p(β|t)=N(0, (λA)−1), for
fixed positive-definite matrix A. The precision para-
meter λ is highly influential to the inference. In Sec-
tion 2.2 the authors suggest that “choosing λ too large
. . . leads to oversmoothing, while choosing λ too small
. . . tends to produce overly wiggly fits.” This statement
is not strictly true and the reason for this is interest-
ing.

Consider the smoothing spline introduced in Sec-
tion 2.1 equation (10). The smoothing spline has a ba-
sis function representation with a knot point at every
data value. The parameter λ controls the smoothness
of the fit such that as λ→ 0 the model has n degrees of
freedom and interpolates the data. In this case the es-
timates of β match the maximum likelihood estimates.
For λ = 0 the prior p(β|t) is improper and is known
as the reference prior which would be considered as
noninformative. However, suppose we wish to enter-
tain the prospect that some knots are not needed, as
in the methods of this article. For the variable dimen-
sion case as λ→ 0 we find we select no knots at all
regardless of the data and we are left with a smooth
global polynomial! That is, all of the posterior mass
lies on the simplest model. This effect, that the nonin-
formative reference prior for the fixed dimension case
is a maximumly informative prior in the the variable di-
mension case, is a consequence of the Lindley–Bartlett
paradox.

3. LINDLEY–BARTLETT PARADOX AND
COVARIANCE REPRESENTATION

Lindley (1957) and Bartlett (1957) discuss an appar-
ent paradox in the hypothesis testing of the location of
the mean of a normal distribution. The consequence of
their result for the Bayes linear model, y ∼N(xβ, σ 2)

with prior p(β) ∼ N(0, λ−1A) and random covariate
set x, is that for λ→ 0 the posterior distribution p(x|y)
places ever greater mass on the simplest model. In this
article, the basis set x would refer to the output from
the set of splines with knot locations t.

This result may seem surprising and even a little
worrying to the non-Bayesian observer. However, it is
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merely a consequence of the prior induced on p(Y )

by the model and is not really a paradox at all when
considered in this way. To be specific, given a normally
distributed prior on the coefficients β ∼N(0, (λA)−1)

we find that the marginal prior induced on Y is
normal

p(Y = y|x)=
∫

p(Y = y|x,β)p(β|x)
=N

(
0,X(λA)−1X′

)
,

where X denotes the n × k design matrix, which in
our situation records the k responses from the set of
polynomial and spline bases for the n data points. We
see that the normal prior on β induces a Gaussian
process prior on Y with variance–covariance matrix
X(λA)−1X′. Hence, setting λ→ 0 specifies huge vari-
ance along the column space spanned by X. Adding a
column to X inflates the variance and hence typically
reduces the probability of Y = y.

The covariance representation of the Bayesian re-
gression spline is instructive and peculiar to the Baye-
sian model. The Bayesian methods discussed in H&K
can be considered as modelling Y or log(Y ) as a
Gaussian process with covariance matrix defined by λ,
A and the knot locations t. The MCMC algorithm is
then seen to perform a random walk on the state space

of fixed dimensional n× n covariance matrices deter-
mined by the spline locations. Of course, the covari-
ance form is rarely used in practice as it requires the
inversion of an n× n matrix while the usual basis rep-
resentation requires inversion of k × k matrices. Nev-
ertheless, they are equivalent.

In this manner we can view the Bayesian method of
free-knot splines as a flexible approach to automati-
cally constructing appropriate covariance structures for
a Gaussian process model for Y , or log(Y ). The use
of free knots readily allows the covariance matrix to
be nonstationary in that different amounts of smooth-
ing are achieved in different regions of x. The covari-
ance representation also highlights that fact that the set-
ting of λ is critical to the inference. In the recent work
of Holmes and Denison (2002) we advocate reducing
the sensitivity to this parameter by adopting a further
prior distribution on λ; see also the forthcoming mono-
graph by Denison, Holmes, Mallick and Smith (2002)
on Bayesian methods for nonlinear classification and
regression.

To conclude, I greatly enjoyed reading the paper.
You get a real sense that the authors have a great
feel for the various approaches they discuss. To the
committed Bayesian, phrases such as “an inappropri-
ate prior” are inappropriate but these are minor quib-
bles.

Comment
Robert E. Kass and Garrick Wallstrom

Over the past several years Hansen and Kooper-
berg have contributed substantially to the development
of spline-based nonparametric function estimation. As
they show in this paper and in their 1997 paper with
Stone and Truong, Logspline and its variants can be
effective in diverse settings. Indeed, the unification of
those settings with the rubric of extended linear models
is itself an important contribution. Here, they empha-
size the contrast between the deterministic, frequen-
tist optimization methods and stochastic, Bayesian al-
ternatives. We and our colleagues have been using
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Bayesian spline fitting in a variety of applications and
we are pleased to be able to contribute to the discus-
sion.

Hansen and Kooperberg are mainly interested in
Bayesian methods for algorithmic, as opposed to in-
ferential, reasons: reversible-jump MCMC can visit a
large number of models, and the resulting posterior
mode, and posterior mean based on model averaging,
turn out to be very good estimates. In fact, as we dis-
cuss in Section 1, MCMC can be even better than
Hansen and Kooperberg’s simulations indicate. Hansen
and Kooperberg provide interpretations for the meth-
ods they investigate in their simulation study, but this
is a place where we disagree with them on technical
grounds. In Section 2 we suggest somewhat different
interpretations, which make it easier to understand the
authors’s numerical results. In Section 3 we briefly em-
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phasize the importance of maximization schemes such
as Logspline; in Section 4 we discuss some related
work; in Section 5 we summarize our view of the cur-
rent state of the art.

1. WHEN IS A METHOD BAYESIAN?

Bayesian methods are optimal when the data are
generated according to the assumed model (giving
the likelihood function) and the prior correctly rep-
resents a priori knowledge. From a practical stand-
point, when the model does a reasonably good job
of describing the data, and the prior contributes rela-
tively little erroneous information, Bayesian methods
work well. With moderately large data sets we ex-
pect Bayesian methods to reflect the model, so that
Bayes estimates are essentially maximum likelihood
estimates.

Many researchers, including Hansen and Kooper-
berg, find it informative to try to recast frequentist pro-
cedures in Bayesian terms, so as to get a clearer un-
derstanding of the way those procedures work. Typi-
cally, this exercise shows a frequentist method to be
approximately Bayesian in some sense, and one then
hopes to have a relatively easy time seeing what the
model and prior each contribute. For this to be justi-
fied, however, there must be a formal sense in which
the method is “approximately Bayesian.” That is, there
must be a formal sense in which the procedure com-
putes a probability (or an estimate) that is approx-
imately equal to a probability (or estimate) coming
from some posterior distribution. For example, max-
imum likelihood estimates may be shown to approx-
imate posterior means as sample sizes become infi-
nite.

Hansen and Kooperberg have made central to their
study the algorithm of Denison, Mallick and Smith
(1998a). We would like to take issue with their in-
terpretation of it. We will call it DMS, and we will
contrast it with a modification of DMS that DiMatteo,
Genovese and Kass (2001) called BARS.

1.1 DMS Is neither Bayesian nor Approximately
Bayesian in Large Samples

Green (1995) pointed out that reversible-jump
MCMC was well-suited for finding breakpoints in
piecewise constant functions. The paper by Denison,
Mallick and Smith (1998a) was important because it
extended this observation to cubic-spline curve-fitting.

From a Bayesian point of view, the likelihood
function on the knot set t based on data y, model

p(y|β, t) and prior π(β) is the marginal density

L(t)= p(y|t)
=

∫
p(y|β, t)π(β) dβ.

[Here, for simplicity, we are ignoring σ , which is
handled by integration with respect to the prior π(σ )=
1/σ .] The DMS method replaces this marginal density
p(y|t) with the conditional density p(y|β̂, t), where,
in the context of curve-fitting, β̂ is the least-squares
estimate. The advantage of doing so is that no prior
distribution on β need be considered. Because there
is no prior on β , DMS is not an exact Bayesian
method. It might be thought that it is approximately
Bayesian in the same sense that maximum likelihood
is approximately Bayesian, but that is not the case
either.

In many situations it is innocuous to ignore the
prior or to assume a flat prior. For instance, if the
knots t are fixed so that the problem is one of mul-
tiple linear regression, for moderately large samples
the posterior of β based on a flat prior will be-
come a good approximation to the posterior of β

based on any relatively diffuse proper prior, and the
least-squares estimate will become a good approxi-
mation to the posterior mean of β . In contrast, the
conditional density p(y|β̂, t) will not approximate
the marginal density p(y|t) in large samples for any
prior.

This point may seem pedantic but, as we spell out
below, it has important implications both for practice
and for interpretation.

1.2 For Gaussian Nonparametric Regression,
BARS is Bayesian

For curve-fitting, a very simple alternative to DMS
is to define an analytically tractable prior on β given t.
DiMatteo, Genovese and Kass (2001) chose the prior

β ∼N
(
0, nσ 2(XT

t Xt)
−1)

,

where Xt is the design matrix based on the spline
basis. Because the Fisher information in the data is
XT

t Xt/σ
2, this prior may be understood as having

the same amount of information as a single obser-
vation. Thus, Kass and Wasserman (1995) called it
the unit-information prior. Many other authors have
used this prior; see Pauler (1998). In the context of
spline curve-fitting, Smith and Kohn (1996) used the
same prior but with variance matrix cσ 2(XT

t Xt)
−1,

where c was chosen to be between 10 and 1,000, val-
ues not terribly different than the sample size. Any
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such choice yields an explicit form for the likelihood
L(t) required in the reversible-jump MCMC scheme.
Thus, any such prior in conjunction with the MCMC
scheme used in DMS yields an exactly Bayesian
method for Gaussian nonparametric regression. The
unit-information prior was chosen as a simple default
but, aside from its connection with BIC described be-
low, there is nothing special about the particular choice
c= n.

An additional feature of the BARS implementation
was the incorporation of a locality heuristic: contin-
uous proposal distributions for addition of a knot are
used; these attempt to place knots close to existing
knots. This is based on the observation, stressed by
Zhou and Shen (2001), that extra knots are needed
where curves change sharply. Hansen and Kooperberg
mention the general idea that more knots are needed
in regions where the function changes rapidly, but
their implementations apparently ignore this fact. The
DMS implementation attempts to spread knots out,
rather than clumping them as would be needed for
rapidly varying curves. This produces a somewhat in-
efficient chain, that is, one that needs to be run a long
time.

1.3 BARS Achieves Much Smaller MISE than
Does DMS

When the conditional density p(y|β̂, t) replaces
the correct marginal density p(y|t) it is no longer
possible to learn about the number of knots needed
to model the data. The practical implication is that
DMS severely overfits the data and suffers extreme
sensitivity to the choice of prior. It is easy to see
why: when using the conditional density, the likeli-
hood increases as knots are added so that the poste-
rior mode will be at the maximum allowable num-
ber of knots. Indeed, it is precisely to avoid this sit-
uation that dimensionality penalization methods such
as AIC and BIC are introduced. The DMS likeli-
hood on the number of knots (based on the con-
ditional density) will level off as the number of
knots increases and will become dominated by the
prior.

As reported by Denison, Mallick and Smith (1998a),
and also by Hansen and Kooperberg, fits obtained
using DMS may sometimes appear reasonable, and
it may also appear that the prior on the number of
knots has relatively little effect. This happens for
two reasons: first, overfitting will often produce a
model with relatively small MISE and, second, short
MCMC chains may traverse regions of reasonably

good models. Long chains will allow the method to
explore regions of higher probability, which in DMS
are regions involving large numbers of knots leading
to excessively rough (wiggly) models. One might then
be tempted to advocate DMS with short chains—in
fact, this is precisely what Hansen and Kooperberg
used in their simulation study—but that approach
is very worrisome: with MCMC we want to make
sure we have adequate mixing, particularly in highly
multimodal problems. A safer strategy is to use a
Bayesian method.

In the three simulated examples reported by DiMat-
teo, Genovese and Kass (2001), which were similar
in spirit to the three used by Hansen and Kooper-
berg except in the context of curve-fitting, BARS
reduced the MISE compared to DMS by 70% or
more (with chains of length 10,000). Gains for curves
with very sharp jumps are most dramatic. Further-
more, when fits were examined, BARS was appropri-
ately smooth while DMS was very rough, with very
large numbers of local modes; and the number of
DMS modes was highly dependent on the choice of
prior.

1.4 BIC Is Approximately Bayesian with Respect to
the Unit-Information Prior

Schwarz (1978) showed that the criterion now most
commonly known as BIC provides consistent model
selection, in the sense that BIC will choose the cor-
rect model (among alternative choices, one of which is
assumed true) for sufficiently large samples. The ar-
gument was Bayesian: Schwarz used the log of the
Bayes factor and then omitted constant-order terms
(see Kass and Raftery, 1995, for additional references).
Kass and Wasserman (1995) and Pauler (1998) showed
that BIC approximates the log of the Bayes factor very
well when the unit-information prior is used: analyt-
ically the error is of order Op(n

−1/2) and numeri-
cally the results are remarkably close, even for mod-
erate sample sizes. Thus, in very general terms, model
selection using BIC is approximately the same thing
as model selection via Bayes factors with the unit-
information prior. We should caution that this asymp-
totic argument requires the sample size to be well de-
fined (see Pauler, 1998) and grow to infinity while the
number of parameters remains finite. In the spline ap-
plications we have faced, however, these seem to be
reasonable assumptions and the BIC-based BARS pro-
cedure we describe below, in Section 1.5, performs
well.
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In the case of Gaussian curve-fitting it is particularly
easy to see the BIC approximation in action. DiMatteo,
Genovese and Kass (2001) noted that the likelihood
ratio for adding a knot in the BARS reversible-jump
MCMC is

ratio≈ exp(−BIC/2),(1)

where the approximation error is simply omission of
the factor

√
n/(n+ 1). DiMatteo, Genovese and Kass

also pointed out that DMS multiplies the right-hand
side by

√
n, which is another way to see why that

method leads to severe overfitting.
Hansen and Kooperberg observe that BIC may be in-

terpreted as using the conditional density p(y|β̂, t) to-
gether with a Geometric prior distribution on the num-
ber of knots, with parameter p = 1− n−1/2. We would
prefer to state this differently, in line with Schwarz’s
analysis: for large samples, the marginal density p(y|t)
based on any prior on β will differ from the conditional
density by a factor that behaves like this Geometric
prior; that is, it falls at the exponential rate n−k/2. [For
consistency the factor multiplying p(y|β̂, t) must fall
at the rate e−kf (n), where f (n)→∞ and f (n)/n→ 0;
see Nishii, 1988.] Thus, DMS with a uniform prior
could be interpreted as doing the same thing as would
a Bayesian method that uses a proper prior on β to-
gether with an improper prior on the number of knots
that increases roughly as nk/2.

1.5 BARS May Be Generalized with Laplace’s
Method and BIC

We described BARS very briefly above in the case
of Gaussian curve-fitting. There, with the unit-infor-
mation prior or any other Gaussian prior on β , the
integral required for the marginal density p(y|t) may
be evaluated analytically. For other ELMs the integral
is no longer tractable. DiMatteo, Genovese and Kass
(2001) approximated the integral by Laplace’s method.
With the unit-information prior this yields

logp(y|t)≈ logp(y|β̂, t)− J

2
logn,

where J is the dimensionality of the basis. That is, for
general models BARS uses BIC in its MCMC scheme.
It would be equally easy to use Laplace’s method for
an alternative prior. It might also be more effective to
use a different prior, but DiMatteo, Genovese and Kass
(2001) were satisfied with the results obtained with
BIC.

DiMatteo, Genovese and Kass (2001) approximated
the integral defining p(y|t) to improve simulation

efficiency: marginal chains (here, a chain on t) tend to
be more efficient than joint chains (here, a chain on
(β, t); see Liu, Wong and Kong, 1994). In addition,
chains on (β, t) must be constructed with care to
ensure detailed balance (see Genovese, 2000). From
Hansen and Kooperberg’s brief description of the
procedure they used with their smoothing priors we
could not understand whether they ran chains on t
or (β, t). (In addition, it appears that they used a
Normal approximation to the conditional posterior
distribution on β; note that this is less accurate than
using Laplace’s method, though it may be corrected by
importance weighting as in DiMatteo, Genovese and
Kass, 2001.)

2. REINTERPRETATION OF HANSEN AND
KOOPERBERG’S RESULTS

We now return to the methods Hansen and Kooper-
berg examined in their simulation study. Keeping in
mind that when Hansen and Kooperberg refer to the
use of AIC in these methods they actually mean BIC
(which, in contrast to the terminology in the literature,
they choose to regard as a special case of AIC), we in-
terpret the methods from our own Bayesian point of
view as follows:

• method (i) is a quick-and-dirty way to find a model
having high posterior probability (approximately,
for moderate or large samples, using BIC), based on
the unit-information prior on β and a flat prior on the
number of knots;

• method (ii) is an attempt to find the posterior
mode (again, approximately), based on the unit-
information prior on β and a flat prior on the number
of knots; (The authors call this simulated annealing
but did not describe any annealing; if they actually
did some annealing we would be very interested to
find out the details: what did they learn about the
appropriate cooling schedule?)

• method (iii) is an approximately Bayesian method,
based on the unit-information prior on β and a flat
prior on the number of knots. DiMatteo, Genovese
and Kass (2001) called it modified-DMS in their
simulation study and found that it worked reason-
ably well, though not as well as BARS because
BARS also incorporated the locality heuristic, which
used continuous proposal distributions and produced
a more efficient MCMC scheme;

• method (iv) is the pseudo-Bayesian DMS method,
which tends to overfit;
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• method (v) is a Bayesian method, based on the
smoothing prior on β with λ = 1/n and a flat prior
on the number of knots. The smoothing prior is very
similar to the unit-information prior: both use the
multiplier 1/n while the smoothing prior uses A in
place of the information matrix. We would expect
this method to behave fairly similarly to method (iii),
except that the authors may have used different
MCMC schemes;

• by increasing the multiplier to be of order greater
than 1/n, methods (vi) and (vii) make the prior on β

much more informative than a single observation; in
method (vii) it has the same order of information
as does the full data set. In these cases, and more
dramatically for (vii), the prior will substantially
smooth the fit and the net result will be to destroy
the local adaptation that is the chief benefit of knot
location algorithms. We would expect to see these
methods behave somewhat similarly to smoothing
splines, and often poorly, sometimes overfitting and
sometimes smoothing over sharp changes in the
function;

• method (viii) is similar to method (v), using the same
order of information on β as a single observation,
except that it has the geometric prior on the number
of knots. We would expect this method to work
well on functions that require only small numbers
of knots, and also when there is sufficiently much
data to overcome the prior’s very thin tails. We
would expect this method to perform poorly with
functions having many sharp peaks and moderate
sample sizes.

To summarize, with our reinterpretation we would
expect methods (ii), (iii), (v) and (viii) to perform well
for the four examples used by Hansen and Kooperberg,
and methods (iv), (v) and (vi) to be considerably worse.
We would also expect the performance of (viii) to
deteriorate on examples with moderate sample sizes
and multiple peaks. Note that our interpretation of
method (iii) should be contrasted with Hansen and
Kooperberg’s characterization of method (iii) as being
ML with a geometric prior on the number of knots.
We would expect (viii) to deteriorate on examples with
moderate sample sizes and multiple peaks because of
its geometric prior, but we would not expect such
poor behavior from method (iii) because we think
of it as having a flat prior rather than a geometric
prior.

We also would be concerned that good performance
of methods (ii), (iii), (v) and (viii) might sometimes

require very long chains. It is worth repeating that
short chains, such as those used by Hansen and
Kooperberg in their simulation study, may fail to
properly sample from the posterior distribution. This
depends, of course, on the MCMC method and we
mentioned that BARS can perform better due to its
increased efficiency. Further improvements may well
be possible. In addition, as we said above, for reasons
of efficiency we prefer running the chain on t rather
than on (β, t).

As far as method (i) is concerned, we would expect
it to do a reasonably good job, and its speed is
very appealing. On the other hand, given the goal
of finding the posterior mode (approximately, via
BIC), alternative maximization methods may be even
better.

We believe these remarks provide a straightforward
understanding of Hansen and Kooperberg’s numerical
results, aside from a few perplexing anomalies: for
the most part the methods perform just as we would
expect. It is possible that the anomalies (the most
egregious being method (iii) at 1.52 for normal and
1.09 for slightly bimodal with n = 50, method (v) at
1.35 for normal with n = 10,000 and method (viii) at
1.13 for sharp peak with n= 200) might go away with
a more efficient MCMC method and/or substantially
longer chains.

3. POSTERIOR MAXIMIZATION

In our applied work we always need not only
fits for an unknown function but also assessments
of uncertainty. We consider the availabilty of the
posterior as an inference engine to be a big advantage
of the Bayesian approach. However, in many of our
applications we have sufficiently large sets of data
(often hundreds of function-fitting problems, each
having tens of thousands of binary observations) that
computing time is a big issue. We desperately need fast
methods. The speed of Logspline is appealing, but we
cannot use it in practice unless we also have a way to
assess uncertainty.

It seems to us that a reasonable compromise would
be to apply a rapid fitting method, and then run
a relatively short chain to get a rough idea of the
posterior—enough of an idea to get at least some
notion of uncertainty. The initial rapid fitting method
should provide a good estimate of the function and, as
a by-product, a sufficiently good starting value for the
short chain that no burn-in is necessary. We could use
Logspline for this purpose, as Hansen and Kooperberg
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apparently did for method (iii), but our sense is that it
may be possible to do better.

As a method of fitting, the big advantage of revers-
ible-jump MCMC for finding good fits is its ability to
“tunnel” across regions of low posterior density. Algo-
rithms that try to maximize the posterior for a given
number of knots can get stuck when knot movement
requires traversing an interval where the posterior den-
sity is comparatively small; by instead moving to a
model with an additional knot, and then subsequently
deleting a knot, an algorithm can effectively move past
the region of low posterior density. This makes us think
that a maximization method should incorporate some
of this “stepwise” alternation of models with differ-
ent numbers of knots. Hansen and Kooperberg refer to
Logspline as a stepwise method but, as we understand
it, it actually uses a “forward selection” method to
add knots and then a “backward elimination” method
to delete them. While it apparently does a good job,
we wonder whether alternatives that attempt to build
some of the “tunneling” features of the MCMC method
into a fast maximization scheme might be effective.
We have tried simple variants on BARS that maximize
rather than sampling, and they can work reasonably
well, but we have not done systematic research and are
unable to report any dramatic improvements in com-
putation time. We would be interested in any further
comments Hansen and Kooperberg may have on this
point.

4. RELATED WORK

Spline-based approaches to function estimation have
received much recent attention and there are variations
that Hansen and Kooperberg did not touch on. Some
relevant additional references may be found in Shively,
Kohn and Wood (1999) and in DiMatteo, Genovese
and Kass (2001).

Our own applied work has focused primarily on
applications to neuroscience. In addition to using
BARS for functional imaging and identification of
neuronal firing patterns (as illustrated in DiMatteo,
Genovese and Kass, 2001), this has included artifact
removal from EEG’s (Wallstrom et al., 2002). For some
of our neuronal work we have also needed to fit two-
dimensional surfaces and for this we have applied a
mild modification of the method in Denison, Mallick
and Smith (1998c), which (unlike their curve-fitting
approach) is fully Bayesian. Here we would be very
interested in any remarks Hansen and Kooperberg
might be able to make regarding the performance of

their triogram methods compared to those using the
more familiar product spline bases as in Denison,
Mallick and Smith (1998c). We have also implemented
a generalization of BARS that fits multiple curves
simultaneously, which is closely related to the method
of Shi, Weiss and Taylor (1996). This provides a
Bayesian approach to a basic problem in functional
data analysis, that of describing the variation among
many curves. We hope to report on it soon.

5. CONCLUSIONS

Here and in cited publications, Hansen and Kooper-
berg have taken advantage of important insights to pro-
duce useful methods and have enlightened us concern-
ing their behavior.

Currently, BARS appears to be the most power-
ful available method for spline-based curve-fitting in
ELMs. The essence of BARS is that it uses the follow-
ing:

1. a proper prior on β that contains relatively little
information;

2. a reversible-jump MCMC scheme on t with contin-
uous proposals for knot addition that try to place
new knots close to existing knots;

3. approximation of the marginal density p(y|t) by
Laplace’s method when it is not available analyti-
cally.

Innovations that would improve behavior, or make
the chain more efficient, are certainly possible. For
example, one obvious idea is to replace the factor
1/n that multiplies the prior information in the unit-
information prior (or the λ in Hansen and Kooperberg’s
smoothing priors) with a value 1/c (as in Smith and
Kohn, 1996) and then put a prior on c (as in George
and Foster, 2000). We have not tried this ourselves as
yet.

In many applications, faster methods, such as Log-
spline, or alternative schemes designed to maximize
the posterior, are highly desirable. However, evalua-
tion of uncertainty is essential. Some hybrid approach
involving maximization steps together with short sim-
ulation chains may provide a useful solution. We look
forward to further work by Hansen, Kooperberg and
others on this important problem.
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Comment
Roger Koenker and Ivan Mizera

1. INTRODUCTION

Piecewise linear approximations on adaptively se-
lected triangulations of planar domains provide an ef-
fective framework for many aspects of applied mathe-
matics, from surface modeling in computer aided de-
sign to numerical methods for solving partial differen-
tial equations. Hansen and Kooperberg have convinc-
ingly demonstrated that these methods also deserve a
prominent place in the statistical arsenal. On equivari-
ance grounds alone a persuasive case can be made for
their superiority to competing tensor product methods.

The most challenging aspect of the triogram ap-
proach lies in chosing a strategy for the adaptive tri-
angulation. Hansen and Kooperberg have undertaken a
wide ranging exploration of these strategies: initially
in Hansen, Kooperberg and Sardy (1998) within the
regression spline, model-selection paradigm and now
from a more Bayesian viewpoint. The prior plays two
important roles in the latter approach. It controls the
number and position of the vertices of the triangula-
tions, and it acts to shrink the parameters of the ba-
sis expansion toward a globally linear fit. Vertex se-
lection and the attendant choice of the triangulation
are the computationally difficult aspects of this process
and seem to demand an MCMC implementation. In-
herently, there is a trade-off between the flexibility al-
lowed by the triangulation and the amount of shrink-
age. Parsimonious triangulations, that is, those with
few vertices, need little shrinkage; more profligate tri-
angulations need more shrinkage. Hansen and Kooper-
berg opt for priors yielding rather parsimonious trian-
gulations with only a handful of vertices. This is quite
suitable for the test function of Section 3.2, but we are
curious about how their MCMC methods would scale
for problems that required many more vertices.

Roger Koenker is Professor, Departments of Eco-
nomics and Statistics, University of Illinois, Cham-
paign, Illinois 61820 (e-mail: rkoenker@uiuc.edu).
Ivan Mizera is Associate Professor, Department of
Mathematical Sciences, University of Alberta, Edmon-
ton, Alberta, Canada T6G 2G1 (e-mail: mizera@stat.
ualberta.ca).

2. A TOTAL VARIATION ROUGHNESS PENALTY

In recent work (Koenker and Mizera, 2001), we have
been exploring total variation regularization methods
for estimating triogram models. We take an extremely
liberal attitude to the choice of the triangulation,
allowing vertices at each of the distinct (xi, yi) points,
and then adopting the resulting Delaunay triangulation.
In the spirit of the smoothing spline literature we rely
entirely on our “roughness penalty” to achieve the
appropriate degree of smoothness. Our penalty may be
interpreted as the total variation of the gradient of the
fitted function defined as

J (g)= V (∇g)=
∫∫

;
‖∇2g‖dx dy,

where the integral may need to be interpreted in the
sense of distributions as lim inf of a sequence of
smooth approximates. For general functions, g, the
choice of the norm in the penalty may pose real
problems; however, for triograms we are able to show
that for any orthogonally invariant norm we obtain a
scalar multiple of

J (g)=∑
e

‖∇g+e −∇g−e ‖‖e‖,

where e runs over all the interior edges of the trian-
gulation, ‖e‖ is the Euclidean length of the edge e and
‖∇g+e −∇g−e ‖ is the Euclidean length of the difference
between gradients of g on the two triangles adjacent
to e.

This penalty is particularly convenient when paired
with absolute error fidelity,

n∑
i=1

|zi − f (xi, yi)| + λJ (f ),

where it can be reformulated as a data augmentation
strategy and minimization can be accomplished by
efficient linear programming methods. It is important
to mention that the sparsity of the linear algebra in
these problems enables us to solve large problems even
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FIG. 1. Median triogram fit of Chicago land values.

though the nominal parametric dimension is several
hundred.

Hansen and Kooperberg employ a modified version
of our J (·) penalty that sums the squares of the con-
tributions along the edges as a measure of roughness.
This pairs nicely with Gaussian fidelity as a compu-
tational device, again yielding a data augmentation
strategy. But the rationale for this quadratic form of
the penalty remains, at least to us, a bit mysterious.
The total variation form of the penalty has the advan-
tage that it is less sensitive to sharp bends in g along
the edges and thus may be better adapted to sharp
edges and spiky behavior. This viewpoint has been
emphasized in the image processing literature where
penalties based on total variation of the function it-
self, rather than its gradient, have been widely em-
ployed and rationalized as an edge detection device.
While there may be perhaps reason to believe that the
quadratic form will retain similar features, we cannot
offer any positive evidence for that—except perhaps
for Figure 2.

3. AN EXAMPLE

To illustrate the fexibility of this approach we
briefly describe an application. The data consist of
1,194 vacant land sales occuring at 761 distinct sites
in the Chicago metropolitan area during the period
1995–97. Extending the model described in Koenker

FIG. 2. Mean fit of Chicago land values.

and Mizera (2001), we consider the partially linear
model

log(zi)= g(xi, yi)+ β1 log(si)+ β2 log2(si),

where zi denotes the sale price of the land in dollars
per square foot and depends on the geographic loca-
tion (xi, yi), measured in miles from the intersection
of State and Madison, and the effect of the size of the
parcel, si , in square feet is modeled as quadratic in
log(si).

In Figures 1 and 2 we illustrate two fits of this
model: one representing the median fit using the
absolute error fidelity and the total variation form of
the triogram penalty, the other representing a mean fit
using Gaussian fidelity and the quadratic version of
the penalty. The smoothing parameter λ was chosen to
achieve roughly the same (Gaussian) fidelity in both
plots. In both plots the parcel size is set to its sample
(geometric) mean. Evaluating the parcel size effect
at the mean parcel size, we obtain for the median
fit −0.5148, indicating that parcel prices are roughly
proportional to frontage (square root of area) rather
than to area itself.
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Comment
Mary J. Lindstrom

The authors give an insightful overview of spline
regression and extended linear models and compare
a number of methods for model selection. Table 1 in
this Comment divides the methods into the four classes
described at the end of Section 1 of the paper. The
methods grouped together in the third and fourth lines
of Table 1 differ only in the specification of the prior
on K (the number of knots) and (for the fourth line)
the prior on the coefficient vector β.

The methods are distinguished by the definition of
the estimate, the handling of β, the computational
algorithm and the method for choosing the model
size. The definitions of the estimates are relatively
straightforward. The handling of β is not an issue for
the first two methods since, for any fixed t, AIC(β, t)
is minimized at AIC(β̂(t), t), where β̂(t) is the MLE
for β. In contrast, for the MCMC-based estimation,
the choice of whether to remove β from the estimation
problem [methods (iii) and (iv)] or to specify a prior for
β [methods (v) through (viii)] will affect the resulting
estimates. Complicating matters is the effect of the
prior for β on the relative posterior probabilities of
the various model sizes. A diffuse prior will tend to
drive down the size of the model with highest posterior
probability. Thus for methods (v) through (vii) the
model size is controlled by the priors on both β and K .
Model size is controlled by the penalty in the AIC
for the first two methods and by the prior on K for
methods (iii) and (iv).

The computational algorithms consist of the follow-
ing: a simple stepwise method for optimizing the AIC;
a simulated annealing algorithm to optimize the AIC
(which the authors state is nearly equivalent to MCMC
estimation where the posterior mode is chosen as the
point estimate); and reversible jump MCMC (RJM-
CMC) algorithms which, while not usually thought of
as optimization algorithms, can be viewed as maximiz-
ing an objective function (the posterior) by generat-
ing a sample from the domain of the function which
is concentrated in places where the objective function
is largest (assuming the chain mixes well). However,

Mary J. Lindstrom is Associate Professor, Department
of Biostatistics and Medical Informatics, University of
Wisconsin–Madison, Madison, Wisconsin 53792-4675
(e-mail: lindstro@biostat.wisc.edu).

the estimate used for these methods is not simply the
fit corresponding to the sampled parameter vector with
largest posterior probability but is an average of the
sampled fits.

It is clear that the eight methods are not simply al-
ternate ways to optimize an objective function. Ap-
propriately, the authors base their simulation compar-
isons on the ability to recover the truth. The compari-
son of the greedy algorithm to the stochastic methods
is of interest since the greedy algorithm is in general
use. However, it would also be of interest to fix some
measure of overall computing time (perhaps number
of model evaluations) and compare to the greedy al-
gorithm with random restarts. That is, once no addi-
tional improvement is possible, select a new K and a
new t at random and start the algorithm again, repeat-
ing until the time limit is reached. A more sophisti-
cated scheme would be to allow knot addition, knot
deletion or knot movement at each step. This sort of
heuristic algorithm (often called steepest descent with
random restarts) usually does quite well against other
heuristic optimization schemes, including genetic al-
gorithms, simulated annealing and taboo searches. The
random restarts are crucial. No deterministic algorithm
run from one starting value will do well against sto-
chastic algorithms when there are numerous local op-
tima.

The real advantage of the RJMCMC methods over
heuristic algorithms for optimizing an information
criterion is that the output from the algorithm can
be used to assess the variability of the estimate—
including the uncertainty due to estimating K . It would
be of interest to compare the estimates of variability
for method (iii) [β fixed at β̂(t)] and those for
methods (v) and (viii) (β not fixed). The downside
of the Bayesian formulation for models which have
a variable number of parameters is that the results
are more than usually dependent on the choice of
prior. A noninformative prior cannot be used for K

and, as mentioned above, the prior for β (or any
parameter vector which changes dimension) cannot be
too diffuse or the smallest model will have highest
posterior probability.

The extension of the methods to multiple dimensions
is an important problem. It would seem that the
radial basis functions used in thin-plate smoothing
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TABLE 1
Summary of the eight methods; here β̂(t) is the MLE for β given the knot sequence t, and K is the number of knots;

method (iii) (Geometric prior on K) did best in the third grouping, and methods (v) (λ= 1/n, Uniform prior on K) and
(viii) (λ= 1/n, Geometric prior on K) did best in the fourth grouping

Method(s) Estimate Handling of β Algorithm Model size

(i) Minimizer of AIC Fixed at β̂(t) Greedy AIC
(ii) Minimizer of AIC (approxi-

mately the posterior mode)
Fixed at β̂(t) Simulated

annealing
AIC

(iii), (iv) Mean of predicted values for
posterior sample

Fixed at β̂(t) RJMCMC Prior on K

(v)–(viii) Mean of predicted values for
posterior sample

Prior on β parame-
terized by λ

RJMCMC Prior on K and prior
on β

splines would make a more natural generalization
than the triangulation approach used by the authors.
The thin-plate radial basis functions are smooth and

easily calculated, and each basis function is defined
by a single location, making addition and deletion
straightforward.

Comment
Grace Wahba, Yi Lin and Chenlei Leng

1. INTRODUCTION AND THANKS

The authors present greedy and Bayesian model
selection frameworks for studying adaptation in the
context of an extended linear model, with application
to logspline density estimation and bivariate triogram
regression models. We will confine our remarks to the
density estimation case. The authors define the setup
of their “extended linear model” as finding g ∈ G to
maximize the log likelihood

l(g)=∑
i

l(g,Wi),(1)

where G is a linear space, generally of much lower di-
mension than the sample size n. Generally the famous
bias–variance tradeoff is controlled (most likely pri-
marily) by the dimension of G, as well as other pa-
rameters involved in the choice of G or spline spaces
in Hansen and Kooperberg (HK), the number of knots
governs the dimension of the space and the number
and location of the knots are to be chosen according to
several Bayesian methods and compared with a greedy

Grace Wahba is Professor, Yi Lin is Assistant Professor
and Chenlei Leng is Research Assistant, Department
of Statistics, University of Wisconsin–Madison, Madi-
son, Wisconsin 53792 (e-mail: {wahba,yilin,chenlei}
@stat.wisc.edu).

method. Knot selection in the context of (1) is a dif-
ficult but not impossible task, as the authors clearly
show. The authors are to be thanked for an interest-
ing study of Bayesian knot selection methods and their
comparison with a greedy knot selection method.

To contrast with the ELM approach in the paper,
we will examine a penalized likelihood method for the
same (log) density estimation problem. It is based on
solving a variational problem in an infinite dimensional
(Hilbert) space, where the problem has a Bayesian fla-
vor, and where the solution to the variational problem is
(essentially) known to lie in a particular n-dimensional
subspace. Then the smoothing parameter(s) are chosen
by a predictive loss criteria. If the penalty functional
is square integral second derivative, the n-dimensional
subspace is spanned by a basis of cubic splines with
knots at the observation points. At this point we can
take one of several points of view. The three that
are relevant to the discussion here are the following:
(i) solve the variational problem exactly; (ii) find a
good approximation to the solution of the variational
problem, by using a representative or a random sam-
ple of the knots, instead of the complete set, when the
sample size is large; and (iii) instead of using the solu-
tion of the variational problem as the “gold standard”
as in (ii), use a greedy algorithm to choose a subset of



34 M. H. HANSEN AND C. KOOPERBERG

the knots, actually, a subset of the representers (Wahba,
1990), which reduce to the knots in the case of poly-
nomial splines. This will have the effect of letting the
“wiggliness” of the solution vary where there are more
observations, and/or more variable responses. Then the
variational problem is solved in the greedily chosen
subspace. This so-called hybrid approach was taken in
Luo and Wahba (1997) in a Gaussian regression prob-
lem, using a relatively simple greedy algorithm, and,
as was also found in Stone, Hansen, Kooperberg and
Truong (1997) more knots are located near sharp fea-
tures, as well as where there are more observations.

We will focus on a density estimation version of (ii)
in the rest of this discussion. To carry out this program
we need a criterion for the choice of the smoothing pa-
rameters appropriate for density estimation and we will
use randomized generalized approximate cross valida-
tion (GACV) for density estimation (to be defined),
which is a proxy for the comparative Kullback–Leibler
distance of the “truth” from the estimate. In this dis-
cussion we will first give some details for the univariate
case and compare the results to Table 2 of HK. Loosely
speaking, the results compare fairly favorably with all
of the estimates whose MISE performance is given in
Table 2 with the exception of the two largest sample
sizes in the “sharp peak” example. After commenting
on these results, we will then describe some work in
progress, in which the penalized likelihood estimate is
extended to several dimensions via a smoothing spline
ANOVA (SS-ANOVA) model. We briefly demonstrate
a three-dimensional result. The conceptual extension of
the penalized likelihood method to higher dimensions
is fairly straightforward, and the real thrust of the work
is to be able to estimate densities in higher dimensions.
One of the rationales behind the use of the SS-ANOVA
model for density estimation in several dimensions is
that the pattern of main effects and interactions has an
interesting interpretation in terms of conditional depen-
dencies and can thus be used to fit graphical models
(Darroch, Lauritzen and Speed, 1980; Whittaker, 1990;
Jordan, 1998) nonparametrically.

2. PENALIZED LOG LIKELIHOOD DENSITY
ESTIMATION

Our density estimate is based on the penalized log
likelihood estimate of Silverman (1982). When going
to higher dimensions we will use the basic ANOVA
decomposition idea in Gu (1993). Our density estimate
will have compact support ;, which will be scaled
to the unit interval or the unit cube in Ed and then

rescaled back after fitting. Let the density p = eg

with g in some reproducing kernel Hilbert space
(RKHS) H with square seminorm J (g), where the
null space of J contains the constant function and is
low dimensional. Letting xi ∈ ;, Silverman showed
that the penalized log likelihood minimization problem
min g ∈H

−1

n

n∑
i=1

g(xi)+ λJ (g)(2)

subject to the condition∫
;
eg = 1(3)

is the same as the minimizer of

Iλ(g)=−1

n

n∑
i=1

g(xi)+
∫
;
eg + λJ (g).(4)

We will describe the estimate in general form so that its
extension from the univariate to the multivariate case is
clear. Let H =H0 ⊕H1, where H0 is the null space
of J , and let the reproducing kernel for H1 be K(x,x′).
If the term

∫
; eg were not in (4), then (it is well

known that) the minimizer of (4) would be in Hn ≡
H0 ⊕ span {ξi, i = 1, . . . , n}, where ξi(x)=K(x,xi).
(ξi is known as a representer.) We will therefore feel
confident that the minimizer of (4) in Hn is a good
approximation to the minimizer of (4) in H . In fact, we
will seek a minimizer in HN = H0 ⊕ span {ξir , r =
1, . . . ,N}, where the ir is a representative subset
chosen sufficiently large that the minimizer in HN is
a good approximation to the minimizer in Hn.

In order to carry out penalized log likelihood esti-
mation a method for choosing λ is required. We have
obtained a randomized generalized approximate cross
validation (ranGACV) estimate for λ, for density es-
timation. We briefly describe it here; details will be
given elsewhere. Let fλ be the estimate of the log den-
sity, and let f [−i]

λ (xi) be the estimate with the ith ob-
servation left out. Define the ordinary leaving-out-one
function as

V0(λ)=OBS(λ)+D(λ),(5)

where

OBS(λ)=−1

n

n∑
i=1

fλ(xi)(6)

and

D(λ)= 1

n

n∑
i=1

[
fλ(xi)− f

[−i]
λ (xi)

]
.(7)
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TABLE 1

Distribution Sample MISE HK Ratio
size (pen.log.lik) [Table 2(i)] (pen.log.lik/HK)

Normal 50 0.01859 0.02790 0.666
200 0.00435 0.01069 0.407

1,000 0.00071 0.00209 0.340
10,000 0.00014 0.00020 0.700

Bimodal 50 0.01358 0.02502 0.543
200 0.00372 0.00770 0.483

1,000 0.00079 0.00164 0.482
10,000 0.00011 0.00020 0.550

Peak 50 0.10011 0.15226 0.657
200 0.03045 0.03704 0.822

1,000 0.02152 0.00973 2.212
10,000 0.01624 0.00150 10.83

Elsewhere (to appear) we show that nD(λ) can be
approximated by the trace of the inverse Hessian of Iλ

with respect to fλ(xi), i = 1, . . . , n, and that it can be
estimated by a randomization technique as follows. Let
Iλ(g, y) be

Iλ(g, y)=−1

n

n∑
i=1

yig(xi)+
∫
;
eg + λJ (g).(8)

When y = (1, . . . ,1)′ then (8) becomes (4). Letting f
y
λ

be the minimizer of (8), D(λ) is estimated as

D̂(λ)= 1

nσ 2
ε

ε′(f y+ε
λ − f

y
λ ),(9)

where y = (1, . . . ,1)′, ε is a random vector with
mean 0 and covariance σ 2

ε I and, with some abuse
of notation, f z

λ = (f z
λ (x1), . . . , f

z
λ (xn))

′. Several repli-
cates in ε may be used for greater accuracy. Then

ranGACV(λ)=OBS(λ)+ D̂(λ).(10)

Our numerical results (to appear) show that ranGACV
is a good proxy for the comparative Kullback–Leibler
distance between the density determined by fλ and the
true density.

3. THE UNIVARIATE ESTIMATE

The procedure is to start with N representers. In
the one-dimensional case we choose roughly equally
spaced order statistics. Fix λ large. Use a Newton–
Raphson iteration to estimate the coefficients of
fλ in the basis functions spanning HN. Evaluate
ranGACV(λ). Decrease λ and repeat, until the mini-
mizer over λ is found. Double N and repeat. Com-
pare the resulting estimates with N and 2N ; if they

agree within a specified tolerance, stop, otherwise dou-
ble N again. We tried this penalized log likelihood
estimate on the examples in HK, using H = W 2

2 ≡
{g :g,g′ abs. cont., g′′ ∈ L2} and J (g) = ∫ 1

0 (g
′′(x))2.

In this case H0 is spanned by linear functions and
K(x,x′) = k2(x)k2(x

′) − k4([x − x′]), x ∈ [0,1],
where [τ ] is the fractional part of τ and km(x) =
Bm(x)/x!, where Bm is the mth Bernoulli polynomial.
The estimate is a cubic spline (Wahba, 1990) with
knots at the xir . In the one-dimensional case this is
not the most efficient way to compute this estimate,
since a B-spline basis is available given the knots, and
that will lead to a sparse linear system, whereas the
present representation does not. However, this repre-
sentation generalizes easily to higher dimensional es-
timates. In our experiment the maximum allowed N

was 48. We made 100 replicates of each case in Ta-
ble 2 of HK, and computed the MISE in the same way
as HK did, by averaging the squared difference over
5,001 equally spaced quadrature points in the three in-
tervals (for the normal, slight bimodal and sharp peak
cases) of [−5,5], [−7,7] and [0,12]. (See our Table 1.)

We note that the ratio column suggests that this
estimate is among the better estimates in HK’s Table 2
with the exception of the n = 1,000 and n = 10,000
cases for the peak example.

4. MULTIVARIATE SMOOTHING SPLINE ANOVA
DENSITY ESTIMATION

The univariate penalized log likelihood density es-
timation procedure we have described can be general-
ized to the multivariate case in various ways. Here we
describe the smoothing spline ANOVA (SS-ANOVA)
model. The use of SS-ANOVA in a density estimate
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was suggested by Gu (1993), who also gave a method
for choosing the smoothing parameter(s). It can be
shown that (for the same smoothing parameters) the
estimates of Gu and Silverman are mathematically
equivalent; however, we found the variational prob-
lem in Silverman easier to compute. The problem in d

dimensions is transformed to the d-dimensional unit
cube, and xi = (xi1, . . . , xid). H will be an RKHS
on the d-dimensional cube which is formed as the di-
rect sum of subspaces of the tensor product of d one-
dimensional RKHSs. Details of SS-ANOVA models
may be found in Wahba (1990), Wahba et al. (1995)
and Lin et al. (2000). Letting u = (u1, . . . , ud) ∈
[0,1]d , we have

g(u)=µ+
d∑

α=1

gα(uα)+
∑
α "=β

gαβ(uα,uβ)+ · · · ,(11)

where the terms satisfy averaging conditions analogous
to those in ordinary ANOVA that insure identifiability,
and the series may be truncated somewhere. The in-
teresting feature of this representation of a log density
is the fact that the presence or absence of interaction
terms determines the conditional dependencies, that is,
a graphical model (see Whittaker, 1990). For example,
the main effects model represents independent compo-
nent random variables, and if, for example, d = 3 and
the g23 and g123 terms are missing, then the second and
third component random variables are conditionally in-
dependent, given the first.

Let H̃ be the d-fold tensor product of W 2
2 and

let H be the subspace of H̃ consisting of the di-
rect sum of subspaces containing the terms retained in
the expansion. (They are orthogonal in H̃ ). We have∫ 1

0 gα(uα) duα = 0, and so forth. The penalty func-
tional J (g) of (4) becomes Jθ (g), where the θ repre-
sents a vector of (relative) weights on separate penalty
terms for each of the components of (11). As before
H = H0 ⊕ H1, where H0 is the (low dimensional)
null space of Jθ . Let Kθ(x, x

′), x, x′ ∈ [0,1]d , be the
reproducing kernel for H1, where θ has been incorpo-
rated into the norm on H1. (See Wahba, 1990, Chap-
ter 10.) Let ξi(x) = ξiθ (x) = Kθ(x, xi). The same ar-
guments hold as in the one-dimensional case, and we
seek a minimizer of (4) (with J = Jθ ) in HN =H0 ⊕
span {ξir θ , r = 1, . . . ,N}, and λ and θ are chosen using
the ranGACV of (10).

We will give a three-dimensional example, essen-
tially to demonstrate that the calculations are possi-
ble and the ranGACV reasonable in higher dimen-
sions. The SS-ANOVA model for this example con-
tained only the main effects and two factor interactions,

and we had altogether six smoothing parameters, pa-
rameterized in a convenient manner (details to appear
elsewhere). For fixed smoothing parameters λ, θ the
coefficients in the expansion in HN are obtained via
a Newton–Raphson iteration. In this case integrations
over [0,1]3 are required, and we used quadrature for-
mulae based on the hyperbolic cross points; see Novak
and Ritter (1996) and Wahba (1978b). These quadra-
ture formulae seem particularly appropriate for SS-
ANOVA models and make high dimensional quadra-
ture feasible. Then the ranGACV was minimized over
smoothing parameters via a six-dimensional downhill
simplex calculation.

The underlying true density used in the example
is p(x) = 0.5N(µ1,1) + 0.5N(µ2,1), where µ1 =
(0.25,0.25,0.25), µ2 = (0.75,0.75,0.75),

1 =
10 0 10

0 20 30
10 30 80

−1

=
 0.14 0.06 −0.04

0.06 0.14 −0.06
−0.04 −0.06 0.04

 .

(This density has a nonzero three-factor interaction
which is not in our two-factor model.) In this exam-
ple the sample size was n = 1,000. N = 40 and the
40 representers were randomly chosen from among
the n possibilities. The N = 80 estimate was essen-
tially indistinguishable from the N = 40 case. (Note
that the smoothing parameters will not generally be

FIG. 1. The true density: x1 = 0.1, . . . ,0.9 is fixed in the plots,
left to right, then top to bottom.
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FIG. 2. The estimated density: x1 = 0.1, . . . ,0.9 is fixed in the
plots, left to right, then top to bottom.

FIG. 3. The ranGACV and the CKL compared: the horizontal
axis is iteration number, using the downhill simplex method; the
ranGACV is minimized and the ranGACV and CKL are computed
at the minimizer at each step.

the same in the two cases.) Figure 1 gives cross sec-
tions of the true density, and Figure 2 gives the SS-
ANOVA penalized log likelihood estimate. Figure 3
compares the ranGACV and the CKL (CKL(λ) =
− ∫

; fλ,θ (u)p(u) du) as a function of iteration num-
ber in a downhill simplex minimization of the ran-
GACV.

5. CLOSING REMARKS

We have compared a penalized likelihood density
estimate with ranGACV to choose the smoothing pa-
rameter(s) for the greedy density estimate and the
Bayesian estimates in ELM models considered by HK.
Fairly favorable results were obtained except in the
highest n peak cases. We have shown that these pe-
nalized likelihood estimates can be extended to the

multivariate case (work in progress). It remains to de-
velop tests to allow the construction of graphical mod-
els from the SS-ANOVA estimates in higher dimen-
sions.

We would be interested in knowing to what extent
the Bayesian model selection methods can be incorpo-
rated in to ELM estimates for the multivariate case.

Splines of various flavors have been widely adopted
in many statistical problems. It is interesting to com-
pare the various flavors and we are pleased to compli-
ment the authors and contribute to the discussion.
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Comment
David Ruppert

I congratulate the authors for a very fine paper. There
is nothing more satisfying than a broad theory, such

David Ruppert is Professor, Department of Oper-
ations Research and Industrial Engineering, Cor-
nell University, Ithaca, New York 14853 (e-mail:
davidr@orie.cornell.edu).

as the extended linear models (ELM) methodology
presented here, that solves a wide range of practical
problems within a unified framework. The authors’s
clear introduction to ELM will be much appreciated by
those seeking to understand and apply nonparametric
models.
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By nonparametric modeling I do not mean the
absence of parameters but rather situations where
the shape of the curve or surface fit to the data is
determined by the data themselves, not by the dictates
of a predetermined model. In fact, nonparametric
modeling typically is implemented by the flexible use
of parametric models. There are at least three general
approaches to nonparametric modeling:

• local fitting—where a simple parametric model
is fitted separately in neighborhoods defined by
covariates;

• model selection—meaning selection of a model
or models from within a rich class of parametric
models; selection is followed by global maximum
likelihood estimation either applied to a single
model or averaged over all models according to
posterior probabilities;

• regularization—meaning penalized global estima-
tion using a large, overparametrized model.

In this discussion, I will attempt a brief overview
of these three approaches to highlight their relative
strengths and weaknesses. My hope is to show the
place of ELM within the large toolkit of nonparametric
estimation techniques. Hansen and Kooperberg’s paper
has already provided a very clear introduction to the
model selection method of nonparametric modeling, so
I will not discuss that approach much.

Local fitting includes the familiar local polynomial
method of nonparametric regression where the regres-
sion function is estimated at each point x by weighted
least-squares fitting of a low degree polynomial, with
weights decreasing with distance from x. My experi-
ence with local regression has been quite positive over-
all, but local fitting methods are best suited to simpler
situations such as univariate or bivariate regression.

For multivariate data, one usually needs to reduce
the dimensionality by, for example, using an additive
model or a semiparametric model. Then, “localness”
varies across different aspects of the model. For exam-
ple, when fitting an additive model, the local neigh-
borhoods change with each covariate and an iterative
backfitting algorithm is necessary. As another exam-
ple, single index models assume that the expected re-
sponse is η(αTx), where x is a vector of covariates,
α is a parametric vector and η is an unknown uni-
variate function. This is a semiparametric model where
the index αTx is the parametric component and η(·) is
the nonparametric component. Estimation of the para-
metric component requires an unweighted fit to all of

the data, while estimation of η(·) uses local neighbor-
hoods defined by the estimated indices α̂Tx. Carroll,
Fan, Gijbels and Wand (1997) have developed an algo-
rithm that iterates between global estimation of α and
local polynomial estimation of η(·) but the algorithm
can be computationally unstable because the neighbor-
hoods change as α is updated (Wand, personal com-
munication). The problem of differing local neighor-
hoods disappears if one uses model selection or regu-
larization and for this reason I favor these techniques.
For example, Yu and Ruppert (2002) use regularization
to fit single index models. Their algorithm uses stan-
dard nonlinear least-squares software and is computa-
tionally stable. Also, for nonparametric regression with
covariate measurement error, one would really like to
base the local neighborhoods upon the true covariate
values, but this is of course impossible. This problem
is likely to be one main reason why regularization is
the best current method for handling measurement er-
ror; see below.

The key idea of ELM and other model selection
methods is that overfitting is avoided by careful choice
of a model that is both parsimonious and suitable for
the data. Regularization takes a different approach to
the prevention of overfitting. Rather than seeking a
parsimonious model, one uses a highly parametrized
model and imposes a penalty on large fluctuations on
the fitted curve. Suppose the nonparametric component
of a model is a function f . We model f (x) using
a linear combination of the basis functions B(x) =
{B1(x), . . . ,BM(x)}, for example, the truncated power
basis functions given by (1) or (2) of the paper. The
dimension M is chosen to be large, so that some linear
combination of the basis functions, say, B(x)Tβ , will
be close to f . Let F(β) be the log-likelihood and
let P (β) be a nonnegative penalty function. Then β̂
minimizes

−F(β)+ λP (β),

where λ ≥ 0 is a penalty parameter. For univariate
regression, if B(x) is the natural cubic spline basis
functions with knots at the unique values of x in the
data and if P (β) = ∫ {B′′(x)Tβ}2 dx, then one obtains
a cubic smoothing spline.

As discussed in Ruppert (2002), penalized splines
or P-splines, generalize smoothing splines by allowing
any spline basis and any form of the penalty. For
example, the knots might be any regularly spaced
quantiles of the x values (e.g., every tenth unique
x value) rather than a knot at every unique x. Although
there are fast algorithms for univariate smoothing
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splines, for more complex models such as nested
curves in Brumback and Rice (1998), using an excess
of knots can slow down computations significantly.
However, there is no need for a knot at every data point
and major computational speedups are possible with
fewer knots.

As an alternative to the usual quadratic integral
penalties of derivatives that yield smoothing splines as
estimates, Ruppert and Carroll (2000) suggest penaliz-
ing the sum of the squared jumps at the knots of the
pth derivative of a pth degree spline. One interesting
feature of this penalty is that it has some useful variants
that are easily implemented. If one uses the truncated
power basis {1, x, . . . , xp, (x − t1)

p
+, . . . , (x − tK)

p
+}

and β = (β0, . . . , βp+K)T, then P (β) = ∑K
k=1 β

2
p+k .

An alternative penalty suggested by Ruppert and Car-
roll (2000) and studied in Yu and Ruppert (2001) is

P (β)=
K∑

k=1

|βp+k|q,(1)

where q > 0. For q = 1 we are using Tibshirani’s
(1996) lasso, originally developed for parametric linear
regression. The lasso has the feature that many of the
components of β are shrunk all the way to 0. In effect,
these coefficients are deleted. Therefore, the lasso is
similar to model selection. If q < 1, then this shrinkage
of coefficients to 0 is even more pronounced.

A potentially serious problem with smoothing
splines is a lack of spatial adaptivity. Spatial adaptiv-
ity is the ability to impose less smoothing where the
regression function has sharp curvature or other fea-
tures that require higher resolution and more smooth-
ing where the regression function is relatively flat. Lo-
cal fitting methods can achieve spatial adaptivity if
they allow the bandwidth to vary spatially. Model se-
lection methods are spatially adaptive because they
can place knots at a higher density around features
of the regression function. Unfortunately, smoothing
splines, with their single global smoothing parameter,
cannot adjust to spatial inhomogeneity of the regres-
sion function. There are at least three ways to make
P-splines spatially adaptive. One is to use penalty (1)
with q ≤ 1 so that large jumps are not unduly penalized
as with q = 2. Another is to let the penalty parameter λ
vary spatially. Ruppert and Carroll (2000) developed
a P-spline estimator with penalty

P (β)=
K∑

k=1

λ(tk)β
2
p+k.

Here log{λ(·)} is a linear spline, with knots a small
subset of the knots for f . The penalty λ(·) should
be small where there are features in the regression
function and large where that function is flat. This
behavior can be achieved automatically by choosing
the parameters in λ(·) by GCV; see Ruppert and Carroll
(2001), who show that for inhomogeneous regression
functions spatially adaptive smoothing splines are
competitive with the model selection spline estimate
of Smith and Kohn (1996).

A third method of achieving spatial adaptivity is
to place the knots more closely together in regions
containing features. Luo and Wahba’s (1997) hybrid
adaptive splines (HAS) do precisely that. However,
the initial knot location step of their algorithm is
very similar to ELM and it is not clear from Luo
and Wahba’s work whether the second step where
a roughness penalty is imposed is really necessary. If
not, then HAS could be considered primarily a model
selection approach, not regularization.

There are interesting connections between regular-
ization, Bayesian estimation and mixed models. Wahba
(1978a) first noticed that a smoothing spline can be de-
rived as the mode of the posterior density when a par-
ticular prior is used. The smoothing parameter is the
ratio of the residual variance to the variance in the
prior for the regression function; that is, it is a noise-
to-signal ratio. This Bayesian formulation can also be
viewed as a mixed model, with the regression func-
tion being a random effect and the smoothing para-
meter being the ratio of variance components. This
fact allows one to estimate the smoothing parame-
ter by residual maximum likelihood (REML), some-
times called generalized maximum likelihood (GML)
or marginal likelihood in the spline literature; see
Wahba (1985) and Kohn, Ansley and Tharm (1991).
Therefore, nonparametric curve fitting including the
choice of smoothing parameter can be implemented by
standard mixed model software, for example, lme in
S-PLUS and Proc Mixed in SAS. Within the mixed
model framework other random effects can be intro-
duced, for example, to handle longitudinal data as in
Zhang, Lin, Raz and Sowers (1998). Moreover, mod-
eling the regression function with random effects ap-
plies to non-Gaussian responses using generalized lin-
ear mixed models (GLMMs). See, for example, Lin
and Zhang (1999) or Coull, Ruppert and Wand (2001),
who have an application to pollen count data.

If the smoothing parameter is estimated by REML,
for example, and then treated as fixed, which is a type



40 M. H. HANSEN AND C. KOOPERBERG

of empirical Bayes estimation, then confidence inter-
vals do not fully reflect uncertainty in the smooth-
ing parameter. However, a fully Bayesian analysis is
possible using MCMC. Such an analysis can even
be extended to data where the predictor variables are
measured with error. See Berry, Carroll and Ruppert
(2002), where in an empirical study a fully Bayesian
analysis using P-splines was the best of several tech-
niques for nonparametric regression with measurement
error.

Local fitting will remain an attractive method for
simple smoothing problems, but model selection such
as ELM and regularization such as P-splines will grow
in popularity as nonparametric and semiparametric
models are applied to more complex types of data.
Since model selection and regularization both work
extremely well in practice, it is unlikely that either

method will surplant the other. Which approach works
best in a particular application will depend both on the
nature of that application and, perhaps even more so,
on which approach is most familiar to the researcher.
Both model selection and regularization view semi-
parametric and nonparametric modeling as extreme
cases of parametric modeling. This viewpoint is fortu-
nate, since it brings about a unity in statistics. Rather
than nonparametric modeling using its own special
techniques, such as local kernel weighting, nonpara-
metric modeling utilizes the same techniques as para-
metric modeling, for example, model selection, model
averaging, mixed models, Bayesian analysis, REML
and MCMC. This common framework is important for
those of us teaching the next generation of statisticians.
There is time to teach only so much, so the economies
of a unified approach to statistics are essential.

Rejoinder
Mark H. Hansen and Charles Kooperberg

INTRODUCTION

First, we thank the Editor, George Casella, for invit-
ing comments on our paper from such a distinguished
group of researchers. The diversity of approaches rep-
resented here certainly enriches the practice of func-
tion estimation. To best address these different perspec-
tives, we have organized our responses around each of
their discussions separately. However, there are some
common themes that we would like to briefly highlight
here because we will return to them repeatedly during
our Rejoinder.

• Priors—For function estimation, priors amount to
statements about the smoothness of the underly-
ing function φ. To the extent that subjective elic-
itation of prior distributions is possible here, for-
mulations in terms of characteristics of φ will
be most successful. Priors of convenience devel-
oped for generic model selection in regression or
other settings may not be appropriate when working
with finite-dimensional approximation spaces like
splines.

• Bayesian confidence intervals—In principle, the
Bayesian formalism provides an automatic mecha-
nism for making inference about features of φ. Un-
fortunately, we find very few examples of confidence

intervals for model-averaged spline estimates in the
Bayesian literature on function estimation. Perhaps
one difficulty here is that the object we are esti-
mating is not really a cubic spline, and there is al-
ways bias present. In our own experience, it has been
difficult to properly calibrate the prior distribution
to produce both sensible point estimates and confi-
dence intervals.

• Bayesianism—Many of the discussants comment on
what is or what is not a Bayesian procedure. Our in-
terest was mainly in evaluating computational meth-
ods, and each of the simulation setups we stud-
ied was motivated by our previous experience with
greedy schemes. We will not offer opinions as to
whether previously published approaches are legit-
imately Bayesian or not.

Finally, we want to remind readers of an early paper
in this area that has gone somewhat unreferenced in the
modern literature on Bayesian splines. Halpern (1973)
presented a thoughtful treatment of Bayesian knot
selection that is very close to the methods mentioned
in our paper and in this discussion. Unfortunately, the
state of Bayesian computation in 1973 made most
applications intractable.
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CHIPMAN, GEORGE AND McCULLOCH

We thank Chipman, George and McCulloch for
sharing their experiences formulating highly adaptive
Bayesian methods for function estimation. The work
by this trio on model selection, stochastic search and
Bayesian versions of CART has influenced much of
our paper. In terms of their characterization of priors
as “a bet on what kind of models we want to consider,”
we feel that this gamble is best worded in terms of
the object being studied, a function. Chipman, George
and McCulloch (2002) take an approach similar to
ours when developing tree-based estimators. In their
paper we find a nice division of prior specifications
into a linear model class (representing separate tree
structures; analogous to our linear spaces G) and
then a member given the class (through choosing
parameters; our selection of g ∈ G). Chipman et al.
(2002) specify a prior on G to control the complexity
of the trees that one expects, formulated in terms of
the number of splits. This can be tuned to reflect one’s
beliefs that the data can best be described by small
or large trees. As Chipman, George and McCulloch
(CGM) point out, the prior p(g|G) also plays a role
in determining how the posterior weights models
of different complexity (dimension). Given a knot
sequence t and a basis set B1, . . . ,BJ , we select this
prior via a distribution on the coefficient vector β in
the expansion

g(x;β, t)=∑
j

βjBj (x; t).(R1)

In our paper, this was always taken to be normal
with mean zero and covariance (λA)−1. With a special
choice of A not related to smoothing, it is possible to
calibrate the influence of p(g|G) on posterior weights
for each model class in terms of well-known selection
criteria like AIC and BIC. We will have more to say
about this in our discussions of Holmes and of Kass
and Wallstrom.

When developing (greedy) Logspline and Triogram,
we attempted to make the “smoothing parameters”

understandable and controllable through our software
implementation. In so doing, users can tune these
methods to agree with their prior beliefs about the
smoothness of the function φ they are estimating.
This also allows users to experiment with strategies
like CGMs cross-validation. In the early stages of
an analysis, however, flexible smoothers are often
used in an exploratory way, helping users formulate
hypotheses about their data. In this setting, Logspline
and Triogram function more like black boxes, and it
is important to have reasonable automatic settings for
hyperparameters. Fast computation is also important,
given the iterative nature of data analysis. In crafting
the simulations for this paper, we hoped to identify
sensible default values for Bayesian versions of our
ELM methods. By expressing the hyperparameters
of our models in terms of the complexity of the
underlying function, users can still easily incorporate
their beliefs about φ in a natural way.

CGM are right about Logspline mixing more rapidly
than the Triogram procedures. This difference also
appears in the greedy implementation, where many
of the Triogram models found during addition were
visited again during deletion. At each deletion step,
we are only able to remove certain vertices and still
maintain a proper triangulation. In fact, at each step
the number of candidates for deletion is limited by the
structure imposed on the triangulations by the addition
process itself; vertices added in the first few steps
are typically too “connected” to be eliminated early
in the deletion process. We hoped that a Bayesian
Triogram procedure would allow us to visit more
models. In thinking about how to implement the
Triogram sampler, we borrowed from the experience of
CGM with trees. In some sense, the structure imposed
by our stepwise triangulation process is similar to the
node splitting used for building trees. We also explored
the tradeoffs between starting several chains versus
a single, long chain. The simulations in our paper
represent a technique that seemed to work best overall.

We agree with CGM on the potential gains of
bootstrapping. Our present paper was inspired by an

TABLE R1
MISE for bagging logspline on the 12 cases from Table 2

Distribution

Normal Slight bimodal Sharp peak

n 50 200 1,000 10,000 50 200 1,000 10,000 50 200 1,000 10,000 Average

Ratio over (i) 0.88 0.96 1.05 0.80 0.76 0.97 0.95 0.65 0.72 0.84 0.77 0.69 0.84
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attempt to assess the usefulness of (then) developing
Bayesian computational methods. Over the last five
years, techniques like stacking, bagging and boosting
have emerged from, and in response to, ideas in
computer science and machine learning. At this point,
they have developed into extremely powerful, general-
purpose methods for combining estimators. To see
what kinds of gains we can expect in our applications,
we implemented a bagged version of Logspline based
on 25 bootstrap samples. The column for Table 2 in
our original paper corresponding to this new estimate is
given in Table R1. We are not sure why bagging seems
to have the hardest time with moderate sample sizes
(200 and 1,000) for the two smoothest distributions.
Overall bagging improves over the greedy algorithm,
but not as much as some of the MCMC approaches.

HOLMES

We are pleased to have Holmes as a discussant. In
the past few years, Holmes and his collaborators have
applied the latest sampling techniques to problems in
function estimation. From Bayesian versions of MARS
that employ reversible jump Markov chain Monte
Carlo to wavelet methods via perfect sampling, this
group has contributed substantially to the practice of
Bayesian curve and surface fitting.

Holmes highlights a rather general problem encoun-
tered when specifying priors for Bayesian model se-
lection. For simplicity, consider the normal linear re-
gression model in a J -dimensional spline space G de-
fined by a given knot sequence t of length K , and a ba-
sis (R1). Let β, σ 2 have a conjugate normal-inverse
gamma prior distribution

w(β, σ 2)∝ (σ 2)(−d+k+2)/2

· exp
[−(β − b)tV−1(β − b)+ a

2σ 2

](R2)

that depends on several hyperparameters: a, d ∈R, the
vector b ∈R

J and a J ×J symmetric, positive definite
matrix V . Valid ranges for these parameters include all
values that make (R2) a proper density. We considered
covariance matrices of the form V = (λA)−1, where A

is chosen to reflect our beliefs about the smoothness
of an unknown function φ. For a fixed set of knots, the
prior precision parameter λ affects the look of the fitted
curve in a fairly predictable way. Given observations
(X1, Y1), . . . , (Xn,Yn), the posterior distribution of β
is multivariate t with mean

(BtB + λA)−1BtY,(R3)

where B is the n × J design matrix based on the
basis (R1), [B]ij = Bj(Xi) and Y = (Y1, . . . , Yn)

t .
Therefore, selecting a small value of λ can eliminate
the effect of smoothing, often producing a wiggly
fit; while large values tend to shrink β toward the
null-space of A (for the prior associated with cubic
smoothing splines, this is simply the space of linear
functions). In Bayesian terms, a small value of λ

indicates little information about β, while a large value
of λ indicates a strong belief that φ is very smooth.
As Holmes points out, however, things become more
complicated when comparing spline spaces of different
dimensions (having different numbers of knots). In this
case λ partially specifies the weight assigned to each
space and we are subject to the so-called Lindley–
Bartlett paradox; a noninformative prior for a fixed
model class becomes maximally informative when
comparing models of different dimensions. In short,
the posterior piles mass on the spline space with the
fewest knots.

Holmes presents a well-known covariance-represen-
tation that alleviates the paradox and is meant to calm
the non-Bayesian. Unfortunately, it does not eliminate
the difficulty in specifying λ. Many researchers, in-
cluding Holmes, have dealt with the problem of prior
choice by calibrating Bayesian procedures with fre-
quentist measures. In Holmes and Denison (1999), for
example, we find a prior on the precision parameter λ
that is tuned to the degrees of freedom of the fit, DF, or
explicitly

p(λ|σ 2)∝ exp(−cDF),

where DF is computed as the trace of the smoothing
matrix (and the domain of the distribution is truncated
to obtain a proper prior). The posterior dependence
on c is then compared in terms of an equivalence with
classical model selection criteria that is similar to our
range of AIC statistics.

Holmes correctly points out that one needs to be
careful in blindly matching terms to establish this kind
of correspondence, noting the difference between the
maximized or profile likelihood

p(y|β̂, t)=max
β

p(y|β, t)(R4)

and the marginal likelihood

p(y|t)=
∫

p(y|β, t)p(β|t) dβ.(R5)

Naturally, we agree that the two are very different,
and it was a comparison with model selection criteria
similar to Holmes’s that led us to the geometric prior on
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model size. In the discussion from Kass and Wallstrom
we are reminded that

logp(y|t)≈ logp(y|β̂, t)− J (t)
2

logn.

Therefore, by adjusting the prior on model size, we
could recover the general form of BIC and restore some
of the protection against overfitting Holmes claims
for the marginal likelihood. Inevitably, this kind of
benchmarking against known criteria seems useful
even for the purest Bayesian, and we will have more
to say about it in our response to Kass and Wallstrom.
Before we leave this point, we should mention that the
latest minimum description length criteria for model
selection developed by Barron, Rissanen and Yu (1998)
and Hansen and Yu (2001) attempt to make up for the
shortcomings of the maximized likelihood by a certain
(re)normalization procedure.

In evaluating procedures like Logspline and Tri-
ogram, we have looked to theoretical results for guid-
ance. While the results in Stone (1994), Hansen (1994)
and Huang (1998, 2001) are asymptotic, they do pro-
vide an indication that a spline-based approach to
ELMs is sensible. A similar theory for Bayesian ver-
sions of these methods is still emerging. For recent
results, we refer the interested reader to articles by
Zhao (1993, 1998), Barron, Schervish and Wasserman
(1999) and Shen and Wasserman (2001). In the last
paper we find rates of convergence associated with
so-called sieve-priors, a setup that most closely mim-
ics our own use of finite-dimensional approximating
spaces. Shen and Wasserman point out that, while early
work in this area produced a rich set of priors that led
to consistent estimators, achieving the optimal rate is
much more delicate.

KASS AND WALLSTROM

We first want to thank Kass and Wallstrom for a their
contribution to the discussion of Denison, Mallick and
Smith (1998a).

It seems that the work described by Kass and Wall-
strom and our own motivation for exploring Bayesian
procedures for splines share a common source. In our
Rejoinder to Stone, Hansen, Kooperberg and Truong
(1997), we presented a connection between the Bay-
esian method of Smith and Kohn (1996) and our own
greedy schemes that attempted an approximate min-
imization of a generalized AIC statistic. We began
with the straightforward observation that, by using
Zellner’s g-prior (Zellner, 1986) for the coefficients,
the resulting posterior is mathematically equivalent

(or nearly so) to AIC, BIC or anything “in between.”
In terms of (R2), this amounts to setting V = c(BtB)−1

and a = d = 0, and letting c vary. Ed George pointed
us to this posterior calibration in a paper he crafted
in 1997, which eventually appeared as George and Fos-
ter (2000). Of course the desire to relate Bayesian and
frequentist methods is an old one, and explicitly ex-
pressing a posterior in terms of known model selection
criteria goes back at least to Smith and Spiegelhalter
(1980) (these authors speak of a “generalized AIC” cri-
terion, of which BIC is just one example).

In their 1996 paper, Smith and Kohn were selecting
the “best” knot configuration having the highest pos-
terior probability. Given the equivalence between this
posterior and our own generalized AIC statistics for
ELM’s, both procedures were attempting to optimize
the same quantity. Having identified a good knot se-
quence, Smith and Kohn used the posterior mean of β
to form a curve estimate. Under the g-prior version
of (R2) this is simply c

c+1 β̂ , where β̂ is the OLS es-
timate [see (R3)]. Since the values of c used were at
least 100, the posterior mean was essentially β̂ , and
now the only difference between our greedy methods
and the Bayesian approach of Smith and Kohn was the
search scheme. This was our starting point.

To reduce computation, Smith and Kohn restricted
their attention to at most 30 knots, placed at order
statistics of the data. With such a small problem, it
was possible to even use branch and bound tech-
niques to search all possible combinations of can-
didate knots from within S-PLUS. Since that point,
many other Bayesian spline-based estimators have ap-
peared. Building on examples of Green (1995), Deni-
son, Mallick and Smith (1998a) treated the knot se-
quence more like our own greedy schemes, in that
each of the data points was a candidate knot. BARS
(Bayesian regression splines), proposed by DiMatteo,
Genovese and Kass (2001), is a hybrid that borrows the
prior structure of Smith and Kohn, but adapts Green’s
sampler. In writing our paper, we were naturally aware
of the shortcomings of DMS, although our insight
came not from formal Bayesian thinking but by a sim-
ple comparison of the “objective function” represented
by their posterior. Without a prior on the coefficients β ,
the posterior did not provide enough of a penalty for
large models. We attempted to correct this with the
geometric prior on model sizes, yielding a posterior
that agrees with BIC. In so doing, our penalty on di-
mension and that for BARS are the same.

Based on our experience with “free-knot splines,” we
also considered simulations that paired the geometric
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prior along with a proper prior on β, imposing an
extra penalty on large models. Recall when working
with free-knot splines, we treat the sequence t not
as a discrete index for separate models, but rather
as a continuous vector of parameters. Kooperberg
and Stone (2002) used free-knot splines for density
estimation and argued that the most appropriate form
of AIC was

logp(y|β̂, t)− J +K

2
a,

where again J is the dimension of the spline space
and K is the number of knots in t. In short, an extra
penalty on dimension was necessary to produce rea-
sonable point estimates. No matter what principle is
applied to determine the penalty, it is clear that the
tradeoffs between sample size, model dimension and
assumed smoothness of φ are complex. Since any the-
oretical guidance is likely to be asymptotic, new proce-
dures should be tested on a wide variety of simulations.
However, returning to the BARS paper, we find only
three simulations, each of which are based on mod-
estly sized problems with very similar characteristics.
That is, one expects the “optimal” number of knots
needed for approximating the three test functions is
similar and the signal-to-noise ratios were all close (ba-
sically 3:1). Curiously, the simulations for BARS only
involve 10 runs per test case, making the very strong
claims by Kass somewhat premature. It would be good
to see BARS run under many more conditions.

Aside from the posterior calibration to BIC, BARS
differs from DMS in two other ways. First, in designing
the moves for BARS, DiMatteo et al. (2001) borrow
a “key idea” of Zhou and Shen (2001), that more
knots are needed in regions where a curve changes
rapidly. This is nothing more than the definition of
a spline space with repeated knots (Schumaker, 1993);
that is, as one knot approaches another, the splines lose
a derivative. In a cubic spline space, two coalescent
knots allow the fit to break in the first derivative, and
three coalescent knots produce a break in the function
itself. This behavior has guided the design of our own
ELM procedures. In regression, if we have reason to
believe the underlying curve has sharp features, we
might consider relaxing the separation condition in the
definition of an allowable space. However, in most
cases, for reasonable sample sizes, this condition is
not restrictive and the final curves can track strong
features when they exist. We should add that, in BARS,
there is no encouragement in the prior itself for nearby

(or coalescent) knots. The “locality property” is purely
a function of the proposal.

Aside from the locality property, there is another big
difference between BARS and DMS. DiMatteo et al.
(2001) use a natural spline basis for BARS, while
DMS uses ordinary B-splines. While both are smooth,
piecewise polynomials, the natural splines are forced to
blend into linear functions outside the interval [t1, tK ].
It is well known that this reduced space improves
the variance at the ends of the data dramatically (we
know that one of the referees of DMS encouraged the
authors of that paper to use a natural spline basis).
Kass and Wallstrom state that BARS performs better
than a version of DMS that has been “corrected” to
agree with BIC. Unfortunately, it is not clear whether
the knot proposal distribution or the natural spline
basis is responsible for this improvement. DiMatteo
et al. (2001) have only one panel of plots comparing
the variants of DMS and BARS, and this consists of
a single estimated curve per method taken from one
simulation setup (the test function having a very sharp
break in the middle of the domain).

We should add that working with natural splines
is a bit trickier than regular B-splines because of
the boundary conditions. Breiman (1990) proposes
a constrained least squares fit to enforce linearity in
the tails during knot deletion. Luo and Wahba (1997)
describe a stepwise algorithm for natural splines that
would allow BARS to take advantage of one-degree-
of-freedom alterations as we have done for Logspline
and Triogram. For natural splines that are linear outside
the interval [0,1], Luo and Wahba use a basis of the
form

φ1(x), φ2(x) and R(x, tk), k = 1, . . . ,K,(R6)

where φ1(x)= 1, φ2(x)= k1(x) and

R(x, x′)= k2(x)k2(x
′)− k4(|x − x′|).(R7)

The functions k1, k2 and k4 are constant multiples of
Bernoulli polynomials and are given by

k1(x)= x − 1/2, k2(x)= (
k2

1(x)− 1/12
)
/2

and

k4(x)= (
k4

1(x)− k2
1(x)/2+ 7/240

)
/24.

Unlike the truncated power basis, the so-called kernel
functions R(·, ·) are not “one-sided” but have global
support. They do, however, share the property that
each candidate knot tl corresponds to a single function
R(·, tl ). As it stands, it is not clear how BARS is
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implemented and whether or not this kind of shortcut
has been used.

Given (R3), taking V = c(XtX)−1 in the regres-
sion context makes things much easier computation-
ally because the posterior mean for β given a single
space G is a scale version of the OLS estimate c

1+c
β̂ .

What is troubling, however, is that the implied shrink-
age here is toward zero and depends on the basis (R1)
used. For moderate values of c, we expect to see odd
smoothing behavior which will become even more
problematic when we start averaging fits. This does
not seem appropriate to us, so for triogram regression
we chose a smoothing prior with a null space consist-
ing of planar functions. (The classical cubic smooth-
ing splines also reduce to linear functions.) Unfortu-
nately, our experiments with triograms are somewhat
inconclusive because any kind of reasonable averaging
can improve the piecewise linear fits if the underlying
function is smooth (there are bigger effects to over-
come before the behavior at the peaks is a concern).
Kass and Wallstrom also mention the idea of asigning
a prior to λ or setting it in an empirical-Bayes way.
The latter approach is followed in George and Foster
(2000) for V = c(XtX)−1. For a general prior covari-
ance matrix, a simple iteration is required to select c
in this way. Details can be found in Hansen and Yu
(2001).

When considering normal priors on β for density es-
timation, the story is a bit clearer. First, taking a nor-
mal prior with covariance proportional to (XtX)−1

does not represent a reduction in computation. Shrink-
ing toward zero in this context produces a uniform
density. Despite this seemingly bad property, we in-
vestigated the use of this prior and found that it
smooths away peaks (even when λ= 1/n, as proposed
by Kass and Wallstrom), and it makes methods (v)
and (viii) look very much like (vii). Unlike triograms
which generically benefit from averaging, the proper
smoothing can have a big effect on the performance in
Logspline.

In attempting to recast our results for Logspline,
Kass and Wallstrom fail to appreciate the fact that den-
sity estimation is a very different problem from (gen-
eralized) regression. As mentioned above, the closer
you position knots, the greater the (potential) discon-
tinuity in the fitted curve. In density estimation, this
extra flexibility can drive the likelihood to infinity if
knots are placed too close to each other relative to the
scale of the data, an artifact that does not reflect the
suitability of a model with nearby knots. When this
happens, the search procedures underlying both the

stepwise and our MCMC versions of Logspline can
get stuck in local solutions. Therefore, in each case
we require knots to be at least a few (usually three)
data points apart. Keep in mind that, for density es-
timation, regions with sharp features (peaks) contain
many more data points, and hence many more candi-
date knots; there is a natural coupling between struc-
tures in the function we are estimating and the spread
of the data. In short, the restriction on knot placement
does not hinder Logspline’s ability to track strong fea-
tures. In fact, under this restriction, we can ensure that
knots proposed fairly close together are much more
likely to be retained when they are near a peak, as the
likelihood will increase much more with the addition
of such knots (see Stone et al., 1997, Figure 1). We
have experimented with many different knot location
schemes, but for Logspline proposing too many close
knots actually reduces the ability of the MCMC algo-
rithm to explore the complete distribution, as the chain
gets stuck more easily. On the other hand, with care-
ful knot location, the convergence of MCMC chains
in Logspline is very good. We carried out a substan-
tial amount of additional chains, suggesting that the
Logspline chains mix well. See also the discussion of
Lindstrom, suggesting that a chain of length 500 is al-
most as good as a chain of length of 5,000. (For sin-
gle calculations, rather than a large simulation study,
we would advise somewhat longer chains too.) Finally,
we should add that the situation for (univariate) regres-
sion is different because the likelihood is well behaved
as knots coalesce providing we use a sensible basis
(and do not add so many knots that we lose identifi-
ability of the model). Still, it is not clear if the locality
heuristic used in DiMatteo et al. (2001) actually per-
forms better or if the potential improvements claimed
by Kass and Wallstrom are due to their implementa-
tion of the reversible jump algorithm (as compared to
that of DMS), their use of the natural spline basis or
their selection test cases (small problems with common
noise levels).

We mostly agree with Kass and Wallstrom’s in-
terpretation of our results; the label attached to (iii),
whether it be Bayesian or approximately Bayesian or
quasi-Bayesian, is of little concern for us. As suggested
method (vii) looks like smoothing splines; judging by
the MISE results, the method proposed by Wahba, Lin
and Leng in their discussion behaves most like this
approach. We believe that the “perplexing anomalies”
cited by Kass and Wallstrom are primarily caused by
a lack of appreciation for Logspline and the stepwise
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algorithm, which is really quite good. When we com-
pare approaches (iii) and (viii) we note that for small
sample sizes (iii) tends to overfit, so that the prior on β
[which makes it (viii)] helps, and without that prior the
overfitting for (iii) hurts relative to the greedy algo-
rithm, which overfits much less, but for large sample
sizes there is enough variability in (iii) to compensate
for the overfitting. Also, we actually do carry out an-
nealing for method (ii). Details were omitted when we
were asked to reduce the length of the paper during re-
visions.

We agree with Kass and Wallstrom that one of the
interesting features of a Bayesian analysis is the assess-
ment of uncertainty. While these Bayesian schemes
seem to give sensible point estimates, we do not hold
out much hope for confidence intervals. The BARS
paper, for example, does not present any results with
simulated data on coverage, but reserves plots with in-
tervals for real-data problems (assessing their quality
subjectively). In Kooperberg and Stone (2002) we ex-
amine Bayesian confidence intervals for the income
data for versions (v) and (vi) based on an MCMC run of
length 100,000. Based on comparisons with bootstrap-
ping procedures we concluded there that these inter-
vals were considerably narrower than frequentist con-
fidence intervals; that is, calibrating the posterior to
achieve a reasonable point estimate yielded optimistic
intervals. This really emphasizes the points made by
Lindstrom in her discussion that to obtain “credible”
Bayesian confidence intervals the priors need to be se-
lected much more carefully. We would challenge the
Bayesian function estimators to produce a few confi-
dence intervals in their papers. It is very hard to find
any that come from simulations where we can judge
their usefulness. Wang and Wahba (1995) compare
Bayesian intervals for smoothing splines with those for
bootstrapping. A similar study for the model-averaged
fits would be useful.

The goal of our paper was to compare Bayesian and
stepwise methods, and to compare how well they are
doing. Our goal was not to advocate one approach
or another. From Kass and Wallstrom’s discussion
of BARS we get the impression that it is a useful
procedure. We would like to see a comparison of their
procedure with the one by Smith and Kohn (1996),
which sounds very similar. However, we feel that
the conclusion that “BARS appears to be the most
powerful available method for spline-based curve-
fitting in ELMs” is somewhat premature. In particular,
we would like to see the performance of BARS:

• illustrated on a suite of very different test functions
with different sample sizes and different signal-to-
noise ratios;

• extended to demanding nonlinear applications, such
as density estimation and survival analysis;

• tested in high dimensional applications with thou-
sands of cases;

• compared to greedy (stepwise) algorithms in terms
of computing time.

KOENKER AND MIZERA

The L-1 methods made popular by Koenker and
his co-authors have filtered into extremely effective
spline methods for estimating median fits (Koenker,
Ng and Portnoy, 1994; He, Ng and Portnoy, 1998).
Koenker and Mizera base their version of triograms
on a Delaunay triangulation, producing an underly-
ing linear space G from which a single model is se-
lected via a roughness-penalized L-1 error criterion.
In Rippa (1990) we find an interesting characteriza-
tion of the Delaunay triangulation based on roughness
that we think is worth mentioning. Suppose we have
data points (x1, Y1), . . . , (xn, Yn). We want to inter-
polate the values Yi at xi and will do so by creating
a triangulation with xi as the vertices. There are many
many ways to do this. For each one, we will measure
its roughness via the (Sobolev seminorm)

∑∫
δ

[(
∂g

∂x1

)2

+
(

∂g

∂x2

)2]
dx1 dx2,

where the sum is over all triangles δ ∈ � and x =
(x1, x2). Then, Rippa (1990) shows that the Delaunay
triangulation of a set of points x1, . . . ,xn is a mini-
mal roughness triangulation. Therefore, with at least
one sensible smoothness constraint, the Delaunay tri-
angulation is the appropriate thing to do. However,
it is likely that, for other smoothness measures, the
Delaunay is not optimal and that other structures are
more appropriate. Rippa (1992) explores a similar line
of reasoning and uses an edge-swap algorithm to find
promising triangulations. It is known that we can gen-
erate all the triangulations of a given set of points
x1, . . . ,xn by the first move type in Figure 4 of our
original paper. In developing the greedy version of tri-
ogram and its Bayesian counterpart, however, we felt
that there was much to be gained by taking smaller tri-
angulations that were better adapted to the underlying
function being estimated. Hence, it was important to
develop a suite of moves that allowed us to step through
models of different sizes.
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FIG. R1. The volt data from Cleveland and Fuentes (1996): (left) the fit from prior specification (v); (right) the fit for (iii).

For our prior on β, we borrowed the penalty from
Koenker and Mizera, first communicated to us by
Koenker. We were pleased with the form because
it built both on their work and on the approach of
Nicholls (1998), who considered piecewise constant
surfaces over adaptively chosen triangulations. We
tried a variety of other penalties, including those
suggested in Dyn, Levin and Rippa (1990a, b). Each
have a null space of planar functions. In simulations
with this form using both smooth functions and simple
examples exhibiting sharp edges, it seems to perform
well. As a further test, we consider a dataset known
to exhibit a simple hinge, not aligned with either
coordinate axis (Cleveland and Fuentes, 1996). While
we have seen that a certain amount of smoothing
is possible with the Bayesian estimator when the
underlying target function is smooth, in this case,
we hope that the sampler will spend time in very
simple, “nearby” ridge models. This would allow the
nongreedy schemes to still capture ridges effectively.
In Figure R1 we present two surfaces, one from
simulation setup (v) and one from (iii). A careful
analysis by Cleveland and Fuentes suggested that the
best fit was a hinged pair of planes, very similar to
the fit in the left-hand panel corresponding to (v). It is
clear from this figure that Poisson prior (iii) yields a
chain that spends too much time in overly complex
models and the fit is badly degraded. The surface
obtained by prior specification (v), on the other hand,
is an improvement over the greedy scheme. While it is
difficult to tell from the perspective plot, the ridge or
central hinge more closely follows the line found by
Cleveland and Fuentes (1996).

LINDSTROM

Lindstrom has a considerable background in work-
ing with free-knot splines. She has developed an ex-
tremely attractive penalized appraoch to fitting such

models (Lindstrom, 1999) and has a long history of
working with functional data in medical applications
(see, e.g., Lindstrom, 1995). We appreciate her exten-
sive comments on the computational aspects of our
Bayesian schemes. In our implementation of the sam-
plers in this paper, we used the same number of iter-
ations for each of the model selection schemes. The
greedy scheme naturally takes far fewer “iterations” or
moves. For the income data, on our current machine
(which is not the machine on which the original cal-
culations were carried out), the greedy Logspline al-
gorithm takes about 0.5 second of CPU time, while
a simulated annealing or MCMC run of 5,500 itera-
tions takes about 200 seconds. The differences between
the various versions of the sampling methods do not
have a major influence on the CPU time.

Lindstrom asks us to compare this to stepwise
algorithms with random restarts. This comparison
appears most relevant to the greedy version (i) and
the simulated annealing version (ii). For the income
data, version (i) has a BIC value of 161,936.4, while
the simulated annealing version, using a chain length
of 5,500 and the best greedy solution as initial knots,
has a BIC value of 161,918.3. Table R2 contains some
alternative approaches using (several) shorter chains,
or the stepwise algorithm with several random restarts.
(For the random restarts, we positioned 7 knots at
randomly selected datapoints, followed by the stepwise
addition and deletion algorithm of Stone et al., 1997,
allowing a maximum of 15 knots.) The bottom line
of this seems to be that, at least for this example,
random restarts are just as good as (but not better than)
simulated annealing using the same amount of CPU
time. It remains open what works better if we want
to get close to the “best” solution. However, for all
purposes the differences in BIC are not very large.

We fully agree with Lindstrom’s remark that when
we want to use Bayesian methods to carry out infer-
ence, the choice of priors becomes much more critical
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TABLE R2
CPU and BIC results for various alternative stochastic optimization methods: for the last three

methods the BIC value is the average over five repetitions of the complete procedure, and the SD
is the corresponding standard deviation

Number of Number of seeds Seconds
Method steps or restarts BIC SD CPU time

Stepwise (version (i)) 1 1 161,936.4 — 0.4
Simulated annealing (ii) 5,500 1 161,918.3 — 200
Shorter annealing chains 500 1 161,922.1 2.5 20
Combining real short chains 100 5 161,921.7 1.9 20
Stepwise with restart 1 50 161,921.8 0.8 20

than when we primarily want to get a point estimate.
See our remarks about the contributions by Kass and
Wallstrom and by Chipman, George and McCulloch
and also the example in Kooperberg and Stone (2002).
Finally, we agree with Lindstrom that radial basis func-
tions are a sensible approach to multivariate modeling.
In this case, we might consider an expansion of the
form

g(x)=∑
βiR(x,vi)(R8)

for a fixed “kernel function” R and a set of “knots”
v1, . . . ,vK . Holmes and Mallick (1998) describe
a Bayesian setup that also uses reversible jump Markov
chain Monte Carlo, but selects how many knots and
where they should be placed. The basis (R7) is an ex-
ample of this kind of expansion for univariate func-
tions. Having said that, we still feel that the Triogram
basis has its role in multivariate function estimation.
It is better able to capture sharp features in the data and
has the added advantage that the entire procedure is in-
variant to affine transformations. This property makes
it ideal for many spatial applications.

RUPPERT

Ruppert is a pioneer in the area of function esti-
mation, contributing kernel, local polynomial and now
spline methods, and we are pleased to have such an
informative contribution to the discussion. Ruppert
presents a penalized formulation that mimics smooth-
ing splines. The so-called P-spline approach originally
put forward by Eilers and Marx (1996) was designed as
a shortcut to smoothing splines and illustrated for gen-
eralized linear models. Ruppert’s version of this tech-
nique is really nothing more than ridge regression ap-
plied to a special truncated power basis. As such, it
inherits a certain degree of familiarity and represents

an accessible smoothing method for people with a ba-
sic introductory regression course. In comparing Rup-
pert’s method and that of Eilers and Marx we do find
one important difference: the basis. Ruppert makes use
of the truncated power basis and (for cubic splines) he
penalizes jumps in the second derivative at each knot.
That is, penalties of the form

K∑
k=1

|βp+k|q,(R9)

where β = (β0, . . . , βK+p) is associated with the
truncated power basis {1, x, . . . , xp, (x − t1)

p
+, . . . ,

(x − tK)
p
+}. Eilers and Marx choose the numerically

stable B-spline basis and derive a quadratic penalty
by taking differences of coefficients associated with
adjacent basis elements (this shortcut is a rough ap-
proximation to the derivative-based penalties we ap-
plied in our paper, although we are not convinced
of its reasonableness). Ruppert’s use of values of q

in (R9) other than 2 is interesting. As he mentions,
this amounts to the lasso of Tibshirani. In Hastie, Tib-
shirani and Friedman (2001), we find a close connec-
tion between forward stagewise fitting like boosting
and the lasso. These authors suggest that boosting is
like combining all possible models (R8) with a lasso
penalty.

Finally, we comment on a couple of the P-spline
improvements mentioned by Ruppert. First, reducing
the number of knots to ease the computational burden
of traditional cubic smoothing splines was examined
in detail by O’Sullivan (1988) and is implemented
in S-PLUS. To help improve the spatial adaptivity,
Ruppert suggests two approaches; the first involves
a variable penalty that is again modeled as a spline.
A form of this was also suggested in Wahba (1995).
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TABLE R3
Geometric average for the MISE ratios for the Logspline simulation study reported in Table 2

Version

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) Wahba et al. Bagging

Geometric average 1.00 0.69 0.70 1.07 0.76 0.75 0.95 0.74 0.79 0.83

WAHBA, LIN AND LENG

Over the years Wahba and her co-workers have pi-
oneered the use of smoothing splines in function es-
timation. Wahba’s influence has been mentioned sev-
eral times throughout this Rejoinder already. As for
smoothing spline density estimation, we would have
liked to see some of the plots of the estimates corre-
sponding to their Table 1, as the numbers reported sug-
gest that the proposed method best compares to a less
extreme version of our approach (vii), which, as was
demonstrated in our Table 3 and Figure 2 smoothes
away details too much.

When we read Wahba, Lin and Leng’s discussion,
we realized that the average in Table 2 is not a good
summary of the table, and that for a particular method
the geometric average would be a fairer comparison.
Those are given in Table R3. This new summary table,
even more than the one in the main paper, shows that
we cannot just judge performance by MISE: except
for (iv) and (vii) we have no way to choose. Summaries
like the number of peaks need to play a role in deciding
which version to use. See also the first example in
Kooperberg and Stone (1991).

The smoothing spline ANOVA models for multivari-
ate density estimation look quite promising. We are
looking forward to seeing actual estimates. In particu-
lar we wonder how efficient the algorithm is if many λ

parameters have to be estimated simultaneously. Also,
we wonder how one would choose the terms in the
ANOVA decomposition. Methods like MARS do this
automatically (during passes of addition and deletion),
but it does not appear to be an easy calculation in the
smoothing spline world. Perhaps it would be best to
combine the greedy search with the penalized fit as was
done in Luo and Wahba (1997) for saturated models.
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