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Abstract. Consideration of confounding is fundamental to the design
and analysis of studies of causal effects. Yet, apart from confounding in
experimental designs, the topic is given little or no discussion in most
statistics texts. We here provide an overview of confounding and related
concepts based on a counterfactual model for causation. Special attention
is given to definitions of confounding, problems in control of confound-
ing, the relation of confounding to exchangeability and collapsibility, and
the importance of distinguishing confounding from noncollapsibility.
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Much of epidemiologic and social science research
is devoted to estimation of causal effects and test-
ing causal hypotheses using nonexperimental data.
In such endeavors, issues of confounding will (or
should) invariably arise. Unfortunately, the word
“confounding” has been used to refer to at least
three distinct concepts. In the oldest usage, con-
founding is a type of bias in estimating causal ef-
fects. This bias is sometimes informally described as
a mixing of effects of extraneous factors (called con-
founders) with the effect of interest. This usage pre-
dominates in nonexperimental research, especially
in epidemiology and sociology. In a second and more
recent usage, “confounding” is a synonym for “non-
collapsibility,” although this usage is often limited
to situations in which the parameter of interest is
a causal effect. In a third usage, originating in the
experimental-design literature, “confounding” refers
to inseparability of main effects and interactions un-
der a particular design. The term “aliasing” is also
sometimes used to refer to the latter concept; this
usage is common in the analysis-of-variance litera-
ture.
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The three concepts of confounding are not always
distinguished properly. In particular, the concepts
of confounding as a bias in effect estimation and
as noncollapsibility are often treated as identical.
We here provide an historical overview of these two
concepts and the distinctions among them. Because
these distinctions require a formal model for causal
effects, we begin with a discussion of the counterfac-
tual model of causation. We then trace the history
of the concept of confounding from the writings of
J. S. Mill to its modern counterfactual formaliza-
tion. We discuss how approaches to control of con-
founding fit into this formalization; we give special
attention to the relation of confounding to exchange-
ability and randomization. We then shift our focus
to concepts of collapsibility and describe how the
counterfactual model distinguishes noncollapsibility
from confounding. Our penultimate section covers
some miscellaneous issues that arise when consider-
ing confounding in studies of interventions. We end
with a recommendation to include more thorough
discussion of confounding in basic statistics educa-
tion, given the importance of the concept in causal
inference.

1. THE COUNTERFACTUAL APPROACH
TO CAUSE AND EFFECT

1.1 Overview

The concepts of cause and effect are central to
most areas of scientific research. Thus, it may be
surprising that consensus about basic definitions
and methods for causal inference is limited, despite
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some three centuries of debate. A brief review can-
not do justice to all the history and details of this
debate, nor to all the schools of thought on causa-
tion. We therefore focus on one conceptualization
that has proved useful in the analysis of confound-
ing. This counterfactual or potential-outcomes ap-
proach has become common in philosophy, statistics
and epidemiology.

Since the early eighteenth century, philosophers
noted serious deficiencies in common definitions of
causation. For example, Webster’s New Twentieth-
Century Dictionary (1979) offered “that which pro-
duces an effect or result” as a definition of “cause,”
but “to cause” is among the definitions of “produces.”
Informal definitions of “effect” suffer from the same
circularity, because “effect” as a verb is merely a
synonym for “cause,” while “effect” as a noun is de-
fined as a “result,” which is in turn defined as an
“effect” in causal contexts.

Hume (1739, 1748) offered another view of cau-
sation that pointed a way out of the circularity of
common definitions:

We may define a cause to be an object, followed
by another, : : :where, if the first object had not
been, the second had never existed (Hume, 1748,
page 115).

Thus, by focusing on specific instances of causa-
tion, we say that an event A caused an event B if
occurrence of A was necessary for occurrence of B
under the observed background circumstances (e.g.,
see Simon and Rescher, 1966; Lewis, 1973a). Essen-
tially the same concept of causation can be found
in the works of J. S. Mill (1843, 1862) and R. A.
Fisher (1918) (both quoted in Rubin, 1990), as well
as in later works in statistics and related fields (So-
bel, 1995). A typical example is from MacMahon and
Pugh (1967, page 12), who state that “: : : an associ-
ation may be classed as presumptively causal when
it is believed that, had the cause been altered, the
effect would have been changed” (italics added). The
italicized phrases emphasize that the alteration of
the antecedent condition (“cause”) and the subse-
quent change in the outcome (“effect”) are contrary
to what was in fact observed; that is, they are coun-
terfactual.

The preceding definition falls short of the formal-
ism necessary for derivation of statistical methods
for causal inference. Such a formalism and deriva-
tion first appeared in the statistics literature in
Neyman (1923). The basic idea is as follows: sup-
pose that N units (e.g., individuals, populations,
objects) are to be observed in an experiment that
will assign each unit one of K + 1 treatments x0,
x1; : : : ; xK. The outcome of interest for unit i is

the value of a response variable Yi. Suppose that
Yi will equal yik if unit i is assigned treatment
xk. Usually, one treatment level, say x0, is desig-
nated the reference treatment against which other
treatments are to be evaluated; typically, x0 is “no
treatment,” a placebo or a standard treatment. We
define the causal effect of xk�k ≥ 1� on Yi relative
to x0 (the referent) to be yik − yi0. (If the response
variable is strictly positive, we may instead define
the causal effect as yik/yi0 or log yik − log yi0.) In
words, a causal effect is a contrast between the out-
comes of a single unit under different treatment
possibilities.

Neyman’s formalism is sometimes referred to as
the potential-outcomes model of causation, and has
reappeared in various guises (e.g., see Cox, 1958,
Chapter 2; Copas, 1973; Rubin, 1974; Hamilton,
1979). Defining effects as contrasts of potential out-
comes yik gives precise meanings to words such as
“cause,” “effect,” and “affect.” For example, “chang-
ing X from x0 to xk affects Yi” is an assertion that
yik − yi0 6= 0. Note, however, that because only one
of the potential outcomes yik can be observed in
any one unit, an individual effect yik − yi0 cannot
be observed.

Counterfactual analysis can be viewed as a spe-
cial type of latent-variable analysis, in which yik re-
mains latent for any individual i who did not receive
treatment k (e.g., see the volume edited by Berkane,
1997). The potential outcomes model can also be de-
rived from a structural equations approach familiar
in the social sciences. Here, one models the response
variable Y as one output of a series of mechanisms,
where each mechanism is an input–output device
whose behavior follows a given equation (Simon and
Rescher, 1966). The potential response yik is then
simply the solution for Y of the system of equations
when X is “set” to xk; a change from x0 to xk has no
effect if X does not appear in the system, or more
generally, if the solution is the same regardless of
whether X is set to x0 or xk (Balke and Pearl, 1994;
Robins, 1995a; Pearl, 1995; Galles and Pearl, 1998).

There are several crucial restrictions that the po-
tential outcomes definition places on the notion of
causal effects (and hence, cause). Appendix 1 dis-
cusses four of them in detail. In Appendix 2, we
discuss some difficulties that arise in defining po-
tential outcomes when competing risks are present.

1.2 Probabilistic Extensions

There are several probabilistic extensions of coun-
terfactual approaches. One is based on considering
the sampling distribution of fixed potential out-
comes, that is, the joint distribution F�y0; : : : ; yK�
of yi0; : : : ; yiK in a population of units. We may
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also consider conditional distributions of potential
outcomes in subpopulations defined by covariates
such as age, sex and received treatment. Popula-
tion effects can be defined as differences in average
population response under different treatments, or
more generally as differences among the marginal
distributions F�y0�; : : : ;F�yK�. Statistical proce-
dures for inferences about these effects follow from
randomization assumptions about treatment as-
signment mechanisms and from assumptions of
independencies between units (Cox, 1958). The ba-
sic ideas were developed by Neyman (1923) and
Fisher (1935); some key elaborations were given
by Copas (1973) and Rubin (1974, 1978). We will
discuss these ideas below.

Another extension considers parameters of prob-
ability distributions (rather than events) as the
potential outcomes; this extension addresses objec-
tions to treating the unit outcomes as deterministic
entities once treatment is given (Greenland, 1987;
Robins, 1988; Robins and Greenland, 1989). For ex-
ample, we could consider the difference between
the probability that a given atom emits a pho-
ton in the second following absorption of a photon
(“treatment 1”) and the probability of emission in
the same second if no photon had been absorbed
(“treatment 0”). This probability difference is the
effect of photon absorption on the atom relative to
no absorption. In quantum mechanics, this prob-
ability difference (effect) is well defined whether
or not a photon is actually emitted (e.g., see Feyn-
man, 1963). Yet, according to the Bohr–Heisenberg
(“Copenhagen”) interpretation of quantum theory,
the emission indicator (Yi = 1 if the atom emits
a photon in the following second; 0 if not) is un-
defined under counterfactual alternatives to the
actual history of the atom and is not even defined
under the actual history of the atom if no emission
measurement is made.

1.3 Objections to Counterfactuals

Counterfactual approaches are sometimes criti-
cized because, in considering causes of past events,
they invoke distributions for events that never oc-
curred and hence cannot be observed. As a conse-
quence, some important features of these distribu-
tions remain empirically untestable, and thus some
causal inferences based on counterfactuals will de-
pend entirely on untestable assumptions (Dawid,
1998).

It is our view that this property of counterfactual
inferences reflects a strength of counterfactual ap-
proach, rather than a weakness. It is an unfortunate
but true fact that many important causal questions
are simply not answerable, at least not without

employing assumptions that are untestable given
current technology. Examples of such assumptions
include assumptions of no confounding, as dis-
cussed in the following sections, assumptions about
independence of unit-specific susceptibilities or re-
sponses, and various distributional assumptions
(Copas, 1973; Rubin, 1978, 1991; Holland, 1986;
Heckman and Hotz, 1989; Robins and Greenland,
1989; Sobel, 1995; Rosenbaum, 1995; Copas and Li,
1997). Inferences from counterfactual approaches
properly reflect this harsh epistemic reality when
they display sensitivity to such assumptions.

More constructively, the counterfactual approach
also aids in precise formulation of assumptions
needed to identify causal effects statistically, which
in turn can aid in developing techniques for meet-
ing those assumptions. The basic example on which
we will focus is the assumption of exchangeabil-
ity of response distributions under homogeneous
treatment assignment, which is met when treat-
ment is successfully randomized, or, more generally,
when treatment assignment is independent of the
potential outcomes yik.

2. CONFOUNDING

2.1 Background

Counterfactual approaches to causal inference
emphasize the importance of randomization in
assuring identifiability of causal effects (Ney-
man, 1923; Rubin, 1978, 1990, 1991; Greenland
and Robins, 1986; Robins, 1986; Greenland, 1990;
Rosenbaum, 1995). In observational studies, how-
ever, no such assurance is available, and issues of
confounding become paramount.

One of the earliest systematic discussions of “con-
founded effects” is Chapter X of Mill (1843), “Of Plu-
rality of Causes, and the Intermixture of Effects”
(although in Chapter III Mill lays out the primary
issues and acknowledges Francis Bacon as a fore-
runner in dealing with them). There, Mill listed a
requirement for an experiment intended to deter-
mine causal relations:

: : : none of the circumstances [of the experiment]
that we do know shall have effects susceptible of
being confounded with those of the agents whose
properties we wish to study [emphasis added].

It should be noted that, in Mill’s time, the word
“experiment” referred to an observation in which
some circumstances were under the control of the
observer, as it still is used in ordinary English,
rather than to the notion of a comparative trial.
Nonetheless, Mill’s requirement suggests that a
comparison is to be made between the outcome
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of his experiment (which is, essentially, an uncon-
trolled trial) and what we would expect the outcome
to be if the agents we wish to study had been ab-
sent. If the outcome is not that which one would
expect in the absence of the study agents, his re-
quirement insures that the unexpected outcome was
not brought about by extraneous circumstances. If,
however, those circumstances do bring about the
unexpected outcome, and that outcome is mistak-
enly attributed to effects of the study agents, the
mistake is one of confounding (or confusion) of the
extraneous effects with the agent effects.

Much of the modern literature follows the same
informal conceptualization given by Mill. Terminol-
ogy is now more specific, with “treatment” used to
refer to an agent administered by the investigator
and “exposure” often used to denote an unmanipu-
lated agent. The chief development beyond Mill is
that the expectation for the outcome in absence of
the study exposure is now almost always explicitly
derived from observation of a control group that is
untreated or unexposed. For example, Clayton and
Hills (1993, page 133) state that, in observational
studies,

: : : there is always the possibility that an impor-
tant influence on the outcome : : : differs system-
atically between the comparison [exposed and un-
exposed] groups. It is then possible [that] part of
the apparent effect of exposure is due to these
differences, [in which case] the comparison of the
exposure groups is said to be confounded. [em-
phasis in the original]

As discussed below, confounding is also possible
in randomized experiments, because of systematic
elements in treatment allocation, administration,
and compliance and because of random differences
between comparison groups (Fisher, 1935, page
49; Rothman, 1977; Greenland and Robins, 1986;
Greenland, 1990).

2.2 Formalization

Attempts to quantify the above notion of con-
founding can be traced at least as far back as the
work of Karl Pearson and George Yule on spuri-
ous correlation, but these attempts ran afoul of the
absence of a formal model for causal effects; see
Aldrich (1995) for a review of this work. Various
mathematical formalizations of confounding have
since been proposed. Perhaps the one closest to
Mill’s concept is based on the counterfactual model
for effects. Suppose our objective is to determine
the effect of applying a treatment or exposure x1
on a parameter µ of the distribution of the outcome
y in population A, relative to applying treatment

or exposure x0. That is, we wish to contrast the
marginal distributions FA�y1� and FA�y0� of the
potential outcomes under treatments 1 and 0, using
some parameter (summary) µ of the distributions.
For example, population A could be a cohort of
breast-cancer patients, treatment x1 could be a new
hormone therapy, x0 could be a placebo therapy,
and the parameter µ could be the expected survival
or the five-year survival probability in the cohort;
µ could also be a vector or even a function, such
as an entire survival curve. The population A is
sometimes called the target population or index pop-
ulation; the treatment x1 is sometimes called the
index treatment and the treatment x0 is sometimes
called the control or reference treatment.

Suppose that µ will equal µA1 if x1 is applied to
population A, and will equal µA0 if x0 is applied
to that population; the causal effect of x1 relative to
x0 is defined as the change from µA0 to µA1, which
could be measured by µA1 − µA0 (or by µA1/µA0 if
µ is strictly positive). If A is observed under treat-
ment x1, µ will equal µA1, which is observable or es-
timable, but µA0 will be unobserved. Suppose, how-
ever, we expect µA0 to equal µB0, where µB0 is the
value of the outcome µ observed or estimated for
a population B that was administered treatment
x0. The latter population is sometimes called a con-
trol or reference population. We say confounding is
present if, in fact, µA0 6= µB0, for then there must
be some difference between populations A and B
(other than treatment) that is responsible for the
discrepancy between µA0 and µB0.

If confounding is present, a naive (crude) asso-
ciation parameter obtained by substituting µB0 for
µA0 in the effect measure will not equal the causal
parameter, and the association parameter is said
to be confounded. For example, if µB0 6= µA0, then
µA1 −µB0, which measures the association of treat-
ments with outcomes across the populations, is con-
founded for µA1 −µA0, which measures the effect of
treatment x1 on population A. Thus, saying an as-
sociation parameter such as µA1−µB0 is confounded
for a causal parameter such as µA1−µA0 is synony-
mous with saying the two parameters are not equal.

The above formalization has several interesting
implications. One is that confounding depends on
the outcome parameter. For example, suppose pop-
ulations A and B would have different five-year
survival probabilities µA0 and µB0 under placebo
treatment x0, so that µA1 − µB0 is confounded for
the actual effect µA1 − µA0 of treatment on five-
year survival. It is then still possible that ten-year
survival ν under the placebo would be identical in
both populations; that is, νA0 could still equal νB0, so
that νA1−νB0 is not confounded for the actual effect
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of treatment on ten-year survival. (We should gen-
erally expect no confounding for 200-year survival,
because no treatment is likely to raise the 200-year
survival probability of human patients above zero.)

Another important implication is that confound-
ing depends on the target population of inference.
The preceding example, with A as the target, had
different five-year survivals µA0 and µB0 for A and
B under placebo therapy, and hence µA1 − µB0 was
confounded for the effect µA1 −µA0 of treatment on
populationA. A lawyer or ethicist may also be inter-
ested in what effect the treatment would have had
on population B. Writing µB1 for the (unobserved)
outcome of B under treatment, this effect on B may
be measured by µB1−µB0. Substituting µA1 for the
unobserved µB1 yields µA1 − µB0. This measure of
association is confounded for µB1 − µB0 (the effect
of treatment x1 on five-year survival in population
B) if and only if µA1 6= µB1. Thus, the same mea-
sure of association µA1 − µB0 may be confounded
for the effect of treatment on neither, one or both of
populations A and B.

A third implication is that absence of confounding
�µA0 = µB0�, which is a population condition, is not
sufficient to identify the sharp null hypothesis of no
causal effects at the unit level (yi1 = yi0 for all units
i) because causal effects of treatment may cancel out
(Greenland and Robins, 1986). For example, suppose
the outcome parameter µ is expected response and
response is binary, with half of units inA and half in
B having yi1 = 1, yi0 = 0 and half having yi1 = 0,
yi0 = 1. Then µA1 = µA0 = µB0 = 1/2, so that
there is no confounding and no identifiable effect
of treatment on the outcome distribution; nonethe-
less, every unit is affected by treatment. Neyman
(1935) and Stone (1993) make the analogous point
that randomization does not identify the sharp null
hypothesis.

A noteworthy aspect of the above definition of con-
founding is that it does not involve the notion of
probabilistic independence, and makes no reference
to individual units or probability distributions other
than through the summary µ. This is in sharp con-
trast to concepts of randomization, exchangeability
and ignorability, as well as certain definitions of “no
confounding,” which we will discuss in Sections 3.1,
3.3 and 6.4.

2.3 Components of Associations

We may write the difference in the outcome pa-
rameters of populations A and B as

µA1 − µB0 = �µA1 − µA0� + �µA0 − µB0�;(1)

which shows that µA1−µB0 is a mix of the true treat-
ment effect µA1 − µA0 and a bias term µA0 − µB0

(Groves and Ogburn, 1928; Kitagawa, 1955). Non-
identifiability of the true effect µA1 − µA0 follows
if the bias µA0 − µB0 is not identifiable, as is the
case in typical epidemiologic studies (Greenland and
Robins, 1986).

By rearranging (1) we may obtain µA0 − µB0 as a
measure of confounding in µA1 − µB0:

µA0 − µB0 = �µA1 − µB0� − �µA1 − µA0�:(2)

When the outcome parameters µ are risks (proba-
bilities), epidemiologists use instead the analogous
ratio

µA1/µB0

µA1/µA0
= µA0

µB0
(3)

as a measure of confounding (Cornfield et al., 1959;
Bross, 1967; Miettinen, 1972); µA0/µB0 is some-
times called the confounding risk ratio. The latter
term is somewhat confusing, as it is sometimes
misunderstood to refer to the effect of a particu-
lar confounder on risk. This is not so, although the
ratio does reflect the net effect of the differences
in the confounder distributions of populations A
and B.

2.4 Confounders

The above formalization of confounding invokes
no explicit differences (imbalances) between popula-
tions A and B with respect to circumstances or co-
variates that might affect µ (Greenland and Robins,
1986). It seems intuitively clear that, if µA0 and µB0
differ, then A and B must differ with respect to fac-
tors that affect µ. This intuition has led some au-
thors to define confounding in terms of differences
in covariate distributions among the compared pop-
ulations (e.g., Stone, 1993). Nonetheless, confound-
ing as we have defined it is not an inevitable conse-
quence of covariate differences; A and B may differ
profoundly with respect to covariates that affect µ,
and yet confounding may be absent. In other words,
a covariate difference between A and B is a neces-
sary but not sufficient condition for confounding, be-
cause the effects of the various covariate differences
may balance out in such a way that no confounding
is present.

Suppose now that populations A and B differ
with respect to certain covariates that affect µ and
that these differences have led to confounding of an
association measure for the effect measure of in-
terest. The responsible covariates are then termed
“confounders” of the association measure. In the
above example, with µA1 − µB0 confounded for the
effect µA1 − µA0, the factors that led to µA0 6= µB0
are the confounders. A variable cannot be a con-
founder (in this sense) unless (1) it can causally
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affect the outcome parameter µ within treatment
groups, and (2) it is distributed differently among
the compared populations (e.g., see Yule, 1903, who
however uses terms such as “fictitious association”
rather than “confounding”). The two necessary con-
ditions (1) and (2) are sometimes offered together
as a definition of a confounder. Nonetheless, coun-
terexamples show that the two conditions are not
sufficient for a variable with more than two lev-
els to be a confounder as defined above; one such
counterexample is given below.

While definitions of “confounder” similar to that
just given are common in epidemiology texts (e.g.,
see Kelsey, Whittemore, Evans and Thompson,
1996; Rothman and Greenland, 1998), they are
not universal. Some authors (e.g., Miettinen and
Cook, 1981; Robins and Morgenstern, 1987) de-
fine a confounder more broadly, as any variable for
which adjustment is helpful in reducing bias in ef-
fect estimation; variables that are confounders by
virtue of their effects on the outcome parameter
are then called causal confounders. Such broad def-
initions of confounders stem from recognition that
confounding may be dealt with by stratification on
variables that are not themselves causes of the out-
come. Examples include surrogates for such causes
(Kelsey et al., 1996) and determinants of treatment
(Rosenbaum and Rubin, 1983).

2.5 Regression Formulations

For simplicity, the above presentation has focused
on comparing two groups and two treatments. The
basic concepts extend immediately to considera-
tion of multiple groups and treatments. Pairwise
comparisons may be represented using the above
formalization without modification. Although the
comparisons may be made nonparametrically, it
is instructive to examine their representation in
terms of familiar regression models.

As an illustration, suppose that the treatment
level x may range over a continuum or a multidi-
mensional space (in the latter case x and β are row
and column vectors), and that population j is given
treatment xj, even though it could have been given
some other treatment. Under the causal model

µj�x� = αj + xβ for all j,(4)

the absolute effect of x1 versus x0 on µ in population
1 is

µ1�x1� − µ1�x0� = �x1 − x0�β:(5)

(In the earlier notation, j = A;B, so that µ1�x1�
was µA1 and µ1�x0� was µA0.) Substitution of

µ0�x0�, the value of µ in population 0 under treat-
ment x0, for µ1�x0� yields

µ1�x1� − µ0�x0� = α1 − α0 + �x1 − x0�β;(6)

which is biased by the amount

µ1�x0� − µ0�x0� = α1 − α0:(7)

Thus, under this model, no confounding for β will
occur if the intercepts αj are constant across popu-
lations, so that µj�x� = α+ xβ.

When constant intercepts cannot be assumed and
nothing else is known about the intercept magni-
tudes, it may be possible to represent our uncer-
tainty about αj via the mixed effects model

µj�x� = α+ xβ+ εj:(8)

Here, αj has been decomposed into α + εj,
where εj has mean zero, and the confounding
in µ1�x1� − µ0�x0� has become an unobserved ran-
dom variable ε1 − ε0. Correlation of the random
effects �εj� with the treatments �xj� leads to bias
in estimating β. This bias may be attributed to
or interpreted as confounding for β in the regres-
sion analysis. Confounders are now covariates that
“explain” the correlation between εj and xj. In par-
ticular, confounders reduce the correlation of xj
and εj when entered in the model and so reduce
the bias in estimating β.

3. CONTROL OF CONFOUNDING

3.1 Control Via Design

Perhaps the most obvious way to avoid confound-
ing in estimating µA1 −µA0 is to obtain a reference
population B for which µB0 is known to equal µA0.
Among epidemiologists, such a population is some-
times said to be comparable to or exchangeable with
A with respect to the outcome under the reference
treatment. In practice, such a population may be
difficult or impossible to find. Thus, an investigator
may attempt to construct such a population, or to
construct exchangeable index and reference popula-
tions. These constructions may be viewed as design-
based methods for the control of confounding.

Restriction and matching. Perhaps no approach
is more effective for preventing confounding by a
known factor than restriction. For example, gender
imbalances cannot confound a study restricted to
women. Nonetheless, restriction on many factors
can reduce the number of available subjects to un-
acceptably low levels and may greatly reduce the
generalizability of results as well. Matching the
treatment populations on confounders overcomes
these drawbacks and, if successful, can be as effec-
tive as restriction. For example, gender imbalances
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cannot confound a study in which the compared
groups have identical proportions of women. Un-
fortunately, differential losses to observation may
undo the initial covariate balances produced by
matching. Another problem is that matches may
become difficult or impossible to find if one attempts
to match on more than a few factors.

Randomization. Neither restriction nor matching
prevents (although they may diminish) imbalances
on unrestricted, unmatched or unmeasured covari-
ates. In contrast, randomized treatment allocation
(randomization) offers a means of dealing with con-
founding by covariates not explicitly accounted for
by the design. It must be emphasized, however, that
this solution is only probabilistic and subject to se-
vere practical constraints. For example, protocol vi-
olations and loss to follow-up may produce system-
atic covariate imbalances between the groups (and
consequent confounding), and random imbalances
may be severe, especially if the study size is small
(Fisher, 1935; Rothman, 1977). Blocked randomiza-
tion can help ensure that random imbalances on
the blocking factors will not occur, but it does not
guarantee balance of unblocked factors. Thus, even
in a perfectly executed randomized trial, the no-
confounding condition µA0 = µB0 is not a realis-
tic assumption for inferences about causal effects.
Successful randomization simply insures that the
difference µA0 − µB0, and hence the degree of con-
founding, has expectation zero and converges to zero
under the randomization distribution; it also pro-
vides a permutation distribution for causal infer-
ences (Fisher, 1935; Cox, 1958, Chapter 5).

Exchangeability. Under randomization, the pa-
rameters µA0 and µB0 (and µA1 and µB1 as well) are
outcomes of a random process and so can be treated
as random variables. Successful randomization ren-
ders µA0 and µB0 unconditionally exchangeable
in the usual probabilistic sense (Cornfield, 1976);
in other words, the unconditional joint distribu-
tion F0�uA; uB� of µA0, µB0 is symmetric, so that
F0�uA; uB� = F0�uB; uA� for any possible pair of
values uA, uB for µA0, µB0. This exchangeabil-
ity permits derivation of inferential procedures for
(say) µA1 − µA0 based on substituting µB0 for µA0
and then allowing for random differences between
µA0 and µB0 (Robins, 1988). It applies regardless of
what the parameter µ represents; that is, random-
ization yields exchangeability for all parameters
of the outcome distribution. From a Bayesian per-
spective, µA0 and µB0 can always be treated as
random variables. Thus, a practical and sufficient
design-based approach to confounding is to find or
construct comparison groups such that µA0 and µB0
are exchangeable.

Now consider the regression formulation (8). Here
again, it is neither realistic nor necessary to assume
absence of confounding to make inferences about the
effect parameter β. Rather, it is sufficient to find
a population such that the random effects εj are
exchangeable (so that any correlation of xj and εj
is random), as would arise if treatment levels were
randomized. This approach is often described in epi-
demiology as searching for a “natural experiment,”
that is, a situation in which a compelling argument
can be made that the exposure was effectively ran-
domized by natural circumstances. Of course, any
inferences may be sensitive to assumptions about
the distribution of the random effects (e.g., normal-
ity), and the structural form of the model (e.g., lin-
earity); such concerns lead naturally to randomiza-
tion tests for effects (Fisher, 1935; Cox, 1958; Copas,
1973).

3.2 Control Via Analysis

Design-based methods are often infeasible or in-
sufficient to produce exchangeability. Thus, there
has been an enormous amount of work devoted to
analytic adjustments for confounding. With a few
exceptions, these methods are based on observed co-
variate distributions in the compared populations.
Such methods will successfully control confounding
only to the extent that enough confounders are ad-
equately measured and employed in the analysis.
Then, too, many methods employ parametric mod-
els at some stage, and their success thus depends
on the faithfulness of the model to reality. There
is a tension between the demands of adjusting for
enough covariates and the dependence of the anal-
ysis on modeling assumptions. This issue cannot be
covered in depth here, but a few basic points are
worth noting.

The simplest methods of adjustment begin with
stratification on confounders. A covariate cannot be
responsible for confounding within a stratum that is
internally homogeneous with respect to the covari-
ate. This is so, regardless of whether the covariate
was used to define the stratum. For example, gender
imbalances cannot confound observations within a
stratum composed solely of women. It would seem
natural, then, to control confounding due to mea-
sured factors by simply stratifying on them all. Un-
fortunately, one would then confront the well-known
sparse-data problem: given enough factors, few if
any strata would have subjects in both treatment
groups, thereby making comparisons inefficient or
impossible (Robins and Greenland, 1986).

One solution to this problem begins by noting
that within-stratum homogeneity is unnecessary to
prevent confounding by a covariate. Within-stratum
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balance is sufficient, because comparisons within a
stratum cannot be confounded by a covariate that
is not associated with treatment within the stra-
tum. Hence, a given stratification should be suffi-
cient to control confounding by a set of covariates if
the covariates are balanced across the strata, that
is, unassociated with treatment within the strata.
Rosenbaum and Rubin (1983) showed that, subject
to any modeling restrictions used for score estima-
tion, balance in probability for a set of covariates
could be achieved by exact stratification on the esti-
mated propensity score, where the propensity score
is defined as the probability of treatment given the
covariates in the combined (treated and untreated)
study population. They further showed that this
score was the coarsest score that would produce bal-
ance in probability. Stratification on the estimated
propensity score thus reduces adjustment for mul-
tiple covariates to stratification on a single variable
and lowers the risk of sparse-data problems if the
model used for propensity scoring is correct. Unfor-
tunately, in sparse data there may be little power to
test whether the model is correct.

The most common method for avoiding sparse-
data problems is to impose parametric constraints
on the regression of the outcome on the treatment
and covariates; such strategies are described in
many textbooks (e.g., see Clayton and Hills, 1993;
Kelsey et al., 1996; Rothman and Greenland, 1998).
Hybrid methods which combine regressions on
treatment and outcome have also been developed;
see Robins and Greenland (1994) and Rosenbaum
(1995) for examples. Nonetheless, theoretical re-
sults indicate that no approach can completely
solve sparse-data problems, insofar as sample size
will always limit the number of degrees of free-
dom available for covariate adjustment and model
testing (Robins and Ritov, 1997).

3.3 Sufficient Control

Without randomization, the evaluation of within-
stratum or residual confounding becomes a major
concern. For this purpose, we define a stratification
as sufficient for estimation of stratum-specific causal
effects if, within strata, µA0 and µB0 are exchange-
able. In a parallel fashion, we define a set of vari-
ables as sufficient for control of confounding if si-
multaneous (joint) stratification on all the variables
is sufficient in the sense just described. (We note in
passing that this is a weaker condition than that
of “covariate sufficiency” as used in Stone, 1993.)
Randomization ensures sufficiency of the set of mea-
sured variables not affected by treatment. In the ab-
sence of randomization, however, causal inferences
become dependent on and sensitive to the assump-

tion that the set of variables available for analy-
sis is sufficient. It almost always remains logically
possible that this set is insufficient because some
confounder essential for sufficiency has not been
recorded; thus, causal inferences from observational
studies almost always hinge on subject-matter pri-
ors (“judgements”) about what may be missing from
the set. Sensitivity of results to possible unmea-
sured confounders can be assessed via formal sen-
sitivity analysis (Rosenbaum, 1995; Copas and Li,
1997; Robins, Rotnitzky, and Scharfstein, 1999).

There are some systematic ways of deriving the
implications of background assumptions. For exam-
ple, assumptions about the directions and absences
of causal relations among variables (measured and
unmeasured) can be conveniently encoded in a
causal graph or path diagram, in which arrows
(directed arcs) represent cause–effect relations.
Conditional on the assumptions underlying the
graph, the question of sufficiency of a set of vari-
ables (such as the set of measured variables) can
be easily answered using a simple graphical algo-
rithm called the “back-door test” (Pearl, 1995). The
same algorithm allows one to determine whether
subsets of a sufficient set are themselves sufficient.
By stepwise deletion and testing, we may thus
identify minimally sufficient subsets (that is, suf-
ficient subsets with no sufficient proper subsets).
The need for such identification arises, for exam-
ple, in epidemiologic studies in which numerous
“lifestyle” covariates (diet, physical activity, smok-
ing and drinking habits, etc.) are measured and
are potential confounders of the effect under study.
Here, the total set of covariates may be sufficient
for control as defined above, but impractical to con-
trol in its entirety, even when using propensity
score or outcome-regression methods (Greenland,
Pearl and Robins, 1999).

Graphical identification of sufficient subsets oper-
ates on background assumptions, rather than data.
An analogous statistical approach is given by the
following result (Robins, 1997).

Theorem. A subset S of a sufficient set is itself
sufficient if the remainder subset R (those variables
in the original set but not in S) can be decomposed
into disjoint subsets R1 and R2 such that both

R1
∐
X�S and R2

∐
Y�R1;X;Sy(9)

that is, R1 is independent of treatment X given S,
and R2 is independent of the outcome Y given R1,
treatment X, and S. When such a decomposition ex-
ists, R1 can be taken to be the largest subset of R
satisfying R1

∐
X�S.
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Any set identified as sufficient by the back-door
test must satisfy the conditions of Robins’s theorem,
although the converse is not true (Robins, 1997).
As an example of the theorem, suppose X is mea-
sured breast-implant exposure, Y is time to breast
cancer from an index time, S contains diet and ex-
ercise variables, R contains alcohol-drinking and
smoking variables with R1 = drinking and R2 =
smoking variables, and S∪R is sufficient. Then the
drinking and smoking variables can be omitted if
the drinking and implant variables are independent
conditional on the diet and exercise variables, and
the smoking and breast cancer variables are inde-
pendent conditional on the drinking, implant, diet
and exercise variables. These conditions are testable
using observed data; for example, smoking has not
been found to be associated with breast cancer upon
extensive control of other lifestyle variables, while
the association of drinking and implants could be
examined in certain existing data bases.

Stone (1993, page 459) defined “no confounding
given S” as fulfillment of the above condition (9)
with R1 equal to all unobserved covariates that af-
fect the response (outcome). This “no-confounding”
definition neither implies nor is implied by our def-
inition, but Stone showed that it does imply that
S is sufficient for control. The above theorem is a
generalization of Stone’s result, in that it imposes
no causal constraints on R1 or R2; for example, it
does not assume that R1 contains all (or even any)
covariates that affect response.

A set S that is sufficient for estimating stratum-
specific effects will also be sufficient for estimating
a summary measure of the effect of treatment on
the entire target population. Nonetheless, because
confounding may “average out” across strata, the
converse is not true: a set S may be sufficient for
estimating a summary effect even though insuffi-
cient for estimating stratum-specific effects (Green-
land and Robins, 1986). This notion will be formal-
ized in the next subsection.

3.4 Residual Confounding

Suppose that we subdivide the total study pop-
ulation �A + B� into K strata indexed by k. Let
µA1k be the parameter of interest in stratum k of
populations A and B under treatment x1. The ef-
fect of treatment x1 relative to x0 in stratum k may
be defined as µA1k − µA0k or µA1k/µA0k. The con-
founding that remains in stratum k is called the
residual confounding in the stratum, and is mea-
sured by µA0k−µB0k or µA0k/µB0k. Note that a suf-
ficient stratification has E�µA0k − µB0k� = 0 for all
k by virtue of the exchangeability of µA0k and µB0k,

yet may have random residual confounding within
strata.

Residual confounding may be summarized in a
number of ways, for example, by standardization
or other weighted-averaging methods (Miettinen,
1972; Rothman and Greenland, 1998). As an il-
lustration, suppose the strata represent age-sex-
specific subgroups, and the proportion of the stan-
dard population that falls in age-sex stratum k is
pk. Then the effect of x1 versus x0 on A standard-
ized to (weighted by) the distribution p1; : : : ; pK is

DAA =
∑
k

pkµA1k −
∑
k

pkµA0k

=
∑
k

pk�µA1k − µA0k�;
(10)

whereas the standardized difference comparing A
to B is

DAB =
∑
k

pkµA1k −
∑
k

pkµB0k

=
∑
k

pk�µA1k − µB0k�:
(11)

The overall residual confounding in DAB is thus

DAB −DAA =
∑
k

pkµA0k −
∑
k

pkµB0k

=
∑
k

pk�µA0k − µB0k�;
(12)

which may be recognized as the standardized dif-
ference comparing A and B when both are given
treatment x0, using p1; : : : ; pK as the standard
distribution. With this formulation, a stratification
can be considered sufficient for inference on DAA if∑
kpkµA0k and

∑
kpkµB0k are exchangeable.

4. COLLAPSIBILITY

4.1 Collapsibility in Contingency Tables

Consider the I × J ×K contingency table repre-
senting the joint distribution of three discrete vari-
ables X, Y, Z, the I×J marginal table represent-
ing the joint distribution of X and Y, and the set
of conditional I×J subtables (strata) representing
the joint distributions of X and Y within levels of
Z. Generalizing Whittemore (1978) (who considered
log-linear model parameters), we say a measure of
association of X and Y is strictly collapsible across
Z if it is constant across the strata (subtables) and
this constant value equals the value obtained from
the marginal table.

Noncollapsibility (violation of collapsibility) is
sometimes referred to as Simpson’s paradox, af-
ter a celebrated article by Simpson (1951). This
phenomenon had been discussed by earlier au-
thors, including Yule (1903); see also Cohen and
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Nagel (1934). Some statisticians reserve the term
Simpson’s paradox to refer to the special case
of noncollapsibility in which the conditional and
marginal associations are in opposite directions, as
in Simpson’s numerical examples. Simpson’s alge-
bra and discussion, however, dealt with the general
case of inequality. The term “collapsibility” seems
to have arisen in later work; see Bishop, Fienberg
and Holland (1975).

Table 1 provides some simple examples. The dif-
ference of probabilities that Y = 1 (the risk differ-
ence) is strictly collapsible. Nonetheless, the ratio of
probabilities that Y = 1 (the risk ratio) is not col-
lapsible because the risk ratio varies across the Z
strata, and the odds ratio is not collapsible because
its marginal value does not equal the constant con-
ditional (stratum-specific) value. Thus, collapsibility
depends on the chosen measure of association.

Now suppose that a measure is not constant
across the strata, but that a particular summary of
the conditional measures does equal the marginal
measure. This summary is then said to be collapsi-
ble across Z. As an example, in Table 1 the ratio of
risks standardized to the marginal distribution of
Z is[

P�Z = 1�P�Y = 1�X = 1; Z = 1�
+P�Z = 0�P�Y = 1�X = 1; Z = 0�

]

·
[
P�Z = 1�P�Y = 1�X = 0; Z = 1�

+P�Z = 0�P�Y = 1�X = 0; Z = 0�
]−1

= 0:50�0:80� + 0:50�0:40�
0:50�0:60� + 0:50�0:20� = 1:50;

equal to the marginal (crude) risk ratio. Thus, this
measure is collapsible in Table 1. Various tests
of collapsibility and strict collapsibility have been
developed; see Whittemore (1978); Asmussen and
Edwards (1983); Ducharme and LePage (1986);

Table 1
Examples of collapsibility and noncollapsibility in a three-way

distribution

Z 5 1 Z 5 0 Marginal

X 5 1 X 5 0 X 5 1 X 5 0 X 5 1 X 5 0

Y = 1 0.20 0.15 0.10 0.05 0.30 0.20
Y = 0 0.05 0.10 0.15 0.20 0.20 0.30

Risksa 0.80 0.60 0.40 0.20 0.60 0.40

Risk differences 0.20 0.20 0.20

Risk ratios 1.33 2.00 1.50

Odds ratios 2.67 2.67 2.25

aProbabilities of Y = 1.

Greenland and Mickey (1988) and Geng (1989) for
examples.

4.2 Regression Formulation

The above definition of strict collapsibility extends
to regression contexts. Consider a generalized linear
model for the regression of Y on three regression
vectors W, X, Z:

g�E�Y�W = w;X = x;Z = z��
= α+wβ+ xγ + zδ:

(13)

The regression is said to be collapsible for β over Z
if β = β∗ in the regression omitting Z,

g�E�Y�W = w;X = x�� = α∗ +wβ∗ + xγ∗;(14)

and is noncollapsible if β 6= β∗ (Clogg, Petkova and
Shihadeh, 1992). Thus, if the regression is collapsi-
ble for β over Z and β is the parameter of inter-
est, Z need not be measured to estimate β. If Z
is measured, however, tests of β = β∗ can be con-
structed (Hausman, 1978; Clogg, Petkova and Shi-
hadeh, 1992; Clogg, Petkova and Haritou, 1995).

The preceding definition generalizes the original
contingency table definition to arbitrary variables.
There is a technical problem with the above regres-
sion definition, however: If the first (full) model is
correct, it is unlikely that the second (reduced) re-
gression will follow the given form; that is, most
families of regression models are not closed under
deletion of Z. If, for example, Y is Bernoulli and g
is the logit link function, so that the full regres-
sion is first-order logistic, the reduced regression
will not follow a first-order logistic model except in
special cases. One way around this dilemma (and
the fact that neither of the models is likely to be ex-
actly correct) is to define the model parameters as
the asymptotic means of the maximum-likelihood
estimators. These means are well defined and inter-
pretable even if the models are not correct (White,
1994).

It may be obvious that, if the full model is correct,
δ = 0 implies collapsibility for β and γ over Z. Sup-
pose, however, that neither β nor δ is zero. In that
case, marginal independence of the regressors does
not ensure collapsibility for β over Z except when g
is the identity or log link (Gail, Wieand and Pianta-
dosi, 1984; Gail, 1986); conversely, collapsibility can
occur even if the regressors are associated (Whitte-
more, 1978); see the example below. Thus, it is not
generally correct to equate collapsibility overZ with
simple independence conditions, although useful re-
sults are available for the important special cases of
linear, log-linear, and logistic models (e.g., see Gail,
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1986; Wermuth, 1987, 1989; Robinson and Jewell,
1991; Geng, 1992; Guo and Geng, 1995).

4.3 Other Collapsibility Concepts

The literature on graphical probability models
distinguishes a number of properties that have
been referred to as types of collapsibility; see Fry-
denberg (1990), Whittaker (1990, Section 12.5)
and Lauritzen (1996, Section 46.1) for examples.
Both definitions given above are special cases of
parametric collapsibility (Whittaker, 1990).

5. CONFOUNDING AND NONCOLLAPSIBILITY

5.1 The Divergence

Much of the statistics literature does not distin-
guish between the concept of confounding as a bias
in effect estimation and the concept of noncollapsi-
bility; for example, Becher (1992) defines confound-
ing as β 6= β∗ in models (13) and (14), in which case
the elements of Z are called confounders; similarly,
Guo and Geng (1995) define Z to be a noncon-
founder if β = β∗. Nonetheless, the two concepts
are distinct: confounding may occur with or without
noncollapsibility and noncollapsibility may occur
with or without confounding (Miettinen and Cook,
1981; Greenland and Robins, 1986; Wickrama-
ratne and Holford, 1987). Mathematically identical
conclusions have been reached by other authors,
albeit with different terminology in which noncol-
lapsibility corresponds to “bias” and confounding
corresponds to “covariate imbalance” (Gail, 1986;
Hauck, Neuhaus, Kalbfleisch and Anderson, 1991).

Noncollapsibility without confounding. Table 2
gives the response distributions under treatments
x1 and x0 for a hypothetical target population A
and the response distribution under treatment x0
for a hypothetical reference population B. Suppose
A receives treatment x1, B receives x0, and we wish
to estimate the effect that receiving x1 rather than
x0 had on A. If we take the odds of response as the
outcome parameter µ, we get µA1 = 0:6/�1− 0:6� =
1:50, and µA0 = µB0 = 0:4/�1 − 0:4� = 0:67.
Hence, there is no confounding of the odds ratio:
µA1/µA0 = µA1/µB0 = 1:50/0:67 = 2:25. Nonethe-
less, the covariate Z is associated with response in
A andB. Furthermore, the odds ratio is not collapsi-
ble: within levels of Z, the odds ratios comparing
A under treatment x1 to either A or B under x0
are �0:8/0:2�/�0:6/0:4� = �0:4/0:6�/�0:2/0:8� = 2:67,
higher than the unconditional (crude) odds ratio of
2.25 obtained when Z is ignored.

The preceding example illustrates a peculiar
property of the odds ratio as an effect measure:
treatment x1 (relative to x0) elevates the odds of

Table 2
Distribution of responses for hypothetical index population A
under treatments x1 and x0, and for reference population B

under treatment x0: Example of noncollapsibility without
confounding of the odds ratio

Population A

Response probability if

Stratum X 5 x1 X 5 x0 Stratum size

Z = 1 0.8 0.6 1,000
Z = 0 0.4 0.2 1,000
Unconditional 0.6 0.4

Population B

Response probability if

Stratum X 5 x1 X 5 x0 Stratum size

Z = 1 *a 0.6 1,000
Z = 0 *a 0.2 1,000
Unconditional *a 0.4

aNot used in example.

response by 125% in population A, yet within each
stratum of Z it raises the odds by 167%. If Z is
associated with response conditional on treatment
but unconditionally unassociated with treatment,
the stratum-specific odds ratios must be farther
from 1 than the unconditional odds ratio if the lat-
ter is not 1 (Gail, 1986; Hauck et al., 1991). This
phenomenon is often interpreted as a “bias” in the
unconditional odds ratio, but in fact there is no bias
if one takes care to not misinterpret the uncondi-
tional effect as an estimate of the stratum-specific
or individual effects (Miettinen and Cook, 1981;
Greenland, 1987).

Confounding without noncollapsibility. To create
a numerical example in which the odds ratio is col-
lapsible and yet is confounded for the overall effect,
we need only modify Table 2 slightly, by changing
the stratum size for Z = 0 in population B to 1,500.
With this change, the proportion with Z = 1 in pop-
ulationB drops from 0.5 to 0.4, the unconditional re-
sponse probability in population B under treatment
x0 becomes 0:4�0:6�+0:6�0:2� = 0:36, and the uncon-
ditional response odds µB0 in population B under
x0 becomes 0:36/�1 − 0:36� = 0:5625. Thus, µB0 =
0:5625 < 0:67 = µA0, with consequent confounding
of the odds ratio: µA1/µA0, the true effect that x1
had on the odds in population, equals 2.25 (as be-
fore), which is less than the unconditional odds ra-
tio µA1/µB0 = 1:50/0:5625 = 2:67. Nonetheless, this
unconditional odds ratio equals the stratum-specific
odds ratios, which are unchanged from the previous
example.
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5.2 Conditions for Equivalence

The example in Table 2 shows that, when µ is
the odds of the outcome, µA0 may equal µB0 (no
confounding) even when the odds ratio is not col-
lapsible over the confounders. Conversely, the mod-
ified example shows that we may have µA0 6= µB0
even when the odds ratio is collapsible. A proba-
bilistic explanation of the discrepancy between non-
confounding and collapsibility is that µA0 will equal
µB0 whenever Z is sufficient for control and is un-
conditionally unassociated with treatment, as in Ta-
ble 2, whereas collapsibility of the odds ratio will
occur whenever Z is unassociated with treatment
conditional on response, as in the modified exam-
ple (Bishop, Fienberg and Holland, 1975). Thus, the
discrepancy is just a consequence of the nonequiva-
lence of unconditional and conditional associations.

If the effect measure is the difference or ratio
of response proportions, results of Gail (1986) im-
ply that this measure will be collapsible over Z
if Z has the same distribution in A and B (that
is, if Z and treatment are unconditionally unas-
sociated). It follows that, when examining such
measures, the above phenomena (noncollapsibility
without confounding and confounding without non-
collapsibility) cannot occur if Z is sufficient for
control. More generally, when the effect measure
can be expressed as the average effect on popula-
tion members [e.g., under the linear causal model
(4)], the conditions for noncollapsibility and con-
founding will be identical, provided the covariates
in question form a sufficient set for control. In
such cases, noncollapsibility and confounding be-
come equivalent, which may explain why the two
concepts are often not distinguished. The nonequiv-
alence of the two concepts for odds ratios simply
reflects the fact that the unconditional effect of a
treatment on the odds is not the average treatment
effect on population members (Greenland, 1987).

5.3 Regression Formulations

The preceding conclusions correspond to well-
known results for correlated-outcome regression.
For example, the difference between the stratum-
specific and crude odds ratios in Table 2 corre-
sponds to the differences between cluster-specific
and population-averaged (marginal) effects in bi-
nary regression (Neuhaus, Kalbfleisch and Hauck,
1991): the clusters of correlated outcomes corre-
spond to the strata, the cluster effects correspond
to the covariate effects, the cluster-specific treat-
ment effects correspond to the stratum-specific log
odds ratios, and the population-averaged treatment
effect corresponds to the crude log odds ratio.

More generally, consider a situation in which the
full regression model [model (13)] is intended to rep-
resent causal effects of the regressors on Y. Noncol-
lapsibility over Z (that is, β 6= β∗) does not cor-
respond to confounding of effects unless g is the
identity or log link. That is, it is possible for β to
unbiasedly represent the effect of manipulating W
within levels of X and Z, and, at the same time,
for β∗ to unbiasedly represent the effect of manip-
ulating W within levels of X, even though β∗ 6= β.
Table 2 demonstrates this point for logistic models,
and shows that noncollapsibility in a logistic model
does not always signal a bias. The divergence be-
tween β and β∗ corresponds to the distinction be-
tween cluster-specific and population-averaged ef-
fects: the cluster-specific model corresponds to the
full model (13) in which Z is an unobserved univari-
ate cluster-specific random variable independent of
W and X, with mean zero and unit variance; δ2 is
then the vector of random-effects variances.

6. CONFOUNDING IN INTERVENTION
STUDIES: FURTHER ISSUES

In this section we briefly discuss some special
issues of confounding that arise in studies of in-
terventions, such as clinical trials and natural
experiments.

6.1 Adjustment in Randomized Trials

Some controversy has existed about adjustment
for random covariate imbalances in randomized
trials. Although Fisher asserted that randomized
comparisons were “unbiased,” he also pointed out
that they could be confounded in the sense used
here (e.g., see Fisher, 1935, page 49). Fisher’s use
of the word “unbiased” was unconditional on alloca-
tion, and therefore of little guidance for analysis of
a given trial. Some arguments for conditioning on
allocation are given in Greenland and Robins (1986)
and Robins and Morgenstern (1987). Other argu-
ments for adjustment in randomized trials have
been given by Rothman (1977); Miettinen and Cook
(1981) and Senn (1989).

6.2 Intent-to-Treat Analysis

In a randomized trial, noncompliance can eas-
ily lead to confounding in comparisons of the
groups actually receiving treatments x1 and x0.
One somewhat controversial solution to noncom-
pliance problems is intent-to-treat analysis, which
defines the comparison groups A and B by treat-
ment assigned rather than treatment received.
Detractors of intent-to-treat analysis consider it
an attempt to define away a serious problem, es-
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pecially when treatment received is the treatment
of scientific interest. Supporters of intent-to-treat
analysis emphasize that intent-to-treat tests (tests
of assigned-treatment effects) remain valid tests
of received-treatment effects under broader condi-
tions than conventional tests of received-treatment
effects. See the volume edited by Goetghebeur
and van Houwelingen (1998) for discussions of
these and related issues, including alternatives to
intent-to-treat analysis.

A crucial point is that confounding can affect
even intent-to-treat analyses. For example, appar-
ently random assignments may not be random, as
when blinding is insufficient to prevent the treat-
ment providers from protocol violations or when
there is differential loss to follow-up. Even when
these problems do not occur, random imbalances
remain possible. A more subtle problem is that
noncompliance can produce bias away from the
null in an intent-to-treat analysis of equivalence
trials. With noncompliance, the sharp null hypoth-
esis (of equivalence of the two treatments) does not
by itself imply that the distribution of outcomes
will be the same in both treatment arms, because
noncompliance represents movement into a third
untreated state that does not correspond to any
assigned treatment (Robins, 1998). To illustrate,
suppose treatments A and B are both 100% effec-
tive and thus completely equivalent with respect to
their effect on the outcome, so that the equivalence
null is satisfied. Suppose, however, that treatment
A causes a harmless but unpleasant flushing sen-
sation, whereas treatment B does not, and as a
consequence compliance is 70% for A but 100%
for treatment B. Then the intent-to-treat test will
reject the null hypothesis of equivalence solely be-
cause of the lower compliance with treatment A.
Thus, in this example, noncompliance confounds
the intent-to-treat analysis away from the correct
null hypothesis of equivalence.

6.3 Choice of Target

In observational epidemiologic studies, the usual
goal is to estimate the effect that treatment had on
the treated group, µA1 −µA0, or would have had on
the untreated group, µB1 − µB0, depending on the
ultimate policy objectives; for example, µA1 − µA0
may be of interest as a measure of harm caused by
the treatment. However, in randomized trials there
are several reasons for orienting the estimation goal
toward comparison of the expected outcome of the
entire �treated + untreated� study group if every-
one had been treated, µ+1 = �µA1 +µB1�/2, and the
expected outcome of this group if no one had been
treated, µ+0 = �µA0 + µB0�/2 (Robins, 1988). Both

these outcomes are counterfactual, and so analysis
requires substituting the estimable pair �µA1; µB0�
for �µ+1; µ+0�. Consequently, the no-confounding
condition becomes µA1 = µ+1 and µB0 = µ+0 or,
equivalently, µA1 = µB1 and µA0 = µB0. This con-
dition is not realistic, but it is also not necessary.
Inferential procedures for (say) µ+1 − µ+0 can be
derived from the randomization-induced uncondi-
tional exchangeability of µA1 with µB1 and of µA0
with µB0.

One advantage of focusing on µ+1 − µ+0 rather
than µA1 − µB1 is that standard inferential proce-
dures for treatment effects on risks yield conserva-
tively valid inferences for µ+1 − µ+0 (Copas, 1973;
Robins, 1988; see also Neyman, 1935). Another ar-
gument for focusing on µ+1 and µ+0 applies if the
entire cohort is a random sample from a specified
target population: in that situation µ+1 − µ+0 will
in expectation be closer to the treatment effect in
the target than µA1 − µB0, because the former will
deviate from the target effect only because of sam-
pling variability, whereas the latter will incorporate
randomization variability as well (Robins, 1988).

6.4 Ignorability and Confounding

It is sometimes possible to evaluate a treatment-
assignment mechanism even though the mechanism
is not under control; examples include the way util-
ity companies assign water and power sources
to homes. In these settings, the mechanism may
clearly not be random but may nonetheless satisfy
weaker conditions that allow inferences about the
effect of interest.

As an example, suppose one is interested in
just one particular outcome variable, such as time
to death. A treatment-assignment mechanism is
strongly ignorable for the outcome variable if (1)
the treatment-assignment variable X it defines is
independent of the vector y = �y0; y1; : : : ; yK� of
potential outcomes, and (2) each unit has nonzero
probability of assignment to each treatment level
(Rosenbaum and Rubin, 1983). Standard random-
ization methods are strongly ignorable for all
outcomes when noncompliance and censoring are
absent or purely random.

Like randomization, strongly ignorable treat-
ment assignment insures that parameters of the
population-specific distributions of potential out-
comes will be exchangeable across populations. For
example, suppose we have two treatment levels
�x0; x1�, a strongly ignorable assignment mecha-
nism, and (as above) we label the x1- and x0-treated
groups by A and B; then, absent any other infor-
mation related to µA0 or µB1, the pair �µA1; µA0�
should be exchangeable with the pair �µB1; µB0�.
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For most purposes, however, only component-
specific exchangeability of µA1 with µB1 or µA0
with µB0 is needed (Greenland and Robins, 1986;
Robins, 1987b); this condition is implied by but
does not imply “weak ignorability,” in which con-
dition (1) above is replaced by the condition that
X is independent of each component of y consid-
ered separately, rather than jointly (Stone, 1993).
Ignorability (strong or weak) is thus stronger than
needed for identification of the causal parameter
µA1 − µA0.

Rubin (1991) has referred to an assignment
mechanism that satisfies condition (1) (i.e., assigns
treatment independently of y) as “unconfounded.”
Following Fisher (1935), we prefer to call such a
mechanism “unbiased,” because traditional usage
of “unconfounded” refers to the actual allocation
produced by the mechanism. Rubin’s usage, like
Stone’s (1993) definition of “no confounding,” does
not allow for random allocation errors; as discussed
earlier for randomization, however, random varia-
tion in unbiased mechanisms can by chance produce
confounded allocations.

7. CONCLUSION

Concepts of confounding have been discussed by
philosophers and scientists for centuries. It is only
in more recent decades, however, that precise for-
mal definitions of these concepts have emerged
within statistical theory. These developments have
revealed the distinction between counterfactual and
collapsibility-based concepts of confounding. This
distinction deserves mention in basic statistics ed-
ucation, because the counterfactual definition of
confounding is nonparametric and specific to causal
inference, whereas collapsibility depends on the
choice of association parameter and requires no
reference to causality or effects.

Our discussion has assumed that both the treat-
ment variable and the confounders can be fully char-
acterized by fixed covariates. Further subtleties can
arise when these variables are time-dependent; see
Robins (1986, 1987a, b, 1997) and Pearl and Robins
(1995). We also have not considered issues of con-
founding in separating direct and indirect effects;
for discussions, see Robins (1986, 1997), Robins and
Greenland (1992, 1994), Pearl and Robins (1995)
and Pearl (1997).

We wish to end on the cautionary note that
confounding is but one of many problems that
plague studies of cause and effect. Biases of com-
parable or even greater magnitude can arise from
measurement errors, selection (sampling) biases,
and systematically missing data, as well as from

model-specification errors. Even when confounding
and other systematic errors are absent, individual
causal effects will remain unidentified by statis-
tical observations (Greenland and Robins, 1988;
Robins and Greenland, 1989). It remains a seri-
ous challenge to create a statistical theory that can
encompass all these problems coherently and also
yield practical methods for data analysis.

APPENDIX 1: RESTRICTIONS IMPOSED BY
THE POTENTIAL-OUTCOMES APPROACH

First, causal effects are defined only for compar-
isons of treatment levels. To state that “drinking
two glasses of wine a day lengthened Smith’s life
by four years” is meaningless by itself. A reference
level (e.g., no wine at all) must be at least implicit
to make sense of the statement. Smith might have
lived even longer had she consumed one rather than
two glasses per day, in which case the statement
would be false relative to one glass a day. As given,
the statement could refer to no wine or four glasses
per day or any other possibility.

Second, the definition assumes that yik, the out-
come of unit i under treatment k, remains conceptu-
ally meaningful even if unit i is not given treatment
k. That is, the analyst must be prepared to treat
yi0; : : : ; yiK as parameters unaffected by treatment
assignment. Treatment assignment only determines
which one of these K + 1 parameters we observe
[that is, the realization of Yi (Rubin, 1974, 1978,
1991)]; the other K parameters remain latent traits
of individual i. In the philosophy literature, analysis
of this assumption is one of the core tasks of coun-
terfactual logic (Simon and Rescher, 1966; Lewis,
1973a; Galles and Pearl, 1998; see also the discus-
sion of Holland, 1986). The statement “if xk had
been administered, the response Yi of unit i would
have been yik” is called a counterfactual conditional
(Lewis, 1973b; Stalnaker, 1968); it asserts that Yi

would have equaled yik if xk had been administered
to unit i, even if xk had not in fact been adminis-
tered to unit i.

Third, the effects captured by the above counter-
factual definition are net effects, in that they in-
clude all indirect effects and interactions not specif-
ically excluded by treatment definitions. For exam-
ple, Smith’s consumption of two glasses of wine per
day rather than none may have given her four extra
years of life solely because one night at a formal din-
ner it made her feel unsteady and she had a friend
drive her home; had she not drunk, she would have
driven herself, skidded on a patch of ice, hit a tree
and been killed. This sort of indirect effect is not one
we would wish to capture when studying biologic ef-
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fects of wine use. It is nonetheless included in our
measure of effect (as well as any estimate) unless we
amend our treatment definition to include holding
constant all “risky” activities that take place during
Smith’s life. Such an amendment is sometimes (sim-
plistically) subsumed under the clause of “all other
things being equal (apart from treatment),” but can
be a serious source of ambiguity when the inter-
vention that enforces the amendment is not well
defined.

Consider next an illustration in which redefini-
tion of the treatment is not an option. Suppose the
objective is to estimate the effect of coffee use on
risk of myocardial infarction (MI). If coffee had not
been used by members of a cohort of current users,
some of these members might have instead taken
up or increased smoking to achieve their desired
level of stimulation. Thus, coffee use may well have
prevented or reduced smoking and so indirectly re-
duced MI risk. Would we want this indirect effect
of coffee included in our target effect parameter?
The answer to this question depends on the research
goals, rather than statistics. If the answer is no—we
wish only to estimate direct physiologic effect of cof-
fee use, apart from its influence on smoking habits—
we would have to redefine our reference level to one
of no increased smoking, as well as no coffee use.

A fourth restriction, which may be considered an
aspect of the third, is that the definition assumes
that treatments not applied to a unit could have
been applied. Suppose Smith would not and could
not stop daily wine consumption unless forced phys-
ically to do so. The effect of her actual two-glass-
a-day consumption versus the counterfactual “no
wine” would now be undefined without amending
the treatment definition to include forcing Smith to
drink no wine, for example, by removing all alcohol
from public availability.

Some authors account for the preceding restric-
tion by requiring that the counterfactual definition
of “effect” applies only to “treatment variables.” The
latter are defined informally as variables subject to
intervention or to manipulation of their levels (e.g.,
see Holland, 1986). One may sense an echo of the
circularity (as in ordinary definitions of cause and
effect), for the notion of manipulation embodies hav-
ing an effect on treatment levels (i.e., on xk) and
is itself somewhat ambiguous. Further ambiguity
arises because ordinary and useful notions of cause
do not impose such restrictions; for example, the
statement “trisomy 21 causes Down’s Syndrome” is
meaningful, even though no method for intervention
on trisomy 21 is known. Nonetheless, it has been
argued that one strength of the counterfactual ap-
proach is its explication of the ambiguities inherent

in defining cause and effect (Lewis, 1973a; Holland,
1986; Rubin, 1990). Although some authors impose
no restrictions on the definition of cause (e.g., Lewis,
1973a), in our presentation we assume that we are
dealing only with causes that can be manipulated,
such as drug treatments.

Implicit in most discussions of potential outcomes,
including the present one, is that the outcome yik
of unit i under treatment xk does not depend on
the treatment given to any other unit. This postu-
late is often called the assumption of no interference
among units, or the stability assumption (Cox, 1958;
Rubin, 1978, 1990). Chapter 2 of Cox (1958) gives a
careful discussion of conditions that lead to interfer-
ence in experimental trials. In epidemiologic stud-
ies, interference arises readily when the outcome is
contagious; here, phenomena such as herd immu-
nity may lead to complex dependencies of subject-
specific outcomes on the entire population distribu-
tion of treatment. In such situations, the potential
outcomes of a single unit must at least be written
yiω, where ω ranges over all �K+1�N possible allo-
cations of the K + 1 treatments among the N pop-
ulation units; further complexities arise if depen-
dencies among the unit specific outcomes must be
directly modeled (Halloran and Struchiner, 1995).

APPENDIX 2: DEFINING POTENTIAL
OUTCOMES WHEN COMPETING

RISKS ARE PRESENT

The definition of potential outcomes can be espe-
cially difficult in survival analysis when competing
risks are present. Consider again Smith’s drinking.
Suppose she contracted cancer at age 70 and drank
two glasses of wine a day, but would have instead
died of a myocardial infarction at age 68 if she had
drunk no wine. How could we define her counter-
factual age-at-cancer given no wine? Without such
a definition, the effect of two glasses of wine versus
none would be undefined.

One school of thought maintains that, to of-
fer a definition, one must have an unambiguous
concept of the manner in which competing risks
would be removed, as well as the counterfactual
time of the outcome event. These requirements are
not met by conditioning on “absence of compet-
ing risks”: Such hypothetical absence is itself not
a treatment or other well-defined counterfactual
state, even though standard probability calcula-
tions (as used in product-limit estimates) make it
appear otherwise (Kalbfleisch and Prentice, 1980,
page 166; Prentice and Kalbfleisch, 1988). To deal
with this problem, one must specify a treatment
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that would prevent the competing risks, as well as
the treatment xk of primary interest.

An opposing view maintains that it can be sci-
entifically useful to assume that a potential out-
come yik remains a well-defined quantity even if a
competing risk would occur and prevent its observa-
tion under treatment xk (Robins, 1986, 1987a; Slud,
Byar and Schatzkin, 1988). In such a case, yik is the
time the outcome would have occurred if no compet-
ing risks occurred before yik. That is, we imagine
that the causal mechanism leading to the outcome
would have taken its course to a particular value yik
had it not been interrupted by the competing risk.
Returning to our example, we could imagine that,
if Smith had drunk no wine, her pathophysiologic
state at age 68 (when she died from a myocardial in-
farction) would have been such as to produce a ma-
lignant tumor after just one more year. Under this
admittedly very hypothetical scenario, we could say
that her drinking extended her age-at-cancer by one
year because she in fact contracted cancer at age 70.
Note that this latent-outcome model does not imply
that the competing risks are independent.

A third approach to the competing-risk problem
is based on extending the ordinary definitions of ef-
fect in absence of competing risks to encompass in-
stances in which the outcome is undefined under one
or more treatments. For details, see Robins (1995b).
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