
The Review of Modern Logic

Volume 11 Numbers 1 & 2 (June 2007–December 2008) [Issue 33], pp. 147–160.

Heinz-Dieter Ebbinghaus
Ernst Zermelo: An Approach to His Life and Work
Berlin: Springer-Verlag, 2007
356 pp. ISBN-13 9783540495512

REVIEW

RICHARD E. HODEL

This is an outstanding book in all respects: well written and well
organized, carefully researched with numerous photos and a genuine
pleasure to read. It gives an accurate and detailed description of all of
Zermelo’s contributions to mathematics, not just to set theory. At the
same time the author captures his personal life with a fascinating dis-
cussion of Zermelo’s personality traits and his serious health problems.

My review is organized as follows: Cantorian set theory; Hilbert’s
Program; Zermelo’s work in set theory, 1904-1908; Zermelo’s personal
life and research in all areas of mathematics; Zermelo’s personality.
The discussion of all of these topics relies to a considerable extent on
the book under review.

Georg Cantor(1845-1918) and Ernst Zermelo (1871-1953) will forever
rank among the most important figures in set theory, the branch of
mathematics that studies infinity and at the same time serves as the
foundations of mathematics. Set theory is the creation of Cantor, and
to Cantor we are indebted for such fundamental results and ideas as
these: equipotent sets; N is equipotent to Q and also to the set of
algebraic numbers; R is uncountable; cardinal and ordinal numbers
and their arithmetic; well- ordered sets; Cantor diagonal arguments
and |A| < |P (A)|; the continuum hypothesis (CH); the aleph function
ℵ. Cantor, however, did not axiomatize his theory of sets; we shall
refer to intuitive, non-axiomatic set theory as Cantorian set theory.
Cantor’s last research papers were published in 1895 and 1897, and in
these two papers he left a number of assertions unresolved:

• CH (2ω = ℵ1);
• given any two sets, one is equipotent to a subset of the other;
• every set can be well-ordered.
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Hilbert’s Program had considerable influence on the direction of Zer-
melo’s research. Indeed, in a 1930 paper Zermelo wrote: “When I was
a Privatdozent in Göttingen, I began, under the influence of D. Hilbert,
to whom I owe more than to anybody else with regard to my scientific
development, to occupy myself with questions concerning the founda-
tions of mathematics, especially with the basic problems of Cantorian
set theory.” (See p. 28.)

During the period 1900-1930, Hilbert was very much interested in
the foundations of mathematics. Among other goals, he outlined the
following areas of research in logic and the foundations of mathematics.
(1) Give axiom systems for various branches of mathematics; for ex-
ample, the natural number system, the real number system, Euclidean
geometry, and Cantorian set theory. (2) Give consistency proofs for
these axiom systems.

Hilbert’s interest in foundational questions began as early as 1899,
the year in which he published Grundlagen der Geometrie, a modern
version of Euclidean geometry. In this work Hilbert stressed the dis-
tinction between undefined terms and defined terms, between axioms
and theorems. For Hilbert, the undefined terms were point, line, and
plane, but he emphasized that one could uniformly replace these with
table, chair, and beer mug. Hilbert also gave a consistency proof for his
axiom system by constructing a model. However, this model was based
on the real number system R, and therefore he classified his result as
a relative consistency proof.

In 1900, Hilbert gave his famous list of 23 problems at the Inter-
national Congress of Mathematicians. The first two problems were in
foundations.

Problem 1 Prove or disprove 2ω = ℵ1. In his discussion of this prob-
lem, Hilbert also asked for a proof that there is a well-ordering on the
set R of real numbers.

Problem 2 Give an absolute consistency proof of the axioms for the
real number system.

The paradoxes of set theory were another source of concern for
Hilbert. Early on, Cantor was aware of certain paradoxes that arise in
Cantorian set theory. For example, suppose that {x : x is a set} is itself
a set, call it E. By Cantor’s Theorem, |E| < |P (E)|. On the other
hand, P (E) ⊆ E and therefore |P (E)| ≤ |E|, a contradiction. There
were many other troublesome paradoxes that needed to be explained.



REVIEW: ERNST ZERMELO 149

Here is a partial list; later we will see how Zermelo used his axioms for
set theory to resolve these puzzles.

Richard’s paradox This paradox arises by applying a Cantor diago-
nal argument to the countable set consisting of all real numbers that
can be defined with a finite number of words in some fixed language.
Berry gave a somewhat simpler version: the number described by the
expression “the smallest natural number not described in less than fifty
words.”

Burali-Forti paradox Suppose the ordinals form a set W ; now W
itself is an ordinal, as is its one-point extension W + 1; the ordinal
W + 1 cannot be in W .

Russell-Zermelo paradox This famous paradox, which concerns the
class {x: x is a set and x �∈ x}, is generally credited to Bertrand Russell,
but it was discovered independently by Zermelo, and Hilbert referred
to it as the Zermelo paradox.

Hilbert’s paradox Consider the following two operations on sets,
which are standard constructions in mathematics. (1) [addition] if A
is a set, then

⋃
A is a set; (2) [self-mapping] if A is a set, then AA =

{f : f is a function from A to A} is a set. Now let A be the collection
of sets defined inductively as follows: (1) N ∈ A; (2) if B ⊆ A, then⋃
B ∈ A; (3) if A ∈ A, then AA ∈ A. Now consider the set U =

⋃
A.

We have: U ∈ A and also UU ∈ A, therefore UU ⊆ ⋃
A = U ; we now

have |UU | ≤ |U |, a contradiction.

In 1904, the International Congress of Mathematicians was held at
Heidelberg, and at that meeting Julius König announced a result that
played an important turning point in the development of set theory.
Namely, König claimed that 2ω �= ℵα for any α and that R is not
well-orderable. His proof relied on two results, the first due to König,
the second to Felix Bernstein: (1) if cf(κ) = ω, then κω > κ; (2)
ℵα

ω = ℵα × 2ω. Suppose by way of contradiction that 2ω = ℵα. Apply
(2) to ℵα+ω to obtain ℵα+ω

ω = ℵα+ω × 2ω = ℵα+ω × ℵα = ℵα+ω.
However, cf(ℵα+ω) = ω, and therefore we have a contradiction of (1).

Cantor attended König’s talk and was immediately skeptical of his
proof. The proof is incorrect, and the error occurs in the use of (2):
Bernstein’s equality does not hold for cardinals of cofinality ω, precisely
the case under discussion. The above incident is discussed in detail in
the book under review, and the author gives a very interesting discus-
sion of the roles played by Zermelo and Felix Hausdorff in uncovering
the error.
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The Heidelberg incident, together with the unsolved problems left
by Cantor, were obvious motivations for Zermelo’s subsequent research
program in set theory. Within a month of the meeting, Zermelo wrote
a letter to Hilbert in which he used the power set version of the axiom
of choice to prove that every set can be well-ordered. His proof, which
is so beautiful and natural, can be quickly summarized as follows. Let
A be a set and let h be a function from P (A) into A such that h(B) ∈ B
for every non-empty subset B of A. Call a subset E of A a γ-set if
it satisfies these two properties: there is a well-order < on E; for all
a ∈ E, h(A−{x : x ∈ A and x < a}) = a. Let E be the collection of all
γ-sets; then

⋃
E is itself a γ-set and

⋃
E = A; thus A is well-ordered as

required. Zermelo also noted that his result shows that every cardinal
is an aleph, that R can be well-ordered, and that κ × κ = κ for every
infinite cardinal κ.

Zermelo’s theorem, which used a new “principle of logic” that he
called the axiom of choice (hereafter AC), was not immediately ac-
cepted. A significant number of well- respected mathematicians were
critical of either the use of the axiom itself or of the proof. Among his
critics were René Baire, Émile Borel, Guiseppe Peano, Henri Poincaré,
Felix Bernstein, Henri Lebesgue, and Arthur Schoenflies. For example,
Borel commented: “Any argument where one supposes an arbitrary
choice to be made a non- denumerably infinite number of times [...] is
outside the domain of mathematics.” (See p. 60.)

There were three sources of criticism: distrust of Cantorian set the-
ory; use of Zermelo’s new axiom; the close connection of certain steps
in the proof to arguments that lead to paradoxes. In defense of his use
of the new axiom AC, Zermelo pointed out that non-provability does
not mean non-validity.

It is interesting to note that Zermelo was not the first to use this new
principle. For example, Cantor used the axiom in his proof that every
infinite set contains a subset of cardinality ℵ0, and Richard Dedekind
used it to show that every Dedekind finite set is finite. Even some of
his critics such as Bernstein, Schoenflies, Borel, Baire, and Lebesgue
used some version of the axiom. For example, the axiom is needed
to show that the union of a countable number of measurable sets is
measurable. But it was Zermelo’s proof of well-ordering that showed
for the first time the true deductive power of AC.

In 1908, Zermelo, in response to his critics, published another paper
on well-ordering. First of all, he gave a second proof. Whereas his
first proof can be described as a “bottom up” approach, his new proof
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was “top down.” This new proof did not rely on previous results of
Cantor, but was independent of any prior theorems of set theory and
required fewer set-theoretic assumptions. In this second paper Zermelo
also discussed the objections that were raised against the first proof and
he gave an equivalent form of the axiom of choice in terms of pairwise
disjoint collections of non-empty sets.

Eventually, there was a gradual acceptance of both the use of the ax-
iom and its application that every set is well-ordered. By 1915, Wac�law
Sierpiński and the Polish school began using the axiom. Ernst Steinitz
was a strong supporter of the axiom and its necessity in certain areas of
mathematics; he said: “Many mathematicians still oppose the axiom
of choice. With the increasing recognition that there are questions in
mathematics which cannot be decided without this axiom, the resis-
tance to it may increasingly disappear.” (See p. 71.) By 1930, Zorn’s
Lemma, an equivalent form of the axiom, was deemed indispensable in
topology and algebra. Fraenkel and Bar-Hillel characterized the axiom
as “probably the most interesting and, in spite of its late appearance,
the most discussed axiom of mathematics, second only to Euclid’s ax-
iom of parallels which was introduced more than two thousand years
ago.” (See p. 60.)

Zermelo’s next research project was to give an axiomatization of set
theory. Several factors influenced his choice of axioms. First of all,
during the period 1900- 1908, Zermelo taught courses in set theory
in which he experimented with several lists of axioms. In addition,
Zermelo wanted to restrict the axioms so as to avoid the well-known
paradoxes given by Russell-Zermelo, Hilbert, Burali-Forti, and Richard.
He also wanted to provide an axiomatic framework for his proof that
every set can be well-ordered. Indeed, it seems clear that he was careful
to choose enough axioms so that his 1908 proof of well-ordering could
be executed.

There was yet another motivating factor, namely the work of Can-
tor and Dedekind. In 1872 and 1883, Dedekind wrote two influential
essays, Stetigkeit und irrationale Zahlen and Was sind und was sollen
die Zahlen?. In the first he introduced his famous Dedekind cuts as a
method for constructing the real numbers from the rational numbers.
In the second he showed how the natural numbers and their operations
are modeled by sets. This was the beginning of the program in which
the various number systems, indeed all of classical mathematics, are
modeled in terms of sets. Thus, Zermelo was careful to include enough
axioms to duplicate the pioneering work of Cantor and Dedekind.
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Zermelo’s approach was patterned after that used by Hilbert in his
1899 Grundlagen der Geometrie: he used two undefined terms, namely
sets and urelements, and one binary relation, denoted by ∈. Zermelo’s
axioms for set theory (slightly simplified from the original due to the
fact that Zermelo had two undefined terms) are as follows.

Z1 (extensionality) If two sets have the same elements, then they are
equal.

Z2 (separation) Let A be a set and let Q be a property of sets. Then
the collection {x : x ∈ A and x has property Q} is a set.

Z3 (null set) There is a set that has no elements.

Z4 (pair) If x and y are sets, then {x, y} is a set.

Z5 (union) If x is a set, then ∪x is a set.

Z6 (power) If x is a set, then P (x) is a set.

Z7(infinity) There is an infinite set. More precisely: there is a set Z
such that ∅ ∈ Z and {a} ∈ Z for all a ∈ Z.

AC (choice) Let E be a set and let {At : t ∈ T} be a pairwise disjoint
collection of non-empty subsets of E. Then there is a subset B of E
such that B interesects each set At in a singleton.

Zermelo was perhaps the first to realize the need for an explicit axiom
that asserts the existence of an infinite set. In his paper he expressed
the desirability of showing the consistency of his axiom system, but
he admitted that he did not have a proof. For future reference, we
list two additional axioms that were eventually added to Zermelo’s list.
Henceforth we will use the standard notation ZF for Z1-Z9 and ZFC
for Z1-Z9 + AC.

Z8 (replacement) Let A be a set, and for each x ∈ A let zx be a set.
Then {zx : x ∈ A} is a set.

Z9 (foundation) For every non-empty set A there exists a ∈ A such
that a ∩ A = ∅.

The Axiom of Comprehension, repeatedly used in Cantorian set the-
ory, states that the collection of all sets satisfying some property Q
is a set. Zermelo realized that the Axiom of Comprehension was the
source of the known paradoxes and that he needed to replace Com-
prehension with the more restricted Separation. There are two key
restrictions here: (1) the process of selection is confined to a set that
has already been constructed; (2) the defining criterion (property Q)
must be stated in set-theoretic terms.



REVIEW: ERNST ZERMELO 153

Zermelo explained how Separation blocks the Richard paradox (and
other such semantic paradoxes) by observing that the second restriction
of the axiom is violated. The other paradoxes, for example those due to
Russell, Hilbert, Cantor, and Burali-Forti, all violate the first restric-
tion. He even turned Russell’s paradox to his advantage by showing
that every set A has a subset B such that B �∈ A; from this he con-
cluded that there is no universal set.

Zermelo also used his axiom system to prove essentially all of the
results from Cantorian set theory. In particular, he proved: |A| <
|P (A)|; the Schröder-Bernstein Theorem; König’s Theorem that if κt <
λt for all t ∈ T , then

∑
κt <

∏
λt. Finally, Zermelo showed that

his axioms are sufficient to develop Dedekind’s theory of cuts and his
analysis of the natural number system and its arithmetic operations in
terms of sets.

As with his introduction of AC, there were negative reactions to
his axiomization. For example, Russell criticized the notion of defi-
niteness, stating that Separation is “useless.” He much preferred his
theory of types as the best way to block paradoxes. In addition, other
mathematicians did not immediately embrace his axiom system. For
example, Felix Hausdorff, in his influential Grundzüge der Mengenlehre
(1914), did not use Zermelo’s axioms in his development of set theory.
Finally, in 1915, it did play a role in Fredrich Hartogs’ proof that car-
dinal comparability, which is solved using AC, is actually equivalent to
AC.

Abraham Fraenkel began a correspondence with Zermelo in 1921
that led to the addition of the Axiom of Replacement to Zermelo’s
other axioms. Fraenkel pointed out that if A is the set whose elements
are ∅, {∅}, {{∅}},... , then one cannot prove the existence of the set
whose elements are

A, P (A), P (P (A)), ... .

More generally, one cannot prove the existence of sets of cardinality
ℵω. Independent of the work by Fraenkel, Thoralf Skolem also discov-
ered this shortcoming of Zermelo’s axioms, and likewise suggested the
addition of Replacement. In 1925 John von Neumann added the final
axiom of set theory, the Axiom of Foundation (more on this later).

The book under review is divided into 4 major chapters, each of
which is devoted to a location where Zermelo spent a significant part
of his life, and two short chapters.

1. Berlin 1891-1897
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2. Göttingen 1897-1910
3. Zurich 1910-1921
4. Freiburg 1921-1953
5. A Final Word
6. Zermelo’s Curriculum Vitae

Chapter 5 is an interesting discussion of Zermelo’s personality, and
Chapter 6 gives a ten-page overview of the highlights of his entire life.
Here is a summary of the first four chapters.

BERLIN(1871-1897) Zermelo was born in Berlin on July 27, 1871. It
is interesting to note that 1871 was the year in which Cantor wrote his
paper on trigonometric series in which the solution required transfinite
ordinal numbers; this paper is often regarded as the birth of Cantorian
set theory. Zermelo became an orphan at an early age: his mother died
on June 3 1878 when Zermelo was 7 and his father died on January 24
1889 when Zermelo was 18. Zermelo had five sisters, one older, four
younger; all but one pre- deceased him.

Zermelo obtained his Ph.D. from the University of Berlin in 1894 un-
der the supervision of Hermann Schwarz, a student of Karl Weierstrass;
the title of his thesis was Investigations On the Calculus of Variations.
From 1894 to 1897 he was an assistant to Max Planck at the Berlin
Institute for Theoretical Physics. During that time he began a series
of papers that were critical of Ludwig Boltzmann’s theory of statistical
mechanics with applications to the Second Law of Thermodynamics.

GÖTTINGEN (1897-1910) In 1897 Zermelo began an appoint-
ment at Göttingen University. Zermelo had decided that he wanted to
pursue research in theoretical physics and mechanics, and so in 1897
he wrote a letter to Felix Klein asking for advice; Klein was encour-
aging and Zermelo was offered a position at Göttingen. At that time
Göttingen’s main strength was in applied mathematics, but that was
about to change: two years earlier, in 1895, Hilbert began his career
at Göttingen. Initially, Hilbert’s work was in algebraic number theory,
but by 1900 his interests had shifted to the foundations of mathemat-
ics. As noted earlier in this review, Hilbert had the greatest influence
on Zermelo, and the years 1900-1908 were his most productive years
in set theory. Nevertheless, during the Göttingen years, Zermelo also
continued his research in the calculus of variations (1903-1904). He
enjoyed a close friendship with Constantin Carathéodory, with whom
he wrote a book on the calculus of variations, and he also collaborated
with Hans Hahn.
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During the period 1905-1908, Zermelo suffered serious health prob-
lems; in particular, in 1906 he was diagnosed with tuberculosis of the
lungs and on several occasions he was forced to cancel scheduled classes.
However, by 1909 he appeared to be on the road to recovery. In that
same year Hermann Minkowski, then at Göttingen, unexpectedly died,
and Zermelo had hoped that he would get the vacant chair; instead,
it went to Edmund Landau. The book under review gives a detailed
and interesting discussion of the reasons why Zermelo had difficulty in
securing a permanent position at Göttingen. However, his situation
was resolved when in 1910 Zermelo was offered a full professorship at
Zurich, preliminarily for a period of six years.

ZURICH (1910-1921) During the Zurich years, Zermelo did research
in at least three different areas: algebra, set theory, and game theory.
In a 1913 paper on algebra, he used AC to prove the existence of rings
whose quotient fields are the real number field or the complex number
field and whose algebraic numbers are algebraic integers. In a 1916
paper, Emma Noether extended these results.

During this period Zermelo wrote an unpublished paper in set theory
in which he anticipated von Neumann’s theory of the ordinal numbers.
However, missing from his treatment was the theorem that every well-
ordered set is order isomorphic to an ordinal. For a proof of this he
needed the Axiom of Replacement. It was during his last year at Zurich
when Zermelo began his correspondence with Fraenkel on Replacement.

Zermelo was an enthusiastic chess player, and in 1913 he published
a paper in game theory in which he used set theory to analyze the
game of chess. In 1912, Zermelo, at Russell’s invitation, gave two
talks at the 5th International Congress of Mathematicians, scheduled at
Cambridge: one was on his paper on chess, the other on the foundations
of mathematics. Game theory did not become an active area of research
until 15 years later, with contributions by Dénes König, László Kalmár,
and von Neumann. It is not clear to what extent the work of Zermelo
was an influence, but the author of the book under review states that,
at the very least, Zermelo deserves credit for “having written the first
paper that mirrors the spirit of modern game theory.” (See p. 132.)

During this period, Zermelo continued to have health problems, and
in 1916 he was forced to retire with a pension. He remained in Zurich
until 1921 and did considerable traveling during the period 1916-1921.
In October 1921 Zermelo moved to Freiburg, Germany.
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FREIBURG (1921-1953) During the early years in Freiburg, Zer-
melo had a rather tranquil life. He was retired with a reasonable pen-
sion and was active in mathematics with several projects: editing the
collected works of Cantor (completed in 1932); research in the calculus
of variations and game theory. He also had an honorary position at the
University of Freiburg, where he would occasionally give lectures. In
1929, at the invitation of Sierpiński and Stefan Mazurkiewicz, Zermelo
traveled to Poland where he gave a series of talks on logic and the foun-
dations of mathematics. While there, he came in contact with a num-
ber of well-known mathematicians, including Kazimierz Kuratowski,
Bronis�law Knaster, Stefan Banach, Hugo Steinhaus, Jan �Lukasiewicz,
Alfred Tarski, and Stanis�law Leśniewski.

After a period of approximately 20 years, Zermelo renewed his in-
terest in set theory and the foundations of mathematics, no doubt
stimulated by work of Fraenkel, Skolem, von Neumann, and Gödel and
also by his contact with the Polish mathematicians. As already noted,
Fraenkel and Skolem independently noted the need to add the Axiom of
Replacement to the axioms for set theory. In addition, they were criti-
cal of the Axiom of Separation, specifically the ambiguity in describing
a “definite property.” Both offered solutions, but Skolem’s is the more
precise and is the one in current use; he was the first to suggest that
a first-order language is the best way to give a precise formulation of
Replacement and Separation.

During the 1920’s von Neumann made a number of important contri-
butions to set theory. To begin with, the modern definitions of cardinal
and ordinal numbers are largely due to him, as is the important idea
of transfinite recursion and definitions by transfinite recursion. Von
Neumann proved the result that every well-ordered set is order isomor-
phic to an ordinal. He was also interested in finding a categorical set
of axioms for set theory. As a first step he wanted to eliminate sets
that do not naturally occur in mathematics, for example, sets x such
that x ∈ x, and more generally sets x for which there is a sequence
〈xn : n ∈ ω〉 with x0 = x and xn+1 ∈ xn for all n ∈ ω. His solution
was to introduce the Axiom of Foundation. During this period von
Neumann also introduced the cumulative hierarchy {Vα : α ∈ ON},
constructed as follows:

V0 = ∅; Vα+1 = P (Vα); Vα =
⋃{Vβ : β < α}.

Von Neumann used Foundation to prove that every set is in the
hierarchy, thus giving a clean description of the universe of all sets
and showing that the hierarchy gives a bottom-up construction of the
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universe of all sets. He also used the hierarchy to prove the result
(stated in modern terms) that if ZFC without Foundation is consistent,
then ZFC is consistent. This was the first consistency proof using the
method of inner models. As an interesting aside, von Neumann used
the notation ZF (approximately) to refer to the axioms Z1-Z9, and
Zermelo, in his research, continued this practice. Thus Skolem did
not receive the recognition that he deserves for his contributions to
axiomatic set theory; it is not unfair to say that ZFS would be more
appropriate.

Zermelo also obtained results on the hierarchy, and perhaps discov-
ered it independently. In any case, he proved the result that if κ is
a strongly inaccessible cardinal, then Vκ is a model of ZFC. Zer-
melo appreciated the back-and-forth relationship between the hierarchy
and ZFC. On the one hand, the construction motivates the choice of
the axioms of ZFC and emphasizes the importance of the Power Set,
Union, and Replacement Axioms. Alternatively, given an intuitive un-
derstanding of the hierarchy, it then serves as the canonical model of
the axiom system ZFC.

Zermelo rejected Skolem’s solution of expressing the axioms of ZFC
in a first-order language since it leads to what is known as Skolem’s
paradox. The Löwenheim- Skolem Theorem states that if a theory
with a countable number of first-order sentences has a model, then
it has a countable model. Thus, if we assume that ZFC (first-order
version) has a model, then it has a countable model. Let M be a
countable transitive model of ZFC. Now ZFC proves the existence of
uncountable sets, and therefore there exists x ∈M with x uncountable.
We also have x ⊆ M , and this appears to give a contradiction. The
paradox is resolved by the observation that the cardinality of a set in M
depends on the functions that are in M . For Skolem, the Löwenheim-
Skolem Theorem showed that ZFC does not serve for the foundations
of mathematics. But for Zermelo, this conclusion was unacceptable;
the axiom system ZFC should describe Cantorian set theory with its
endless collection of sets having larger and larger cardinality.

Gödel’s Incompleteness Theorems were yet another challenge to Zer-
melo’s view of mathematics. According to Gödel, any consistent and
recursive list of (first-order) axioms with sufficient strength to develop
recursive arithmetic is incomplete and cannot prove its own consis-
tency. Therefore, the traditional approach in mathematics [formal sys-
tems with a first-order language, proofs with finitely many steps] has
inherent limitations with regard to establishing mathematical truth.
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Zermelo, who did not fully appreciate the subtle difference between
semantics and syntax in formal logic, claimed that there was a flaw
in Gödel’s proof. He informed Gödel of his discovery, and Gödel re-
sponded by writing a ten-page letter in which he gave a careful descrip-
tion of his methods and pointed out the source of Zermelo’s confusion.
Unfortunately, Zermelo was unwilling to concede and the correspon-
dence ended.

To summarize: to a very great extent, Zermelo’s research in set the-
ory during the 1930’s was a reaction to intuitionism, Hilbert’s proof
theory, and the research of Skolem and Gödel. Zermelo rejected the
limitations imposed by first-order logic due to the results of Skolem and
Gödel. His solution was to replace finitary, first-order logic with infini-
tary languages (allow infinitely long conjunctions and disjunctions) and
infinitary logic (allow infinitely long proofs). Unfortunately, this ap-
proach put him out of the mainstream of research in mathematical
logic.

In January 1933, the Nazis seized power in Germany, and this had
unpleasant consequences for Zermelo. The philosopher Martin Heideg-
ger, a strong supporter of the new regime, was appointed as the new
Rector at the University of Freiburg, and one of his early decisions
was the requirement that lectures be opened with the Hitler salute.
Zermelo’s refusal to comply with this directive eventually led to his
dismissal from the University. At this time Zermelo began a gradual
retreat from academic life, and he moved from the city to a residential
area in the foothills of the Black Forest. Here he came in contact with a
much younger woman, Gertrud Seekamp (1902-2003), and on October
14 1944 they were married. Zermelo died on May 21, 1953 at the age
of 81.

ZERMELO’S PERSONALITY To say the least, Zermelo had an
interesting and unusual personality. He has been described in a wide
variety of ways: irascible, strange, solitary, nervous, unwilling to com-
promise; but also helpful, a stimulating conversationalist with strong
personal convictions, and generous. He could be quite sarcastic at
times; for example, he once wrote to a friend about his critics of his
well-ordering proof: “With regard to the question of well- ordering
the Göttingen “Count” [Bernstein] has suffered a spectacular defeat.
König and Peano have written me obliging letters, and Jourdain is
also retreating. Only Schoenflies gabbles on. Borel keeps silent.” (See
p. 76.) A research assistant in Freiberg named Helmuth Gericke said
“sometimes [he] even insults his friends.” (See p. 73.)
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His research career was characterized by an unusual amount of con-
troversy; for example, his disagreements with Boltzmann on statis-
tical mechanics, Fraenkel and Skolem on definiteness in Separation,
Gödel on incompleteness, Brower on intuitionism, and even Hilbert
on the primacy in logic of formal systems based on first-order lan-
guages. Throughout his later years he felt that he did not receive
adequate recognition for his pioneering work in set theory. He had a
number of close friends, including Carathéodory, Erhard Schmidt, Ger-
hard Hessenberg, and also many admirers, for example Paul Bernays
and Knaster.

Zermelo was not considered a good teacher for average students, but
he was an inspiration for mathematically mature students. Zermelo
had a wide variety of interests in the humanities, including music the-
ory, philosophy, and classical poetry. Here is a quote from Wilhelm
Süss in support of re-appointment of Zermelo to honorary professor in
1946: “Yet Zermelo is by no means only the withdrawn scholar who
knows nothing else but science. Only those who have got into closer
contact with him, certainly know about his enthusiasm and the good
understanding by which he has occupied himself, for instance, with the
classical world. Only very few people know for example his transla-
tions of Homer. Where he has confidence, he shows a childlike and
pure nature and - despite an often hard destiny - a generous heart.”
(See p. 260.) As confirmed by his wife Gertrud, Zermelo had difficulty
in dealing with the problems of everyday life; this was in contrast to
the self-confidence that he had in dealing with issues in mathematics.

In summary, this book is not just a “must have” for specialists in set
theory and its history. It is also recommended for logicians and histori-
ans of mathematics in general. Professors may confidently recommend
its acquisition by their college or univeristy library. Ebbinghaus’ book
and G. Moore’s Zermelo’s Axiom of Choice together give us a won-
derfully clear picture of the illustrious mathematical career of Ernst
Fredrick Ferdinand Zermelo.

Acknowledgment. I am grateful to Professor Damon Scott (Mathemat-
ics Department, Francis Marion University) for several helpful sugges-
tions.
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