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Choice as an Alternative to Control in
Observational Studies

Paul R. Rosenbaum

Abstract. In a randomized experiment, the investigator creates a clear
and relatively unambiguous comparison of treatment groups by exerting
tight control over the assignment of treatments to experimental subjects,
ensuring that comparable subjects receive alternative treatments. In an
observational study, the investigator lacks control of treatment assign-
ments and must seek a clear comparison in other ways. Care in the choice
of circumstances in which the study is conducted can greatly influence
the quality of the evidence about treatment effects. This is illustrated in
detail using three observational studies that use choice effectively, one
each from economics, clinical psychology and epidemiology. Other studies
are discussed more briefly to illustrate specific points. The design choices
include (i) the choice of research hypothesis, (ii) the choice of treated and
control groups, (iii) the explicit use of competing theories, rather than
merely null and alternative hypotheses, (iv) the use of internal replica-
tion in the form of multiple manipulations of a single dose of treatment,
(v) the use of undelivered doses in control groups, (vi) design choices to
minimize the need for stability analyses, (vii) the duration of treatment
and (viii) the use of natural blocks.

Key words and phrases: Causal effects, control groups, internal replica-
tion, observational studies, sensitivity analysis, stability analysis, treat-

ment effects, undelivered doses.

1. INTRODUCTION AND SOME
GROUND RULES

1.1 Active Observation: Control and Choice

Many observational studies do not succeed in pro-
viding tangible, enduring and convincing evidence
about the effects caused by treatments, and those
that do succeed often exhibit great care in their de-
sign. Particularly at the early stages of design, this
care consists of choices that determine the circum-
stances of the study and the data to be collected.
A convincing observational study is the result of
active observation, an active search for those rare
circumstances in which tangible evidence may be
obtained to distinguish treatment effects from the
most plausible biases. In an experiment, treatment
effects are seen clearly because the environment is
tightly controlled, whereas in a compelling observa-
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tional study, control is, to a large extent, replaced by
choice—the environment is carefully chosen. Stud-
ies of samples that are representative of popula-
tions may be quite useful in describing those popula-
tions, but may be ill suited to inferences about treat-
ment effects. For instance, describing early work in
public program evaluation, Donald Campbell (1988,
page 324) wrote:

There was gross overvaluing of, and fi-
nancial investment in, external validity,
in the sense of representative samples
at the nationwide level. In contrast, the
physical sciences are so provincial that
they have established major discoveries
like the hydrolysis of water... by a sin-
gle water sample.

Passive observation of a natural population fol-
lowed by regression analysis is often unsuccessful
as an approach to inference about treatment effects;
see, in particular, Box (1966) and Freedman (1997).
A recent report of the National Academy of Sciences
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(Meyer and Fienberg, 1992, page 106) concerning
evaluation studies of bilingual education makes a
similar point:

In comparative studies, comparability of
students in different programs is more
important than having students who are
representative of the nation as a whole.
Elaborate analytic methods will not sal-
vage poor design or implementation of a
study.

Here, several principles are discussed which guide
the choices made in the early planning and design
of an observational study. The principles are illus-
trated using three observational studies that use
choice effectively, one each from economics, clinical
psychology and epidemiology. The studies are briefly
described in Section 2 and the principles in Sec-
tion 3. In Section 4, certain issues are restated in
formal terms. Section 1.2 mentions certain ground
rules in discussions of the quality of evidence.

1.2 The Quality of Evidence: Some Ground Rules

Most empirical disciplines make use of some form
of mathematical reasoning. To discuss the quality of
evidence provided by an empirical study one must
first recognize that evidence is not proof, can never
be proof, and is in no way inferior to proof. It is
never reasonable to object that an empirical study
has failed to prove its conclusions, though it may be
reasonable, perhaps necessary, to raise doubts about
the quality of its evidence. As expressed by Sir Karl
Popper (1968, page 50): “If you insist on strict proof
(or strict disproof) in the empirical sciences, you will
never benefit from experience, and never learn from
it how wrong you are.”

One expects that a proof will be correct and that
evidence will be candidly presented, despite oc-
casional disappointments. One is often concerned
about the relevance of a proof and the quality of
evidence. If it is proved that a certain bridge can
withstand certain forces, and yet the bridge col-
lapses, it is not the correctness but the relevance of
the proof that is likely to be called into question.

The distinction between the mathematical cor-
rectness and the relevance of a proof is familiar
in most empirical sciences that use mathematical
methods, for instance, economics, where Samuel-
son in a technical treatise (Samuelson, 1947), The
Foundations of Economic Analysis, wrote:

[Olur theory is meaningless in the op-
erational sense unless it does imply
some restrictions upon empirically ob-
servable quantities, by which it could

conceivably be refuted [page 7]. ......By
a meaningful theorem I mean simply a
hypothesis about empirical data which
could be refuted, if only under ideal con-
ditions. A meaningful theorem may be
false [page 4].

Evidence may refute a theorem, not the theorem’s
logic, but its relevance. A related point is made by
Quine (1951).

Evidence, unlike proof, is both a matter of de-
gree and multifaceted. Useful evidence may resolve
or shed light on certain issues while leaving other
equally important issues entirely unresolved. This
is but one of many ways that evidence differs from
proof.

Evidence, even extensive evidence, does not com-
pel belief. Rather than being forced to a conclusion
by evidence, a scientist is responsible and answer-
able for conclusions reached in light of evidence, re-
sponsible to his conscience and answerable to the
community of scientists. Of this, Michael Polanyi
(1964) writes:

[OJur decision what to accept as firmly
established cannot be wholly derived
from any explicit rules but must be
taken in the light of our own personal
judgment of the evidence.

Nor am I saying that there are no rules
to guide verification, but only that there
are none which can be relied on in the
last resort....

We may conclude that just as there is
no proof of a proposition in natural sci-
ence which cannot conceivably turn out
to be incomplete, so also there is no refu-
tation which cannot conceivably turn
out to have been unfounded. There is a
residue of personal judgment required
in deciding—as the scientist eventually
must—what weight to attach to any
particular set of evidence in regard to
the validity of a particular proposition
[pages 30-31].

The scientist takes complete respon-
sibility for every one of these actions
[page 40] ... for the process as a whole—
he will assume full responsibility before
his own conscience [page 46].

Evidence may be convincing beyond reasonable
doubt; yet being convinced or remaining skeptical
is a judgment for which a scientist is responsible.
The desire to be compelled rather than convinced
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by evidence is the desire to evade responsibility for
judging the evidence.

Aesthetics matter in proof, but also in evidence.
A beautiful proof is simple, illuminating its conclu-
sion and rendering it obvious. The same aesthetic
applies to evidence. In both cases, the simple and
the obvious are the product of care, effort and skill.

2. THREE OBSERVATIONAL STUDIES

2.1 Basis for Selecting These Studies, and a
Limited Warranty

The following several issues guided the choice of
studies.

(i) The studies employ choice in their de-
sign in an instructive manner which meaningfully
strengthens the evidence, but of course does not
prove, that the treatment caused its ostensible
effects.

(i1) They come from three fields, economics, clini-
cal psychology and epidemiology, that conduct many
observational studies.

(iii)) The treatments and outcomes under investi-
gation in these studies are immediately intelligible
and interesting to individuals outside these three
particular fields.

A limited warranty and a few caveats are in order.
In selecting these studies, I am not asserting that
they have reached true conclusions about the effects
of the treatments they study. Such an assertion is
never warranted based on the results of a single ob-
servational study. Indeed, the economics example is
currently the focus of fierce debate—that is part of
the charm of this particular example. I am asserting
simply that, in these studies, certain choices in de-
sign led to stronger evidence than would have been
available under other circumstances, and that the
same principles may be applied in other studies.

The studies have various implications for public
policy, but it is their methodologies, specifically their
use of choice in design, and not their policy impli-
cations that are under examination. This deserves
emphasis, for it is easily misunderstood. Commonly,
when evidence from varied studies is weighed, the
goal is to examine the conclusions of those studies.
That common goal is not the goal here. Although
studies of the minimum wage, bereavement and oc-
cupational hazards will be discussed, no conclusions
are reached about these subjects. This paper con-
cerns the relationship between choices in research de-
sign and the quality of the resulting evidence about
effects caused by treatments.

The discussion here of these studies is based on
their published reports, so issues of data quality

are not explored. Inspection of the data file for the
minimum wage study hints that interviewers and
respondents may, on occasion, have misunderstood
one another, as happens in many if not all surveys.
Issues of this sort may or may not be relevant to the
conclusions of the three studies, but they are not rel-
evant to the methodological issues under discussion
here. Section 4.3 briefly discusses some reanalysis
of data from two of the studies, comparing their sen-
sitivity to hidden bias.

These three studies are useful for teaching about
observational studies, where issues not addressed
in this paper would also be discussed. In particular,
adjustments for overt biases and sensitivity anal-
yses for hidden biases are mentioned only briefly
in Section 4.3 of the current paper, because these
methods are discussed in detail elsewhere; how-
ever, the three studies can also be used to illustrate
these techniques, which are central to the later,
analytical parts of an observational study. Two
of the studies are matched, and two use regres-
sion adjustments. The original published account of
the epidemiology example includes its small data
set together with a nonparametric analysis. The
data for the larger economics example is publicly
available electronically by FTP, or File Transfer
Protocol; see Card and Krueger (1995, page 18). A
sensitivity analysis for the epidemiology example
is given in Rosenbaum (1993; see also 1995, Sec-
tion 4) and requires only elementary calculations. A
related analysis is given in Rosenbaum (1991). Par-
allel sensitivity analyses for both the epidemiology
and economics examples are given in Rosenbaum
(1999a); these are briefly discussed in Section 4.3
below. For various methods of sensitivity analysis,
see Angrist, Imbens and Rubin (1996), Copas and
Li (1997), Cornfield et al. (1959), Gastwirth (1992),
Gastwirth, Krieger and Rosenbaum (1998), Green-
house (1982), Manski (1990,1995), Marcus (1997),
Rosenbaum and Rubin (1983b) and Rosenbaum
(1986; 1987a; 1995a, Section 4; 1999a, b).

2.2 The Economics Example: The Effects of
Increasing the Minimum Wage

The most familiar of all arguments of eco-
nomic analysis are those of comparative statics,
as discussed, for example, in the early chapters of
Samuelson’s (1947) Foundations of Economic Anal-
ysis. Often motivated with the aid of diagrams in
elementary economics courses, such an argument
pictures the world as determined by an equilibrium
of forces, and it describes how that equilibrium
changes as the forces are changed. Arguments of
this form (cf. “Illustrative Market Case” in Samuel-
son, 1947, page 17) suggest that increasing the
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price of a commodity will decrease the demand for
that commodity, other things “being equal.” Viewing
labor as a commodity and applying such consid-
erations leads many economists to expect that an
increase in the minimum wage will cause a decline
in employment among workers receiving the min-
imum wage. Developed in slightly different terms,
such arguments suggest that an increase in the
minimum wage shifts production to use less la-
bor and more capital equipment, or to substitute
goods produced outside the reach of the minimum
wage. For this reason, many economists argue that
increasing the minimum wage hurts the very indi-
viduals it is intended to benefit. Inspection of the
details of such a theorem suggest that, as a theoret-
ical argument removed from data, this expectation
seems logical.

Writing in the American Economic Review, David
Card and Alan Krueger (1994; hereafter CK) at-
tempted to estimate the effects of an increase in
New dJersey’s minimum wage that occurred on
April 1, 1992. They looked at employment in the
fast food industry (Burger King, Kentucky Fried
Chicken, Wendy’s and Roy Rogers) in New Jersey
before and after the increase in the minimum wage
and compared this to a control group consisting
of fast food restaurants in adjacent, eastern Penn-
sylvania. They found “no evidence that the rise in
New Jersey’s minimum wage reduced employment
at fast-food restaurants in the state.” Methodolog-
ical aspects of CK are nicely discussed by Meyer
(1995).

The CK study is highly controversial in its con-
clusions and somewhat unusual in its design. To
shed light on its design, it is useful to describe a re-
lated study conducted in the more traditional man-
ner, which reached very different conclusions. The
traditional study used here for comparison actually
came in response to Card and Krueger and was con-
ducted by Deere, Murphy and Welch (1995; here-
after DMW). The DMW study attempted to estimate
the effects of the increases in the Federal minimum
wage that took place from $3.35 to $3.80 on April 1,
1990, and from $3.80 to $4.25 on April 1, 1991, by
applying regression to national, monthly data from
the Current Population Survey from 1985 to 1993.
Deere, Murphy and Welch conclude: “The regression
estimates have no surprises. When the cost of em-
ploying low-wage laborers is increased, fewer low-
wage laborers are employed.” Without taking sides
on the substantive conclusion, Section 3 will, at sev-
eral places, compare the designs of these two stud-
ies.

Before leaving this introduction to the studies by
CK and DMW, one should note that their conclu-

sions do not, strictly speaking, contradict one an-
other. First, CK discuss a particular change in a
state minimum wage while DMW discuss a partic-
ular change in the Federal minimum wage, and it
is possible in principle that these different inter-
ventions had different effects. Second, DMW exam-
ine changes in employment in certain demographic
groups with varied percentages of minimum wage
earners, while CK discuss employment in particu-
lar fast food restaurants. Note, however, that the
simple comparative statics argument above would
suggest that these distinctions should not matter
and that the same general pattern of effects should
be seen in both cases.

2.3 The Psychology Example: The Effects of Loss
of a Spouse or Child in a Car Crash

Lehman, Wortman and Williams (1987; hereafter
LWW) attempted to estimate the long-term psycho-
logical effects of a sudden and unexpected death of a
spouse or a child in a motor vehicle crash. The study
identified 39 individuals who had lost a spouse and
41 individuals who had lost a child in a motor ve-
hicle crash four to seven years prior to the study.
This group of exposed subjects was the result of a
selection process that applied various criteria and
sampling to a record of motor vehicle fatalities in
Michigan between 1976 and 1979, with some non-
response that is discussed in the LWW paper.

Noting that “many previous studies on the impact
of bereavement have not included control or compar-
ison groups,” so that these studies were “difficult to
interpret,” LWW constructed a control group in the
following way. From a reservoir of 7,581 individuals
who came to renew their licenses, one control was
matched to each exposed subject based on gender,
age, family income in 1976 (i.e., before the crash),
education level, number of children and ages of chil-
dren. The outcomes included measures of depres-
sion and various psychiatric symptoms. Bereaved
spouses and parents both were depressed substan-
tially and significantly more than matched controls
between four and seven years after the loss, and
bereaved spouses exhibited higher rates of several
other psychiatric symptoms.

Lehman, Wortman, and Williams concluded:

The results presented here suggest that
the current theoretical approaches to be-
reavement may need to be reexamined
[page 228].... [The discussion goes on
to contrast the study’s results with the
views of Bowlby and Freud, among oth-
ers.] From 4 to 7 years after the sudden
loss of a spouse or child, bereaved re-
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spondents showed significantly greater
distress than did matched controls, sug-
gesting little evidence of timely resolu-
tion. Contrary to what some early writers
have suggested about the duration of the
major symptoms of bereavement. ..both
spouses and parents in our study showed
clear evidence of depression and lack of
resolution at the time of the interview,
which was 4 to 7 years after the loss
occurred. ... The present study suggests
that exposure to stress can trigger en-
during changes in mental health and
functioning [page 229].

2.4 The Epidemiology Example: Lead in Children
of Workers Subject to Occupational
Exposures to Lead

Morton et al. (1982; hereafter MSSORS) exam-
ined lead levels in the blood of children whose par-
ents worked in a factory that used lead in the man-
ufacture of batteries. They suspected that parents
brought lead home in their clothes and hair, thereby
exposing their children. Thirty-three children from
different families with a parent at the battery fac-
tory were matched to 33 unexposed control children,
the matching being based on age, neighborhood and
exposure to traffic.

They found that exposed children had substan-
tially higher levels of lead in their blood than did
matched control children. The exposed children
were also classified in two ways, namely, parental
exposure to lead on the job (low, medium, high) and
parental hygiene upon leaving the factory (good,
moderately good, poor). They found lower levels of
lead in the blood of exposed children whose parents
had lower exposures to lead on the job, and lower
levels of lead among children whose parents had
better hygiene. Morton et al. (1982, page 555) con-
cluded: “the data presented justify more stringent
enforcement of lead containment practices.”

3. CHOICE IN THE DESIGN OF
OBSERVATIONAL STUDIES

3.1 The Choice of Research Hypothesis:
Narrow, Focused, Controlled Examination of
a Broad Theory

Consider, first, a laboratory experiment in the
physical or biochemical sciences. It begins with
a broad theory that makes assertions about the
effects of a treatment. Specifically, such a broad
theory makes innumerable predictions about what
would be observed in the innumerable circum-
stances in which the particular treatment might

be applied, now and in the future, in different lo-
cations and so on. A laboratory experiment makes
no effort to draw up a frame comprising all circum-
stances, locations and times when the treatment
might be applied and to draw a representative
sample of such circumstances. Rather, the labora-
tory experiment examines the theory under highly
unrepresentative circumstances, namely, circum-
stances in which sensitive, calibrated measuring
instruments are used in an environment carefully
freed of forces that might intrude on the experi-
ment, in which the treatment is delivered at doses
sufficient to produce dramatic effects if the theory
is correct or to produce an equally dramatic ab-
sence of effect if the theory is incorrect. In a way,
it is part of the essence of a laboratory experi-
ment that its circumstances are unrepresentative.
In a well-conducted laboratory experiment, one of
the rarest of things happens: the effects caused by
treatments are seen with clarity.

Observational studies of the effects of treatments
on human populations lack this level of control, but
the goal is the same. Broad theories are examined
in narrow, focused, controlled circumstances.

Broad theories are desired because they predict
more, and in consequence are both more useful and
can be more thoroughly scrutinized. Quoting Popper
(1968) again:

[TThose theories should be given prefer-
ence which can be most severely tested
[page 121]...if the class of potential fal-
sifiers of one theory is “larger” than that
of another, there will be more opportu-
nities for the first theory to be refuted
by experience [...and...] the first theory
says more about the world of experience
than the second theory, for it rules out a
larger class of basic statements. ... Thus
it can be said that the amount of empir-
ical information conveyed by a theory,
or its empirical content, increases with
its degree of falsifiability [page 112—
113) [which] explains why simplicity is
so highly desirable.... [Simple theo-
ries] are to be prized more highly than
less simple ones because they tell us
more; because their empirical content
is greater; and because they are bet-
ter testable [page 142].... Theories are
not verifiable, but they can be “corrobo-
rated,” ...we should try to assess what
tests, what trials, [the theory] has with-
stood [page 251]...it is not so much
the number of corroborating instances
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which determines the degree of corrob-
oration as the severity of the various
tests to which the hypothesis can be,
and has been, subjected. But the sever-
ity of the tests, in its turn, depends upon
the degree of testability, and thus upon
the simplicity of the hypothesis: the hy-
pothesis which is falsifiable in a higher
degree, or the simpler hypothesis, is also
the one which is corroborable in a higher
degree [page 267].

Similar claims about simplicity, falsification and
corroboration are made by Milton Friedman (1953,
pages 8-9), who adds: “A hypothesis is important if
it ‘explains’ much by little, that is, if it abstracts the
common and crucial elements...and permits valid
predictions on the basis of them alone” (page 14) and
“...the only relevant test of the validity of a hypoth-
esis is comparison of its predictions with experience”
(page 9). As noted by Putnam (1995, page 71), a sim-
ilar point had been made earlier by Charles Sanders
Peirce (1903, page 418-419):

But if I had the choice between two
hypotheses...I should prefer...[the one
which] would predict more, and could be
put more thoroughly to the test.... It is
a very grave mistake to attach much im-
portance to the antecedent likelihood of
hypotheses.... Every hypothesis should
be put to the test by forcing it to make
verifiable predictions.

»” «

The terms “falsify,” “reject” or “refute,” when ap-
plied to scientific theories, are not quite accurate.
Lakatos (1981, page 117) describes such a theory
as “shelved,” the implication being that the theory
is stored along with the evidence against it. Un-
der rare circumstances, a shelved theory might be
reconsidered; see the quote from Polanyi in Sec-
tion 1.2.

Broad theories permit close scrutiny in numerous
particular cases, and a research hypothesis is in-
tended to focus attention on one such case in which
close scrutiny—a severe test—is possible. Passing
such a severe test corroborates but does not prove
the theory. Platt (1964), Meehl (1978) and Dawes
(1996) make similar points.

In the economics example, broad arguments from
comparative statics predict that increases in the
cost of labor will diminish employment. If true, this
theory operates in innumerable instances in the U.S.
economy on a daily basis; however, in almost all
such instances, it operates amid numerous other
forces that obscure its effects. For instance, if wages

rise faster in one company than in a second com-
pany making a different brand of a similar product,
then the theory may be true even though employ-
ment does not decline in the first company, precisely
because increasing demand for its brand of product
may have led the first company to raise wages in
an effort to increase output by expanding its work-
force. Even if the theory is correct, it rarely oper-
ates in isolation. Card and Krueger attempted to
find one of those rare instances in which the the-
ory might be hoped to operate in relative isolation.
Specific aspects of this isolation are discussed later,
but the point here concerns their choice of research
hypothesis. The effect of the increase in the New
Jersey minimum wage on fast food chains in 1992
is, in itself, at most a very minor footnote to eco-
nomic history. However, as an opportunity to scru-
tinize closely and thereby possibly to corroborate or
refute the broad theory that forcible increases in the
minimum wage cause declines in employment, the
1992 increase in New Jersey’s minimum wage be-
comes much more important. In observational stud-
ies, one chooses a research hypothesis that permits
a broad theory to operate dramatically and in rela-
tive isolation.

Some accounts in the popular press have em-
phasized, perhaps even slightly exaggerated, the
breadth of the theory challenged by Card and
Krueger’s results. Writing in Forbes, the Stanford
economist Thomas Sowell (1995) said:

[TIf true, these results challenge the very
foundations of economics. If rises in the
price of labor do not reduce employment,
why should we expect that a rise in the
price of anything else affects the quan-
tity purchased? This is to economics what
disproving the law of gravity would be to
physics.

Whether or not this is what CK did, whether
or not they were really operating on this scale,
nonetheless, the spirit of Sowell’s remark is right:
one seeks broad and consequential theories exposed
to decisive challenges in focused, clear circum-
stances.

In the psychology example, the belief that be-
reavement should have short lived effects on men-
tal functioning stems from a much broader theory,
the dominant but not universally accepted theory in
clinical psychology, that holds that the structure of
mental functioning is largely shaped by a mixture
of biology and experiences as a young child in re-
lation to caretakers, usually parents. In particular,
that theory suggests that bereavement should not
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greatly alter mental functioning over long periods
of time. As in the economics example, if the broad
theory is correct, then it is in constant operation in
innumerable lives, but in almost all cases its opera-
tion is obscured by limited knowledge of the biology
of mental functioning, by the difficulty in accurately
measuring the experiences of early childhood and
by the difficulty in distinguishing what is cause and
what is consequence in the mental life and experi-
ences of an adult. Sudden deaths from car crashes
are a situation in which the broad theory operates
or fails to operate with clarity.

Is it really true that a broad theory will be re-
futed or shelved based on a decisive challenge in a
single, focused circumstance? Probably not. As ar-
gued by Lakatos (1970), a single, focused challenge
may knock the wind out of a research program, may
quicken interest in competing research programs,
may stimulate further challenges in other focused
circumstances, but it is unlikely to cause the imme-
diate abandonment of a research program that has
enjoyed some success—and this is for the best. Em-
pirical studies, particularly observational studies,
are attended by various uncertainties and ambigui-
ties, some of which are difficult to quantify or even
to identify, so consistent results in several studies
are typically needed to force changes in the direc-
tion of a research program. Nonetheless, each such
influential study is likely to examine the same broad
theory in different focused circumstances, attended
by different uncertainties.

In short, the choice of a research hypothesis fo-
cuses a broad theory on a narrow instance in which
the theory’s operation may be viewed clearly. Often,
this setting permits the theory to operate in relative
isolation from other forces, or to operate on a dra-
matic scale due to concentrated exposures, or else
the treatment is imposed suddenly, at a discrete mo-
ment, in a manner not influenced by the individuals
under study.

3.2 A Control Group

In designing an observational study, a key step is
to choose a situation in which a control group can
be constructed. A control group consists of subjects
or units which did not receive the treatment. The
control groups used in the three examples were de-
scribed in Section 2.

Some observational studies do not have a control
group. For instance, in the study by DMW, everyone
covered by the Current Population Survey was in a
region affected by the increase in the Federal mini-
mum wage, so there is no control group—all subjects
received the treatment. In contrast, the CK study of
New Jersey’s minimum wage had a control group

consisting of branches of the same fast food chains
across the Delaware river in eastern Pennsylvania
where the minimum wage had not been increased.

Lacking a control group, DMW estimate the ef-
fect of the increase in the Federal minimum wage
using regression in the following way. The Federal
minimum wage increases went into effect on April 1,
1990, and April 1, 1991, so DMW define years which
begin on April 1 and end on March 31. They fo-
cus on two groups of individuals, namely, teenagers
aged 15-19 and adult high school dropouts aged 20—
54, reasoning that these groups contain a dispropor-
tionate number of individuals earning the minimum
wage, so they should be most affected by changes
in the minimum wage. These two groups are ex-
amined in parallel but separate analyses, but, for
brevity, only the analysis for teenagers is described
here. Within these groups, men, women and blacks
are examined in similar but not exactly parallel
analyses; to permit a brief discussion here, the fo-
cus will be on the analysis for male teenagers. For
each year from 1985 to 1992, for each state, there
is an outcome measure, namely, the log of the frac-
tion of male teenagers in the United States who
were employed, as estimated by the current pop-
ulation survey. Deere, Murphy and Welch regress
this outcome on the following predictors: (i) the log
of the fraction of 15 to 64-year-old men who were
employed in the same state and year, (ii) state in-
dicator variables and (iii) indicator variables identi-
fying the level of the Federal minimum wage. Con-
cerning male teenagers, they write: “Compared to
the employment level projected from the movement
in aggregate employment with the $3.35 minimum
wage, teenage employment was 4.8 percent. . .lower
in 1990...and 7.3 percent...lower in 1991-1992.”
In other words, employment among male teenagers
in 1990 and 1991-1992 fell more sharply than em-
ployment among all 15 to 64-year-old men in the
same period, adjusting for state-to-state differences
that are constant through time. Qualitatively sim-
ilar though numerically different results were ob-
tained for females, blacks and adult high school
dropouts. Their conclusion from these regressions
was quoted in Section 2.2.

Conclusions reached in the absence of a control
group are not necessarily wrong, but they are typ-
ically open to plausible objections and legitimate
skepticism of types that are inapplicable with a
control group. The assumption implicit in DMW’s
method of estimation is that changes in the log em-
ployment fraction for male teenagers would have
been linearly related to changes in the log employ-
ment fraction among all 15 to 64-year-old men if the
minimum wage had not been increased, and any



266 P. R. ROSENBAUM

departure from such a linear change is an effect
caused by the change in the minimum wage. Is this
assumption self-evidently true? Might not employ-
ment among teenagers and high school dropouts
fall disproportionately more than employment in
the general workforce during times of generally
declining employment even without an increase
in the minimum wage? Alternatively, a rise in
the minimum wage might increase employment
in certain demographic groups and decrease it in
others because employers find that they can pull
into the workforce better educated or more experi-
enced workers who, at lower wages, would not work
or who would work fewer hours. For instance, an
anecdotal account in the popular press of changes
in employment practices in response to the most
recent increase in the Federal minimum wage de-
scribes an employer as introducing special hiring
practices to avoid “wasting the extra 50 cents on
unreliable help” (Duff, 1996). Even a bit of nonlin-
earity on the log scale might be mistaken for an
effect of changing the minimum wage. Objections of
this sort may well be incorrect and unfounded, but
what is important here is that they can reasonably
be raised for a study which lacks a control group.
If raising the minimum wage decreases employ-
ment, then, DMW reasoned, the larger decreases
should occur in groups with more minimum wage
earners. Although DMW focused on comparisons
involving teenagers and adult dropouts, other
groups with a disproportionate number of min-
imum wage earners were also examined briefly.
For instance, low, medium and high wage states
were compared, the first group being thought to be
most impacted by increases in the minimum wage.
Men and women were compared, where women
as a group receive lower wages. These compar-
isons pointed in the opposite direction from the
comparisons discussed in earlier paragraphs; see
DMW’s Table 3. Employment in low wage states
declined less than employment in high wage states
and employment among women declined less than
employment among men after increases in the min-
imum wage. Women in low wage states experienced
no decline in employment. If increasing the mini-
mum wage decreased employment, the reasoning
DMW applied to teenagers and dropouts would
have predicted larger employment declines in low
wage states and among women. Deere, Murphy and
Welch (1995, page 234) write: “The latter fact is
easily dismissed based on long-standing trends.”
Evidently, certain interactions do exist in which
different demographic groups experience larger or
smaller declines in employment, although DMW be-
lieve they can distinguish which effects are caused

by the minimum wage and which are irrelevant de-
mographic trends, and perhaps others will agree
with them. Nonetheless, looking at the methodol-
ogy, inconsistencies of this sort can arise in studies
in which treated and control groups are replaced
by groups with higher and lower exposure to the
treatment.

An interesting paper by Holland and Rubin (1983)
looks at various “paradoxes” that arise when there
is no control group and a model or a calculation
is used to estimate the treatment effect. They in-
terpret the paradoxes as consequences of diverging,
uncheckable and unarticulated assumptions about
what the control group would look like.

If a study lacks a control group, a minimal re-
quirement is the articulation of the assumptions
about what the control group would look like, to-
gether with a discussion of the tangible evidence in
support of those assumptions and the sensitivity of
conclusions to violations of the assumptions. Articu-
lation and evaluation of assumptions about the ab-
sent control group aid in judging the roles evidence
and assumptions play in the study’s conclusions.

3.3 Defining Treated and Control Groups:
Sharply Distinct Treatments That Could
Happen to Anyone

In a randomized experiment, treated and control
groups are defined by, first, defining the treatments
themselves and, second, defining and implement-
ing a mechanism for random assignment of treat-
ments. Typically, in prolonged experiments with hu-
man populations, two or at most a few quite distinct
treatments are compared (Peto et al., 1976).

The situation in observational studies is differ-
ent. The investigator does not control the assign-
ment of treatments to subjects and so must define a
treated and a control group using available subjects
who have already received treatment or control. The
goal in defining the treatment groups should be to
produce a situation that resembles, to the extent
possible, the situation in a randomized experiment:
markedly distinct treatments that could happen to
anyone. Consider the two parts separately.

In discussing the design of controlled trials, Peto
et al. (1976, page 590) say:

A positive result is more likely, and a null
result is more informative, if the main
comparison is of only 2 treatments, these
being as different as possible.... [I]t is
the mark of good trial design that a null
result, if it occurs, will be of interest.

Treatment groups that are distinct in concept
but not in actual implementation may not differ
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in their outcomes even if the conceived but unim-
plemented distinction would have an important
effect on outcomes. For instance, this was a con-
cern in a National Academy of Sciences report on
studies of bilingual education which found that:
¢ ..Immersion and Early-exit Programs were in
some instances indistinguishable from one another”
(Meyer and Fienberg, 1992, page 102).

To say that the distinct treatments “could hap-
pen to anyone” is shorthand. One wishes to define
the treated and control groups in such a way that
the treatment could easily have happened to the
controls, and the treated subjects could easily have
been spared the treatment, the actual assignment of
subjects to treatments being determined by haphaz-
ard or ostensibly irrelevant circumstances. Haphaz-
ard is not random, and haphazard treatment assign-
ments can produce severe, consequential and unde-
tected biases that would not be present with random
assignment of treatments. Still, haphazard or osten-
sibly irrelevant assignments are to be preferred to
assignments which are known to be biased in ways
that cannot be measured and removed analytically.

An example of careful definition of treated and
control groups comes from the study by LWW of the
effects of a traumatic loss of a spouse or child. First,
the treated and control conditions are markedly dis-
tinct. The loss is confined to a spouse or a child less
than 18 years of age living at home, and the loss was
produced suddenly by a car crash. One could study
the effects of a loss of other relatives, such as an
adult’s parent or an adult’s adult sibling, or gradual
losses due to chronic disease, but these might have
smaller psychological effects. As in experiments, ef-
fects should be demonstrated for markedly distinct
treatments before refined studies of smaller effects
are undertaken.

Second, LWW took care to define the treated
group so it “could happen to anyone.” In particular,
they used published, relatively objective criteria to
appraise probable responsibility or fault in the car
crashes, and then insisted that the treated group
consist of individuals from cars that were not at
fault. For instance, if one car crossed a center di-
viding line and collided with an oncoming car, the
occupants of the first car would be ineligible for
the study while the occupants of the second car
would be eligible. Their reasoning was that fault in
car crashes is related to alcohol and drug use and
to certain forms of psychopathology, all of which
would be studied later as outcomes for survivors.
In contrast, a car crash for which one is not respon-
sible could happen to any driver. No matter what
the particulars, car crashes are a far cry from ran-
dom numbers, but car crashes for which one is not

responsible are plausibly a limited but meaningful
step closer to random.

In studying the effect of class size on academic
achievement, Angrist (1997) gives another inter-
esting example of sharply distinct treatments that
could happen to anyone. In the United States, a
class of size 40 will often be located in a very dif-
ferent school district than a class of size 20, so it
is difficult to distinguish the effects of class size
from the other consequences of the differences be-
tween school districts. In contrast, Israeli public
schools implement the following version of a rule
due to Maimonides: when class size exceeds 40 stu-
dents, the class must be divided. In this case, a
class of size 41 becomes two much smaller classes.
In that setting, one might compare certain classes
of size near 40 to split classes of size near 20, know-
ing that these are very different class sizes, and
yet the rather minor event of enrolling one or two
more students determined this dramatic change in
class size. Again, this is not a random assignment
of class sizes to students, but it is a meaningful
step closer to random. Angrist and Krueger (1998)
discuss additional examples.

Still another example of sharply distinct treat-
ments that could happen to anyone is found in
Bronars and Grogger’s (1994) study of the economic
consequences of unwed motherhood. Here, too, as
a group, women who bear children prior to mar-
riage differ from unmarried women who do not
bear children, and it is important to avoid mistak-
ing these differences from economic effects of an
additional unplanned child. Instead of comparing
these two groups, Bronars and Grogger compared
unwed mothers who had twins to unwed mothers
who had singletons, reasoning that having twins
rather than a single child is a comparatively hap-
hazard event, one that could happen to anyone. See
also Rosenzweig and Wolpin (1980).

3.4 Competing Theories, Not Just Null and
Alternative Hypotheses

In his essay, “How to be a good empiricist—a plea
for tolerance in matters epistemological,” Paul Fey-
erabend (1968, pages 14-15) writes:

You can be a good empiricist only if you
are prepared to work with many alter-
native theories rather than with a single
point of view and “experience.” This plu-
rality of theories must not be regarded
as a preliminary stage of knowledge
which will at some time in the future be
replaced by the One True Theory. The-
oretical pluralism is assumed to be an
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essential feature of all knowledge that
claims to be objective.... The function
of such concrete alternatives is, however,
this: They provide means of criticiz-
ing the accepted theory in a manner
which goes beyond the criticism pro-
vided by a comparison of that theory
“with the facts.”... This, then, is the
methodological justification of a plural-
ity of theories: Such a plurality allows
for a much sharper criticism of accepted
ideas than does the comparison with a
domain of “facts” which are supposed
to sit there independently of theoretical
considerations.

Elsewhere, Feyerabend (1975) argues that alter-
native theories are needed to unearth new facts, ad-
vising one to:

Introduce and elaborate hypotheses
which are inconsistent with well-
established theories and/or well-estab-
lished facts.... [Tlhe evidence that
might refute a theory can often be
unearthed only with the help of an in-
compatible alternative [page 29] many
facts become available only with the help
of alternatives, [so] the refusal to con-
sider [alternative theories] will result in
the elimination of refuting facts as well
[page 42].

Popper (1965, page 112) makes a closely related
point:

A theory is tested not merely by apply-
ing it, or trying it out, but by applying
it to very special cases—cases for which
it yields results different from those we
would have expected without that theory,
or in the light of other theories. In other
words we try to select for our tests those
crucial cases in which we should expect
the theory to fail if it is not true. Such
cases are “crucial” in Bacon’s sense; they
indicate the cross-roads between two (or
more) theories.

Lakatos (1981, pages 114-115) distinguishes the
“internal” testing of theories from the “external”
competition between theories, suggesting the latter
is an aid to the former:

[Flacts are only noticed if they conflict
with some previous expectation. [This is

a] cornerstone of Popper’s psychology of
discovery. Feyerabend developed another
interesting psychological thesis of Pop-
per’s, namely, that proliferation of theo-
ries may—externally—speed up internal
Popperian falsification.

A scientific theory that has been fairly success-
ful—a theory discussed in journals and textbooks,
explained to undergraduates, offered to graduate
students as an area for research, and so on—is likely
to agree with empirical observations at many points
and to seem helpful in interpreting those obser-
vations. Certainly, sufficiently large, externally im-
posed increases in the price of a commodity may
cause demand to decrease, and both biology and
the events of early childhood may have enduring ef-
fects on mental functioning. Both of these theories
offer coherent interpretations of frequent observa-
tions. A successful theory is likely to work in many
situations—this is an aspect of its success. Unaided
by a competing theory, an empirical investigation
may do no more than rediscover why the successful
theory achieved success in the first place. Such an
investigation may not place the successful theory at
much risk of refutation, and since it was never at
much risk, failing to refute the theory provides little
corroborating evidence in support of the successful
theory.

A competing theory focuses attention on certain
observable events about which the successful theory
and its competitor make very different predictions.
The competing theory directs attention to places
where the successful theory might fail, placing the
successful theory at severe risk of refutation. The
competing theory anticipates a particular refuta-
tion of the successful theory, making refutation of
the successful theory more likely and more decisive,
and providing stronger corroboration of the success-
ful theory if its predictions turn out to be correct.
Card and Krueger quote the following remark of
Paul Samuelson: “In economics it takes a theory to
kill a theory; facts can only dent a theorist’s hide”
(Card and Krueger, 1995, page 355).

As discussed in Section 2.2, the conventional ar-
gument anticipates that an increase in the mini-
mum wage in New dJersey drives up the cost of
some labor in New Jersey, with two consequences
for employment: first, an increase in prices of fi-
nal products resulting in reduced demand; second,
a tendency to substitute capital equipment, whose
cost has not increased, for labor, whose cost has
increased. The increase in the minimum wage af-
fects all New Jersey firms, so the price increases
may have smaller effects on a single firm’s business
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than would be the case if that one firm raised prices
while other firms did not. Card and Krueger (1995,
page 359) express this same idea more formally as
follows:

For purposes of modeling the effect of an
industry-wide wage increase, however,
the relevant product-demand elastic-
ity is one that takes into consideration
simultaneous price adjustments at all
firms. This elasticity will tend to be
smaller (in absolute value) than the elas-
ticity of demand for a firm’s output with
respect to its own price. In the case of
the restaurant industry, for example, any
individual restaurant presumably faces
a relatively elastic demand for its prod-
uct, holding constant prices at nearby
restaurants. When the minimum wage
increases, however, prices will tend to
rise at all restaurants, resulting in a
smaller net reduction in demand at any
particular firm.

In other words, if Roy Rogers alone raised the
price of hamburgers, it might face a substantial de-
cline in business as customers switched to Burger
King, but if all restaurants raise prices at the same
time, the decline in business might be much smaller.
Notice that this is particularly true of the fast food
industry, because it is not practical for a New Jer-
sey restaurant to import cooked food from, say, Hong
Kong or Pennsylvania, to escape the effects of the
minimum wage increase in New Jersey. If the con-
ventional argument were incorrect, if increases in
the minimum wage had only slight effects when
simultaneous price adjustments occur in all firms,
then the fast food industry, though unrepresenta-
tive of all industries, is one place to see this. Both
theories accept that increases in the minimum wage
might result in higher prices for fast food, but only
one theory predicts a dramatic decline in business
and employment in the fast food industry. In fact,
Card and Krueger (1994, Sections 3E and 5) found
no association between increases in the minimum
wage and (i) the number of hours a restaurant is
open on a weekday, (ii) the number of cash registers
and (iii) the number of cash registers in operation at
11:00 am, but they did find some evidence of slightly
higher increases in prices in New Jersey than Penn-
sylvania during this period. During the period of the
minimum wage increases, CK (1994, Table 2) found
that the average price of a specifically defined “full
meal” changed from $3.04 to $3.03 in the Pennsyl-
vania restaurants and from $3.35 to $3.41 in the

New Jersey restaurants. In other words, the struc-
ture of a competing theory suggests where to look to
test a standard theory, for instance, which industry
to study and which outcome measures to examine.

Card and Krueger (1995) write: “We suspect that
the standard model... does correctly predict the ef-
fect of the minimum wage on some firms” (page 355),
but they say their results are “inconsistent with the
proposition that the standard model is always cor-
rect” (page 383). Whether or not one agrees with
CK about the minimum wage, the methodological
issue is clear: a study of a narrow and unrepresen-
tative corner of a population cannot, by itself, be the
sole basis for policy for the whole population, but it
may provide a severe test of a theory that purports
to apply throughout the population. Failing such a
test raises doubts about using that theory as the
sole basis for policy, whereas passing such a severe
test corroborates the theory and tends to strengthen
the case for using it as a basis for policy.

Similar, if more direct, considerations apply in
the LWW study. A theory which suggests that men-
tal functioning is largely shaped by biology and
early childhood experiences might reasonably be
contrasted with a theory which holds that events
later in life shape mental functioning over long
periods. Sudden deaths of close relatives in car
crashes are instances in which these theories make
markedly different predictions.

In short, scrutiny of a theory is aided by a
competing theory. The competition between theo-
ries suggests circumstances in which the theories
make sharply different predictions about particular
observable quantities.

3.5 Internal Replication: Multiple Treatment
Assignment Mechanisms

Replication is important in observational stud-
ies, as it is in experiments. Susser (1987, page 88)
writes:

The epidemiologist’s alternative to exact
replication is the consistency of a result
in a variety of repeated tests.... Consis-
tency is present if the result is not dis-
lodged in the face of diversity in times,
places, circumstances, and people, as well
as of research design.

In part, biases that are peculiar to the circum-
stances of one study may not replicate, whereas an
effective treatment is expected to produce similar
results in studies of varied circumstance and de-
sign.

Some observational studies incorporate a form
of internal replication. These studies replicate the



270 P. R. ROSENBAUM

treatment assignment mechanism, so that essen-
tially the same treatment is assigned to subjects
by more than one process. As will be discussed in
a moment, this is true of two of the studies in Sec-
tion 2. If two treatment assignment mechanisms
produce a pattern of associations consistent with
an actual treatment effect, then to explain the pat-
tern as a hidden bias, one must attribute a bias to
both assignment mechanisms, and moreover a bias
yielding the pattern anticipated from an actual ef-
fect. In Popper’s terms, each mechanism provides a
check on the theory that the treatment is the cause
of its ostensible effects, so if several assignment
mechanisms produce compatible estimates of effect,
then this theory receives greater corroboration.

In the MSSORS study, children were exposed to
low levels of lead in three different ways. First, the
parents of control children did not work in the bat-
tery factory. Second, among exposed children whose
parents did work in the battery factory, some were
believed to have received lower doses of lead because
their parents worked in jobs in the factory that pro-
vided little exposure to lead. Third, some parents ex-
posed to high levels of lead practiced good hygiene.
In fact, no matter which device assigned a child to
low exposures to lead, the results were similar—
children with lower exposures tended to have less
lead in their blood. This pattern could, conceivably,
be the result of hidden bias, but it is somewhat more
difficult, though of course not impossible, to imagine
biases that would produce all three associations.

In the CK study of the increase in the New Jersey
minimum wage, a fast food restaurant could escape
a legal requirement to increase wages in either of
two ways. Restaurants in Pennsylvania were not re-
quired to increase wages. Restaurants in New Jer-
sey whose lowest wage was above the new mini-
mum wage were not required to increase wages. In
connection with their Table 3, CK (1994, page 778)
write: “Within New Jersey, employment expanded at
the low-wage stores...and contracted at the high-
wage stores.... Indeed, the average change in em-
ployment at the high-wage stores...is almost iden-
tical to the change among Pennsylvania stores....”
In other words, restaurants placed under no new le-
gal requirement by the minimum wage saw similar
employment changes, whether they were Pennsyl-
vania restaurants or high wage New Jersey restau-
rants.

In short, the central concern in an observational
study is that treatments may be assigned to sub-
jects in a biased manner. The choice of a setting in
which essentially the same treatment is assigned
to subjects by several very different processes pro-
vides a partial check of this central concern. More

precisely, the theory that the treatment is the cause
of its ostensible effects predicts similar effects no
matter which mechanism delivered the treatment,
and this prediction offers an opportunity to refute
or corroborate the theory.

3.6 Nondose Nonresponse: An Absent
Association

A causal theory not only predicts the presence
of certain associations, but also the absence of cer-
tain others. In some studies, it is possible to de-
termine the dose of treatment that a control would
have received had this control received the treat-
ment. Call this the potential dose. While it is often
reasonable to expect higher responses from treated
subjects who received higher doses, the same pat-
tern is not expected among controls—higher poten-
tial doses that were never received should not pre-
dict higher responses if higher responses are being
caused by the treatment.

The minimum wage study contains an example.
Card and Krueger (1994) define a measure GA P,
of the impact of the minimum wage legislation on
restaurant i, as the percentage increase in the start-
ing wage in restaurant i needed to achieve the new
New Jersey minimum wage. A restaurant that al-
ready paid more that the new minimum would have
GAP; = 0. A restaurant that paid the old mini-
mum wage would have GAP; = 18.8%. This vari-
able GA P, resembles a dose of treatment in that the
law has greater impact on the starting wage when
GAP; is larger. A concern, however, is that GAP;
is not only a dose of treatment, but also a variable
describing local labor market conditions. Presum-
ably, some restaurants must pay higher starting
wages than others to attract employees, so GAP;
is confounded with labor market conditions. For in-
stance, the labor market in the poor city of Cam-
den is different from the labor market in the rel-
atively affluent suburb of Princeton. Still, it is not
unreasonable to think that this confounding oper-
ates in a similar way in New Jersey and Pennsyl-
vania. For the control restaurants in Pennsylvania,
the undelivered potential dose of treatment is the
percentage change in the starting wage needed to
achieve New Jersey’s new minimum wage. If these
undelivered potential doses predicted employment
changes in Pennsylvania, then that could not be
an effect of New Jersey’s minimum wage legisla-
tion and would strongly suggest confounding. Card
and Krueger (1994, page 784) write:

[Wle exclude stores in New Jersey and
(incorrectly) define the variable for
Pennsylvania stores as the proportional
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increase in wages necessary to raise
the wage to $5.05 per hour. In princi-
ple the size of the wage gap for stores in
Pennsylvania should have no systematic
relation with employment growth. In
practice, this is the case. There is no in-
dication that the wage gap is spuriously
related to employment growth.

In short, there is often the concern that not only
the assignment to treatment or control but also the
dose of treatment is confounded with unobserved co-
variates. When potential but undelivered doses are
known for controls, the theory that the treatment
is the cause of its ostensible effects predicts that
delivered doses in the treated group should be re-
lated to the magnitudes of responses, but undeliv-
ered doses in the control group should be unrelated
to responses. This prediction provides an additional
check of the theory that the treatment is the cause
of its ostensible effects.

3.7 Stability Analyses, and Minimizing the Need
for Stability Analyses

A complex analysis involves numerous imple-
mentation or analytical decisions. The audience for
such an analysis typically wishes to be assured
that conclusions are not artifacts of such decisions,
but rather are stable over analyses that differ in
apparently innocuous ways. All three examples
in Section 2 include stability analyses for certain
descisions, as described below.

A sensitivity analysis asks to what extent plausi-
ble changes in assumptions change conclusions. In
contrast, a stability analysis asks how ostensibly in-
nocuous changes in analytical decisions change con-
clusions. A sensitivity analysis typically examines
a continuous family of departures from a critical
assumption, in which the magnitude of the depar-
ture and the magnitude of the change in conclusions
are the focus of attention. In contrast, a stability
analysis typically examines a discrete decision, and
the hope and expectation is that the conclusions are
largely unaltered by changing this decision. Stabil-
ity analyses are necessary in most complex analy-
ses; however, the extent to which they are needed
varies markedly from study to study.

As an example of a stability analysis, consider
the MSSORS study of lead exposures, which needed
to address the possibility that workers exposed to
lead were more likely to have lead-related hobbies.
Morton et al. (1982, pages 552-553) write:

[Eleven] pairs were found in which the
study children had potential for lead

exposure other than that due to the fa-
ther’s occupation, while their matched
controls had no such exposures. Ex-
ogenous sources of lead found in the
children’s environment were automobile
body painting, casting of lead and play-
ing with spent gun shell casings in the
home. Six children in the study group
had fathers whose hobby was casting
lead into fish sinkers; none of the con-
trol children’s fathers did this. It was
speculated that those who work with
lead on the job are more accustomed
to handling lead, thereby promoting its
use in the home environment....[Alny
study/control matched pair in which one
of these hobbies was present for the
study child and not present for the con-
trol was eliminated from the analysis....
When these 11 children and their con-
trols were eliminated, and the remaining
22 pairs were analyzed, the study and
control groups continued to be statisti-
cally different (p < .001).

Morton et al. go on to show that the estimates
of lead levels do not change much when the 11
pairs are excluded. Notice that a discrete decision—
whether or not to include the 11 pairs—is investi-
gated by carrying out the analysis both ways and
comparing the results, a process that is very differ-
ent from sensitivity analysis.

Similarly, in the LWW study of the effects of the
death of a spouse or child in a car crash, there was
concern that the death of a spouse might alter fam-
ily income and, possibly, that it was this sustained
loss of income and not the death itself that has psy-
chological effects. This was investigated by adjust-
ing for income by regression, concluding that most of
the findings remained stable (LWW, 1987, page 226).
The minimum wage study included several stabil-
ity analyses, for instance, various ways of handling
temporarily closed restaurants; see CK (1994, Ta-
ble 5).

The examples mentioned above have a common
feature that arises frequently in observational stud-
ies. Because it is clear that one wishes to compare
treated and control subjects who were compa-
rable prior to treatment, it is clear that visible
pretreatment differences need to be removed by
adjustments of one kind or another. It may hap-
pen, however, that treated and control groups are
noted to differ after the start of treatment. In this
case, the posttreatment difference may reflect un-
observed pretreatment differences or effects caused
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by the treatment or the effects of other treatments
occurring at the same time. Lead hobbies are an-
other treatment coexisting with occupational lead
exposure. Income loss is an outcome affected by the
loss of a spouse. The closing of restaurants may be
related to business conditions, the level of the min-
imum wage being one such condition. Adjustments
for posttreatment differences may remove part of
the actual treatment effect, and they may either
remove bias or introduce bias into comparisons
(Rosenbaum, 1984). Stability analyses are common
in this setting, and they seek to demonstrate that
results are stable whether or not adjustments are
made for a posttreatment difference. An alterna-
tive approach is to be explicit about the effect of the
treatment on the posttreatment variable, replac-
ing the discrete choice of a stability analysis by the
continuous variation in assumptions of a sensitivity
analysis; see Rosenbaum (1984, Sections 4.3, 4.4)
for detailed discussion of this alternative.

As another example with a different result, the
minimum wage debate between Neumark and
Wascher (1992) and Card, Katz and Krueger turns
in part on a stability analysis. Neumark and
Wascher had conducted a panel study of changes
in state minimum wages between 1973 and 1989
in relation to unemployment among teenagers
and young adults, reaching the conclusion that in-
creases in minimum wages depress employment.
Card, Katz and Krueger then commented that the
results were unstable in the following sense. Neu-
mark and Wascher had made adjustments for the
“proportion of the age group enrolled in school.”
Card, Katz and Krueger argued that, first, the
conclusions about the minimum wage change dra-
matically if adjustments are not made for this
variable and, second, that the definition of this
variable is such that it is “mechanically” related to
the response variable, namely employment, because
anyone working even part time was counted as not
enrolled in school. In their response, Neumark and
Wascher disagreed.

The purpose here is to examine methodology and
not the minimum wage debate. From a methodologi-
cal view, the study by Neumark and Wascher (1992)
relies heavily on analytical models in comparisons,
whereas the study by Card and Krueger (1994) re-
lies more on the design of the study and the choice
of circumstances in which fairly comparable units,
here the restaurants, are being compared. A study
which relies heavily on analytical models and ad-
justments will make many more implementation de-
cisions in analysis, and so will need to conduct more
extensive stability analyses to be convincing. This is
an argument in favor of simple study designs that

compare ostensibly comparable units under alterna-
tive treatments.

3.8 The Role of Time: Abrupt, Short-Lived
Treatments

The concept that a treatment must precede its
effects influences the study of treatments in many
ways, with similar issues arising in experiments
and observational studies. A treatment may be de-
livered over a prolonged period of time, so the dis-
tinction between what precedes a treatment and
what follows it may not be sharp. Subjects may
switch from one treatment to another, possibly in
part in response to an earlier failure of the first
treatment. Other extraneous treatments may inter-
vene, and these interventions may themselves be,
in part, effects stimulated by the treatments under
study. Subjects may know about the treatment be-
fore they receive it, and part of the ultimate effect of
the treatment may begin to materialize before the
treatment is delivered. For instance, the increases
in New Jersey’s minimum wage were public legis-
lation well before the increases actually took place.
For discussion of various aspects of the role of time
in intervention studies, see Campbell and Stanley
(1963, pages 5-6), Diggle, Liang and Zeger (1994),
Holland (1993), Joffe et al. (1997), Peto et al. (1976),
Robins (1989a, 1992, 1998), Robins, Rotnitzky and
Zhao (1995), Rosenbaum (1984), Rubin (1991, Sec-
tion 5.2), Shafer (1996), Sobel (1995) and Susser
(1987, page 86).

In research design, given the choice, one would
prefer a single, abrupt, unexpected, short-lived
treatment of dramatic proportions. With such a
treatment, the line between what precedes treat-
ment and what follows it is sharply drawn. This is
true of only one of the three studies in Section 2,
namely, the LWW study of the psychological effects
of the death of a spouse or a child in a car crash.

Abrupt, unexpected, short-lived treatments of
dramatic proportions are sometimes informally as-
sociated with the term “exogenous” as it is used
in econometrics. However, formal discussions of
“exogeneity” actually define the matter rather
differently (e.g., Engle, Hendry and Richard, 1983).

Another example of an abrupt, short-lived treat-
ment is found in a study of the effects of immigra-
tion on labor markets. This is generally a difficult
topic because immigration occurs gradually and
immigrants may favor labor markets where jobs
are available and attractive. It is usually diffi-
cult to disentangle the effects of immigration on
labor markets from the effects of labor markets on
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immigration. Card (1990) exploited a rare excep-
tion, in which immigration was abrupt, short-lived,
unexpected and of dramatic proportions. In the
Mariel boatlift, about 125,000 Cubans immigrated
to Miami between May and September 1980, in-
creasing Miami’s labor force by 7%. Card compared
changes in Miami’s labor market following the
Mariel boatlift to the concurrent changes in four
unaffected cities, Atlanta, Houston, Los Angeles
and Tampa-St. Petersberg.

3.9 Natural Blocks

A final opportunity to use choice in place of control
in the design of an observational study involves nat-
ural blocks. Whereas matching is used to pair unre-
lated individuals having similar values of measured
covariates, natural blocks create pairs or groups of
individuals who are related in ways judged to be
important but difficult to measure explicitly. Twins,
siblings, neighbors and schools are familiar exam-
ples of natural blocks.

Twins, for example, resemble one another in
terms of genetics and childhood environment in
many ways that cannot practically be described in
measured covariates. The LWW study of the psy-
chological effects of the loss of a spouse or of a
child could not adjust for genetic differences be-
tween exposed subjects and controls. In related
work, Lichtenstein et al. (1996) examined the psy-
chological effects of widowhood by comparing twins,
one bereaved and one still married. In partial
corroboration of the LWW study, they also found
long-term psychological effects of the loss of a
spouse, suggesting that genetic differences are not
a likely explanation of the psychological outcomes.
Behrman, Rosenzweig and Taubman (1996) use
twins in an economic observational study of the
effect of college quality on subsequent earnings.
Ashenfelter and Krueger (1994) make a similar use
of twins, while Altonji and Dunn (1996) use siblings
instead.

It is possible to combine matching for covariates
and pairing using natural blocks. In the MSSORS
study of lead exposure, exposed and control children
were compared to a neighbor’s child of about the
same age. Here, age is a covariate whereas neigh-
borhood is a block. Similarly, in Rosenbaum (1986),
high school dropouts were matched to students with
similar grades, test scores and behavior who re-
mained in the same high school. Here, the high
school is the block. In both cases, matching con-
trolled for blocks and began the adjustment for co-
variates.

4. A FORMAL RESTATEMENT OF
SELECTED ISSUES

4.1 Formal Restatement: Outline

In Section 4, a few of the ideas of Section 3 are
restated in slightly more formal terms. The goals
of this restatement are two: (i) to discuss, in sim-
ple or special cases, certain ideas in more precise
terms; (ii) to link the ideas of Section 3 more closely
with the statistical literature on observational stud-
ies. After briefly reviewing a notation for causal ef-
fects in Section 4.2 and the role of adjustments and
sensitivity analyses in Section 4.3, a simple formal
illustration of the role of broad theories, from Sec-
tion 3.1, is given in Section 4.4. Then Section 4.5
restates the issues in Section 3.3 about the choice
of treated and control groups in terms of reducing
sensitivity to hidden bias.

4.2 Review of Notation for Causal Effects

This section briefly reviews for later use a nota-
tion for causal effects that was introduced by Ney-
man (1923) in the context of experiments and devel-
oped by Rubin (1974, 1977) for use in observational
studies. Suppose there is a population Q of units,
and a collection T of treatments, where one or more
of the treatments ¢ € T may be “control” treatments.
Each unit o € ) may be subjected to any one treat-
ment ¢ € T. If unit o € () were to receive treatment
t € T then this unit would exhibit the vector re-
sponse r,,, and the effect on unit w of applying, say,
treatment 1 rather than treatment 0 is a compari-
son of r{, and r, such as r{, — rg,.

This notation implicitly embodies an important
assumption, called “no interference between units”
by Cox (1958, Section 2.4), namely, that “the ob-
servation on one unit should be unaffected by the
particular assignment of treatments to other units.”
Rubin refers to this assumption as SUTVA, or the
stable-unit-treatment-value-assumption. Instead of
assuming that units do not interfere with one an-
other, one may define the “unit of analysis” as that
set of units ) such that units do not interfere with
one another. For instance, in an educational inter-
vention, the treatment applied to one student in a
class might affect other students in the same class,
but not affect students in other classes, so if () is the
set of classes, not the set of students, and each t € T
specifies treatments for all students in the class,
then there would be no interference between units;
see the discussion of “unit of analysis” in Meyer and
Fienberg (1992, pages 81-84). Robins (1992) and
Joffe et al. (1997) discuss important extensions of
this notation to the case of different treatments ap-



274 P. R. ROSENBAUM

plied at different times to the same subjects, so that
interference is inevitable.

If one knew E = {r,,,t € T, » € Q}, then cal-
culating treatment effects would require only arith-
metic. Of course, one does not know E. One observes
a response only for some subjects w €  and then
only the response r,, for the treatment ¢ that w ac-
tually received. If subject w € () is observed and re-
ceives treatment ¢, write Z,, = ¢, and then r,, is ob-
served, but r,, is not observed for ¢’ # ¢, sor,,—r,,,
cannot be calculated. In a randomized clinical trial,
a subset—not typically a sample—of ) is entered
in the trial, and for this subset Z , is determined
by a random number generator, yielding random-
ization inferences about treatment effects and un-
biased estimates of average treatment effects over
the subset of units who are in the trial, though not
necessarily unbiased estimates over all of (); see
Fisher (1935), Kempthorne (1952, Sections 7, 8) and
Lehmann (1975, page 5). An observational study is
similar except that treatment assignment is not con-
trolled by the investigator and hence is not deter-
mined by a random number generator, so random-
ization inferences and unbiased estimates are no
longer available.

Unlike an outcome r,,, a covariate is, by defini-
tion, a variable measured prior to treatment, so it is
unaffected by the treatment, and a covariate exists
in a single version not varying with ¢. Write x,, for
an observed covariate describing unit w € (, and
write u,, for an unobserved covariate.

4.3 Overt and Hidden Biases: Adjustments and
Sensitivity Analysis

Randomization permits valid comparisons ig-
noring both observed and unobserved covariates,
which tend to be balanced across different treat-
ment groups, although adjustments are sometimes
made for observed covariates to increase the pre-
cision of estimated treatment effects; see Fisher
(1935) for the theory of randomization inference. In
contrast, in observational studies, it is often found
that treatment groups differ markedly with respect
to observed covariates, and there is often concern
that the groups may also differ with respect to
unobserved covariates. Differences in observed co-
variates are controlled by adjustments, for example,
by matching subjects w, w € ) with the same value
of observed covariates, x, = x,,, receiving different
treatments, Z, = t, Z, = t’; for example, Smith
(1997). As seen from Theorem 4 of Rosenbaum and
Rubin (1983a), matching and other similar meth-
ods of adjustment permit estimation of average
treatment effects when treatment assignment is
strongly ignorable given the observed covariates x,,

in the sense that

Z, L{r, teT}|x,

0 <prob(Z,=t¢|x,) <1, teT,

where A 1 B|C is Dawid’s (1979) notation for A
is conditionally independent of B given C. Ignora-
bility given x, implies that treatment assignments
are unrelated to potential outcomes within strata
defined by x,,.

Often, there is concern that units which appear
similar in terms of observed covariates x may dif-
fer in terms of a relevant unobserved covariate u,
so that treatment assignment is not ignorable given
x alone. A model that expresses this possibility as-
serts that treatment assignment is ignorable given
(x, u) and that, for two subjects w, o’ € ) with the
same observed covariates x,, = x,,, the odds of re-
ceiving one treatment rather than another differ by
at most a factor of I' > 1,

> prob(Zw = t|xw’ u(u) ) prOb(Za)’ =1 | X uw’)
T prob(Z, =t|x,,u,) prob(Z, =t|X,,u,)

>

i

For each fixed I' > 1, bounds on permutation sig-
nificance levels, confidence intervals and point
estimates are available, and, by calculating these
bounds for a range of values of I, one obtains a sen-
sitivity analysis which displays how hidden biases
of various magnitudes might alter the conclusions
of the study (Rosenbaum, 1995a, Section 4).

Sensitivity analyses for the lead exposure exam-
ple are given in Rosenbaum (1993, 1995a, 1999a),
and for the minimum wage example, with and
without an instrumental variable, in Rosenbaum
(1999a). The lead exposure example is much less
sensitive to hidden bias than the minimum wage
example; see Rosenbaum (1999a). Specifically, in
the lead exposure example, an unobserved covari-
ate u would need to be a near perfect predictor of
children’s lead levels and associated with at least a
I' = 4-fold increase in the odds of exposure to lead
to explain the elevated levels of lead in the blood
of children of lead workers. In contrast, in the min-
imum wage example, a much smaller hidden bias
of I' = 1.5 would suffice to render plausible a 12%
decline in employment or a 27% increase in em-
ployment caused by increasing the minimum wage.
In short, much smaller hidden biases could alter
the conclusions of the minimum wage example com-
pared to the lead exposure example. For extensive
details, see Rosenbaum (1999a).
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4.4 Empirical Content of Theories: An Explicit
Example

This section elaborates the point in Section 3.1
in a trivial but precise illustration. The issue con-
cerned a preference for theories which are, in Pop-
per’s phrase, “better testable” because their “empiri-
cal content is greater.” The illustration also concerns
the issue raised in the quote from Campbell in Sec-
tion 1.1. Write r,;,, for the first coordinate of r,,.
Suppose that there are three treatments, 0, 1 and
2, and consider two possible claims about the effects
of these treatments:

CLAIM 1.
1 1 1
Tl "ol < 757 1o < 757 210>
19 u% 1 E) 1 g

where |()] is the number of units in the population ()
CLAIM 2. I”Olw < Tl < r21w, Vw e Q

Here, Claim 1 asserts that the average over the
entire population ) of the first response is lowest
under treatment zero and highest under treatment
2, whereas Claim 2 asserts that every single unit
in Q has lowest response under treatment 0 and
highest response under treatment 2. For instance,
Claims 1 and 2 would both be true if the treatments
had constant, additive effects, with the smallest con-
stant for treatment ¢ = 0 and the largest for treat-
ment ¢ = 2. Note carefully that neither Claim 1
nor Claim 2 can be determined to be true or false
by direct inspection of units, because each unit is
observed under only one treatment; that is, r,q, is
observed from unit o € Q only if Z, = ¢. To de-
termine by inspection whether Claim 1 or 2 is true
would require observing r¢;,, 11, and ro;,, simul-
taneously from the same unit w, and this is not
possible; hence, one can draw inferences relevant to
Claims 1 and 2 but one cannot determine whether
either is true by inspection of individual units.

Now Claim 2 implies Claim 1, but not conversely.
This has two consequences: first, Claim 1 is at least
as plausible as Claim 2, but, second, Claim 2 is “bet-
ter testable” and has greater “empirical content” in
the sense of the quote from Popper in Section 3.1.

Strong evidence against Claim 1 might be ob-
tained by drawing a sufficiently large random sam-
ple of units w €  and conducting a randomized
experiment for these units. In contrast, strong ev-
idence against Claim 2, but not against Claim 1,
might be obtained by selecting any sufficiently large
group of units w € (), not necessarily a sample,
and conducting a randomized experiment for these

units. If the treatments are three new drugs and
the relevant population () is the set of all patients
who might eventually be treated with these drugs,
then Claim 2 might be tested in a randomized clin-
ical trial at a single medical center using patients
who volunteered for the trial by providing informed
consent—something that happens every day—but
Claim 1 could not be tested in any practical sense.
Because Claim 2 says more than Claim 1, because it
has greater empirical content, Claim 2 is at greater
risk of refutation and can be subjected to greater
scrutiny.

Because Claim 2 says more than Claim 1, if
Claim 2 is false, we are more likely to discover
that it is false. Discovering that Claim 2 is false
is progress. For instance, in a randomized exper-
iment, we might refute Claim 2 by learning that
treatment 0 is better for an identifiable group of pa-
tients; that is, we might find that for units o with
certain values of the observed covariates x, higher
responses are typically observed from treatment
group 0 than from treatment group 2. (Obviously,
such a “refutation” would need to make due al-
lowance for both chance and any consequences of
multiple comparisons.)

Because Claim 2 says more than Claim 1, if
Claim 2 is true, then corroborating evidence sup-
porting Claim 2 is easier to obtain. That is, Claim 2
implies more than Claim 1, so there are more ways
to refute Claim 2, and each serious but unsuccess-
ful attempt to refute Claim 2 provides corroboration
in the sense discussed by Popper.

A theorem of statistics deduces conclusions from
assumptions. Quite often, however, assumptions
which are used in similar ways in a proof, nonethe-
less, have very different scientific status. Assump-
tions are of three kinds: (i) the scientific model or
hypothesis, which is the focus of scientific interest,
(i1) incidental assumptions, needed for statistical
inference but of little or no scientific interest and
(iii) pivotal assumptions which rival the scientific
hypothesis and are the focus of scientific contro-
versy. Claims 1 and 2 are both scientific hypotheses,
and, as such, greater simplicity and greater empir-
ical content are desirable. A better hypothesis says
more, and in consequence is less likely to be true, is
more likely to be discovered to be false and is more
easily and strongly corroborated when efforts to re-
fute it are unsuccessful. An incidental assumption
is an unnecessary convenience, for instance, the
assumption of Normal errors in a completely ran-
domized experiment. The assumption is unneeded,
since a nonparametric procedure may be used in a
completely randomized experiment. For incidental
assumptions, it is preferable to assume less or to
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use methods that are robust to violations of inciden-
tal assumptions. An incidental assumption, unlike
a scientific hypothesis, is not of scientific interest,
so one would prefer that incidental assumptions
had little impact on the final conclusion, and one
would prefer incidental assumptions that intruded
as little as possible on the scientific questions of in-
terest. A better hypothesis says more, but a better
incidental assumption says less. A pivotal assump-
tion is a rival to the scientific hypothesis, and the
dependence of the inference on a pivotal assump-
tion cannot be removed by employing a different
statistical method, for instance, by switching from
the t-test to the Wilcoxon rank sum test. For in-
stance, in an observational study, the assumption
that, after adjustment for observed covariates, the
different treatment groups are comparable—that
is, the assumption that treatment assignment is
strongly ignorable given x—is a pivotal assump-
tion. Pivotal assumptions and scientific hypotheses
are rivals: if a pivotal assumption is false, our in-
ference about the scientific hypothesis using this
assumption may be wrong, and refinements of ana-
lytical technique cannot resolve this rivalry. Pivotal
assumptions are often a focus of attention in the
discussion sections of scientific papers, a focus of
concern for referees and a topic of discussion in sub-
sequent letters to the editor. Pivotal assumptions
are addressed, in part, through sensitivity analy-
ses and through separate efforts to corroborate or
refute these assumptions (Rosenbaum, 1995a, Sec-
tion 4-8). Pivotal assumptions are not synonymous
with identifying assumptions, for reasons outlined
in Rosenbaum (1997a).

To recap, this section has discussed a formal illus-
tration of Popper’s general principle that broader,
simpler, scientific models and hypotheses are pre-
ferred because they have greater empirical content
and therefore are more easily refuted or corrobo-
rated. This statement has been distinguished from
the preference for weaker, more innocuous inciden-
tal assumptions, and both preferences have been
distinguished from issues surrounding pivotal as-
sumptions that rival the scientific model.

4.5 Defining Treated and Control Groups to
Reduce Sensitivity to Hidden Biases

In Section 3.3, it was suggested that treated and
control groups should be chosen in such a way that
they are sharply distinct and yet could happen to
anyone. This may be expressed in the formalism of
the sensitivity analysis mentioned in Section 4.3.
Specifically, a study is insensitive to bias when two
conditions hold simultaneously: the treatment effect
is large, both practically and relative to the vari-

ability in outcomes; and the magnitude of plausible
hidden biases, as measured by I' in Section 4.3, is
not large.

In the psychology example, the restriction of at-
tention to a treated group that had lost either a
spouse or a young child made the treated and con-
trol conditions more sharply distinct than would
have been the case had losses of more distant rel-
atives been included. This, in turn, probably pro-
duced a larger, and hence less sensitive, difference
in outcomes in treated and control groups. Again, in
the psychology example, the restriction of attention
to drivers who were not at fault reduced somewhat
the magnitude of plausible hidden biases, since, for
example, alcohol abuse is related to accidents in
which one is at fault and also related to psychiatric
outcomes. In other words, this restriction reduced
somewhat the range of plausible values of I'.

Decisions made during the design of an observa-
tional study, such as the definition of treated and
control groups, affect the sensitivity of the conclu-
sions to hidden biases, but decisions made during
analysis can have this effect as well. For instance,
the sensitivity to hidden bias may be different at dif-
ferent quantiles of the control responses when the
treatment has a nonconstant, dilated effect, and this
may be clarified during the analysis; see Rosenbaum
(1999b) for discussion and illustration. Similarly, a
test of no treatment effect against the alternative of
a coherent treatment effect may be less sensitive to
hidden bias than a test against a less focused alter-
native (Rosenbaum, 1997b).

In short, in seeking “sharply distinct treatments
that could happen to anyone” one is seeking a study
that is insensitive to hidden biases of plausible size.

5. SUMMARY

In many well-conducted observational studies,
clarity about treatment effects is enhanced by the
choice of circumstances in which the study is con-
ducted. Several principles guiding choice have been
suggested. The use of choice in place of control has
been illustrated with examples from economics,
clinical psychology and epidemiology. Because these
principles apply in diverse disciplines, the princi-
ples are properly viewed as part of the subject of
statistics.
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Comment

Charles F. Manski

In his lucid and engaging article, Rosenbaum
develops a coherent perspective on observational
studies. The logical beginning of his argument is his
assertion that the objective of studies of treatment
effects, whether experimental or observational,
should be to assess the soundness of broad theories.
The next step is his citation of a basic principle
of scientific inference, that evidence on broad the-
ories may be amassed by examining predictions
in particular empirical settings. He then points to
laboratory experiments as ideal for evaluation. He
concludes that observational studies should seek to
emulate such experiments. Rosenbaum presents his
argument concisely and elegantly in Section 3.1:

In a well-conducted laboratory experi-
ment one of the rarest of things happens:
the effects caused by treatments are seen
with clarity.

Observational studies of the effects
of treatments on human populations
lack this level of control but the goal is
the same. Broad theories are examined
in narrow, focused, controlled circum-
stances.

Although I respect Rosenbaum’s perspective on ob-
servational studies, I do not share it. I approach the
study of treatment effects with a different objective
in mind, and consequently reach different conclu-
sions for the conduct of observational studies. I am
glad to have this opportunity to juxtapose Rosen-
baum’s world view and my own.

TREATMENT CHOICE IN HETEROGENEOUS
POPULATIONS

I begin from the premise that studies of treatment
effects should aim to improve the treatment choices
made in a population of interest. In particular, I am
concerned with treatment choice in heterogeneous
populations, where treatment response may vary
from person to person. I judge studies, whether ex-
perimental or observational, by their usefulness in

Charles F. Manski is Professor, Department of Eco-
nomics and Institute for Policy Research, Northwest-
ern University, 2003 Sheridan Road, Evanston, Illi-
nois 60208-2600 (e-mail: cfmanski@nwu.edu).

improving treatment choices. This perspective has
motivated my research on nonparametric bounds on
treatment effects (Manski, 1990, 1994, 1995, 1997a,
1997b; Manski and Pepper, 2000) and has become
explicit in my recent work connecting the empirical
analysis of treatment response with the normative
analysis of treatment choice (Manski, 1998, 1999).

I find it useful to suppose that a planner must
choose a treatment rule which assigns a treatment to
each member of a heterogeneous population of inter-
est. The planner might, for example, be a physician
choosing medical treatments for each member of a
population of patients or a judge deciding sentences
for each member of a population of convicted offend-
ers. The planner observes certain covariates for each
person: demographic attributes, medical or criminal
records and so on. Each member of the population
has a response function which maps treatments into
a real- valued outcome of interest, perhaps a mea-
sure of health status or recidivism in the examples
above.

I suppose that the planner wants to choose a
treatment rule that maximizes the population
mean outcome. (In economic terms, the planner
wants to maximize a utilitarian social welfare func-
tion.) An optimal treatment rule assigns to each
member of the population a treatment that max-
imizes mean outcome conditional on the person’s
observed covariates (Manski, 1998, 1999). This mo-
tivates interest in the empirical study of treatment
effects. We want to infer treatment effects to help
the planner select a good treatment rule.

THE SAMPLE DATA AND THE POPULATION
OF INTEREST

My concern with the problem of treatment choice
makes me part ways with Rosenbaum in the very
first paragraph of his article. Here Rosenbaum
downplays the importance of having sample data
that is representative of the population of inter-
est: “Studies of samples that are representative
of populations may be quite useful in describing
those populations, but may be ill suited to infer-
ences about treatment effects.” He cites with favor
a statement by Campbell asserting that external
validity has been overvalued in the literature on
program evaluation. Rosenbaum accepts the idea,
sometimes associated with Campbell, that studies



280 P. R. ROSENBAUM

of treatment effects should be judged primarily by
their internal validity and only secondarily by their
external validity.

A planner may find the Campbell-Rosenbaum po-
sition congenial if the planner has a strong prior be-
lief that treatment response is homogeneous across
the population of interest. If so, the planner may de-
termine the best treatment in some easily studied
subpopulation and then extrapolate to its comple-
ment. In human populations, however, homogeneity
of treatment response seems the exception rather
than the rule. Whether the context be medical or ed-
ucational or social, the norm seems to be that people
vary in their response to treatment, with the opti-
mal treatment varying from person to person.

A planner choosing a treatment rule for a hetero-
geneous population cannot easily extrapolate find-
ings on treatment effects from an easily studied sub-
population to its complement, as optimal treatments
in the two may differ. Hence the planner should
value sample data that is representative of the en-
tire population of interest. Indeed, the planner may
judge an observational study of the entire popula-
tion to be more useful than an ideally executed ex-
periment performed on a subpopulation.

PRIOR INFORMATION AND BOUNDS
ON TREATMENT EFFECTS

I imagine that Rosenbaum, and some others,
may react negatively to the assertion above. I
shall therefore elaborate, using notation similar to
Rosenbaum’s.

Let T denote the feasible treatments. Let w de-
note a person in the population Q). Let r,, denote a
real-valued outcome that w would experience if this
person were to receive treatment ¢. Let x, € X de-
note covariates of w that the planner can observe.
Let E(r,| x) be the mean outcome under treatment
t for persons with covariates x. Assume that the
planner wants to maximize the mean outcome in ().
It can be shown that an optimal treatment rule as-
signs to each person a treatment that maximizes the
mean outcome conditional on the person’s observed
covariates. Thus, an optimal treatment for persons
with covariates x maximizes E(r,|x)ont e T.

A study of treatment effects is useful to the plan-
ner to the extent that it reveals the ordering of
the conditional mean outcomes [E(r,|x), t € T] for
each x € X. Consider an experiment performed on
a subpopulation X, € X. The experiment identi-
fies [E(r,|x),t € T] for persons with covariates in
X, but reveals nothing about the outcomes of per-
sons with covariates in the complement subpopula-
tion X — X,. The usefulness of the experiment to

the planner depends on the fraction of the popula-
tion who have covariates in X, and on the credible
prior information the planner can use to extrapolate
from X to its complement (Manski, 1996).

Now consider an observational study performed
on the entire population. It is well known that an
observational study can be used to identify treat-
ment effects if sufficiently strong prior information
is available. Unfortunately, the prior information
needed to achieve identification is so strong that it
is rarely credible in practice (Manski, 1995, Chap-
ter 2). This being the case, my research program
has sought to determine what may be learned about
treatment response when observational studies are
combined with weak prior information that may be
deemed credible in practice. The findings generally
take the form of bounds on the conditional mean
outcomes [E(r,|x),t e T], x € X.

The starting point is the worst-case analysis of
Manski (1990); see Manski, Sandefur, McLanahan
and Powers (1992) for an empirical application.
This shows that if the outcome variable r is itself
bounded, then an observational study reveals infor-
mative bounds on [E(r,|x),t € T] for x € X, even
in the absence of prior information. However, the
bounds for different treatments necessarily inter-
sect, implying that prior information is necessary
if the planner is to rank treatments. Consequently,
in Manski (1990, 1994, 1995, 1997a) and Manski
and Pepper (2000), I have investigated the identi-
fying power of various nonparametric restrictions
on the distribution of treatment response or on the
process of treatment selection in an observational
study. Such prior restrictions enable the planner to
tighten the worst-case bounds on [E(r,|x),t € T]
for x € X.

Some forms of prior information may yield nonin-
tersecting bounds on mean outcomes under differ-
ent treatments. When this happens, the planner can
use an observational study to rank treatments. In
particular, the instrumental variable assumptions
used by economists in observational studies for over
50 years have this important property. See Man-
ski (1990, 1994), Manski and Pepper (2000) and
related work on experiments with imperfect com-
pliance by Robins (1989b), Robins and Greenland
(1996) and Balke and Pearl (1997). See Manski and
Nagin (1998) for an empirical application.

ROSENBAUM’S SENSITIVITY ANALYSIS

Another form of prior information that may yield
nonintersecting bounds is proposed by Rosenbaum



ALTERNATIVE TO CONTROL IN OBSERVATIONAL STUDIES 281

in his Section 4.3 discussion of sensitivity analy-
sis. Here Rosenbaum, who views the assumption of
ignorable treatment assignment as critical to the
interpretation of observational studies, considers
weakening this assumption in a particular manner.
His approach has elements in common with re-
search on robust statistics, which begins from some
central model and examines how the possibilities
for inference degrade as one moves away from that
model in specified ways. To Rosenbaum, the central
model is ignorable treatment selection conditional
on x.

Comment

James M. Robins

Rosenbaum provides a nice discussion of the role
of design choice as an alternative to analytic con-
trol using three actual observational studies as ex-
amples. My discussion will cover three distinct ar-
eas. First, I will comment on particular points made
by Rosenbaum. Second, I will complement Rosen-
baum’s discussion by presenting a thought experi-
ment that illustrates that the choice of an appro-
priate statistical analysis depends as much on the
design of the study and background subject-matter
knowledge as on the data.

In the third part of my discussion, I will review
special difficulties that arise in drawing causal in-
ferences from randomized or observational data in
the presence of time-varying or sequential treat-
ments or exposures and show how these difficulties
can impact on the choice of design. In particu-
lar, I will focus on testing for a direct effect of a
treatment on a disease outcome controlling for the
effects of a second later treatment. I will show that,
in the absence of unmeasured confounders, one can
construct valid tests of the null hypothesis of no di-
rect treatment effect in a prospective cohort study,
but not in a case—control study in which the con-
trol sampling fraction is unknown. In actual case—
control studies, the control sampling fraction is of-
ten unknown, as when controls are selected either

James M. Robins is Professor, Departments of
Epidemiology and Biostatistics, Harvard School
of Public Health, 677 Huntington Avenue, Boston,
Massachusetts 02115 (e-mail: robins@hsph.harvard.
edu).

Where Rosenbaum and I differ is that I do not
view the assumption of ignorable treatment selec-
tion to have a special status in observational stud-
ies of treatment effects. As an economist, I usually
am inclined to think that treatments are purpose-
fully selected and that comparison of outcomes plays
an important role in the selection process. Perhaps
the departures from ignorable treatment selection
that Rosenbaum entertains in his sensitivity analy-
sis can be interpreted behaviorally in terms of some
model of purposeful treatment selection, but for now
I do not see how.

by random digit dialing or from the case’s nearest
geographical neighbors. However, I will show that
when the disease under study is rare in the popu-
lation, as is often the case in case—control studies,
approximately valid tests of the direct effect null
hypothesis can be constructed.

1. COMMENTS ON PARTICULAR POINTS

Rosenbaum somewhat privileges studies based
on comparisons between groups at a given time
rather than within group or within subject com-
parisons over time. Although I would often agree
with this choice, I would not always. Indeed, single
subject randomized repeated crossover trials of a
particular intervention interspersed by washout pe-
riods seem quite reasonable, provided one believes
that the washout period is sufficiently long and the
number of repeats is large. In observational studies,
an analogous design is the so-called case-crossover
study of short-acting exposures (MacClure, 1991).
Such designs have been rather successful in con-
firming that unusually vigorous physical exertion
and sexual intercourse are triggers for myocardial
infarction, by demonstrating a higher than normal
incidence of the hypothesized triggering activity
in the hour or two before onset of chest pain. The
bouts of “treatment” are not assigned at random,
and so confounding factors, such as time of day, day
of the week, recency of a major meal, and so on,
need to be controlled for in the analysis.

In the minimum wage study of Rosenbaum’s Sec-
tion 2.2, I would have some concern that between-
state differences in employment could fluctuate
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by the amount theoretically attributable to the
minimum wage treatment for unrecorded reasons,
such as closure of a large manufacturing plant
or the election of a fiscally conservative governor.
Thus, I would be interested in seeing data on the
between-state differences in employment rates in
restaurants for many pairs of neighboring states,
neither of which changed their minimum wage.
This criticism is connected with the idea that it
may be inappropriate to view each restaurant’s em-
ployment as independent of one another. Further, a
state’s decision to pass a change in minimum wage
may be a consequence of poorly measured economic
and social factors that affect employment.
Although I agree with Rosenbaum that it is eas-
ier to get a clear idea about causal effects in studies
of abrupt short-lived treatments (provided the effect
of the brief treatment can be large), the policy ques-
tion at issue may concern long-term, low-dose treat-
ments such as determining the age-specific dose of
exogenous estrogens that would be optimal for post-
menopausal women or the risk associated with occu-
pational exposure to various levels of low-dose radi-
ation. In medical and epidemiological contexts, most
treatments are given over prolonged time intervals.
Finally, in studies with time-varying or sequential
treatments, one no longer has the option of follow-
ing Rosenbaum in defining a covariate as a variable
measured prior to treatment, because time-varying
covariates are prior to later treatments but affected
by earlier treatments. Often, the solution to this co-
nundrum is to base estimation on the g-computation
algorithm formula given in Section 3 below.

2. A THOUGHT EXPERIMENT

Consider the data given in Table 1; E is a cor-
rectly classified exposure of interest whose causal
effect on an outcome D we would like to ascertain;
E* is a possibly misclassified version of E. We are
interested in the effect of £ on D. Data on E, E*
and D are available on all study subjects. Sampling
variability can be ignored. I will now describe the
designs of three different studies. For each study,

the data are the same. Only the designs are differ-
ent. We wish to answer the following question for
each of the studies.

QUESTION. What association measure is most
likely to have a causal interpretation?

As a guide, we present some candidate association
measures. In Table 2, we calculate the exposure—
disease odds ratio ORy; = 2.33. We can also cal-
culate the conditional ED odds ratio within strata
of E*, that iS, ORED\E*:I = ORED|E*=O = 3. Simi-
larly, we calculate that ORg.p = 1and ORg.p|g_1 =
ORg.p|g—o = 0.6. We will report all associations on
an odds ratio scale, although this is by no means
the only or even the best scale on which to measure
the effect. This choice is dictated by the fact that
in study (a) below, the only population association
measures that are identified from the data are odds
ratios.

(a) CASE-CONTROL STUDY. Suppose the data
arose from a case—control study of the effect of a
particular nonsteroidal antiinflammatory drug (E)
on a congenital defect (D) that arises in the second
trimester of pregnancy. Cases (D = 1) are infants
with the congenital defect. Controls (D = 0) are
infants without the defect. The control sampling
fraction is unknown. Note that in case—control
studies the term “control” has a meaning differ-
ent from that in Rosenbaum’s paper. The data E*
were obtained one month postpartum by asking
each mother whether she had taken drug E dur-
ing the first trimester. The data E were obtained
from a comprehensive accurate HMO record of first
trimester medications. All relevant preconception
confounders and other drug exposures were con-
trolled by stratification. The data in Table 1 are
taken from a particular stratum.

(b) PROSPECTIVE COHORT STUDY. Suppose the
data were obtained from a follow-up study of total
mortality (D) in a cohort of short-term uranium
miners, all of whom only worked underground
in 1967. The follow-up is complete through 1997.
Suppose, for simplicity only, there is a biological
threshold dose below which exposure to radon is
known to have no effect on mortality. Let £ = 1
denote above-threshold exposure to radon as mea-

TABLE 1
D=1 D=0 TABLE 2
E*=1 E*=0 E*=1 E*=0 E=1 E=0
E=1 180 100 E=1 600 200 D=1 280 120
E=0 20 100 E=0 200 600 D=0 800 800
OR =9 OR =9 OR = 2.33
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sured with a perfectly accurate dosimeter. Simi-
larly, let E = 0 denote exposure to below-threshold
levels of radon. Each miner was also assigned
an estimated radon exposure based on area sam-
pling conducted in the particular mine in which
he was employed. Let E* = 1 denote an estimated
above-threshold radon exposure and E* = 0 denote
an estimated below-threshold radon exposure. The
investigators have stratified on the usual demo-
graphic factors and life-style risk factors (measured
in 1967) such as cigarette smoking and blood pres-
sure. The data come from a single joint level of all
these potential confounders. The original assign-
ment in 1967 of miners to particular mines was
unrelated to their underlying health status. Fur-
ther, a subject’s actual exposure E depends not only
on the level of radon E* in the mine but also on the
particular demands of the subject’s job, such as the
amount of exertion and thus the minute ventila-
tion required to perform the requisite work. Thus,
a subject’s actual radon exposure E can differ from
the estimated exposure E*.

(¢) RANDOMIZED CLINICAL TRIAL. Suppose the
data were obtained from a randomized follow-up
study of the effect of low fat diet on death (D) over
a 15-year follow-up period. Study subjects were ran-
domly assigned to either a low fat diet educational
and motivational intervention arm (E* = 1) or to
a standard care arm (E* = 0). Investigators were
able to obtain accurate measures of the actual diet
followed by the study subjects: E = 1 if a study sub-
ject followed a low fat diet, and E = 0 otherwise.
Assume E* has no direct effect on death (D) except
through its effect on actual fat consumption E.

2.1 Answers

We now provide the appropriate answers followed
by a discussion. In the case—control study (a), the
best choice is the marginal odds ratio ORpp = 2.33.
The other measures are biased. In particular, the
conditional odds ratio ORgp | p- = 3 is biased in the
sense that it fails to equal the causal effect of expo-
sure on disease among subjects within a particular
stratum of E*. That is, ORgp | g- does not equal the
conditional causal odds ratio

ORcausal, ED|E*
{P[D(1) = 1| E*]P[D(0) = 0| E*]}

{P[D(1) = 0| E¥]P[D(0) = 1| E*]}’
where D( j) is a subject’s potential or counterfactual
outcome under exposure level j.

In the prospective cohort study (b), the best choice
would be the conditional odds ratio ORpg |z = 3,
although, as explained below, even this measure is

probably somewhat biased in the sense that it dif-
fers from the E*-stratum-specific causal effect of ex-
posure on disease.

In the randomized trial (c), the best choice is the
marginal E*D association ORg.;, = 1, suggesting
that the exposure E has no causal effect on the out-
come D. In this case, both the marginal associa-
tion ORgzp = 2.33 and the conditional association
ORpp|g- = 3 are biased estimates of the causal ef-
fect of E on D. These answers clearly show that
the appropriate statistical analysis depends on the
design.

2.2 Justification of the Answers

2.2.1 Causal graphs. To justify the answers, we
first digress and describe causal directed acyclic
graphs (DAGS) as discussed by Pearl and Verma
(1991), Spirtes, Glymour and Scheines (1993), Pearl
(1995), Pearl and Robins (1995) and Greenland,
Pearl and Robins (1999). We first provide an infor-
mal discussion. Formal justification will be given in
the Appendix.

Informally, a causal graph for the measured vari-
ables in a study is a directed acyclic graph (DAG)
in which the vertices (nodes) of the graph represent
variables measured at specific times, the directed
edges (arrows) represent direct causal relations and
there are no directed cycles, because no variable can
cause itself. The variables represented on the graph
include the measured variables and additional un-
measured variables, such that if any two variables
on the graph have a cause in common, that common
cause is itself included as a variable on the graph.
For example, in Figure 1, E and D are the mea-
sured variables; U represents all unmeasured com-
mon causes of £ and D. We have made the arrow
from E to D dotted to represent the fact that the
purpose of data collection is to determine whether
E causes D (i.e., whether the arrow from E to D is
actually present).

Suppose our goal is to use the assumptions en-
coded in our causal graph to determine whether the
association ORgp between E and D represents the
causal effect of £ on D as measured on an odds ra-
tio scale. To do so, we proceed as follows. We begin
by pretending that we know that the null hypothe-
sis of no causal effect of E on D is true by removing
the arrow from E to D. If, under this null hypothe-
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sis, E and D are still associated, then obviously the
association does not reflect causation, and we say
that the association is confounded. The existence of
a common cause U of E and D will make E and
D associated even under the causal null. If data on
U have not been recorded for data analysis, con-
founding is intractable and we cannot identify the
causal effect of E on D. However, if data on U are
available, the conditional associations OR gp |y will
represent the causal effect of E on D within strata
of U. This reflects the fact that, under the causal
null hypothesis of no arrow from E to D, if we condi-
tion on all common causes U, then E and D will be
conditionally independent. Intuitively, among sub-
jects with identical values of U, E and D can have
no common cause and thus should be independent.
Furthermore, it is a general result that if £ and
D are (conditionally) independent under the causal
null, then, under the causal alternative, the (condi-
tional) association between E and D will reflect the
(conditional) causal effect of E on D. Next we con-
sider the graphs in Figures 2 and 3, where, in addi-
tion to E and D, the variable C has been measured.
We say a variable U is a cause of another variable,
say E, if there is a directed path (sequence of di-
rected arrows) from U to E. Thus, in Figure 3, U
remains a common cause of E and D although it
is not a direct cause of E. It follows that, in both
Figures 2 and 3, the marginal association OR gy, is
confounded because E and D will be marginally as-
sociated even under the causal null. However, the
unmeasured variable U will not function as a com-
mon cause of E and D within strata of C. Thus
ORgp|c-1 and ORgp|c—o will represent the causal
effect of £ on D within strata of C.

Consider next Figure 4. There are no unmea-
sured common causes of £ and D. Hence, under
the causal null hypothesis of no arrow from E to D,
E and D will be uncorrelated. It follows that the
marginal association ORg; represents the causal

F1G. 2.
C—F—
</ D
Fic. 3.

Fic. 4.

effect of E on D. In contrast, the conditional associ-
ation ORpp ¢ will not be equal to the causal effect
of E on D within strata of C, because, under the
causal null, £ and D will be conditionally depen-
dent within strata of C. To see why, note that the
measured variable C is a common effect of E and D.
Under the causal null, the common causes E and
D of C are independent. However, when one condi-
tions on the common effect of independent common
causes, the common causes will be conditionally de-
pendent. To see why, consider the following example
due to Pearl (1988). Suppose E encodes whether a
sprinkler is on, D encodes whether it is raining and
C is the indicator of whether the grass is wet. Then
if it rains at random times of the day and the sprin-
kler is set to go on at times that do not depend on
whether it is raining, clearly E and D will be in-
dependent, even though they both cause the grass
to be wet (C). If we condition on the fact that the
grass is wet (C = 1), and I tell you that it is not
raining (E = 0), then you will know for certain that
the sprinkler is on (D = 1). But if I tell you that it
is raining, the probability that the sprinkler is on
will not be increased above its marginal probability.

An extension of this last example provides an ex-
planation of the well-known adage that one must
not adjust for variables affected by treatment. To
see why, consider the graph in Figure 5, in which
the exposure E has a direct causal effect on C,
and C and D have an unmeasured common cause
U. Under the causal null with the arrow from E
to D removed, E and D will be unassociated be-
cause they do not have an unmeasured common
cause. Thus, the marginal association ORgp will
represent causation. However, the conditional as-
sociations ORgp|c—1 and ORpgp|c—o will be biased
for the conditional causal effect within levels of C.
This reflects the fact that, under the causal null, E
and U will be associated once we condition on their
common effect C. Thus because U itself is correlated
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with D, E and D will be conditionally associated
within levels of C.

With this background, we are ready to justify the
answers given above.

2.2.2 Justifications

JUSTIFICATION FOR (a). We first argue that the
causal graph representing our case—control study
is as given in Figure 6. By assumption, we need
not worry about unmeasured preconception con-
founders U. Further, we know that if there is an
arrow between E and D, it goes from E to D be-
cause the HMO records were created in the first
trimester, prior to the development of the second-
trimester congenital defect. Also actually taking
a medicine will be a cause of a woman reporting
that she took a medicine. Hence the arrow from E
to E*. Finally, because a woman’s self-report E* is
obtained after the woman discovers that her child
has a congenital defect (D), it is at least conceiv-
able that D is a cause of E*. In fact, it is suspected
that women whose children have a congenital de-
fect do a much more thorough job of searching
their memory for potential causes of that defect
and thus are more likely to recall that they actu-
ally took a particular medicine than are women
whose children are normal. Furthermore, women
of children with a defect may falsely recall hav-
ing taken the drug in an attempt to come up with
some explanation for the defect. Thus, D may well
be a cause of E*. Indeed, if, as we have assumed,
the only open question is whether there is an ar-
row from D to E*, we can use the data to confirm
that indeed such an arrow exists. For if it did not,
E* and D would be independent within levels of
E, because conditioning on all common causes of
causally unconnected variables renders them in-
dependent. But one can check from Table 1 that,
among subjects with £ = 1, D and E* are corre-
lated. Now Figure 6 is isomorphic to Figure 4 with
E* playing the role of C. Thus, as in Figure 4, we
conclude that the marginal association ORpgp is
causal but the conditional association ORgp | p. will
differ from the conditional causal effect of exposure
and disease within strata of E*. Mistakenly inter-
preting ORpp|z- = 3 as causal could in principle
lead to poor public health decisions, as would occur
if a cost-benefit analysis determines that a condi-

FiG. 6.

tional causal odds ratio of 2.9 is the cutoff point
above which the risks of congenital malformation
outweigh the benefits to the mother of treatment
with E. Finally, a possibility that we have not con-
sidered is that those mothers who develop, say, a
subclinical infection in the first trimester are both
at increased risk of a second trimester congenital
malformation and of worsening arthritis, which they
may then treat with the drug E. In that case, we
would need to add to our causal graph an unmea-
sured common cause U of both E and D that repre-
sents subclinical first-trimester infection, in which
case ORgp would be confounded.

JUSTIFICATION FOR (b). In the prospective co-
hort study, sufficient information is given so that
we know there is no confounding by unmeasured
preemployment factors. Yet, as noted above, E* is
associated with D given E. Now E*, which is a
measure of the level of radon in mines, cannot itself
directly cause death other than through its effect on
a subject’s actual radon exposure E, so that there
cannot be a direct arrow from E* to D. However,
because E* was measured prior to death, D cannot
be a cause of E* either. The most reasonable expla-
nation for these facts is that E* is a surrogate for
some other unmeasured adverse causal exposure
in the mine (say silica). Thus we might consider
the causal graph shown in Figure 7. In this figure,
Mine represents the particular mine in which the
subject works. It is plausible that mines with high
levels of radon may have low levels of silica-bearing
rock (because silica-bearing rock is not radioactive).
Therefore, E* and silica will be negatively corre-
lated. If Figure 7 is the true causal graph (with
Mine and silica being unmeasured variables), then,
under the causal null hypothesis in which the ar-
row from E to D is removed, E and D will still
remain correlated because Mine is an unmeasured
common cause of E and D. However, within lev-
els of E*, Mine no longer can act as a common
cause. Hence, under the causal null, there will be
no conditional association between E and D given
E*, which would imply that ORpg g has a causal
interpretation. In contrast, the conditional associ-
ation ORg.p g = 0.6 represents not a protective
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effect of E* on D, but rather the negative correla-
tion between E* and silica conjoined with the ad-
verse causal effect of silica on D.

However, Figure 7 probably does not tell the
whole story. Recall that the radon level in the mine
E* can differ from a worker’s actual level E because
the demands of the worker’s job also determine E.
Similarly, one would expect that the demands of the
job also determine a worker’s actual silica exposure
in conjunction with the air levels of silica associ-
ated with the mine. Hence, a more realistic causal
graph would probably be Figure 8. On this graph,
under the causal null in which the arrow from E to
D has been removed, job demands are an unmea-
sured common cause of both £ and D even when
we condition on E*, precluding unbiased estimation
of the causal effects of E on D.

JUSTIFICATION FOR (c). The study is a typical
randomized trial with noncompliance and is repre-
sented by the causal graph in Figure 9 (Balke and
Pearl, 1997). Because E* was randomly assigned, it
has no arrows into it. However, given assignment,
both the decision to comply and the outcome D may
well depend on underlying health status U; E* has
no direct arrow to D, because, by assumption, E*
causally influences D only through its effect on E.
We observe that, under the causal null in which
the arrow from E to D is removed, E and D will
be associated due to their common cause U both
marginally and within levels of E*. Hence, neither
ORgp nor ORgp - will have a causal interpreta-
tion. However, under the causal null, E* and D
will be independent, because they have no unmea-
sured common cause. Hence we can test for the
absence of an arrow between E and D (i.e., lack of
causality) by testing whether E* and D are inde-

MINE—>SILICA— SILICA —__

Job Demands

FiG. 8.

FiaG. 9.

pendent. But this, of course, is just the standard
intent-to-treat analysis of a randomized trial. Thus,
even in the presence of nonrandom noncompli-
ance, an intent-to-treat analysis provides for a valid
test of the causal null hypothesis that E does not
cause D. Since ORg.p = 1, we conclude it is likely
that E does not cause D. Had there been an E*D
association, then we would in fact know that E
caused D but we would not be able to determine its
magnitude by standard methods, that is, by com-
puting ORgp or ORgp g-. In fact, the magnitude
of the causal effect on the study population is not
identified, and one can only compute the bounds
for it. Under further assumptions, Angrist, Im-
bens and Rubin (1996) show how to compute the
magnitude of the effect on the subset of the study
population who complied with their assigned treat-
ment. Note that it is logically possible that even
though the E*D association is absent, nonetheless,
E does cause D in some individuals and/or protects
against D in others. However, this scenario is prob-
ably less likely. Finally, note that the conditional
association ORg.p g = 0.6 fails to have a causal in-
terpretation. This reflects the fact that, under the
causal null of no arrow from E to D, E* and D will
be conditionally associated within levels of E, be-
cause E is a common effect of both E* and U and
U is a cause of D.

COMMENTS. I would not be surprised if many
readers are somewhat taken aback by my reduc-
tion of complex phenomena to simple graphs that I
then blithely endow with causal interpretations, so
here is a defense. Yes, the world is much more com-
plex than I have made out but if we do not learn
how to reason correctly in simple causal Gedanken-
experiments like that above, we have no chance
of success in realistic situations. Indeed, the his-
tory of epidemiologic methods can be read as an
increasingly systematic approach to recognize and
classify settings where association is not causation.
In 1980, before I had heard of either counterfactu-
als or causal graphs, I would have answered the
questions above successfully, but my answers would
have required much more story telling and appeal
to heuristic study-specific arguments. As a result,
these earlier explanations did not easily generalize
and were often difficult for students unfamiliar with
epidemiological studies to grasp. The development
of formal counterfactual causal models for sequen-
tial and time-varying treatments (Robins, 1986,
1987) in the 1980s helped to codify the underlying
common principles, but the insights gleaned from
these models were often hard to communicate in
the “vernacular” to mathematically untrained epi-
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demiologists. The recognition by Pearl (1995) and
Spirtes, Glymour and Scheines (1993) that these
formal causal models could be encoded in causal
DAGS and that complex statistical relations be-
tween variables could also be encoded in the simple
graphical representations and algorithms described
above is an advance, with positive effects on both
clarity of thought and ease of communication.
Having said this, I admit I remain nervous about
the ease with which users can be convinced they un-
derstand a causal process by reifying it in graphs.
Part of the difficulty is that unsophisticated users do
not really appreciate all the assumptions encoded in
a causal graph, and thus treat the world as if it were
no more complex than our Gedankenexperiment. In-
deed, the informal explanation of the graphs I gave
above glosses over certain subtleties that are dis-
cussed in the Appendix. One important point is that
identification of causal effects from observational
data is only possible if one can assume that there
are certain pairs of variables with no important un-
measured common causes. As emphasized by Rosen-
baum, good design choices can make such an as-
sumption more plausible. However, often the more
knowledge one has about the substantive area un-
der investigation, the less plausible such assump-
tions may seem. For example, in the above case—
control study, non-subject-matter experts may not
have had the background needed to recognize the
possibility that a subclinical first-trimester infection
might be a common cause of exposure to E and the
outcome D. But, of course, whether or not one uses
graphs as aids to causal reasoning does not change
the fact that it takes highly skeptical subject-matter
experts to elaborate the rich, complex causal stories
that comprise the alternative causal theories whose
importance Rosenbaum rightly emphasized.

3. SEQUENTIAL TREATMENTS

In Section 3.1, I will illustrate in the simplest pos-
sible setting the difficulties that can arise in draw-
ing causal inferences from randomized or observa-
tional studies with time-varying or sequential treat-
ments. In Section 3.2, I will discuss the implications
of these difficulties for the design of case—control
studies.

3.1 A Sequential Randomized Trial

3.1.1 Description of the trial. The event tree in
Figure 10 represents the data obtained from a hy-
pothetical (oversimplified) sequential randomized
trial of the joint effects of AZT (A,) and aerosolized
pentamidine (A;) on the survival of AIDS pa-
tients (Robins, 1997). AZT inhibits the AIDS virus.

Aerosolized pentamidine prevents pneumocystis
pneumonia (PCP), a common opportunistic infec-
tion of AIDS patients. The trial was conducted as
follows. Each of 32,000 subjects was randomized
with probability 0.5 to AZT (A, = 1) or placebo
(A, = 0) at time ¢,. All subjects survived to time ;.
At time ¢, it was determined whether a subject had
had an episode of PCP (L; = 1) or had been free of
PCP (L, = 0) in the interval (¢, t;]. Because PCP
is a potential life-threatening illness, all subjects
with L; = 1 were treated with aerosolized pen-
tamidine (AP) therapy (A; = 1) at time ¢;. Among
subjects who were free of PCP (L; = 0), one-half
were randomized to receive AP at ¢; and one-half
were randomized to placebo (A; = 0). At time ¢,
the vital status was recorded for each subject with
Y =1 if alive and Y = 0 if deceased. We view A,
Ly, A,,Y as random variables with realizations
ag, 11, a1, y. All investigators agreed that the data
supported a beneficial effect of treatment with AP
(A; = 1) because among the 8,000 subjects with
Ay =1 and L; = 0, AP was assigned at random
and the survival rates were greater among those
given AP:

P[Y=1|A1=1,L1=O,AO=1]
=3/4—1/4=1/2.

The remaining question was whether subjects,
given that they were to be treated with AP, should
also be treated with AZT. That is, we wish to deter-
mine whether the direct effect of AZT on survival
controlling for (the potential intermediate vari-
able) AP is beneficial or harmful (when all subjects
receive AP). The most straightforward way to ex-
amine this question is to compare the survival rates
in groups with a common AP treatment who differ
on their AZT treatment. Reading from Figure 10 we
observe, after collapsing over the data on L;-status,
that

P[Y:1|A0:1,A1:1]
—7/12 - 10/16 = —1/24,

suggesting a harmful effect of AZT. However, the
analysis in (3.2) fails to account for the possible
confounding effects of the extraneous variable PCP
(L1). (We refer to PCP here as an “extraneous vari-
able” because the causal question of interest, i.e.,
the question of whether AZT has a direct effect on
survival controlling for AP, makes no reference to
PCP. Thus adjustment for PCP is necessary only in-
sofar as PCP is a confounding factor.) It is commonly
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accepted that PCP is a confounding factor and must
be adjusted for in the analysis if PCP is (a) an inde-
pendent risk (i.e., prognostic) factor for the outcome
and (b) an independent risk factor for (predictor of)
future treatment. By “independent” risk factor in (a)
and (b) above, we mean a variable that is a predictor
conditional upon all other measured variables occur-
ring earlier than the event being predicted. Hence,
to check condition (a), we must adjust for A, and
Ajq; to check condition (b), we must adjust for A,.

Reading from Figure 10, we find that conditions
(a) and (b) are both true:

05=P[Y =1|L;=1,4y=1,A; = 1]
=0.75

and
1=P|A;=1|L,=1,A,=1
o =112 =140 -1]

The standard approach to the estimation of the
direct effect of AZT controlling for AP in the pres-
ence of a confounding factor (PCP) is to compare

survival rates among groups with common AP and
confounder history (e.g., L; = 1, A; = 1) but who
differ in AZT treatment. Reading from Figure 10,
we obtain

P[Y=1|A¢=1,L,=1,4A,=1]
— P[Y=1|Ay=0,L;=1,4,=1]
= 4,000,/8,000 — 10,000,/16,000
=—1/8.

(3.5)

Hence the analysis adjusted for PCP also suggests
an adverse direct effect of AZT on survival control-
ling for AP.

However, the analysis adjusted for PCP is also
problematic, because, as discussed in Section 2 and
in Rosenbaum (1984) and Robins (1986, 1987), it is
inappropriate to adjust (by stratification) for an ex-
traneous risk factor for the outcome that is itself
affected by treatment. Reading from Figure 10, we
observe that PCP is affected by previous treatment,
that is,
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Thus, according to standard rules for the esti-
mation of causal effects, one cannot adjust for the
extraneous risk factor PCP, because it is affected
by a previous treatment (AZT); yet one must adjust
for PCP because it is a confounder for a later treat-
ment (AP). Thus it may be that, in line with the
adage that association need not be causation, nei-
ther (3.2) nor (3.5) may represent the direct causal
effect of AZT controlling for AP. Because both treat-
ments (AZT and AP) were randomized, one would
expect that there should exist a “correct” analy-
sis of the data such that the association observed
in the data under that analysis has a causal in-
terpretation as the direct effect of AZT controlling
for AP. In the next subsection, we derive such a
“correct” analysis based on the G-computation al-
gorithm of Robins (1986). We show that there is no
direct causal effect of AZT controlling for AP. That
is, given that all subjects take AP, whether or not
AZT is also taken is immaterial to the survival rate
in the study population.

Suppose, however, the data from our trial were
as in Figure 11. We shall show in the next subsec-
tion that when the data in Figure 11 are appropri-

ately analyzed using the G-computation algorithm,
the analysis reveals a direct AZT effect.

3.1.2 The G-computation algorithm. In this sub-
section, we describe how to analyze the data from a
simple sequential randomized trial. In a study with
sequential treatments, let Ax = (Aq, Ay, ..., Ag)
be the temporally ordered (K + 1)-vector consist-
ing of the treatment variables of interest. Denote
by ¢, the time at which treatment A, is received.
Let L, be the vector of all variables whose tem-
poral occurrence is between treatments A, ; and
A, with L, being the variables preceding A, and
Ly | being the variables succeeding Ag. Hence,
Lg,1=(Lyg,..., Lg.1) is the vector of all nontreat-
ment variables. For notational convenience, define

A_,L_4,V_; to be identically 0 for all subjects.
We view Ag as a sequence of treatment (control,
exposure) variables whose causal effect on the as-
sumed univariate outcome Y = Lg,;, measured
at the end of the study, we wish to evaluate. Let
a =ag = (ayg, -..,ag) denote possible realizations
of the random vector Ag. Let Y (@) be the counter-
factual variable representing a subject’s outcome if,
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possibly contrary to fact, the subject had received
the treatment @ rather than the observed treat-
ment A .

Sequential randomization guarantees that, for
any a, treatment A, received at ¢, is conditionally
independent of Y (@) given the observed past L,
A1 =a,1:

(3.7) Y@ ][] A | Ly Aoy = Gprs

which we refer to as the assumption of no un-
measured confounders. It is a sequential version
of Rosenbaum and Rubin’s (1983) strong ignora-
bility assumption. Under natural consistency and
positivity assumptions, Robins (1987) proves the
following.

THEOREM 3.1. Equation (3.7) implies

Fy@ (|1 Ly =104 Ay 1 =0 1)
(3.8) 2/"'//f(ylfK,EK)
K

~IT Fle; 1, 1,a; 1) du(e;),

j=k+1

fY(a)(y)=/"'//f(y|zx,51<)
(3.9) K B
118 0@ 1) du(e)),
j=0

where w is a dominating measure and the un-
subscripted densities refer to densities of the
non-counterfactual random variables, for exam-
ple, f(y|lg,ax) = fy(y|Lg = lx,Ag = ag).
The RHS of (3.9) is known as the g-computation
algorithm formula or functional (Robins, 1986).
Equation (3.9) states that the marginal density of
Y (@) is obtained from the joint distribution of the
observables by taking a weighted average of the
f(y | Lk, ag) with weights proportional to

K
o(lg)= [ F[e;1¢;-1,@;1].
=0

Equation (3.8) has a similar interpretation except
that it conditions on the covariate history £, a;_;.

EXAMPLE. A correct analysis of the trial of Section
3.1.1. We can use (3.9) to calculate causal effects.
For example, suppose the data in the trial were as in
Figure 10, and we let K =1,L,=0,Y = L,. Then
the probability a subject would survive to t5(Y =
1) if all subjects were treated with AZT at ¢, and

aerosolized pentamidine at ¢; is fy(g)(y = 1) with
a =(1,1) and equals, by (3.9),

Zf(y =1]€1,a,)f (€1, @)
4

=fly=1lt=la3=1,a0=1)
fltr=1]ag=1)
+f(y=1|61:0,a0:1,a1=1)
f(gl :Ola():l)
_ (4,000 ( 8,000
~ 18,000/ \ 16,000
N 3,000 / 8,000
4,000/ \ 16,000
10,000
~16,000°
Similarly, fyg(y = 1) for @ = (0,1) is 10,000/
16,000. Hence, there is, by definition, no direct ef-
fect of AZT on survival controlling for AP (when all

subjects take AP).
In contrast, if the data arose from Figure 11, then

fy@=a,1(y=1)
B 300 4,400
~\1,300/\ 8,800

400 \ /4,400
+ <4,400> <8,800) =012

fy@—.1)(y = 1) = 1,000/7,000 = 0.14,

and

indicating an adverse direct effect of AZT on sur-
vival.

REMARK. In observational studies with sequen-
tial treatments, it is a primary goal of an epidemiol-
ogist to collect in L, data on a sufficient number of
covariates to try to make assumption (3.7) at least
approximately true. However, (3.7) cannot be guar-
anteed to hold even approximately and is not subject
to empirical testing.

3.2 Implications for the Design and Analysis of
Case-Control Studies

In an observational case—control study one col-
lects treatment and covariate data on all cases
(deaths) and a random sample (the controls) of
the survivors. If the cohort data is as in Figure 10
and we use a control sampling fraction of 0.1, the
case—control data will be precisely the data in Fig-
ure 11. If the cohort data is as in Figure 11 and
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we use a control sampling fraction of 1.0, the case—
control data will again be the data in Figure 11.
Thus, if we have collected the data in Figure 11 in
a case—control study with an unknown sampling
fraction, we cannot determine if the full cohort data
is as in Figure 10 or as in Figure 11, and thus
we cannot deduce whether or not AZT has a di-
rect effect on survival. That is, even given (3.7), the
causal null hypothesis of no direct AZT effect is not
identified from case—control data with an unknown
control sampling fraction.

In contrast, given that (3.7) holds, one can test
the sharp null hypothesis

Y(a) =Y with probability 1 for all @

of no joint effect of the treatments A, and A; on
survival from case—control data with an unknown
sampling fraction based on the following g-null the-
orem proved in Robins (1986).

THEOREM 3.2. The right-hand side of (3.8) is the
same for all @ and k if and only if, for each k,

(3.10) Y[[A, Ly Ay

Theorem 3.2 implies that, in the trial in Sec-
tion 3.1.1, if the sharp null hypothesis of no joint
treatment effect were true, then it would be the
case that pr(Ay =1|Y =1) =pr(4,=1|Y =0)
andpr(A;=1|Y=1,L, Ay)=pr(A; =1]Y =0,
L, Ay). Note that each of these conditional prob-
abilities can be identified from case—control data;
thus, their values are the same in Figure 10 as in
Figure 11. Further, calculating from either figure,
we find that both equalities are false so the joint
null hypothesis is rejected. Given (3.7), with nonse-
quential treatments (i.e., K =0, so Ax = A,) as in
Section 2, the casual marginal odds ratio

{pr(Y (1) = 1]pr[Y(0) = 0]}
{pr[Y (1) = 0]pr[Y (0) = 1]}
can be identified from case—control data, when L, =

0. Under the these same conditions, with sequential
treatments, the causal marginal odds ratios

ORcausal(a07 al)
{pr[Y(ao, a;) = 1]pr[Y (0, 0) = 0]}

{pr[Y(aO, al) = O]pr[Y(O, O) = 1]}
cannot be identified from case—control data with
unknown sampling fraction, whenever the joint
causal null is false. To prove this result, one simply
evaluates the causal marginal odds ratios using the
g-computation algorithm formula separately in
Figures 10 and 11, and notes that two different
answers are obtained.

OR causal —

APPROXIMATELY VALID INFERENCE FOR RARE OUT-
COMES. Define w(aq, 4, ag) = 1/P(A; = a1 |L; =
li, Ay = ap) and W = w(A;, L, Ap). Results on
inverse probability of treatment weighted estima-
tors of marginal structural models in Rgbins (1999)
imply that if we obtain an estimator B of the pa-
rameter B of the logistic regression model log it
P(D = 1[Ay, A1) = Bo+ B1Ag + B2A1 + B3AgA,
by fitting our case—control data by weighted lo-
gistic regression with subject-specific weights
W, then exp(Biay + Boa; + Bsaga;) will, under
(3.7) with L, = 0, converge to OR_ ,..(ag, 1)
In particular El and 33 will converge to zero if
AZT (Ay) has no direct effect controlling for A;.
Now in an observational case—control study with
unknown control sampling fraction, W is not
identified. However, if the outcome is rare (e.g.,
P(D = 1Ay, A, L) < 0.03 with probability 1),
then w(a;, I;, ag) is, in general, approximately
equal to w*(aq,li,a¢) = 1/P(A; = a;|L; = [,
Ay = ay, Y = 0), which can be estimated from
case—control data with unknown control sampling
fraction. Thus, to obtain approximately valid es-
timates and tests for a the direct effect of A,
controlling for A, one fits the above logistic model
using estimated weights W* = w*(A, Lq, Ay).

APPENDIX: CAUSAL GRAPHS AND
CONFOUNDING

Robins (1986, 1987) proposed a set of counter-
factual models based on event trees, one of which
is a causal graph as defined below. Let G be a di-
rected acyclic graph (DAG) with nodes (vertices)
V = (Vi,...,Vy), where a DAG is a graph in
which all edges are directed and there are no di-
rected cycles. If on a DAG G there is a directed
edge (equivalently, arrow or arc) from V, to V,,, we
say V, is a parent of V,,. If there is a sequence of
directed edges from V, to V,,, we say that V, is an
ancestor of V,, and V,, is a descendant of V. We
let G* be the complete graph (i.e., graph with no
missing arrows) in which V,, ; = (V4,...,V,,_1)
are V,’s parents, where we always choose the or-
der of the V,’s such that G is a subgraph of G*
(i.e., G is obtained from G* by removing arrows).

Statistical DAGs. A law Fy of V is represented

by a DAG G, if the law has a density fy(v) that
factorizes as

M
(A.1) fv(v)= l_[ij|Paj(vj|paj)a
Jj=1

where Pa; are the parents of V; on G and pa;

and v; are realizations. Geiger, Verma and Pearl
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(1990) showed that if (A.1) holds, then, for any dis-
joint sets of variables X, Y and Z contained in
V, X and Y are conditionally independent given
Z (ie, X]1Y|Z)if X and Y are d-separated by
Z on G (written (X[[Y | Z)g). D-separation is a
purely graphical criterion described by Pearl (1995)
as follows.

DEFINITION (d-Separation). Let X, Y and Z be
three disjoint subsets of nodes in a directed acyclic
graph G, and let p be any path between a node in X
and a node in Y, where by “path” we mean any suc-
cession of arcs, regardless of their directions. Then
Z is said to block p if there is a node w on p satis-
fying one of the following two conditions: (i) w has
converging arrows along p, and neither w nor any of
its descendants is in Z; (ii) w does not have converg-
ing arrows along p, and w is in Z. Further, Z is said
to d-separate X from Y, in G, written (X [[Y | Z)q,
if and only if Z blocks every path from a node in X
to anode in Y.

Definition of causal graphs. For any subset of
variables X Cc V, let V, (x) be the random variable
encoding the value of the variable V,, had, possibly
contrary to fact, X been set to x. Note here we have
assumed that the variables X are manipulable and
that the counterfactuals V,, (x) are well defined.

DEFINITIONS (Robins, 1986, pages 1419-1423).
We say the following:

(a) The complete DAG G* is a finest causal
graph if (i) V,; and all one-step-ahead counter-
factuals V,,(7,,_1) exist for m > 1 and (ii) the
observed variables V and, for any subset X con-
tained in V, the counterfactual variables V, (x)
are obtained by recursive substitution, for example,
Vi = Va{Vy, Vo(V)} Va(vy) = Vi{ug, Va(v)},
V3(vg) = V3{V 1, v5};

(b) DAG G is a finest causal graph if G* is a finest
causal graph and V,,(v,,_;) = V,,(pa,,) depends on
U,,_1 only through V, ’s parents on G;

(c) a finest causal graph is a finest fully random-
ized causal graph if, for all m,

{Vm+1(vm—1a Um), ey VM(Vm—l’ Upps oo+
]—[ Vm |7m71’

DEFINITION. We simply say G is a causal graph if
it is a finest fully randomized causal graph.

> UM—l)}

Pearl (1995) originally gave an alternative, but
equivalent definition of a causal graph as a non-
parametric structural equations model.

It is easy to show that if G is a causal graph
over variables V, then the density fv(v) factorizes
as in (3.1). Furthermore if we let V = (Ag, Lg.;)

with Ag, L., as defined in Section 3.1.2, so that
the variables in A;, and L, ; are nondescendants
of A, .4, then G being a causal graph implies that
the assumption (3.7) of no unmeasured confounders
holds.

A.1 Confounding

The results in this section provide the formal jus-
tification for our informal analysis of the thought
experiment in Section 1.

REMARK. Our formal results will only use the
fact that the law of V is represented by a given DAG
G and that the assumption (3.7) of no unmeasured
confounders holds. In particular they do not require
that G be a causal graph. Indeed they do not re-
quire that any other counterfactuals other than the
counterfactuals Y (@) be well defined, so we do not
need to think of the nontreatment variables Ly,
as manipulable.

Suppose we believe (3.7) holds but that a subset
U k.1 of the variables L., is not observed. The ob-
served subset Ok, of Ly, includes the outcome
variable Y = Ly 4. Define U, = L, N Ug,; and
0, = L, N Ok, to be the unobserved and observed
nontreatment variables through time ¢,. The goal
of this section is to define restrictions on the joint
distribution of V = (L., Ag) = (L, A) such that
(3.7) will imply that

(A.2) Y(@)][[AL1 O Ay =ay

because, then, by Theorem 3.1, fy(g)(y) is identified
from data (Ag, Ok, ;) and can be computed by the
g-computation algorithm formula (3.9) with o sub-
stituted for ¢.

We now present a sufficient graphical condition
for this result under the assumption that the law of
V is represented by the statistical DAG G; that is,
(3.1) holds. Let G4 be the DAG that has no arrows
out of A,, has no arrows into the A,, for m > &
and is elsewhere identical to G. We then have the
following.

THEOREM A.1 (Pearl and Robins, 1995). If
#3) (YA OnA,),. k=K,

a
k

then (3.7) implies (A.2).

Here (A]] B| C)Gi stands for d-separation of A

and B given C in GY (Pearl, 1995). Note that check-
ing d-separation is a purely graphical (i.e., visual)
procedure. Pearl (1995) had earlier proved Theorem
A.1 for non-sequential treatments (i.e., in the case
K = 0) and named it the no-back-door path crite-
rion.
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A.1.1 Application to the analysis of Section 2. We
repeatedly used Theorem A.1 in our analysis of the
three hypothetical studies in Section 2 with £ = A,
and D = Y. For example, when E* was tempo-
rally prior to E, we used (A.3) to determine whether
(A.2) was true with K = 0 and O, = E*, because
(A.2) implies, by (3.8) with o substituted for ¢, that
ORgp |- equals the conditional causal odds ratio
OR cousal, Ep | B+ @8 defined in Section 2

Equation (A.3) can be expressed in terms of the
associations of the observed and unobserved vari-
ables in a manner more familiar to epidemiologists.
Let G%* be the DAG that differs from G% only in
that arrows on G that were out of A, are restored.
We then have

THEOREM A.2 (Pearl and Robins, 1995; Robins,
1997). Equation (A.3) is true if and only if, for k <
K, U, =(Uy,, Uy) for possibly empty mutually ex-
clusive sets Uy, Uy, satisfying () (U, 11 A, | Oy,
Ak—l)Gak and (11) (Uak]—[ Y| Ok7 Ak, Ubk)GE'k'

REMARK. The set U,, need not be contained in
U,(r+1), and similarly for Uy,. Also Uy, can always
be taken to be the largest subset of U, satisfying the
assumption in (i). The special cases of Theorem A.2
in which treatment is time independent (K = 0) and
either U, or U, is the empty set are the standard
conditions for nonconfounding taught in first-year
epidemiology courses.

Robins (1994) also proved the following.

THEOREM A.3 Equation (A.3) is true if and only
if, for k < K, U}, can be divided into three possibly
empty mutually exclusive sets Uy = (Uqy, Ugg, Usy)
as follows:

(i) nonancestors Uy, of both A, and Y in G**;
(ii) variables Uy, that are d-separated from A,
given (O, A, ;) in G%*%;
(iii) variables Uj,, that are d-separated from Y in
G%* given (A, 0,);
(iv) Ugy, and Ugy, are d-separated from one an-
other given (O, A, 1) in G**.

The special cases of Theorem A.3 in which K =
0, Uy, is the empty set and either Uy, or Ug, is

the empty set are again the standard conditions
for nonconfounding taught in first-year epidemiol-
ogy courses. We summarize our discussion of con-
founding in the following definition.

DEFINITION OF NONCONFOUNDERS AND POTENTIAL
CONFOUNDERS. Suppose the assumed prior informa-
tion is that the law Fy of V = (L., Ag) is repre-
sented by a given DAG G such that the variables in
(Ay, Ly,,) are nondescendants of A, and the as-
sumption (3.7) of no unmeasured confounders holds
with Y = Lg_ ;. Then, when (A.3) is also assumed
to hold, we say the U, are nonconfounders for the
effect of treatment Ax on Y given data on the O,.
When (A.3) is not assumed, we say the U, are po-
tential confounders for the effect of treatment on Y
given data on the O,.

This definition reflects the fact that, when (A.3) is
false, there are many distributions represented by
the DAG G for which (A.2) is false, even though (3.7)
is true, and yet there generally are still a few spe-
cial distributions represented by DAG G for which
(A.2) is true. Thus, given (3.7), when (A.3) is false we
cannot be guaranteed that the g-computation algo-
rithm formula given by the right-hand side of (3.9)
with o substituted for ¢ will equal the causal effect
fy@/(y), but we also cannot be certain that it will

not equal f (1}2;) However, because data on the U,
are not available, we have no way to test from the
data whether the actual distribution of V is one of
the special distributions for which they are equal.
Thus, we cannot use the g-computation algorithm
formula based on the observed data (Og,, Ag) to
estimate causal effects when the U, are potential
confounders.

The question remains as to whether we can use
any other functional of the law of the observables to
compute f (Yl?ﬁ) when (A.3) is false. The answer is no
if on G there are no missing arrows out of the A,,
because then fy () is not identified from the data
(Og41, Ag). That is, there will be distributions Fy,
represented by G which have the same marginal
distribution for (O, Ag) but different values for
fy@(y)- Hence, in practice, we must treat poten-
tial confounders as actual confounders, and inter-
pret causal effects as uncomputable.
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Comment—Design Rules: More Steps
Toward a Complete Theory of

Quasi-experimentation

William R. Shadish and Thomas D. Cook

“You can’t fix by analysis what you bun-
gled by design.”—[Light, Singer and Wil-
lett, 1990, page v]

One of the most gratifying trends in statistics
has been the increased attention statisticians like
Paul Rosenbaum (and Paul Holland and Donald
Rubin) have paid to causal inference in quasi-
experiments—a term that is not quite synonymous
with Rosenbaum’s “observational study,” but the
differences are not crucial for present purposes.
Those of us who toil in the trenches of fields like
psychology, education and economics know that
random assignment is what we would like to do,
but that quasi-experiments are what we are some-
times forced to do for practical or ethical reasons.
We struggle with how to justify causal inferences
from such second-class designs.

Rosenbaum brings a statistician’s expertise to
bear on a theme dear to our hearts—that re-
searchers can improve causal inference in quasi-
experiments by thoughtful choice of design features
such as control groups, pretreatment observations
on the same scale as the outcome and deliberately
varying when a treatment is implemented. We en-
thusiastically support his advice, in no small part
because we come from a school of thought in psy-
chology that for over 40 years has made thoughtful
design choices the centerpiece of good experimental
work for gaining control over alternative interpre-
tations. We prefer such design choices to trying to
measure alternative explanations directly or in-
directly and then “somehow” controlling for them
in the statistical analysis (Campbell, 1957; Camp-
bell and Stanley, 1963; Cook and Campbell, 1979;

William R. Shadish is Professor, Department of
Psychology, University of Memphis, Campus Box
526400, Memphis, Tennessee 38152-6400 (e-mail:
shadish@mail.psyc.memphis.edu). Thomas D. Cook
is Professor, Institute for Policy Research, North-
western University, 2040 Sheridan Road, Evanston,
1llinois 60208-4100 (e-mail: t-cook@nwu.edu).

Corrin and Cook, 1998; Shadish, Cook and Camp-
bell, 1999). So this commentary is less a rejoinder
to Rosenbaum and more a sympathetic exten-
sion of his thinking, and a request to make even
more systematic the theoretical foundations of
quasi-experimentation. Our key theme is reflected
in our title’s double entendre: in the inevitable
give-and-take between statistical analysis and ex-
perimental design, it is design that should rule
if quality causal inferences are to result; so we
need theories of quasi-experimentation that de-
scribe which rules for designing quasi-experiments
provide better justification for such inferences.

Researchers in economics and statistics are re-
discovering this message, but for different reasons.
For economists, the rediscovery stems from the
failure of elegant statistical selection bias mod-
els to deliver predictably accurate effect estimates,
despite diverse efforts to do this over several
decades. (To quasi-experimentalists, some of these
efforts seemed doomed to failure from the start be-
cause they involved contrasting a local program
group of substantive interest with a purportedly
matched control group abstracted from some na-
tional record-keeping system.) In any event, many
economists eventually realized that these models
might work better when supported by stronger de-
sign; so Heckman and Todd (1996, page 60) noted
their selection-adjustment methods may “perform
best when (1) comparison group members come
from the same local labor markets as participants,
(2) they answer the same survey questionnaires,
and (3) when data on key determinants of program
participation is (sic) available.”

For statisticians, the need to rediscover quasi-
experimental design stems from the lack of strong
statistical theory for nonrandomized experiments
that parallels the elegant theoretical grounding
of randomization in the work of R. A. Fisher and
his successors. Lacking such a hammer, statisti-
cians swung at the quasi-experimental nail less
often than at more congenial targets that suited
their tool box better. One of many merits to Rubin’s
causal model (RCM) is that it provides such a ham-
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mer, the products of which are increasingly seen in
articles like Rosenbaum’s. Our brief article seeks
to expand Rosenbaum’s ideas on design choices in
quasi-experiments. We hope to speed up the the-
oretical integration still much needed to increase
the justification for, and use of, certain types of
quasi-experiments, simultaneously decreasing the
support for others that are not equal to responsible
causal inference. We offer the following seven dis-
cussion points that complement Rosenbaum’s work
in hopefully productive and challenging ways.

1. CAUSAL INFERENCE IS MORE A MATTER
OF LOGIC THAN STATISTICS

Naturally, statisticians will bring the tools with
which they are familiar to bear on any prob-
lem. Most professionals do. Yet Rosenbaum’s focus
on design reminds us that drawing causal infer-
ences without random assignment requires more
than statistics alone. After all, scientists had suc-
cessfully inferred causation long before Fisher’s
justifications for randomization—discovering both
the causes of effects (e.g., Snow’s demonstration
that cholera was caused by polluted water) and
the effects of causes (e.g., Triplett’s 1898 demon-
stration that that the presence of audience and
competitors tends to improve performance of bicy-
clists). They succeeded in this because the logic of
causal inference depends primarily on qualitative
judgment—such as whether a putative cause pre-
cedes its possible effect in time, whether alternative
causes can be ruled out and whether we have some
plausible idea of what would have happened had
the cause not occurred (the counterfactual). Statis-
tics can aid these judgments, often enormously,
but they are servants not masters. Design rules
because the active manipulation of design choices
creates experiments with a structure that recreates
the logic of causal inference through knowledge
of causal counterfactuals, alternative interpreta-
tions and temporal precedence. Statistics cannot
actively create such a structure; they can only help
describe and interpret certain questions within it,
most clearly those concerning covariation between
the cause and effect.

2. WE NEED A GREATLY ELABORATED
THEORY OF DESIGN RULES
FOR QUASIEXPERIMENTS

Rosenbaum describes several design choices; our
Table 1 lists more such choices about assignment,
measurement, comparison groups and treatment
that the experimenter can implement to improve
the validity of a causal inference. The two lists

overlap (e.g., compare Rosenbaum’s Section 3.1
to complex predictions in Table 1, Section 3.2 to
comparison groups and Section 3.3 to other nonran-
dom assignment) but both lists could borrow from
each other. However, a theory of design rules for
quasi-experiments must do far more than list de-
sign choices. It must also (1) describe the function
each choice can serve (see the brief examples in Ta-
ble 1), (2) show its advantages (e.g., nonequivalent
dependent variables are often low cost and effec-
tive) and disadvantages (e.g., matching can create
regression artifacts, treatment removals depend
on treatment effects being temporary and multiple
pretests sometimes impose a measurement burden
that some respondents might refuse to bear) and
(3) elaborate how specific design choices reduce spe-
cific doubts about causal inference. Rosenbaum’s
Section 1.2 recognizes the importance of these
questions with its call to evaluate the quality of ev-
idence. However, he is less clear about how such an
evaluation is to be done when quasi-experiments
are at issue. We turn to such questions now.

3. HOW ARE WE TO JUDGE THE QUALITY OF
EVIDENCE IN QUASIEXPERIMENTS?

First, what are the features of causal inference
that can be doubted when someone questions a
causal inference? Rosenbaum’s article alludes to
such features without identifying them explicitly.
For example, the quote from Campbell that starts
his article refers in substantial part to doubts about
the generalization of causal inferences, while the
quote from Meyer and Fienberg on group compa-
rability in comparative studies refers more to the
logical warrant asserting that a particular kind of
comparison group yields a valid counterfactual. Dis-
tinguishing among such causal inference features
is important because different design elements help
resolve different doubts about different features.

The typology we prefer characterizes each causal
inference as having four related features:

e To what extent do the presumed cause and ef-
fect covary (statistical conclusion validity)?

e How plausible is the evidence indicating that
this covariation is due to a causal relationship from
the independent to the dependent variable (internal
validity)?

¢ Which general constructs best characterize the
nature of this cause-and-effect relationship given
the contextual features of the experiment—features
related to particular samples of persons, treatments,
settings, observations and times (construct valid-
ity)?
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TABLE 1
Design elements used in constructing quasi-experiments

Assignment (control of assignment strategies to increase group comparability)

Cutoff-based assignment: controlled assignment to conditions based solely on one or more fully measured covariates; this yields
an unbiased effect estimate.

Other nonrandom assignment: various forms of “haphazard” assignment that sometimes approximate randomization (e.g., alter-
nating assignment in a two-condition quasi-experiment whereby every other unit is assigned to one condition, etc.)

Matching and stratifying: efforts to create groups equivalent on observed covariates in ways that are stable, do not lead to regres-
sion artifacts and are correlated with the outcome; preference is for pretreatment measures of the outcome itself.

Measurement (use of measures to learn whether threats to causal inference actually operate)
Posttest observations

Nonequivalent dependent variables: measures that are not sensitive to the causal forces of the treatment, but are sensitive to
all or most of the confounding causal forces that might lead to false conclusions about treatment effects (if such measures
show no effect, but the outcome measures do show an effect, the causal inference is bolstered because it is less likely due to
the confounds)

Multiple substantive posttests: used to assess whether the treatment affects a complex pattern of theoretically predicted outcomes
Pretest observations
Single pretest: a pretreatment measure on the outcome variable, useful to help diagnose selection bias

Retrospective pretest: reconstructed pretests when actual pretests are not feasible—by itself, a very weak design feature, but
sometimes better than nothing

Proxy pretest: when a true pretest is not feasible, a pretest on a variable correlated with the outcome—also often weak by itself

Multiple pretest time points on the outcome: helps reveal pretreatment trends or regression artifacts that might complicate
causal inference

Pretests on independent samples: when a pretest is not feasible on the treated sample, one is obtained from a randomly equivalent
sample

Complex predictions such as predicted interaction: successfully predicted interactions lend support to causal inference because
alternative explanations become less plausible.

Measurement of threats to internal validity: helps diagnose the presence of specific threats to the inference that A caused B such
as whether units actively sought out additional treatments outside the experiment

Comparison groups (selecting comparisons that are “less nonequivalent” or that bracket the treatment group at the pretest(s))
Single nonequivalent groups: compared to studies without control groups, using a nonequivalent control group helps identify many
plausible threats to validity.
Multiple nonequivalent groups: serve several functions; for instance, groups are selected that are as similar as possible to the
treated group but at least one outperforms it initially and at least one underperforms it, thus bracketing the treated group.

Cohorts: comparison groups chosen from the same institution in a different cycle (e.g., sibling controls in families or last year’s
students in schools)

Internal (versus external) controls: plausibly chosen from within the same population (e.g., within the same school rather than
from a different school)

Treatment (manipulations of the treatment to demonstrate that treatment variability affects outcome variability)
Removed treatments: showing an effect diminishes if treatment is removed

Repeated treatments: reintroducing treatments after they have been removed from some group—common in laboratory sciences
or where treatments have short-term effects

Switched replications: reversing treatment and control group roles so that one group is the control while the other receives treat-
ment, but the controls receive treatment later while the original treatment group receives no further treatment or has treatment
removed

Reversed treatments: provides a conceptually similar treatment that reverses an effect—for example, reducing access for some
students to a computer being studied but increasing access for others

Dosage variation (treatment partitioning): demonstrates that outcome responds systematically to different levels of treatment
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e In what ways does any cause-and-effect rela-
tionship so labeled generalize to units, treatments,
observations, settings and times different from
those in the study (external validity)?

These four distinctions are interrelated. Each is a
different component of the more general concept of
dependable causation, and particular pairs among
them share overlapping purposes. For instance, both
statistical conclusion and internal validity deal with
the nature of the association between observables
within an experiment, while construct and external
validity are both about the generalization of such
an association.

What specific doubts can we have about each of
these four features of a dependable causal infer-
ence? Many cognate phrases are used to charac-
terize the doubts arising from quasi-experiments:
third variable confounds; alternative explanations;
treatment biases; potential falsifiers; and (in Camp-
bell’s theory) threats to validity. Some of the spe-
cific doubts have names that are by now almost
universally recognized. Selection bias, for example,
is widely understood to refer to the possibility that
the population in one condition is systematically dif-
ferent from the population in another in ways that
might pertain to the outcome. It is a key threat
to internal validity. Other doubts are more subject-
specific, as with Sackett’s (1979) list of biases in
epidemiological research. Campbell’s lists of specific
threats to each of the four validity types seem to
apply very broadly, despite being generated from
experimental practice in psychology and education.
His is one attempt to list individual threats to the
validity of each type of inference. For instance, vi-
olation of unit independence is a threat to statis-
tical conclusion validity; treatment-correlated attri-
tion from a study threatens internal validity; and
experimenter expectancy effects threaten construct
validity. The individual threats are too extensive
to recite here and are perhaps best summarized in
Cook and Campbell (1979).

How do various design features diagnose or re-
duce the doubts (i.e., rule out threats to validity)?
Table 1 provides some examples of how this ques-
tion might be addressed, and we can add others.
For example, in a controlled study, the decision to
compare treatment to a placebo rather than to a no-
treatment control group is primarily done to clarify
the construct validity of the treatment—to what
extent should the intended treatment be character-
ized as the causal agent as opposed to receiving a
placebo? This differential choice between placebo or
no-treatment control is not done to assess whether
anything causal happened in a study, which is the

domain of internal validity. Similarly, when rea-
son exists to think that pretreatment trends in an
outcome may mimic treatment effects in the treat-
ment group (e.g., participants were getting better
by themselves anyway), adding pretest observations
on the same measurement instrument at multiple
prior time points helps diagnose this possibility.
The use of multiple design features in one study
can help to create a complex pattern of evidence
that functions in a manner similar to Rosenbaum’s
discussion of creating a complex pattern of evidence
by making design choices that stem from a broad
theory.

The tradition within which we work has fo-
cused attention on creating a theory of quasi-
experimentation that would constructively deal
with issues like those just broached. This theory is
not yet fully developed, and it may not be possible to
formulate any theory of quasi-experimentation in a
fully axiomatized way with the precision that many
statisticians prefer and that has been approached
for experiments with random assignment. However,
we suspect that increased interchange between
the design tradition we represent and the emer-
gent statistical tradition Rosenbaum shares will
improve the judgments he calls for in Section 1.2
about assessing the quality of evidence.

4. CAUSAL INFERENCE IS A FALLIBLE
HUMAN JUDGMENT

Rosenbaum is clear, particularly in Section 4.1,
that he does not intend to reduce design choices
to statistics. His Section 1.2 emphasizes that sci-
entists must take responsibility for judgments
that inevitably go beyond statistics; indeed, when
making these judgments he emphasizes a scien-
tist’s responsibility to both conscience and com-
munity. We want to make the same point even
more broadly, acknowledging the less noble psy-
chological influences contributing to the judgments
scientists make, particularly in interpreting quasi-
experiments. Judgments about causal inferences
are all too human. In integrating evidence, logic,
statistics and tacit knowledge of a study, there
is much room for simple human biases to exert
their influence—for example, the confirmation bias
whereby all humans, scientists included, tend to
recall evidence in favor of the inference they pre-
fer and to overlook evidence against it (Cordray,
1986). Such judgments operate in randomized ex-
periments where, before we can conclude that a
treatment is effective, we have to judge such issues
as whether any violations of normality were suf-
ficient to question the validity of statistical tests,
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whether loss of some participants after random as-
signment was enough to vitiate group equivalence,
whether certain generalizability-reducing features
of the experimental context should be called to
readers’s attention or whether interactions be-
tween treatment and possible moderators should
be sought out and reported or left unsaid. The role
of human judgment in quasi-experiments is even
greater and much more consequential, especially
concerning the plausibility of those threats to in-
ternal validity that randomization would otherwise
rule out.

5. THE EMPIRICAL PROGRAM
OF QUASIEXPERIMENTS

A reasonable response to the preceding point is
to claim that both design and statistics seek to
reduce the role human judgment plays in causal in-
ference. So, the solution is to develop better design
choices and statistical methods. Randomization, for
example, reduces the role of judgment about the
plausibility of threats to internal validity (e.g., it
ensures that selection bias between conditions is
probabilistically minimized). We trust that statisti-
cians will continue to develop such solutions from
their repertoire; propensity scores and sensitivity
analyses are apt examples. But given how much
of causal inference is beyond statistics, we think
it more likely that a theory of design rules for
quasi-experiments will come mostly from empiri-
cal research more than statistical theory. By that,
we mean evidence obtained from the empirical
study of central design choices so as to examine
how they help or hinder causal inference from
quasi-experiments. We have already presented an
extended discussion of what such an empirical pro-
gram of research on quasi-experimentation might
look like (Shadish, 1999), including (1) studies of
the extent to which hypothesized threats to validity
actually occur in practice (e.g., pretest sensitiza-
tion, experimenter expectancy effects) and that
identify those variables that moderate the influ-
ence of a threat and (2) studies of various strategies
for improving effect estimates, including the use of
“better” quasicontrol groups and improved methods
for using matching or stratification strategies so as
to avoid the past situations where matching proved
to be misleading. A great deal of this empirical re-
search has already been conducted. It includes the
well-known efforts by some economists to compare
estimates from randomized experiments to those
from quasi-experiments that have been corrected
using various selection bias models; it also includes
metaanalytic and laboratory work comparing effect

estimates from randomized and quasi-experiments
to identify those design choices that improve esti-
mates from the latter. As these examples suggest,
the methodologies used to investigate such ques-
tions are eclectic, including surveys, literature
reviews (quantitative and qualitative) and compar-
isons with randomized experiments. To the extent
that a theory of design rules consists more of facts
that are contingent (i.e., subject to revision given
data) than logical (i.e., true by rational analysis),
an empirical program of research is required to
identify the “better” design rules that manifestly
facilitate causal inference in quasi-experiments.

6. DESIGN RULES FOR CAUSAL
GENERALIZATION

Rosenbaum’s opening quote from Campbell
touches on a fundamental problem in experimenta-
tion, how to generalize causal inferences from the
highly constrained context of an experiment to the
broader array of persons, treatments, observations,
settings and times that are usually of both theo-
retical and policy interest. Some statisticians and
economists write as though confident causal gener-
alization depends on formal sampling procedures.
For instance, Lavori, Louis, Bailar and Polansky
(1986) suggest that experimenters should follow a
two-step process: first randomly sample a subset of
patients from the total population of patients, and
then randomly assign the sampled patients to ex-
perimental or control conditions. Kish (1987) also
prefers this two-step ideal, but he frankly acknowl-
edges that this ideal is rarely feasible. It takes very
little thought to see the difficulties of including in
any one experiment a truly representative sample
of persons, treatments, observations, settings and
times (even if random samples of persons and set-
tings would let themselves be assigned at random).
Sometimes, informal sampling fallbacks are feasi-
ble, as when we deliberately sample instances that
are heterogeneous in features thought to be related
to an outcome, or when we sample the most fre-
quently occurring instance to maximize potential
relevance to a clear target of generalization.

Fortunately, there is more we can do to facilitate
causal generalization (Cook, 1993, 1999; Shadish,
Cook and Campbell, 1999). We should remember
that the kind of generalization sampling promotes is
not the only kind of generalization scientists do. For
instance, we routinely generalize from the specific
operations used in a study to the general terms we
want to attach to the operations (construct validity).
Such construct generalizations are sometimes given
a formal statistical rationale, as with the domain
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sampling theory in classical test theory. More typ-
ically we justify generalizing from operations to
constructs by bringing together a combination of
quantitative and qualitative evidence based on five
considerations:

e assessing the match between the operations
achieved in a study (i.e., the units, treatments, ob-
servations, settings or times in the study) and the
prototypical features of the constructs to which
generalization is desired,;

¢ demonstrating which experimental features are
irrelevant to generalization in the sense that the
causal relationship is replicated across all of them;

¢ demonstrating which specific features limit
generalization in the sense that the causal relation-
ship varies significantly from one to another;

e estimating how well the causal relationship can
be interpolated (or extrapolated) over the range of
some quantitative variable;

¢ identifying which parts of the treatment affect
which parts of the outcome through which causal
mediating processes, an explanatory process that
should help identify those essential components of
the cause that are required for transfer to other pop-
ulations and settings;

These justifications for generalizing from operations
to constructs also provide some justification for gen-
eralizing from operations that were studied to op-
erations not included in the experiment’s sampling
frame. That is, they suggest a logic of generalization
at the same kind of conceptual level as the logic for
making descriptive causal inferences that underlies
internal validity (i.e., treatment precedes outcome,
alternative explanations ruled out etc.).

Hedges (1997) suggests some connections be-
tween these ideas and some pertinent statistical
concepts. Those who prefer statistical terms might
think of the first four of these five points above
as a conceptual explication that parallels response
surface modeling. However, our belief that causal
inferences, including causal generalizations, are
more logical than statistical leads us to doubt
whether such statistical models will be a feasible
solution to the problem of causal generalization on
a regular and widespread basis in the next decades.
In single studies, these five points suggest the im-
portance to causal generalization of (1) thoroughly
describing the target of generalization, (2) includ-
ing in a study the prototypical features of the target
that are thought to be crucial to successful gen-
eralization, (3) also including features thought to
be irrelevant to generalization and (4) creating
explanatory models that identify the essential el-
ements that must be present for generalization to

occur. Doing so allows partial tests of generalizabil-
ity within single studies, for example, by examining
how effect sizes vary with different types of person
characteristics. This is not to say that causal gen-
eralization should be a primary goal of every study
because doing so takes resources from other design
choices that are frequently more important (e.g., in-
cluding more observations to increase power). It is
only to say that we can make design choices that
improve such generalizations despite the fact that
formal sampling procedures are rarely feasible.

However, assuming that generalization only oc-
curs from single experiments is counterproductive.
Few single studies have the large and heteroge-
neous samples of persons, settings, times, treat-
ments and outcome measures that would be useful
for confident causal generalization. By contrast,
many systematic literature reviews include numer-
ous studies with a clearly wider range of samples.
They typically have used many more versions of
a construct both as manipulations and outcome
measures, addressed more diverse populations and
been conducted in many more settings and have
different times, both in terms of follow-up intervals
and historical time periods. In addition, these stud-
ies will likely have used different methodologies,
some stronger than others, allowing the researcher
to examine how outcome differs as a function of
methodological variables such as type of control
group, reactivity of outcome measures or method
of soliciting subjects for study. All this variation
in substantive and methodological features allows
the researcher to examine how well a cause—effect
relationship generalizes and to identify causal con-
tingencies influencing the size and direction of the
relationship. We are fans of quantitative methods
for research synthesis (metaanalysis) developed
in the last two decades exactly because of their
usefulness in addressing the causal generalization
problem.

7. DESIGN RULES, NOT STATISTICS

Given what we have written, it should not be
surprising that our only strong disagreement with
Rosenbaum is with his last sentence, that the prin-
ciples of design choice are properly viewed as part of
the subject of statistics. No doubt, of course, statis-
tics must be a major part of a theory of design. But
statistics has not yet displayed the breadth of the-
ory capable of incorporating all the complexities of
causal inference in quasi-experiments that we de-
scribe. No single discipline has, of course; so no
slight is intended to statistics. But for the present,
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an adequate theory of design rules for causal infer-
ence in quasi-experiments must be interdisciplinary.
To force it into any of the molds currently avail-
able in statistics is to impoverish it and prevent it

Rejoinder

Paul R. Rosenbaum

I thank the discussants for their comments. I am
delighted that there are distinguished discussants
from three fields and that there are areas of agree-
ment, disagreement and new topics in their discus-
sion.

1. MANSKI
1.1 Worst-Case Bounds on Treatment Effects

Although economists have proposed interesting
methods for testing certain testable assumptions,
either by contrasting estimates under alternative
assumptions (Hausman, 1978) or using overiden-
tified estimation equations (Hansen, 1982; Newey,
1985), much less attention has been paid to the con-
sequences of assumptions that cannot be adequately
tested. In light of this, Manski’s worst-case bounds
on treatment effects and his more general discus-
sion of the information in underidentified models
(Manski, 1995) are important contributions to the
literature.

In the simplest cases, analogous worst-case
bounds are obtained from a sensitivity analysis by
letting the magnitude of the departure from a ran-
domized experiment increase without bound, that
is, by letting I' — oo in Section 4.3 of the paper;
see Rosenbaum (1995b, Section 2.4) for techni-
cal details. So, worst-case bounds and sensitivity
analyses are not logically incompatible. However,
in practice they can leave very different impres-
sions. As an example, imagine a study in which n
subjects receive the treatment and all n survive,
whereas an additional n subjects receive the con-
trol and all n die. If this pattern continued to hold
as the sample size increased, n — oo, the sensi-
tivity analysis would say that no fixed departure
from a randomized experiment—that is, no finite
I'—could explain away such a strong association
between treatment and survival. In contrast, the
worst-case bounds would say that for every n it is
possible that the treatment has no effect, because

from incorporating exactly those nonstatistical fea-
tures that are the most important part of causal
inference. When it comes to causal inference from
quasi-experiments, design rules, not statistics.

it might happen that every treated subject would
have survived if assigned to control, and every con-
trol would have died if assigned to treatment; see
Manski (1995, page 41). Again, these are logically
compatible statements, but they leave very different
practical impressions. For instance, the worst-case
bounds would say it is logically possible that heavy
smoking does not cause lung cancer, whereas the
sensitivity analysis would say that extremely large
hidden biases would need to be present to explain
away the strong observed association.

In his book, Manski is not primarily interested
in the simplest cases of his worst-case bounds,
but rather in strategies for using information that
might narrow the bounds. The simple, worst-case
bounds then become a yardstick against which nar-
rower bounds are measured to appraise the value of
the added information. See, for example, the poten-
tial narrowing of the bounds when an instrumental
variable is available that satisfies an exclusion re-
striction (Manski 1995, pages 36-37). Of course, an
instrumental variable may be incorporated into a
sensitivity analysis as well, yielding exact nonpara-
metric inferences (Rosenbaum 1999a).

In his discussion, Manski says: “Where Rosen-
baum and I differ is that I do not view the as-
sumption of ignorable treatment selection to have
a special status in observational studies of treat-
ment effects.” I am unsure whether we do differ
here, because I am unsure about the meaning of the
term “special status.” When treatment assignment
is ignorable, an appropriate estimate of a treatment
effect is obtained from an analysis that compares
people who looked comparable prior to treatment
in terms of observed covariates. For instance, such
an analysis might adjust for observed covariates
by matching or covariance adjustment. In virtually
all observational studies, an analysis that compares
people who looked comparable prior to treatment is
one of the several analyses presented, and compar-
isons of this sort may be found in almost any is-
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sue of, say, the American Economic Review—a high-
quality empirical journal. At the same time, in most
observational studies, departures from ignorable as-
signment are quite plausible, at times even likely,
and sensitivity analyses are an aid in clarifying
the consequences of such departures. While depar-
tures from ignorable assignment (i.e., departures
from I' = 1) are plausible, I do not think the worst
case, I' — oo, is especially plausible. The interest-
ing value of I', it seems to me, is the value where
the qualitative conclusions of a particular study be-
gin to change. It is this value of I', varying from one
study to the next, that we need to think about, be-
cause our judgments about it determine what we
conclude from a particular study.

1.2 Treatment Effects That Vary from
Person to Person

Manski argues that we need representative sam-
ples from populations because a treatment may
have heterogeneous effects in a heterogeneous pop-
ulation. As is clear from the paper, I agree with
half of this. If a treatment has substantially dif-
ferent effects on different types of people, then we
need to discover this; see, for instance, the discus-
sion of effects that vary with x, in Section 4.4 of
the paper and the discussion of dilated effects in
Rosenbaum (1999b). However, having a few people
from Philadelphia and a few more from Chicago,
as might happen in a national survey, does not en-
sure that the relevant kinds of heterogeneity are
present with sufficient frequency. If what matters
for the effectiveness of a treatment is a person’s
ejection fraction, human capital, HIV status, at-
tributional style or addiction to cocaine, then the
entire study could be conducted in Philadelphia—or
in Chicago. For example, randomized clinical trials
routinely look for heterogeneous treatment effects,
and they do this without representative samples
from national populations (Piantadosi, 1997, Sec-
tion 13). On the other hand, if what matters for the
effectiveness of a treatment is a person’s language,
religion, culture, attitude toward the curative pow-
ers of magic or whether sexual transmission of
the AIDS virus is primarily homosexual or hetero-
sexual, then Philadelphia and Chicago are far too
similar—and a study confined to the U.S. popula-
tion is far too provincial. The sort of heterogeneity
we need depends on the specific competing theories
(Section 3.4) that we intend to contrast.

A survey may be representative of a population at
a particular moment and yet be unrepresentative of
nature. For instance, a survey of HIV prevalence in
the United States in 1999 is misleading as a descrip-
tion of the AIDS epidemic and is inadequate even as

a basis for public policy in the United States. Stan-
ton (1997) claims 66% of the global HIV burden is
in Africa and writes: “In many African cities, sero-
prevalence rates exceed 30% among women aged 20
to 24 years.” In China, also, the spread of AIDS fol-
lows a pattern unlike the United States; see Yu et al.
(1996). Scientific theories make broad claims about
the past, present and future of the natural world,
claims that can be refuted but not sampled. “Pure
observation lends only negative evidence, by refut-
ing an observation categorical that a proposed the-
ory implies” (Quine, 1992, page 13).

1.3 Generalizing versus Theorizing

Manski raises the issue of internal and external
validity. My view of this distinction is contained in
Sections 3.1 and 4.4 of the paper and it differs from
Manski’s description of my view. For clarity, I briefly
restate my view here.

I do not think scientists in any field start with
a theory for a small population and then general-
ize it to a large population. I think we start with
a general theory and scrutinize it in particular cir-
cumstances. The scrutiny may alter, narrow, refute
or corroborate the theory. Popper (1990, pages 6-7)
speaks of “bold, adventurous theorizing, followed by
exposure to severe testing” and asserts:

Our theories, our hypotheses, are our
adventurous trials. Admittedly, most of
them turn out to be errors: under the
impact of our tests their falsity may be
revealed. Those theories we cannot re-
fute by the severest tests, we hope to be
true. And, indeed, they may be true; but
new tests may still falsify them.

A Dbroad theory that is constantly narrowed by
successive empirical studies is described by Lakatos
(1970) as “degenerating.”

An economist in Cleveland notices an important
but unstudied aspect of behavior. She formulates a
theory of this sort of behavior in terms of a rational
choice to optimize expected utility. Living in Cleve-
land herself, she begins to collect data in Cleveland.
Later a grant permits study sites all over Ohio.
Another grant supports examination of data from
the Current Population Survey of the entire United
States. Still later, parallel studies are conducted in
Singapore. But the theory was never, not even for
an instant, a theory about optimizing behavior in
Cleveland. From the first, it was a theory about
thought, action and behavior. The theory was sub-
jected to severe scrutiny in one circumstance or an-
other, and perhaps the theory in its full generality
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was corroborated or perhaps refuted; if refuted, per-
haps the theory became more focused. The scrutiny
was broadened and intensified, but the theory was
not generalized from a small population of people to
a larger one.

Consider again the two studies of the psychologi-
cal consequences of bereavement by Lehman, Wort-
man and Williams (1987) and Lichtenstein et al.
(1996). Both studies contrasted the same two the-
ories, one theory claiming that bereavement has
only short-term effects on mental functioning and
the other that it has long-term effects. The first
study looked at sudden deaths of close relatives in
car crashes and the second at the loss of a spouse
by one of a pair of twins. Both studies are deliber-
ately unrepresentative: car crashes are an atypical
cause of bereavement, and twins are also atypical.
If one wanted to generalize from a study population
to a natural population, one would look for the typi-
cal, not the atypical, situation. But, for reasons dis-
cussed in the paper, car crashes and twins provide
a sharper contrast of the two theories than typical
situations permit.

2. ROBINS

Robins reasons about observational studies with
time-varying treatments with reference to an analo-
gous experiment, depicted in the simplest case in his
Figure 11, in his Section 3. Although in his discus-
sion he emphasized the experiment, a recent paper
(Keiding et al., 1999, Section 3) discusses the role of
such an experiment as an aid to thinking about ob-
servational studies. In these experimental analogs,
at each node in the tree, a treatment branch is se-
lected with probabilities that depend only on quan-
tities observed prior to that node. These quantities
may be baseline covariates, previous treatment de-
cisions and outcomes observed prior to the node.
Within this framework, Robins develops models for
treatment effects and devices for reweighting ob-
served outcomes to estimate the consequences of
treatment sequences other than those actually im-
posed. It is an attractive, sensible approach to shed-
ding light on a challenging class of problems.

One might also consider other analogous exper-
iments for time-varying treatments. For instance,
in a discussion of early studies of heart transplan-
tation, in which patients must wait for a heart to
become available, Gail (1972) imagines a different
type of experiment:

If one were interested in assessing sur-
vival from the time of transplantation
(rather than from the time of admission
as a transplant candidate), one could

randomly assign an available heart to
one of a pair of recipients (perhaps the
pair that had waited longest). Then the
survival of the two groups, transplant
and control subjects, could be measured
from the time of operation.

Here, some subjects are permanently assigned to
control and are not at constant risk of receiving the
treatment. Perhaps that would be a useful analog of
an observational study in which some subjects cat-
egorically reject the treatment. For instance, if one
were studying the effects of cocaine use, most people
categorically reject the treatment and might possi-
bly be viewed as permanent controls. Yet another
alternative experimental analog has a single exper-
imental assignment at the root of the tree, with sub-
sequent treatment decisions being viewed as part
of an adaptive treatment regime to which a per-
son is assigned. Robins mentions Maclure’s (1991)
case-crossover design, which is yet another very in-
teresting class of observational study designs with
experimental analogs. With all attempts to reason
about observational studies using analogous exper-
iments, my own view is that one needs to entertain
the possibility of departures from the imagined ran-
dom assignment using some form of sensitivity anal-
ysis. Mittleman et al. (1997) mention the possibility
of sensitivity analyses in case-crossover studies.

3. SHADISH AND COOK

The literature on quasi-experimentation, to
which Shadish and Cook have made extensive
contributions, is a cornerstone of the interdisci-
plinary literature on observational studies. Camp-
bell (1957) insisted on a certain logic, a certain
standard for criticism, namely, that objections
to an observational study be expressed as spe-
cific, credible threats to validity, or “grounds for
doubt” in Wittgenstein’s phrase (1972, page 18).
Anticipating specific grounds for doubt, the quasi-
experimentalist improves the design to address
these specific issues. Instead of assuming that hid-
den biases are absent, that what is not visible is
equal—the so-called ceretis paribus clause—the
quasi-experimentalist assumes specific biases may
be present and investigates them. This is similar to
advice offered by Lakatos (1970, page 110):

How can one test a ceteris paribus clause
severely? By assuming that there are
other influencing factors, by specifying
such factors, and by testing these spe-
cific assumptions. If many of them are
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refuted, the ceteris paribus clause will be
regarded as well-corroborated.

For instance, in the study of bereavement follow-
ing car crashes, if one objected to the absence of
measures of depression prior to the crash, then one
might use a design that addresses this specific con-
cern; see Toedter, Lasker and Campbell (1990) for
discussion of such a design. Specific threats to va-
lidity lead to specific improvements in design.

Quasi-experimentalists emphasize structured
designs, assembled from components, to address
specific threats to validity. The designs somewhat
resemble designs used in the statistical theory
of experimental design. This aspect of quasi-
experimentation has not yet diffused into other
fields that conduct observational studies, but it de-
serves attention as a design option in all fields. I
look forward to the continuation of this important
tradition in the forthcoming book by Shadish, Cook
and Campbell (1999).

Once in a while, one sees the issues that arise
in quasi-experimentation described in terms of di-
chotomies determined with certainty. Either a spe-
cific threat to validity is present or it is not. If a
corresponding design feature is in place, then one
is completely protected from this threat to validity,
but if it is not, then the study is invalid. If a de-
sign is described in this way, then two questions go
unasked, hence unanswered. First, does the design
feature have the ability, given the sample size and
variability, to address the specific threat to validity
if it is present in a magnitude sufficient to affect
the study? When the design features are the use of
multiple control groups or unaffected outcomes (i.e.,
nonequivalent dependent variables), this question
can be answered in conventional statistical terms
such as the unbiasedness and monotonicity of the
power function of tests for hidden bias, and the im-
pact of these design features on confidence inter-
vals that allow for hidden bias (Rosenbaum 1987b,
1989 a, b, 1992). Second, if a hidden bias is present
or is suspected, is it of a magnitude sufficient to al-
ter the conclusions of the study? One may be unable
to rule out hidden bias, but biases of plausible size
may or may not be able to account for the ostensi-
ble effects of the treatment. For instance, smokers
and nonsmokers are known and suspected to differ
in many ways not controlled in observational stud-
ies, and yet biases of plausible size cannot account
for the extremely strong association between heavy
smoking and lung cancer; see Cornfield et al., (1959)
for a sensitivity analysis. The answers to these two
questions seem to me to be part of the answer to

the question: “How are we to judge the quality of
evidence in quasi-experimentation?”
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