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Full Abstract. In this paper, we propose a fast numerical method to solve
a two dimensional non stationary Navier-Stokes problem: the projection
method. The advantages of this method are, on the one hand it can be ap-
plied all types of flows (laminar, viscous and turbulent) and on the other
hand, its convergence analysis is faster, compared to classical numerical
methods (Newton method, Jacobian Fixed method).

1. Introduction
From a mathematical viewpoint, one of the most intriguing unsolved ques-
tions concerning the Navier-Stokes equations and closely related to turbu-
lence phenomena is the regularity and uniqueness of the solutions to the
initial value problem. More precisely, given a smooth datum at time zero,
will the solution of the Navier-Stokes equations continues to be smooth
and unique for all time? This question was posed in 1934 by Leray and is
still without answer. Let us note that the authors would say that they are
not aware that this question is solved.

The mathematical theory of the Navier Stokes equations is based on the
use of functions spaces, which are at the heart of the modern theory of
partial differential equations.

In the nineteenth century, finding the exact solution to the Navier Stokes
equation were studied. In the twentieth century, the concept of weak so-
lution was introduce. Only the existence of the solutions can be ensured.
The uniqueness question is among the most important unsolved problems
in fluid mechanics. Some particular results of existence, uniqueness, and
regularity of the Navier Stokes equations are become classical. They can be
found in many references on the mathematical theory of the Navier Stokes
equations (see for instance Constantin and Foias (1988), Ladyzhenskaya
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(1963), Lions (1969), Temam (1979), Lions (1996) and the references
therein.

In the 3-dimensional evolution case, the mathematical theory is not yet
complete. It is known that the weak solutions exists for all time, but it is
not known whether they are unique. On the other hand, the strong so-
lution is unique and exists on a certain finite time interval, but it is not
known whether they exist for all time (see Temam (1984) for example).

In the 2-dimensional case, the mathematical theory is fairly complete. The
weak solutions turn out to be more regular and are, in fact, strong solu-
tions. Moreover, the solutions is unique for a given initial condition and
exist for all time (see Temam (1984), Theorem 1.3). Even if the theoretical
study of the 2D Navier Stokes is complete, the proposed numerical meth-
ods have some limits. Throughout this paper, we propose a numerical
method to solve 2D incompressible non-stationary Navier-Stokes problem.
The paper is organized as follows: In section 2, we recall to some theo-
retical results for the Navier-Stokes equation. The section 3 presents the
proposed numerical method. The results of numerical experiments for two
dimensional and for all kind of flows are presented, in order to show the
possibilities of the proposed method.

2. About 2-D incompressible non-stationary Navier Stokes system
2.1. Some theoretical aspects of a 2-D non-stationary Navier Stokes

system.

The Navier-Stokes equations describing the n−dimensional motion of a vis-
cous and incompressible fluid are as follows:

(2.1) %

(
∂ui
∂t

+
n∑
j=1

uj
∂ui
∂xj

)
−

n∑
j=1

∂

∂xj
σij = %fi, 1 ≤ i, j ≤ n,

with the incompressibility condition

(2.2) div u =
n∑
i=1

Dii(u) = 0,
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where

(2.3)


σij = −Pδji + 2µDij(u)

Dij(u) = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
 1 ≤ i, j ≤ n.

We also recall the following spaces

(2.4) H = {v ∈ (D(Ω))n; div v = 0} and V = {v ∈ (H1
0 (Ω))n div v = 0}

In these equations, the vector u is the velocity of the fluid, % is its den-
sity (assumed to be constant), µ > 0 is the viscosity (also assumed to be
constant) and P is its pressure; (σij) is the stress tensor and the vector f
represents a density of body forces per unit mass (gravity for instance). We
set

p =
P

%
and ν =

µ

%
.

Here p is the kinematic pressure and ν the kinematic viscosity, but for sake
of simplicity they will be called pressure and viscosity. Let T > 0 a real.
Thus the global incompressible and non-stationary Navier-Stokes system
with Dirichlet conditions is written as follows:

(2.5)



u̇− ν∆u+
∑n

i=1 uiDiu+∇p = f in Ω× (0, T );

div(u) = 0 in Ω× (0, T );

γ(u) = g, on ∂Ω× (0, T ) = Γt;

u(0) = u0 in Ω× (0, T )

where u̇ = ∂u
∂t

and u0 ∈ H an initial condition (i.e. at time t = 0):

(2.6) u(x, 0) = u0(x) in Ω,

where Ω is a bounded domain of Rn with a Lipschitz continuous boundary
Γ and g is a regular given vector function and u0 is a given divergence-free
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vector field.

In order to write (2.5) in a variational form, let us introduce a trilinear
functional,

(2.7) b(u, v, w) =
n∑

i,j=1

∫
Ω

uiDivjwidx.

The following lemmas give useful properties of b, there proofs can be found
in Girault and RavaiartT (1968) and Temam (1979).

Lemma 49. The trilinear form b is defined and continuous on
H1

0 (Ω)n ×H1
0 (Ω)n × (H1

0 (Ω)n ∩ Ln(Ω)), Ω bounded or unbounded, for any di-
mension of Rn.

Lemma 50. Let u ∈ H1(Ω)n with div u = 0 and γ(u) = 0 and let v and
w ∈ H1

0 (Ω)n ∩ Ln(Ω); then

b(u, v, v) = 0(2.8)
b(u, v, w) = −b(u,w, v)(2.9)

And the following estimations holds:

(2.10)
∣∣∣∣∫

Ω

ui(Divj)widx

∣∣∣∣ ≤ |ui|L 2n
n−2 (Ω)

|Divj|L2(Ω)|wj|Ln(Ω)

‖ui‖
L

2n
n−2 (Ω)

≤ C(Ω)‖u‖H1
0 (Ω)n

‖Divj‖L2(Ω) ≤ ‖vj‖H1
0 (Ω)

‖wi‖Ln(Ω) ≤ ‖wi‖H1
0 (Ω)∩Ln(Ω)

It follows (2.10) and the above estimations that:

(2.11) |b(u, v, w)|L3(Ω) ≤ C(Ω)‖u‖H1
0 (Ω)‖vj‖H1

0 (Ω)n‖wi‖H1
0 (Ω)

with

C(Ω) =


2
3
|Ω|1/6, if n = 3

|Ω|1/2
2
, if n = 2
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Now let

(2.12) a(u, v) =

∫
Ω

∇u.∇vdx

There are not information on u̇ and p more than

(2.13) u̇− ν∆u+
n∑
i=1

uiDiu+∇p = f in Ω× (0, T )

Let us takes ϕ ∈ V . Thus, we have

(∇p, ϕ) = 0 in D′(0, T )n

and (2.13) gives

(2.14) (u̇, ϕ) = −νa(u, ϕ)− b(u, u, ϕ) + (f, ϕ).

Thanks to the Lemma 50, b(u, u, ϕ) = −b(u, ϕ, u), then (2.14) is equivalent
to
(2.15) (u̇, ϕ) = −νa(u, ϕ) + b(u, ϕ, u) + (f, ϕ).

The variational form associated to (2.5) is as follows: given f ∈ L2(0, T ;V ),
T > 0 and u0 ∈ H, the addressed question is to find u ∈ L2(0, T ;V ) ∩
L∞(0, T ;H) such that:

(2.16)
{

(u̇, v) + νa(u, v) + b(u, u, v) = (f, v) for all v ∈ V
u(0) = u0

.

Remark 25. In the case of incompressible Stoke’s system, the pressure
can be interpreted as a Lagrange multiplier. In fact the pressure p ∈ L2

loc(Ω).

If (u, p) is a solution to problem (2.5), then u is a solution to problem (2.16).
The converse is also true as stated next. The following theorem gives the
existence and uniqueness (in two dimension) of a solution to (2.16):

Theorem 71. If n ≤ 4 and ν sufficiently large or f sufficiently small so
that

ν2 > c(n)‖f‖V ′
then the problem (2.16) admits a unique solution.
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Proof. For the proof, we refer for example, Temam (1984) Chapter II page
167, theorem 1.3. �

2.2. Presentation and discretization in time of the Navier Stokes
equations . In this subsection, we present the Navier-Stokes equations
in the temporal variable. We shall focus on the condition at the spatial-
periodic limits and the Dirichlet types in two dimensions. H and V are
defined by (2.4).

We consider on time interval [0, T ], the weak form of the Navier-Stokes
equations in the following sense : for u0 ∈ H and f in L2(Q × (0, T ))2 (or
L2(0, T,H)), we look for a function t 7→ u(t) from [0, T ] in V , satisfying:

(2.17)


d
dt

(u(t), v)0 + νa(u(t), v) + b(u(t), u(t), v) = (f(t), v)∀v ∈ V,

u(0) = u0

Let N be an integer great enough and let us set k = δt = T/N.

We are going to consider a discretized version in the time of (2.17) (with
the temporal discretization k = δt) that will furnish a set of elements of
V, u0, un where un will be someway an approximation of u at time δt at
the neighberhood of the point in Ω. We should first define the elements
f 1, f 2, ‘ . . . , fn of L2(Ω)2 or H. When f is continuous in time, we can define

(2.18) fn = f(nδt), n = 1, · · · , N.

If the data are note regular, we define fn as temporal means of f defined
as

(2.19) fn =
1

δt

∫ nδt

(n−1)δt

f(t)dt, n = 1, · · · , N.

Thereafter, we suppose that the fn are defined by (2.19), the case (2.18) is
a particular case of (2.19) and can be treated in the same way.

We restrict ourselves to a unique discretized schema, the Euler complete
implicit schema.
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We consider the Eulerian implicit scheme and define recursively the ele-
ment un of V as follows (u0 ∈ H where u0 ∈ H):

(2.20) u0 = u0 + initial data

where u0, . . . , un−1 are known, we define un as an element of V which sat-
isfies

(2.21)
1

δt
(un − un−1, v)0 + ν(un, v) + b(un, un, v) = (fn, v),∀v ∈ V.

Equation (2.21) is a non linear equation for un. The definition and prop-
erties of the trilinear form b are given by (2.7) and the lemma 50. The
consistency of (2.21) is given in the following subsection.

The equation (2.21) looks like to the stationary Navier-Stokes equation and
the existence of its solution can be proven exactly as this latter. Let us
rewrite (2.21) as

(2.22) α(u, v)0 + ν((u, v)) + b(u, u, v) = (g, v)0, ∀v ∈ V

where u = un, α = 1/δt and g = gn = αun−1 + fn.

We construct a Galerkin approximation of (2.22). Let (Vh)h∈N be an increas-
ing sequence of linear subspace of V with finite dimension

(2.23)
⋃
h∈N

Vh is dense in V

Then, for any h we search uh and Vh such that

(2.24) α(uh, v)0 + ν((uh, v)) + b(uh, uh, v) = (g, v)0, ∀v ∈ Vh.

The equation (2.24) is equivalent to a set of finite coupled quadratic equa-
tion for the components of uh in a basis of Vh. The existence of uh is not
obvious but relies on the (Brouwer’s (or Schauder) fixed point theorem:
for mor details, (see Temam (1984), theorem 1.2 chapter III). Then when
we set v = uh on (2.24), we see that the sequence uh is bounded on V ,
independently of h thanks to Lemma 50. Then
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α|uh|20 + ν ‖uh‖2 = (g, uh)0 6 |g|0|uh|0 6 λ
−1/2
1 |g|0‖uh‖(2.25)

6
ν

2
‖uh‖2 +

1

2νλ1

|g|20,(2.26)

2α|uh|20 + ν ‖uh‖2 6
1

νλ1

|g|20(2.27)

where λ1 > 0 is a constant.

We can extract an sub-sequence of uh, still noted uh that converges weakly
in V . We can then go to a limit in (2.24) with v fixed in

⋃
h∈N

Vh, i.e., v ∈ Vh0,

for a certain fixed h0, and for any h > h0 ; particularly, for v ∈ Vh, we can
show that

b(uh, vh, wh)→ b(u, v, w).

Thus passing to the limit in (2.24), we obtain

(2.28) α(u, v)0 + ν((u, v)) + b(u, u, v) = (g, v)0, ∀v ∈
⋃

Vh.

By density (2.28) is still valid for any v ∈ V and u solution of (2.22).

3. The proposed method: Projection method adapted to
Navier-Stokes equations

Several numerical methods are proposed in order to derive simulation of
the Navier-Stokes system. We can quote Newton method, Jacobian fixed
method, method using equivalent optimization solution. We recall here
briefly the description of these methods in order to point out there limits.

3.1. Newton method. The Newton method for approximation of the
solution of the Navier-Stokes system is described as follows. For an initial
data u(0) ∈ V h

0 , we generate a couple of sequences (um, pm), m = 1 . . . by
solving sequences of linear problems:
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a(u(m), vh) + b(u(m), u(m−1), vh) + b(u(m−1), u(m), vh) + a(vh, p(m))

= (f, vh) + b(u(m−1), u(m−1), vh) for all vh ∈ V h
0(3.1)

and

a(u(m), qh) = 0 for all qh ∈ V h
0(3.2)

where a(., .) and b(., ., .) denote the bilinear and the trilinear forms associ-
ated with the weak formulation of the Navier Stokes system.

The main disadvantage of this method is that, we have to solve an algebraic
linear system at each iteration. Another disadvantage is the convergence
of Newton method is guaranteed only when u(0) is sufficiently closed to the
solution.

3.2. Jacobian fixed method. The fixed Jacobian method allows to
keep the matrix coefficients, so we have not to solve an algebraic system
at each iteration. Unfortunately, this fixed Jacobian method is at best lin-
early convergent, and it is required ”best” initial assumptions to ensure
convergence.

In the practical implementations of the method, we note that the Jaco-
bian matrix must be reevaluated after M iterations, where M is a specified
positive integer chosen empirically to maintain convergent iterations. In
this case, a linear system with a new matrix of coefficients must be solved
every M iterations.

3.3. The proposed method. In order to overcome this difficulties, we
propose a new method by adapting the projection method to the Navier-
Stokes system, which we study in details in the following. We shall empha-
size the time discretization by the operator decomposition method, since
such method provide an efficient way to decouple the main difficulties of
the problem, namely the in-compressibility and the non-linearity.
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For a problem of the following form

(3.3) (P)


∂ϕ
∂t

+ A(ϕ) = 0

ϕ(0) = ϕ0

where A is a non linear operator which can be written as : A = A1 + ...+Ar,
r ≥ 2 and Ai is an operator simplest than A. The method consists in solving
a succession of r problems simplest than the initial one.

There are many operators decomposition methods, but we shall focus to
the one which allows us to apply projection method to the Navier Stokes. It
is based on the projection of the velocity field, approached by a prediction
step on a zero divergence field. The novelty of this method concerns how
the projection is made, directly operating on all the components of the ve-
locity field. A highly implicit algorithm allows us to maintain all physical
boundary conditions of the problem during the solution steps.

The main difficulties for solving Navier-Stokes equations are the treatment
of the non linear terms and the in-compressibility condition div u = 0.

The introductory works on numerical analysis of the Navier Stokes equa-
tion had been concreated to the treatment of the condition of incompress-
ibility for the general discretization. The difficulties related to this condi-
tion can be overcome by reducing the solution of the problem to that of a
family of problems or by using the vorticity of the flux function.

The treatment of incompressible condition on numerical analysis of Navier
Sokes equations is related to the first and the second types of projections
methods. The first type of projection method contains the study of penalty
method for slightly compressible fluid (see for example: Chorin (1967a),
Chorin (1967b), Chorin (1968a), Chorin (1968b), Temam (1979), Temam
(1966), Temam (1968a), Temam (1968b), Temam (1969a), Temam (1969b)
and Yanenko (1971)). This effort is continued in the years seventies and
at the beginning of the 80s with the development of the finite elements. The
objective was to approach the function of the null divergence vector by the
general functions, in relation to the UZAWA algorithm or to build Vh spaces
that approach V and take into consideration the in-compessibility condi-
tion in their construction ( or to consider the condition of in-compressibility
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like a constraint (of local type) and the pressure as a Lagrange’s multiplier)
in relation with mixed finite elements and the inf-sup condition (see for ex-
ample Brezzi and Fortin (1991), Girault and RavaiartT (1968), Gresho
and Sani (1996), Gunzburger (1989), Pironneau (1988), Temam (1984),
Thomasset (1981)). Now, there exists several methods for the treatment of
the in-compressibility condition but difficulties related to turbulence still
exist. Therefore, it needs an improvements for the use of engineering ap-
plications.

Our objective is to review some methods of treatment of the in-compressibility
condition wich do not dependent of the discretization method. In fact, the
proposed algorithm should be reconsidered and adapted for every specific
discretization method.

Let us consider an evolution equation

(3.4)
du

dt
+Au = 0,

where A is a linear or nonlinear operator, such that

(3.5) A = A1 + · · ·+Ar
The fractional step method is a decomposition method which reduces the
resolution of (3.4) to that of equations

(3.6) A = A1 + · · ·+Ai

This is related to the so-called Trotter formula which asserts that, for
suitable operators Ai, and for t > 0, the operators [(I + (t/n)A1)−1 · · · (I +
(t/n)Ar, )

−1]n converge to exp[t(A1 + · · ·+Ar)] as n→∞. This decomposition
method is particularly suitable when the equations (3.4) are not easier to
solve or when the operators Ai are of very different types and the solu-
tion of (3.6) needs different techniques. For a general presentation of the
fractional steps method, see Marchuk (1990), Yanenko (1971) and for the
analysis of the method, see Temam (1968a). The fractional step method
is also well suited in some parallel computing cases.

The projection method is a kind of the fractional steps method adapted
to the Navier-Stokes equations. It was introduced and studied in Chorin
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(1967a), Chorin (1967b), Chorin (1968a), Chorin (1968b) and Temam
(1969a), Temam (1969b) see also Temam (1979), Temam (1966), Temam
(1968a), Temam (1968b).

In one of its forms it consists in writing the full Navier-Stokes operator in
the form (3.4)-(3.5) with A = A1 +A2 (r = 2) where Al where loosely speak-
ing, A1 is the sum of the viscosity and inertial terms while A2 accounts for
the pressure term and the incompressibility condition. We shall recall and
study in some details this form of the projection method .

We now describe this scheme. For the sake of simplicity we restrict our-
selves to the nonslip (Dirichlet) boundary condition and we consider a
semidiscretization (a.e., discretization in time but not in space).

Let [0, T ] be the time interval, let N be an integer and δt = t/N . We define
recursively two families of elements un, un+ 1

2 , n = 0, · · · , N . We start with

(3.7) u0 = u0 ∈ H1
0 (Ω)2

and when the um are known for m = 0, · · · , n, we define un+ 1
2 as the solution

in H1
0 (Ω)2 of

(3.8)
1

δt
(un+ 1

2 − un) − ν∆un+ 1
2 + (un+ 1

2 .∇)un+ 1
2 +

1

2
(∇.un+ 1

2 )un+ 1
2 = fn+1

where f = (f 1, ·, fN+1) is defined from [0;T ] to L2(Ω)d (or H1
0 (Ω)2) by,

(3.9) fn = f(nδt), n = 1, · · · , N + 1

and if the non regular data are considered we define fn as the average of
f defined by

(3.10) fn =
1

δt

∫ nδt

(n−1)δt

f(x)dx n = 1, · · · , N + 1
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Then we define un+1 ∈ H1
0 (Ω)2 and a function qn ∈ L2(Ω) by setting

1

δt
(un+1 − un+ 1

2 ) +∇qn+1 = 0 in Ω(3.11)

div un+1 = 0 in Ω(3.12)
un+1.ν = 0 on ∂ Ω(3.13)

where ν stands to the outward normal vector to Ω. At this point we observe
that (3.8) for un+ 1

2 is equivalent to

un+ 1
2 ∈ H1

0 (Ω)2 and

(3.14) (un+ 1
2 , v)0 + νδt((un+ 1

2 , v)) + δtb̃(un+ 1
2 , un+ 1

2 , v) = (gn, v)0, ∀v ∈ H1
0 (Ω)2.

where

(3.15) gn = un + δtfn+1

and

(3.16) b̃(ϕ, ψ, θ) = b(ϕ, ψ, θ) + b1(ϕ, ψ, θ)

(3.17) b1(ϕ, ψ, θ) =
1

2

∫
Ω

(divϕ)ψ · θ dx.

The existence of un+1/2 solution of (3.14) will be proved in the next section.
Without the incompressibility of the flow, the skewness property (2.8) is
not valid for functions belonging to H1

0 (Ω)2 and not to V . As proposed in
Temam (1966), the skewness property which guarantees that the nonlin-
ear term is conservative can be recovered by adding b1 to b and this corre-
sponds to adding the underlined term in the equation (3.8), the result can
be obtained, because we have beside (3.16):

(3.18) b̃(ϕ, ψ, θ) =
1

2
{b(ϕ, ψ, θ)− b1(ϕ, θ, ψ)} , ∀ϕ, ψ, θ ∈ H1

0 (Ω)2

In fact, for any ϕ, ψ, θ ∈ H1
0 (Ω)2 smooth, thanks to Stokes formula, we have
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2b1(ϕ, ψ, θ) =
2∑

i,j=1

∫
Ω

∂ϕi
∂xi

ψjθj dx = −
2∑

i,j=1

∫
Ω

ϕi
∂

∂xi
(ψjθj) dx

Remark 26. The underlined term is not always present in actual compu-
tations; this can be explained by the fact that divun+1/2 remains small as we
shall see, and therefore the underlined term in the equation (3.8) is small.
However this term is indispensable in the analysis of the method.

Note also that, with a few changes in what follows, we can consider a lin-
earized version of Equation (3.8) which reads:

(3.19)
1

δt
(un+1/2 − un)− ν∆un+1/2 + (un · ∇)un+1/2 = fn+1

The analog of the underlined term in the equation 3.8 is not needed since
div un = 0 (un ∈ H1

0 (Ω)2). Let us now consider the second step (3.11). Refer-
ring to the decomposition of L2(Ω)2 as the sum of H1

0 (Ω)2 and its orthogonal
component, we see that un+1/2 ∈ H1

0 (Ω)2 and

(3.20) (un+1, v)0 = (un+1/2, v)0, ∀v ∈ H1
0 (Ω)2,

which amounts to saying that

(3.21) un+1 = PHu
n+1/2,

where P = PH is the orthogonal projector in L2(Ω)2 onto H1
0 (Ω)2. Alterna-

tively if we consider the Helmholtz decomposition of un+1/2, then

(3.22) un+1/2 = un+1 +∇ϕn,

for some function ϕn ∈ L2(Ω), so that ϕn = δtqn+1 with qn+1 defined up to an
additive constant by solving the Neumann problem related to the projector
PH

∆qn+1 =
1

δt
divun+1/2 in Ω(3.23)

∂qn+1

∂ν
=

(
1

δt
un+1/2 · ν

)
= 0 on ∂Ω(3.24)

SPAS EDITIONS (SPAS-EDS). www.statpas.org/spaseds/. In Euclid
(www.projecteuclid.org). Page - 501



A Collection of Papers in Mathematics and Related Sciences, a festschrift in honour of
the late Galaye Dia. Seck A. Ndiaye M., Seck A. Ndiaye, M., Sy A. and Seck D.
(2018). Numerical Solution of the 2-D Incompressible Non-stationary
Navier-Stokes Equations by Adapted Projection Method. Pages 487 — 521.

Since usually qn+1 is defined up to a constant which can be chosen by
imposing the condition

(3.25)
∫

Ω

qn+1 dx = 0.

Comparing (3.23) to the divergence of (3.8), and since divun = 0, we see
that

∆qn+1(3.26)

= div(ν∆un+1/2 + fn+1)− div
{

(un+1/2 · ∇)un+1/2 +
1

2
(∇ · un+1/2)un+1/2

}
.

Remark 27. We will show below that the un and un+1/2 approximate the
exact velocity u; it was shown also in Temam (1969b) that the qn+1 approxi-
mate the exact pressure. A solution to this paradox was proposed in Temam
(1991), along the following lines:

(i) The convergence of the q to the pressure which is proved in Temam (1969b)
holds in a very weak sense, close to the distribution sense. Hence this al-
lows the qn+1 to be different from their limit in a thin numerical boundary
layer near ∂Ω (for the details see Temam (1991)).

(ii) If the pressure is poorly approximated by qn+1, how could the velocity be
satisfactorily approximated by the un and un+1/2? This point which is hard to
understand if we look at the Navier-Stokes in their initial form involving the
pressure (conservation of momentum equation) becomes easy to understand
and even transparent if we look at the functional form of the Navier-Stokes
equations which appears as an evolution equation for u only. In fact the reso-
lution of the contradiction proposed in Temam (1991) consists in considering
the q as a necessary computational step to determine the projection (3.21),
and not as an approximation of the pressure. An accurate approximation of
the pressure must be determined otherwise or one can consider one of the
many modified forms of the projection scheme.

(iii) Many authors consider the quantity

(3.27) pn+1 = (I − νδt∆)qn+1
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as a more suitable approximation of the pressure at time tn+1 = (n + 1)δt.
This is justified as follows. We infer from (3.11) that
(3.28) un+1/2 = un+1 + δt∇qn+1

and upon substituting this expression of un+1/2 in (3.8), we obtain
(3.29)
1

δt
(un+1 − un)− ν∆un+1 + (un+1/2 · ∇)un+1/2 +

1

2
(∇ · un+1/2)un+1/2 +∇pn+1 = fn+1.

This expression is consistent with a time discretization of the conservation of
momentum equation (ρ

{
∂u
∂t

+ (u · ∇)u
}
−µ∆u+∇p = f ). Also it leads, for pn+1,

to a Neumann problem consistent with the Neumann problem corresponding
to the exact pressure:

∆pn+1 = ∇ ·
{
fn+1 − B(un+1/2)

}
in Ω

∂pn+1

∂ν
= ν ·

{
fn+1 − B(un+1/2)

}
on ∂Ω(3.30)

B(un+1/2) = (un+1/2 · ∇)un+1/2 +
1

2
(∇ · un+1/2)un+1/2.

Proposition 28 (Stability analysis). Let un+ 1
2 and un be defined by scheme

(3.8), (3.11). Then the following estimates holds
|un+1/2|20 − |un|20 + |un+1/2 − un|20 + 2νδt‖un+1/2‖2(3.31)

= 2δt(fn+1, un+1/2)0 6 2δt|fn+1|0|un+1/2|0

6 2cδt|fn+1|0‖un+1/2‖0 6 νδt‖un+1/2‖2 +
cδt

ν
|fn+1|20

Proof. Replacing v by un+1 in (3.20) and using Poincaré Inequality, we
obtain similarly

(3.32) |un+1|20 − |un|20 + |un+1 − un+1/2|20 = 0

and in particular, as expected for a projection

(3.33) |un+1|0 6 |un+1/2|0

We add (3.32) to (3.33)

(3.34) |un+1|20 − |un|20 + |un+1 − un+1/2|20 + νδt‖un+1/2‖2 6
cδt

ν
|fn+1|20,
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n = 0, · · · , N − 1. Adding these inequalities from n = 0 to N − 1 leads to

|uN |20 +
N−1∑
n=0

{
|un+1 − un|20 + |un+1/2 − un|20

}
+ νδt

N−1∑
n=0

‖un+1/2‖2(3.35)

6 |u0|20 +
cδt

ν

N−1∑
n=0

|fn+1|20,

the right-hand side of (3.35) is less than or equal to

(3.36) K1 = |u0|20 +
c

ν

∫ T

0

|f(t)|20 dt

Also upon adding the relations (3.34) for n = 0, · · · ,m, for some m, 0 6 m 6
N − 1, we see that

(3.37) |um|20 6 K1, 0 6 m 6 N − 1

We infer from (3.35)-(3.37) and (3.33) the following estimates which are
independent of δt:

(3.38)
N−1∑
n=0

{
|un+1 − un+1/2|20 + |un+1/2 − un|20

}
6 K1, νδt

N−1∑
n=0

‖un+1/2‖2 6 K1,

|um+1/2|20 |um|20 6 K1, for m = 0, · · · , N − 1.

We introduce the approximate functions u1k, u2k, ũk (k = δt) defined as
follows:

u1k = un+1/2 for t ∈ [nδt, (n+ 1)δt[n = 0, · · · , N − 1,

u2k = un+1 for t ∈ [nδt, (n+ 1)δt[n = 0, · · · , N − 1,

ũk : [0;T ]→ H is continuous, linear on each interval ](n−1)δt, nδt[ and equal
to un at nδt, n = 0, · · · , N .

Then (3.38) yields the lemma hereafter. �
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Lemma 51. As k = δt→ 0, u1k, u2k and ũk remain bounded in L∞(0, T ;L2(Ω)2);
u1k and u2k remain bounded in L2(0, T ;H1(Ω)2), and the same result holds for
ũk if u0 ∈ V .
Furthermore, u1k−u2k et u2k−ũk converge to 0 in L∞(0, T ;L2(Ω)2) as k = δt→ 0,
their norms being bounded by (K1∆/3)1/2.

Proof. The main point which remains to be proved in Lemma 51 is the fact
that u2k is bounded in L2(0, T ;H1(Ω)2). This follows from the continuity of
the projector in H1(Ω)2 (besides its continuity in L2(Ω)2, see Temam (1984),
chapter I, (1.47)). Hence there exists a constant c depending only on Ω such
that

(3.39) ‖PHϕ‖H1(Ω)2 6 c‖ϕ‖H1(Ω)2 , ∀ϕ ∈ H1(Ω)2.

Since un+1 = PHu
n+1/2, we find with (3.38)

‖un+1‖H1(Ω)2 6 c‖un+1/2‖ n = 0, · · · , N−1δt
N−1∑
n=0

‖un+1‖2
H1(Ω)2 =

∫ T

0

‖u2k(t)‖2
H1(Ω)2 dt 6

c

ν
K1.

For v ∈ V , both equations (3.14) and (3.20) are valid; therefore adding
these relations we see that

(3.40)
1

δt
(un+1 − un, v)0 + ν((un+1/2, v)) + b̃(un+1/2, un+1/2, v)

= (fn+1, v)0, ∀v ∈ V n = 0, · · · , N − 1.

This is equivalent to

∀t ∈ [0;T ]∀v ∈ V,(3.41)
d
d

(u(t), v)0 + ν((u1k(t), v)) + b̃(u1k(t), u1k(t), v) = (fk(t), v)0,

where fk is defined by, fk(t) = fn for t ∈ [(n− 1)δt;nδt[, n = 1, · · · , N . �
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Theorem 72 (Convergence analysis). In two dimensions space, the pro-
jection method converges in the following sense: there exists a sub-sequence
k = δt → 0, such that the functions u1k, u2k and ũk, associated with the
scheme (3.8), (3.11) converge to a solution u of the Navier-Stokes equations
in L2(0, T ;H1(Ω)2) weakly. Furthermore u1k converges to u in L2(0, T ;H1

0 (Ω)2)
strongly.

Proof. The proof of convergence of the projection method given hereafter
is slightly different than in Temam (1969b). For the sake of simplicity we
assume that u0 ∈ V , so that ũk is bounded in L2(0, T ;H1(Ω)2).

Because of Lemma 51, there exists a sub-sequence k′ → 0 such that

u1k′ → u1 in L∞(0, T ;H) weak-star and L∞(0, T ;H1
0 (Ω)2)

weakly
u2k′ → u2 in L∞(0, T ;H) weak-star and L∞(0, T ;H1(Ω)2)
weakly
ũk′ → u in L∞(0, T ;H) weak-star and L∞(0, T ;H1(Ω)2)
weakly

Lemma 51 also implies that ul = u2 = u and thus

(3.42) u ∈ L∞(0, T ;H) ∩ L2(0, T ;V )

Passing to the limit in (3.41) is straightforward if we know u1k′ converges
to u in L2(0, T ;L2(Ω)2), strongly, as k′ → 0. Alternatively, because of Lemma
51, it suffices to show that

(3.43) ũk → u in L2(0, T ;L2(Ω)2) strongly

First, we observe that ũk is an H-valued and hence a V ′-valued function
and show that

(3.44) ũk′ → w in L2(0, T ;V ′) strongly

Proof of (3.44)

By integration of (3.41) between t and t+ a, 0 < t < T , a > 0, we can write
SPAS EDITIONS (SPAS-EDS). www.statpas.org/spaseds/. In Euclid

(www.projecteuclid.org). Page - 506



A Collection of Papers in Mathematics and Related Sciences, a festschrift in honour of
the late Galaye Dia. Seck A. Ndiaye M., Seck A. Ndiaye, M., Sy A. and Seck D.
(2018). Numerical Solution of the 2-D Incompressible Non-stationary
Navier-Stokes Equations by Adapted Projection Method. Pages 487 — 521.

(3.45)

(ũk(t+ a)− ũk(t), v)0 =

∫ t+a

t

{
−ν((u1k(s), v))− b̃(u1k(s), u1k(s), v) + (fk(s), v)0

}
Using the Schwarz and Poincaré inequalities, the right-hand side of (3.45)
can be bounded by:

‖v‖(I1 + I2 + I3)

In fact:

I1 = ν

∫ t+a

t

‖u1k(s)‖ ds 6 νa1/2

(∫ t+a

t

‖u1k(s)‖2 ds

)1/2

6 Ka1/2 (with Lemma 51)

I2 6 c

∫ t+a

t

|u1k(s)|1/40 ‖u1k(s)‖7/4 ds

6 K

∫ t+a

t

‖u1k(s)‖7/4 ds (with Lemma 51)

6 Ka1/8

(∫ t+a

t

‖u1k(s)‖2 ds

)7/8

, (with Hölder’s inequality)

6 Ka1/8;

I3 = c

∫ t+a

t

|fk(s)|0 ds 6 ca1/2

(∫ t+a

t

|fk(s)|20 ds
)1/2

6 Ka1/2

We then infer from (3.45) that

‖uk(t+ a)− uk(t)‖V ′ = sup
v 6=0
v∈V

{
1

‖v‖
(ũk(t+ a)− ũk(t), v)0

}
6 K(a1/2 + a1/8),∫ T−a

0

‖uk(t+ a)− uk(t)‖2
V ′ dt 6 Ka1/4,

where K depends only on the data; uk, and (3.44). Once the strong con-
vergence is proved we establish (3.43) by using the following well-known
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property: since by Rellich’s theorem the injection of X in H is compact,

For every ε > 0 there exists a constant cε depending on ε and Ω such that

(3.46) |ϕ|0 6 ε‖ϕ‖X + cε‖ϕ‖V ′ , ∀ϕ ∈ X,

(see, Temam (1984), Lemme 2.1, Chapter III). Thus, for every ε > 0,

∫ T

0

|ũk′(t)− u(t)|20 dt

6 ε

∫ T

0

‖ũk′(t)− u(t)‖2
H1(Ω)2 dt+ cε

∫ T

0

‖ũk′(t)− u(t)‖2
V ′ dt

6 Kε+ cε

∫ T

0

‖ũk′(t)− u(t)‖2
V ′ dt with Lemma 51.

Letting k′ → 0, we obtain

lim
k′→0

sup

∫ T

0

|ũk′(t)− u(t)|20 dt 6 Kε,

and since ε > 0 is arbitrary, (3.43) follows. �

We continue in this section the study of the projection method and per-
form its error analysis. Instead of considering (3.19) as the first step of
the scheme, we shall consider (3.19) which leads to slightly simpler cal-
culations. We follow Shen (1992). The projection scheme is found to be
of order (δt)1/2 for the velocity for the uniform L2-norm, of order (δt)1/2 for
the root mean square (RMS)−H1 norm, and of order δt for the (RMS)− L2

norm. At the end of the section we recall, without performing error analy-
sis, some of the higher order projection methods which have been derived
in the literature.

Theorem 73. [Error analysis]
In space dimension 2( ou 3), if the exact solution u, p of the Navier-Stokes
equations satisfies (3.47), then
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‖u1k − uk‖L∞(0,T ;L2(Ω)2) 6M(δt)1/2,

‖u2k − uk‖L∞(0,T ;L2(Ω)2) 6M(δt)1/2

‖u1k − uk‖L2(0,T ;L2(Ω)2) 6M(δt)1/2,

‖u2k − uk‖L2(0,T ;L2(Ω)2) 6M(δt)1/2

Proof. We assume that the space dimension is two, and that the solution
to the Navier-Stokes equations is sufficiently regular, namely

u ∈ C ([0, T ];D(A)) ut =
∂u

∂t
∈ C ([0, T ];D(A))

(3.47)

p ∈ L2
(
0, T ;H2(Ω)

)
∩ C

(
[0, T ];H1(Ω)

)
, pt =

∂p

∂t
∈ L2

(
0, T ;L2(Ω)

)
.

We start with equations satisfied by the exact solution, which we write at
time tn+1 = (n+ 1)δt:

(3.48) ut(tn+1) + νAu(tn+1) +B(u(tn+1)) = f(tn+1)

(3.49)
1

δt
(u(tn+1)− u(tn)) + νAu(tn+1) +B(u(tn+1)) = f(tn+1) +Rn+1

where
Rn =

1

δt
(u(tn)− u(tn−1))− ut(tn).

Reintroducing the pressure we see that (3.48) is equivalent to

(3.50) ut(tn+1)− ν∆u(tn+1) + (u(tn+1) · ∇)u(tn+1) +∇p(tn+1) = f(tn+1),

so that (3.49) is equivalent to
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1

δt
(u(tn+1)− u(tn))− ν∆u(tn+1) + (u(tn+1) · ∇)u(tn+1) +∇p(tn+1)(3.51)

= f(tn+1) +Rn+1

We assume that

‖Rn+1‖2
H−1(Ω)2 6 δt

∫ tn+1

tn

‖ut‖2
H−1(Ω)2 dt,

(3.52)

δt
N−1∑
n=0

‖Rn+1‖2
H−1(Ω)2 6M(δt)2.

We now consider the scheme (3.19), (3.11) with fn = f(tn) and we set

en+1/2 = un+1/2 − u(tn+1), en+1 = un+1 − u(tn+1)

We subtract (3.51) from (3.19) and we find

1

δt
(en+1/2 − en)− ν∆en+1/2 = ∇p(tn+1)−Rn+1 − (un · ∇)un+1/2 + (u(tn+1) · ∇)u(tn+1)

= ∇p(tn+1)−Rn+1 − (en · ∇)un+1/2 − ((u(tn)

− u(tn+1)) · ∇)un+1/2 − (u(tn+1) · ∇)en+1/2.(3.53)

We take the scalar product in L2(Ω)2 of (3.53) with 2δten+1/2 ; since en+1/2 ∈
H1

0 (Ω)2, we can write the left-hand side of the corresponding equation

|en+1/2|20−|en|20+|en+1/2−en|20+2νδt‖en+1/2‖2 = 2δt
(
∇p(tn+1), en+1/2

)
0
−2δt

(
Rn+1, e

n+1/2
)

0

(3.54) − 2δtb
(
en, un+1/2, en+1/2

)
+ 2δtb

(
u(tn)− u(tn+1), un+1/2, en+1/2

)
.

where u(tn+1) ∈ V .

Next we bound above the terms in the right-hand side of (3.54). As en ∈ H,
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2δt
(
∇p(tn+1), en+1/2

)
0

= 2δt
(
∇p(tn+1), en+1/2 − en

)
0
6

1

2
|en+1/2 − en|20 + 2(δt)2|∇p(tn+1)|20

6
1

2
|en+1/2 − en|20 +M(δt)2 (for (3.54)).

−2δt
(
Rn+1, e

n+1/2
)

0
6 2δt‖Rn+1‖H−1(Ω)2‖en+1/2‖

6
ν

2
δt‖en+1/2‖2 +

ν

2
δt‖Rn+1‖2

H−1(Ω)2

6
ν

2
δt‖en+1/2‖2 +

ν

2
(δt)2

∫ tn+1

tn

‖utt(t)‖2
H−1(Ω)2 dt− 2δt

(
en, un+1/2, en+1/2

)
= 2δtb

(
en, en+1/2, un+1/2

)
6 cδt|en|0‖en+1/2‖|Aun+1/2|0

6Mδt|en|0‖en+1/2‖ 6 νδt

4
‖en+1/2‖2 +Mδt|en|20,

2δtb
(
u(tn)− u(tn+1), un+1/2, en+1/2

)
= 2δtb

(
u(tn)− u(tn+1), u(tn+1), en+1/2

)
= 2δtb

(
u(tn+1)− u(tn), en+1/2, u(tn+1)

)
6 cδt|u(tn+1)− u(tn)|0‖en+1/2‖|Au(tn+1)|20

6Mδt

∣∣∣∣∫ tn+1

tn

ut(t) dt

∣∣∣∣
0

‖en+1/2‖

6
ν

4
δt‖en+1/2‖2 +M(δt)2

∫ tn+1

tn

|ut(t)|20 dt.

Taking into account these inequalities (3.54), yields

|en+1/2|20−|en|20 +
1

2
|en+1/2−en|20 +νδt‖en+1/2‖2 6Mδt|en|20 +rn, n = 0, · · · , N−1,

(3.55) rn = M(δt)2

{
1 +

∫ tn+1

tn

(
‖utt(t)‖2

H−1(Ω)2 + |ut(t)|20
)
dt

}
.

We also infer from (3.20) that

(3.56)
(
en+1 − en+1/2, v

)
0

= 0, ∀v ∈ H,
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and setting v = 2en+1, we obtain

(3.57) |en+1|20 − |en+1/2|20 + |en+1 − en+1/2|20 = 0.

We add (3.55) to (3.57), and obtain, for n = 0, ·, N − 1,

(3.58)
|en+1|20−|en|20 +

1

2

{
|en+1 − en+1/2|20 + |en+1/2 − en|20

}
+νδt‖en+1/2‖2 6Mδt|en|20 + rn,

In particular
|en+1|20 6 (1 +Mδt)|en|20 + rn, n = 0, · · · , N − 1.

The following lemma will be used in the sequel.

Lemma 52. Consider two sequences of numbers (ξn)n∈N and (rn)n∈N at
positif terms such that

(3.59) (1− α)ξn 6 (1− β)ξn−1 + rn.

For all n > 1 and for some α < 1 et β > −1, Then for all n:

(3.60) ξn 6

(
1 + β

1− α

)n
ξ0 +

(1 + β)n−1

(1− α)n

n∑
j=1

rj.

If rj 6 r, ∀j, we also have

(3.61) ξn 6

(
1 + β

1− α

)n(
ξ0 +

r

β + α

)
.

Proof. For m = 0, · · · , n− 1, we write

ξn−m 6
1 + β

1− α
ξn−m−1 +

1

1− α
rn−m.

We multiply this relation by ((1 + β)/(1 − α))m and add the corresponding
inequalities for m = 0, · · · , n− 1; Formulas (3.59) and (3.61) follow. �

We apply Lemma 52 with α = 0, β = Mδt and since e0 = 0, we find
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|en|20 6 (1 +Mδt)n−1

n∑
j=1

rj 6Mδt(1 +Mδt)n−1 with (3.55) and (3.47).

Writing (1 + x) 6 2x for 0 6 x = Mδt 6 1, we obtain the bounds

(3.62) |en|20 6Mδt2Mδtn = Mδt, n = 0, · · · , N.

Also by (3.58)

(3.63) |en+1/2|20 6Mδt

We return to (3.55) and add these relations for n = 0, · · · , N − 1. This yields
since e0 = 0.

|en|20 +
1

2

N−1∑
n=0

{
|en+1 − en+1/2|20 + |en+1/2 − en|20

}
+ νδt

N−1∑
n=0

‖en+1/2‖2 6Mδt+
N−1∑
n=0

rn

(3.64) 6Mδt+M(δt)2

∫ T

0

(‖utt(t)‖2
H−1(Ω)2 + |ut(t)|20) dt 6Mδt.

Finally since un+1 = PHu
n+1/2 and the projector PH is continuous in H1(Ω)2

(see (3.39)) we infer from (3.64) that

δt
N−1∑
n=0

‖en+1‖2 6 cδt
N−1∑
n=0

‖en+1/2‖2 6Mδt.

We summarize the following estimates:
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Lemma 53. Under the assumption (3.4), we have

|en|20 6Mδt, n = 0, · · · , N,
|en+1/2|20 6Mδt, n = 0, · · · , N − 1,

N−1∑
n=0

{
|en+1 − en+1/2|20 + |en+1/2 − en|20

}
6Mδt,

δt

N−1∑
n=0

‖en‖2 6Mδt,

δt

N−1∑
n=0

‖en+1/2‖2 6Mδt,

where en = un − u(nδt), en+1/2 = un+1/2 − u((n+ 1)δt).

Lemma 54. Under the assumption (3.47), we have

‖en‖2
V ′ 6M(δt)2, n = 0, · · · , N,

δt
n−1∑
j=0

|en|20 6M(δt)2.

We can interpret Lemmas 53 and 54 in terms of the approximating func-
tions u1k, u2k, already defined and a function uk associated with the exact
solution:

u1k = un+1/2, u2k = un+1, uk = u(tn+1),

for t ∈ [nδt, (n+ 1)δt] n = 0, · · · , N − 1, tn+1 = (n+ 1)δt.

�

Remark 28. Error estimates on the pressure can be derived if we make
more regularity hypotheses on the exact solution u, p. However, this implies
some compatibility hypotheses on the data u0, f , or otherwise the estimates
are not as good near t = 0 (see Shen (1992), Shen (1992), Shen (1994)).
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Remark 29. As it appears clearly from the previous proof there are some
difficulties resulting from the combination of the boundary condition and the
incompressibility condition. Let us make here some relevant remarks.

The space H1
0 (Ω)2 is the direct sum of the space V and its orthogonal in

H1
0 (Ω)2, V ⊥. It can be easily seen that V ⊥ is the space of v in H1

0 (Ω)2 such
that ∆v = gradq for some q in L2(Ω). The operator −∆ which maps H1

0 (Ω)2

onto H−1(Ω)2, maps V onto V ′ and V ⊥ onto the polar V 0 of V which is exactly
gradL2(Ω).

When we write H ⊂ V ′, we identify in fact H with the space i∗H where i the
canonical injection of V into H and i∗ is its adjoint. The statement in (3.48),
utt ∈ L2(0, T ;V ′) should be understood as

d2

dt2
(i∗u) ∈ L2(0, T ;V ′).

This statement is different from that made in Remark 73, namely
utt ∈ L2(0, T ;H−1(Ω)2).

The latter statement is a mere consequence of the hypothesis
pt ∈ L2(0, T ;L2(Ω)), and of the other assumptions in (3.47).
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3.4. Numerical simulations. In this section, we present some numer-
ical simulations obtained with the proposed method. The numerical sim-
ulations presented are obtained for differents Reynauld numbers.

.
(a) : u(x, y); Re = 10−3. (b) : p(x, y); Re = 10−3.

.
(c) : u(x, y); R = 10−2. (d) : p(x, y); R = 10−2.

Viscous flows

.
(e) : u(x, y); R = 1. (f) : p(x, y); R = 1.
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.
(g) : u(x, y); R = 200. (h) : p(x, y); R = 200.

Laminar flows

.
(i) : u(x, y); Re = 104. (j) : p(x, y); Re = 104.

.
(k) : u(x, y); Re = 106. (l) : p(x, y); Re = 106.

Turbulent flows

4. Some concluding remarks and extensions
The adapted projection method allows us to simulate Navier-Stokes sys-
tems for all types flows (laminar, viscous and turbulent).

In order to obtain more accurate schemes, other forms of the projection
method can be derived. At least three types of higher order projection
schemes have been proposed. Namely, schemes via improved interme-
diate velocity boundary conditions (Kim and Moin (1985)), schemes via
pressure-correction (Van Kan (1986), Bell et al. (1989), Gresho and Chan
(1990)) and schemes via improved pressure boundary condition (Orszag

et al. (1986), Karniadakis et al. (1991)); see also Shen (1992).
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In forthcoming works, we will intend to study obstacles position problems
in dynamic fluids of Navier Stokes types by coupling the adapted projec-
tion method and topological optimizations tools.
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