
The Review of Modern Logic

Volume 11 Numbers 1 & 2 (June 2007–December 2008) [Issue 33], pp. 43–66.

William Ewald,
“Hilbert’s Wide Program”,
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REVIEW

IRVING H. ANELLIS

This is a study in history of philosophy of logic. Its author rejects the
received view that Hilbert had no sustained interest in philosophy and
foundations of mathematics, but was goaded into undertaking his foun-
dational excursions by the “crisis” in mathematics precipitated by the
Russell paradox and the debates on foundations which consequently
emerged between logicism, formalism, and intuitionism. Ewald also
opposes the contention of the received view, that the Hilbert program
was specifically and explicitly a response to the Russell paradox, and
he adduces evidence from Hilbert?s lectures and lecture notes, in sup-
port of his opposition to the contentions of the received view. What
follows is not a study of the history of logic and foundations; nor is it
a discussion of the technical aspects of the Hilbert program. It is not
history of logic and foundations. It is history of philosophy of logic and
foundations, examining, in large measure upon the basis of the Hilbert
Nachlaß, the chronology of the motivation, origin and development of
the Hilbert program.

Ewald’s thesis in this article is that the traditional perception of
Hilbert as a mathematician focused exclusively on problem solving and
with little or no interest in philosophical or foundational issues at best,
is misguided.

This perception is to be attributed initially to Otto Blumenthal and
his biography of Hilbert, in which the emphasis is first of all on Hilbert’s
list of unsolved problems [Hilbert 1900] and to Blumenthal’s account
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of the work which Hilbert had taken on, in particular with his predelic-
tion to tackle difficult, but not unsurmountably unsolvable, problems
in one field of mathematics and then moving on to another field. This
perception is further suggested by Hermann Weyl, who emphasized
[Weyl 1944] Hilbert’s tenacity in working on, and succeeding in obtain-
ing significant results in, various fields of mathematics. Ewald (p. 228)
facetiously refers to Blumenthal’s description of Hilbert’s Problems list
as ‘the supreme “Mathematical Games and Puzzles” column.’

As evidence of Hilbert’s lack of interest in or serious attention to
foundational and philosophical issues, Ewald refers (p. 229) to Hilbert’s
arguments against Brouwer and Weyl and their intuitionism; his for-
malistic conception of logic nd the demand for a finitist approach to
proof; to his worries over what he regarded as the unhealthy results
of the set-theoretical paradoxes; and to his dismissal [Hilbert 1931] for
their “twaddle” of foes of the Law of Excluded Middle as “philoso-
phers disguised as mathematicians.” These polemical attacks against
philosophical stances were excised—Ewald thinks with Hilbert’s ex-
plicit approval—by the editor from the material that was included in
Hilbert’s Gesammelte Abhandlungen. On this traditional view, Hilbert
was, in Ewald’s words (p. 229), “a mathematician’s mathematician, a
collector and solver of problems, moving from challenge to challenge
like a mountain climber, but with no underlying theme beyond the de-
sire to climb as many peaks as possible,” anything but a “synthesizing
intellect.”

Ewald raises (p. 229), and endeavors to provide evidence of an af-
firmative reply to, the question of whether Hilbert’s polemical attacks
upon “the question of the foundations of mathematics as such,” which
he hoped can finally be got rid of, were merely the result of his im-
patience and frustration with the difficulties which they posed in the
search to complete his problem-solving work, rather than an accurate
expression of any real hostility to philosophical and foundational con-
cerns. In fact, there is considerable evidence that Hilbert was interested
in, and indeed influenced by, the work of Immauel Kant. His [1899a]
Grundlagen der Geometrie, starting off with an explicit reference to
Kant1, provides prima facie evidence at the very least that Hilbert was

1The quote is from the “Elementarlehre” of Kant’s Kritik der reinen Vernunft,
2. T. 2 Abt.; it is: “So fängt denn alle menschliche Erkenntnis mit Anschauung an,
geht von da zu Begriffen und endigt mit Ideen.” This conspicuoulsy eventuated in
Hilbert’s work with Stefan Cohn-Vossen (1902-1936), the Anschauliche Geometrie
[Hilbert & Cohn-Vossen 1932]. The argument that this work was the responsibility
of Cohn-Vossen and that Hilbert merely lent his name to it to assist Cohn-Vossen
does not necessarily discredit the possibility that Hilbert was interested in, or credit
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aware of Kant. And, having been both educated at Kant’s Königsberg
and on its faculty for a decade, he could not have been blind to the
intellectual presence of Kant, even four-fifths of a century after Kant’s
decease. Following Gottfried Martin’s analysis [Martin 1985, esp. 6-7]
of various interpretations of attitudes stemming from Kant’s philoso-
phy of mathematics, we can at the very least confirm a confluence of
assessments between Kant and Hilbert that geometry and arithmetic
are axiomatic, though they would diverge in Kant’s assessment that
geometry and arithmetic are constructive and Hilbert’s that they are
deductive (keeping in mind that Kant’s use of “synthetic” corresponds
to Martin’s use of “axiomatic and constructive”). If, however, Kant had
any influence at all upon Hilbert, either in arousing in him an interest
in philosophical or foundational issues, or in any actual undertakings
or positions in such issues, Ewald does not mention it. Hardy [1929,
11], however, does tell his readers that Hilbert was, by Hilbert’s own
admission, influenced by Kant; he writes [Hardy 1929, 11]: “There is
. . . some sort of concrete, perceptible basis for which Hilbert . . . claims
the support of ‘the philosophers and especially Kant’,” although Hardy
also admits that he is himself ignorant by what “justice” this claim can
be made, and he consequently fails to identify any connection between
Kant’s philosophy and Hilbert. We can, nonetheless, point to Hilbert’s
use of a quotation from Kant for the motto of his Grundlagen der Ge-
ometrie as attesting to some influence of Kant upon Hilbert, however
subtle or enigmatic that influence may prove to be.

Combining the supposition that Hilbert had no native philosophical
or foundational interests to speak of with the supposition that he was
exasperated by the animadversions of the intuitionists and frustrated
by the disarray to the process of axiomatizing mathematics that was
created by the paradoxes, the third aspect of the traditional view of
Hilbert is that he was led to (or perhaps better, goaded into) his ex-
plicitly foundational researches by his discomfitures. In Ewald’s words
(p. 230), “Hilbert’s work specifically in foundations was inspired by
the so-called crisis in the foundations of mathematics.”

The crisis was of course created by the logical and set-theoretic para-
doxes, and more particularly the Russell paradox, which goes signifi-
canly more deeply than the semantic paradoxes, and deeper even than

the possibility that Hilbert disagreed with, the main tenets of the work. The explicit
quotation from Kant’s passage arguing that knowledge begins with intuition, made
more than three decades before publication of the Anschauliche Geometrie, could
appear credibly to speak for Hilbert’s interest in, if not unadulterated acquiescence
in, a Kantian philosophy of mathematics.
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the other set-theoretic paradoxes, the Cantor and Burali-Forti para-
doxes in partticular; because, unlike those, the Russell paradox bears
on the very notions of set and elementhood. The final straw, one may
say the death-blow, for the Hilbert program was of course Gödel’s in-
completeness theorems which, despite the title of Gödel’s [1931] with its
explicit reference to Principia systems, served to unconditionally and
irrevocably undermine the Hilbert program. —Or so, we should say,
it would appear. As Ewald (p. 248) remarks, Gödel did not conceive of
his incompleteness results as necessarily applying to Hilbert’s concep-
tion of proofs. For as Gödel himself asserted in his remark [Gödel 1931,
197] to Theorem XI of his article on incompleteness: “Die entsprechen-
den Resultate über (M, A) in keinen Widerspruch zum Hilbertschen
formalistischen Standpunkt stehen.” Stephen Kleene, in his introduc-
tory note to Gödel’s incompleteness papers [Gödel 1986, 138] explained:
that Gödel’s remark regarding Theorem XI make it “conceivable that
there exist finitary proofs that cannot be expressed in the formalism of
P .”

Hilbert’s only goal in undertaking to deal with the foundational chal-
lenges, Ewald explains (p. 230) in sketching the traditional view, was to
eliminate those which had become problematic for mathematics; and he
worked to provide technical solutions to specific problems, rather than
to devise a systematic and philosophically satisfying underpinning for
mathematics. Consequently, his foundational and philosophical sig-
nificance is only of historical interest, and limited to the fate of his
consistency program.

As sketched by Ewald (pp. 230?231), Weyl’s assessment of Hilbert’s
foundational work has it advance in two separate and distinct stages.
The first centers around the work in axiomatization of geometry. The
second—and for Ewald more interesting—stage, taken up several years
after the first stage, involves Hilbert’s duel with logicism on the one
hand and intuitionism on the other. Frege’s abandonment of his efforts
to complete his foundational work in the compelling face of the the
Russell paradox signals the onset of the foundational crisis. What
Weyl’s account failed to take cognizance of is, as Ewald correctly tells
us, that Hilbert entered again into foundational work in 1902, whereas
Russell did not publish his critique of Frege and his announcement of
the Russell paradox and an attempt at a way out until 1903, in the
Principles of Mathematics. Ewald also correctly notes that by this
time Hilbert was already cognizant of the Cantor paradox (and the
Burali-Forti paradox), so that he did not have to wait until 1903 for
Russell to publish his paradox to know that näıve Cantorian set theory
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was exhibiting difficulties. This discrepancy signals to Ewald that the
traditional perception of Hilbert is not entirely correct.

Much of the remainder of Ewald’s account of the received view of
Hilbert is devoted to rejection of the contention, attributed first of
all, but not exclusively, to Frank Ramsey [1925, 338] that Hilbert’s
was, in Ewald’s words (pp. 231-232) a “crude” formalism. This is the
view that claims that for Hilbert, all of mathematics consists merely
of manipulation of empty, meaningless symbols. To counter this view,
Ewald invokes G. H. Hardy?s “Mathematical Proof” [Hardy 1929], and
in particular the passage in which Hardy [1929, 11] is prepared to ac-
cept that Hilbert’s philosophy is inadequate, even grossly inadequate,
but categorically rejects the mathematical structures erected from our
axioms are meaningless, empty symbols rather than expressions con-
cerning mathematical entities that have a reality for us. They are
neither trivial nor ridiculous, and in Hardy’s mind it is “impossible
to suppose that Hilbert denies the significance and reality of mathe-
matics” [Hardy 1929, 11]. To the contrary, as Hilbert himself stated,
“the axioms and demonstrable theorems which arise in our formalistic
game are the images of ideas which form the subject matter of ordinary
mathematics” [Hilbert 1923, 153].2 It would seem but one more step
from this gnoseological attitude towards the Platonistic-Pythagorean
view that behind these images are real Ideas that although epistemo-
logically abstract, are more real than the images themselves; and that
these Ideas are the mathematical structures which our formal system
erects from its axioms. But Ewald is not yet prepared to make this
next step, or to speculate on how wide or narrow the stride required
to cover it is.

Ewald also invokes, in support of Hardy’s contention, Hilbert’s actual
work, including material from his lecture notes, as confirmation that
he contributed to areas of mathematics, e.g. invariant theory, which
were actively employed in practical applications, to a reality outside
of mathematics itself. Hilbert’s contributions to physics is another
example.

We might momentarily stop our examination of Ewald at this junc-
ture and ponder over (1) the ‘why?’ of the “unreasonable effectiveness”
of mathematics (see, e.g. [Wigner 1960]; [Hamming 1980]; [Sarukkai
2005]); and (2) the ‘how?’ and ‘why?’ of Hilbert’s axiomatization of
relativity theory, the role of Hilbert space in quantum theory, etc., if

2“Die Axiome und beweisbaren Sätze, d.h. die Formeln, die in diesem Wech-
selspiel entstehen, sind die Abbilder der Gedanken, die das bliche Verfahren der
bisherigen Mathematik ausmachen...” See also [Hilbert 1932- 35, 180].
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Hilbert was “gaming” without a commitment of some sort to the reality
of the underlying mathematical structures. Richard Hamming [1980]
and Sundar Sarukkai [2005] for example, both think that it has in part
at least to do with the game-theoretical aspect of language, in this
case a specifically mathematical language; Sarukkai, who admittedly,
adopts a view of Hilbert as a “crude” formalist, in particular reflects
upon how mathematical models are constructed. These are models not
of the universe, however, but of our linguistic picture of the universe.

We can understand, then, that when Hilbert famously stated that
it does not matter whether we take points, straight lines and planes
or beer mugs, tables and chairs as the undefined elements of our ax-
iom system,3 it is the case nevertheless that these primitives of our
axiomatic system have a reality of their own, and so do the structures
that we raise from them within our axiom system. Hilbert was, in his
own way, therefore, a mathematical Platonist, rather than a formalist
in the crude sense as being concerned with what Gustav Bergmann
[1949, 71] called the “physics of papers and pencils,”4 or Hilbert’s and
Hardy’s “marks on paper”. Hilbert, that is to claim, was not playing
language games with these marks on paper that have no meaning or
significance outside of the game itself. Neither did he conceive of him-
self as doing just that and no more. Against the Ramseyan view of
Hilbert as a crude formalist working with and manipulating meaning-
less marks on paper, Ewald (p. 232) points at Hilbert’s preface to the
Zahlberichte in which Hilbert wrote that he “attempted to avoid the
great calculating apparatus” so that “one should execute proofs, not
by calculations, but solely by thought.”

Hilbert, Ewald tells us (p. 233), followed consistently the Riemann-
ian tack of avoiding, insofar as possible, Kummer’s “great calculating
apparatus” in favor of Riemann’s principle that proofs be carried out
by thought rather than computation. This, Ewald adds (p. 233),
should be sufficient to illustrate the erroneousness of the received view
of Hilbert?s formalism, as a crude reliance on mere symbol manipula-
tion in which the symbols are of themselves meaningless. (We might
also add: this approach was, we can conjecture, embedded in Hans
Hahn’s remark, preserved by Gustav Bergmann [1964, 243], that: “Just

3See [Reid 1986, 57], from a remark made by Hilbert to Hermann L. G. Wiener
(1857-1939), see also [Weyl 1944, 635]; but, according to [Fang 1970, 81], to Ernst
Kötter (1859-1922) and Arthur Moritz Schoenflies.

4Bergmann’s full statement [Bergmann 1949, 71] avers “that as long as one
studies symbolic systems as such, all one can learn from them about the world
belongs to the physics of pencils and papers and to the psychology of those who
play these fascinating and intricate games” [my emphasis].
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knowing how a proof goes, you know nothing. When you know why it
goes this way rather than that way or that other way, then you begin
to know something.”)

Hilbert’s lecture notes illustrate that he often remarked to his classes
on the interconnectedness of various branches of mathematics with one
another, and that logical and set-theoretical concerns also appeared
throughout both his lectures and his thinking, that although these
types of discussions did not appear in his publications, they had a sig-
nificant role in his lectures and his intellection. Moreover, Ewald notes
(p. 233), many of his courses on various topics included substantial
introductory discussion of their logical and set-theoretical foundation,
and most especially on the axiomatic method by which the course ma-
terial was to be unfolded. And lectures and courses on a particular
topic, Ewald further notes (p. 233), did not begin or end only during
the period in which Hilbert produced his research publications on that
topic; rather, his courses covered the many fields in which he worked
throughout the length of his teaching career. To divide Hilbert’s ca-
reer into discrete segments, marked by interest in and occupation with
just one or a few branches of mathematics during and only during
that career segment, presents, therefore, a distortion of his intellectual
biography.

If this aspect of the received view of Hilbert is incorrect, what about
other salient aspects of that view?

Ewald notes (pp. 231, 233) that the chronology of Hilbert’s lectures
and researches belie the received view that it was only the foundational
crisis in mathematics that precipitated Hilbert?s embarkation upon his
own foundational excursions. He points out (p. 230), for example,
that Hilbert was already cognizant of the Cantor paradox by 1897,
that is, prior to the publication of the Russell paradox, but that he
nevertheless called for a proof of the consistency of arithmetic in the
second item of his problem list of 1900, and alluding to to it at the
end of “Über den Zahlbegriffe” [Hilbert 1899b]. Cantor’s Continuum
Hypothesis received its place at the top of Hilbert?s problem list. This
chronology belies the received view that the Russell paradox provided
the stimulus for the recognition of the need for a consistency proof,
and for the consequent development of the Hilbert program. On the
other hand, it does not count as evidence, we are bound to claim, that
the set-theoretical paradoxes led Hilbert to conceive of the need for a
search for consistency. For that, we require first Ewald’s contention (p.
232) that Hilbert thought the Cantor paradox already settled in 1908
by Zermelo’s axiomatization of set theory, with its Fundierungs- und
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Auswahlaxiom, designed to ban pathological sets such as the Russell
set, which came a decade prior to Hilbert’s main onslaught on the prob-
lem in and by the Hilbert program, as articulated in “Axiomatisches
Denken” [Hilbert 1918].

There is no reference to a Grundlagenkris, or to the intuitionistic
challenges of Brouwer and Weyl in Hilbert’s lectures on foundations of
mathematics of 1917/18. Neither do the paradoxes come up for dis-
cussion, let alone urgent discussion, until Hilbert, near the end of his
course, turns to consideration of higher-order logic: —and then only as
an object-lesson about the need for care to be excersied in formulating
one’s axiom set. The whole of Hilbert’s 1917/18 lecture course on foun-
dations revolves around problems induced by the axiomatic method it-
self. And the course is concerned specifically with what Ewald describes
(p. 233) as a “detailed examination” of the axiomatic method. More to
the point, in making the case that the paradoxes did not drive Hilbert
into thinking about and working in philosophy and foundations, Ewald
avers (pp. 233-234) that nowhere in his lectures are the paradoxes
cited as motivation, or even as one motivating factor among others,
for Hilbert’s excursions into logical investigations, and “still less” are
they presented “as a shattering disaster for mathematics as a whole.”
Perhaps needlessly, and not of itself sufficient to advance his case, but
more, perhaps, as an indication of Hilbert’s personality, Ewald adds
(p. 234) that the discussion is “cool and a bit dry, without the slight-
est taint of hysteria.” This bit of effluvia by Ewald may perhaps tell
us something about the psychology of those who play the “fascinating
and intricate games” of the study of symbolic systems, and of Hilbert
in particular; but, although Ewalds may think it so, it is otherwise not
Ewald’s best argument against the notion of the Hilbert program as a
panicky defense against the paradoxes.

Ewald (pp. 234?235) finds that the traditional view tends strongly
and wrongly to denigrate Hilbert’s accomplishments, and in particular
their importance for and role in the history of logic. In accordance with
the traditional view, which sees Hilbert’s search for consistency as a
sidelight to his research and as a response to the paradoxes, the Hilbert
program, and more specifically the development of Beweistheorie aris-
ing from it, because it was carried out in haphazard and piecemeal
fashion and under duress, is inferior to the work of Löwenheim and
Skolem. It is a failure also, as having been undermined by Gödel’s
incompleteness proofs. But Ewald fails to note that Hilbert’s work in
proof theory has another root than did the work of Löwenheim and
Skolem. The latter came directly out of the algebraic tradition of the
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Boole-Schröder calculus, and its purpose was to establish the model-
theoretic properties of finitary systems. That is to say, the work of
Löwenheim and Skolem was what we would today designate as be-
longing to model theory, and designed to examine and establish the
properties of categoricity of models for specific universes of discourse.
The Löwenheim-Skolem Theorem, for example, establishes the satisfi-
ability of κ-ary models, and asserts that if a formula F of a first-order
logical system with identity is κ-satisfiable for every finitary κ-ary
model, then it is ℵ0-satisfiable. (See [Brady 2000], [Anellis 2004], and
[Badesa Cortéz 1991; 2004] of the connection of the work of Löwenheim
and Skolem to the classical Boole-Schröder calculus and to its contri-
bution to model theory.) The root of Hilbert’s later work in proof
theory is not in the Boole-Schröder calculus itself, but in the semantic
approach that Löwenheim applied in establishing the soundness of uni-
verses of discourse for the Boole-Schrder calculus and applying this to
the study of the relationships between validity, satisfiability, and prov-
ability. Hilbert took Löwenheim?s method “as a proof procedure and
used it to reopen the study of the character and concept of formal sys-
tem” [Anellis 1994, 120]. What drove the work on proof theory and the
development of alternative theories of quantification in the 1930s (by
Herbrand and Gentzen, as well as by Hilbert himself and his followers,
including especially Bernays) was the investigation and elaboration of
what Hilbert meant by “being a proof” (see [Anellis 1991]). All this,
too, however, is left untouched by Ewald, who, for the sake of brevity,
focuses on Hilbert’s work in proof theory in and around 1917/18.

Ewald is intent upon establishing the conception that the Hilbert
progam, and in particular Hilbert’s work in proof theory, was motivated
by his over-all conception of mathematics as a unified and systematic
discipline, and that the importance of establishing its consistency was
in consonance with this conception of mathematics. Proof theory, that
is, was not an emergency repair, and was not an isolated technical
response merely to technical difficulties arising from the paradoxes.
The problem list of 1900, under this interpretation, was both a response
to broader developments of the nineteenth century and a call for the
effort, in the coming twentieth century, to provide a sound structure
for the entire mathematical edifice as an archetectonic. The problem
of the consistency of arithmetic was the centerpiece of that vision.

It is not so much the paradoxes that as such, Ewald thinks (pp. 235-
236) undermine mathematics. They undermine set theory and logic,
but not mathematics as a whole. If, with Kronecker and Poincaré,
one accepts that mathematics rests upon the solid foundation of the
integers, which mathematicians can believe in and know directly, then
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arithmetic remains soundly on solid ground—and consistent. Hilbert’s
student, colleague, and partner in the creation of Beweistheorie, Paul
Bernays, Ewald tells us (p. 236), held that it was Russell’s logicism, his
reduction of the rest of mathematics to logic, and of logic to set theory,
that rendered the paradoxes so devastating. In this case, it is also
reasonable to ask whether, and if so how, Gödel’s incompleteness results
impact, and undermine the Hilbert program at all. The devastation
done to the Hilbert program, according to Ewald, was more in the mind
of Hans Freudenthal [1976] and others like him, than in the mind of
Hilbert.

We may follow up by asking whether it is really the case that Hilbert
felt as challenged by the incompleteness theorems as much of the his-
torical and philosophical literature insist, and, if so, why he took it
as a serious challenge. (As a matter of fact, Ewald does not think
that Russell thought that the paradoxes were as serious as he did after
Wittgenstein convinced him that all of mathematics was a mere tau-
tology rather than than about objective truth.) Ewald does not, for
the nonce, take up, or even mention, these questions. Rather, he asks
why, in light of Berkeley’s attacks upon Newton’s fluxions as “ghosts of
departed quantities” and Bolzano’s paradoxes of the infinite, Hilbert’s
question did not arise a century before Hilbert propounded it. Ewald’s
approach to this apparent failure on the part of mathematicians to
ask the Hilbertian question on the heels of Berkeley’s criticisms or
Bolzano’s account of paradoxes, is to explain it in terms of the na-
ture of nineteenth-century mathematics: viz., relying on arithmetic
and geometry as guarantors of the whole of mathematics, one would
merely retrace one’s steps and search for one’s intellectual or compu-
tational error if a discernible difficulty arose.5 As Ewald expressed it
(p. 236), if an imaginary number occurred with which one had a prob-
lem, one merely need only to track down the mathematical entity to
which it evidently referred. This, Ewald declares (pp. 236-237) led to
nineteenth century mathematicians persistently confusing their sym-
bols with their objects: now they manipulated the one, now the other.
Not until the efforts of the very late nineteenth century when mathe-
maticians encountered the problem of providing for the legitimacy of
non-Euclidean geometries did they have to worry about axiomatically

5Ewald does not consider that the failure to respond to Bolzano’s account of
the paradoxes of the infinite arose because Bolzano’s work was not well known to
mathematicians. Nor is it clear that Ewald fails to consider this possible explanation
because he disagrees with [Schubring 1993] that Bolzano’s work was better known
to his colleagues than than has generally been supposed, or simply because the
paradoxes were not considered a significant issue at that time.
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presented deeductive theories rather than finding interpretations un-
der which the theorems of the theory would be true. Thus, in the face
of the Cantor and Russell paradoxes, early twentieth-century mathe-
maticians had a conception of mathematics that, while new, presented
them with a foundational, rather than an epistemological, problem.
Brouwer’s route took him to intuitionism, to an epistemologucal solu-
tion. Hilbert’s called for a technical, metamathematical solution.

This old approach, of going back to rehearse and double-check one’s
work to locate an errant object if and when the symbol obtained in
computation or conceptualization seems out of place or otherwise sus-
picious, could and might have led to the strategy of checking and, when
required revising the problematic axioms or offending underlying sup-
positions of one’s theory. Although Ewald does not say so, this strategy
might well have been employed as a corrective to the paradoxes stem-
ming from what Ewald has called “lack of care” (p. 237) in Cantor’s
näıve set theory. Granted it would not solve the philosophical problem
of the possibility of the existence of a completed infinite that worried
Kronecker, as Ewald admits (p. 237). Neither does Ewald suggest that
this is the sort of strategy that may have underlay Zermelo’s develop-
ment of an axiomatic set theory with the inclusion of a Fundierings-
und Auswahlaxiom to banish pathological sets. And since he does
not consider whether this was Zermelo’s strategy, neither does he say
whether Hilbert would have been satisfied with this maneouver. But he
does indicate that Hilbert was, for the time being apparently satisfied
that Zermelo’s 1908 set theory had adequately dealt with the problem.
From the standpoint of philosophy, neither Zermelo’s axiomatization
nor Russell’s theory of types, however, provide a satisfactory solution
to the problem of the paradoxes, Ewald says (p. 237). With regard to
the theory of types, it was devised specifically—and exclusively—for
dealing with the paradoxes, not for underwiting set theory or number
theory. We might well ask whether, when Russell queried Leon Henkin
as to whether Gödel incompleteness meant that it was permissible in
“school-boy arithmetic” to obtain 2 + 2 = 4.001, he, either facetiously
or unwittingly seriously, was acknowledging that the Principia axiom
system, with—or despite—its theory types, was not the solution to the
paradoxes that was required from the philosophical perspective.6

6Leon Henkin recorded that in response to his [Henkin’s] request for comments on
his article “Are Logic and Mathematics Identical?” [Henkin 1962], Russell expressed
the thought that Gödel’s incompleteness theorems mean that 2 + 2 = 4.001 is
permissible in “school-boy arithmetic”. Russell’s reply 1963 (ts. [Russell 1963],
transcribed in [Grattan-Guinness 2000, 592-593]) was that Gödel’s theorem showed,
not that (primitive recursive) arithmetic is incomplete, but that it is inconsistent,
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All this being the case, we have to ask why Hilbert had thought
it necessary to pursue further a program to develop metamathemat-
ics if he thought that Zermelo had repaired the problem and thereby
eliminated the damage; unless he also thought that more was required
than merely a technical treatment. Moreover, we must ask how deeply
Gödel’s incompleteness results impacted Hilbert, and whether, if satis-
fied with Zermelo’s axiomatization, he would find it necessary to con-
tinue foundational research after 1908 unless he had some additional
philosophical concerns, or such concerns as had led to a need to re-
spond to Brouwer or Weyl. Because Ewald does not examine Hilbert?s
work after 1917/18, we cannot be certain to what extent Gödel’s in-
completeness results, in Ewald’s estimation, affected Hilbert. And for
that we have to turn therefore to our own consideration of Hilbert in
the post-1918 period, rather than rely upon Ewald. For the most part,
Hilbert’s response to Gödel comes from Bernays. For Hilbert between
1918 and 1931, and after, Ewald leaves us to our own devices. But we
can extrapolate from what Ewald writes and what we otherwise know
of Hilbert and his work.

that it permitted “school-boy” arithmetic to allow that “2+2 = 4.001”. This reply
(and its “April Fool’s” date) prompted Henkin to ask me ([Henkin 1983]) whether
Russell was joking; but the entire tenor of the letter, together with the philosophical
background on which Russell drew to conclude that Gödel’s results allowed school-
boy arithmeticians to have 2+2 = 4.001 , shows that Russell really was in earnest.
In his reply to [Russell 1963, ts. 2], Henkin [1963a] therefore actually found it
necessary to explain to Russell that Gödel’s results did not say that arithmetic is
inconsistent, but that it is incomplete.

John Dawson [1991, 96], upon examining this episode, wondered whether Rus-
sell’s response reflected Russell’s momentary bewilderment upon learning of Gödel’s
theorems, or a continuing “puzzlement”. Dawson [1991, 96] asked whether Rus-
sell was saying that “intuitively, he had recognized the futility of Hilbert?s scheme
of proving the consistency of arithmetic but had failed to consider the possibility
of rigorously proving that futility”, or if he actually was “revealing a belief that
Gödel in fact had shown arithmetic to be inconsistent,” and he notes that Henkin,
for one, assumed that Russell supposed Gödel to have proven the inconsistency of
arithmetic. He adds [Dawson 1991, 96-97] that, in either case, Gödel eventually re-
ceived a copy of Russell’s letter and consequently remarked to Abraham Robinson
on 2 July 1973 that “Russell evidently misinterprets my result; however he does so
in a very interesting manner . . . .” What manner of misinterpretation Gdel may
have had in mind as so interesting is, regrettably, left unstated.

Russell himself, wrote in reply to Gödel (addendum to “My Reply to Criticisms”
in The Philosophy of Bertrand Russell) that “I had always supposed that there are
propositions in mathematical logic which can be stated, but neither proved nor
disproved. Two of these had a fairly prominent place in Principia Mathematica—
namely the axiom of choice and the axiom of infinity.”
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Both Hilbert and Russell agree that we cannot take the concept
of natural numbers for granted. Russell was in search for apodictic
certainty, an epistemological concern, whereas Hilbert is in search of
a mathematical foundation for mathematics, not merely an epistemic
certainty, but mathematically grounded foundations which provide for
the consistency, completeness, and categoricity of the mathematical
theory. It is thus little wonder that Zermelo’s proof that every set can
be well-ordered would initially have seemed to Hilbert to have sufficed
for his purposes, as well as for preserving the validity of the theorems
of mathematics. In model-theoretic terms, Hilbert’s purpose was to
develop axiomatic systems which were categorical. And, as defined by
Oswald Veblen [1904, ?2], an axiomatic system Σ is categorical if for
every model of Σ of countable cardinality κ, if every every first-order
model of Σ is identical, i.e. if every model is isomorphic up to κ.

For Hilbert, as Ewald notes (p. 239), it is crucial that one’s axiom
set could prove every theorem—whether in Euclidean geometry or some
other theory—that needed to be proven for the theory for which the
axioms were established. Thus, Ewald distinguishes (p. 239) between
deducing the theorems from the axioms and determining whether or
not the axioms in fact are sufficient for their task. Metalogic was, that
is to say, required to decide whether or not a given axiom set was com-
plete, and for determining whether or not the axioms of the axiom set
were dependent or independent. A related question, requiring meta-
logic rather than logic alone, is the categoricity of the system, that is,
whether the axioms chosen not only derived, for a particular model, the
theorems required, but also whether the axioms allowed deduction of
all, and only those, theorems, for the particular model, and were valid
for every such model appropriate to the axiom system. One of the pur-
poses of Hilbert’s work in the Grundlagen der Geometrie, indeed the
main purpose, was to find the smallest set of axioms capable of deriving
both Euclidean and non-Euclidean geometries, and was at once inclu-
sive enough to derive those geometries without allowing derivation of
extraneous or inconsistent theories, and still strong enough to allow for
the deduction of the complete set of theorems across all possible mod-
els of those geometries. Therein lay the root of Hilbert’s claim that it
makes no difference whether the elements of our system, the primitives
to which one?s axioms are applied, are interpreted as points, straight
lines and planes, or beer mugs, tables and chairs. Categoricity, then,
can be comprehended as validity across models or interpretations. In
Ewald’s words (p. 239), “Hilbert’s investigations required him to se-
vere the link between geometrical axioms and any particular domain
of objects.” For Hilbert, then, mathematics is no longer the science
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either of numerical quantity or of spatial magnitude, not even about
any objects of any kind, but a hypothetical science about constructs
postulated on the basis of, and deduced from an axiomatic set, and
about the undefined entities that are the subject of the axioms. Hence
the centrality of the problem of the consistency and completeness of
the axiom system, of categoricity and the independence of the axioms.
Whereas, Ewald says (p. 242), Russell’s concern remained with epis-
temologicl certainty, Hilbert’s was with “Fruchtbarkeit.” Axiomatiza-
tion, then, was but one step. Reduction of geometry seemed to work
in the Grundlagen der Geometrie. The next step was to reduce all of
mathematics, pure and applied, to arithmetic and to axiomatize each.
“For Hilbert,” Ewald tells us (p. 243), “as for Gauss, arithmetic was
the fundamental mathematical science überhaupt . . .” And, although a
relative consistency proof was employed by Hilbert to prove the consis-
tency of geometry provided arithmetic is consistent, some other proof
procedure would be requireed for proving the consistency of arithmetic
itself. Ewald suggests (p. 243) that Hilbert had in mind a syntactic ap-
proach, but, in 1900, details were scarce and unclear. Hilbert’s remarks
in Königsberg in 1930, “Wir müssen wissen. Wir werden wissen.”, was,
after three decades, still a promise, and one whose path was still only
partially mapped, a path before which Gödel, a day earlier at the same
conference, had lain his incompleteness results.

The question of the combination of Hilbert’s 1930 prescription of the
impossibility of unsolvable mathematical problems and his 1900 prob-
lem list raise the issues for Ewald (p. 244) of the criteria of inclusion
and exclusion employed by Hilbert in compiling his problem list, and
of how Hilbert’s first problem, of the consistency of arithmetic fits into
this list and into Hilbert’s conception of mathematics. Ewald notes (p.
244) that Fermat?s Last Theorem [FLT] was not included. This, he
thinks, gives us a clue to the answers to each of these issues, of decid-
ing what problems to include or exclude, and to deciding that—and
how—consistency, or the decidability problem, is the key to Hilbert’s
view of mathematics. Ewald is convinced that Hilbert excluded FLT
not because he did not think it an important problem, and certainly
not because he thought it to be unsolvable; but because he thought
that it had already made significant contributions to mathematics in
the efforts already expended in the search for its solution, by creating
much new mathematics and many new mathematical structures along
the way, in the development of algebraic number theory. (On the im-
pact of FLT for Hilbert?s program, see, e.g. [Velleman 1997].) So, does
Ewald think that the decidability of FLT (solved in 1995 by Andrew
Wiles [1995] with the assistance of Richard L. Taylor [Taylor & Wiles
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1995]), and other hard problems, such as the Goldbach Conjecture, or
the Riemann Conjecture in number theory, which Gödel himself gave
as examples of undecidable theorems that counted as evidence for his
incompleteness proof, or of such more recent hard problems as the
Poincaré Conjecture (formulated in 1904, solved in 2006 by Grigorii
Perelman), in fact support Hilbert?s contention? Ewald does not say.

The focus then, is evidently not on the assertion that we will, and
must know, or the concomitant rejection out of hand of ignoramibus,
but of the expectation of what new mathematics can be created by
turning our attention to the problems that were selected, and, in par-
ticular, on the consistency problem, for providing an understanding
of the nature of mathematics and a foundation for arithmetic and for
all of mathematics. With Wilhelm Ackermann, and especially with
Paul Bernays, the challenge, which Hilbert undertook in working for
the remainder of his life on the first—and foremost—problem of con-
sistency, led to the development of metamathematics, to concern for
metalogica—or model-theoretic characteristics of logic, and to proof
theory.

Before 1931, we had Hilbert-type axiomatic systems and Frege-type
axiomatic systems, the most notable of the latter being Whitehead and
Russell?’s Principia. But, simultaneously in 1932, Herbrand, and then
Gentzen, undertook the investigation of what being a proof meant in
Hilbert’s system (see [Anellis 1991]), and this led to application of the
Löwenheim-Skolem theorem to proof theory as well as to model theory
and to the establishment of first-order logic as the mathematical logic
(see [Moore 1987; 1988; 1997]), to Herbrand’s work in quantification
theory, and to the development by Gentzen of the sequent calculi and
natural deduction (see [Anellis 1991]). Herbrand undertook to develop
globally, as validity, Löwenheim’s concept of model-theoretic satisfi-
ability. Validity is now the proof-theoretic correlate of categoricity;
it is satisfiability invariant with respect to any particular model, just
as categoricity is consistency invariant with respect to any particular
model.

In “The Hilbert program of metamathematical study of proofs”,
[Anellis 1994, 139] wrote, “just because the axiomatic method fails to
study proofs even while it provides an analysis of theorems.” Moreover
[Anellis 1994, 139]:

It was Hilbert who undertook to define and systemati-
cally carry out the construction of mathematics within
his system. This required a fully developed concept of
proof. The Hilbert program had two aspects. One was
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to define the technical apparatus which would permit a
finitist construction of all mathematics, The other was
to ensure that the set of (mathematical) sentences de-
rived within the axiomatic system was consistent.

If Hilbert was not as certain as might have been expected that
Gödel’s incompleteness would undermine, if not altogether devastate,
his own effort to carry out his program, it was because he antici-
pated that he (and Bernays) could redefine their finitism in such a
way as to rescue the categoricity, validity, and completeness of arith-
metic. Bernays, for one, agreed that Gödel’s theorem demonstrated
that the Principia could not formalize all of mathematics. Neither
he, nor Hilbert, nor yet even Gödel himself, were prepared to suggest
the same for Hilbert-type systems. Thus, for example (see [Zach 2003])
‘Gödel [1931] left open the possibility that there could be finitary meth-
ods which are not formalizable in these systems and which would yield
the required consistency proofs. Bernays’s first reaction in a letter to
Gödel in January 1931 was likewise that “if, as von Neumann does,
one takes it as certain that any and every finitary consideration may
be formalized within the system P—like you, I regard that in no way
as settled—one comes to the conclusion that a finitary demonstration
of the consistency of P is impossible” [Gödel 2003, 87].’

For others, such as Saul Kripke, the impact of Gödel’s incomplete-
ness results was unconditionally definitive, however, and Kripke [2005]
speaks of the “collapse of Hilbertism”, writing:

Gödel’s own proof of the collapse of Hilbert’s program is
indirect in the sense that he produces an auxiliary state-
ment (first incompleteness theorem) that leads to the
collapse (second incompleteness theorem). I will show
by a syntactic argument (infinite descent of actual num-
bers) that Hilbert’s original program directly implies its
own collapse. Another unusual feature of Gödel’s inde-
pendence proofs is, unlike other such proofs, they do not
proceed by producing a model where the statement is
false. I will show that this can be done, using a modified
ultrapower construction or arbitrary initial segments of
nonstandard models, that this can be done. . . .

Ewald does not explicitly refer to this or to any other concrete dis-
cussions which take the position that Gödel’s incompleteness theorems
irremediably wrecked the Hilbert program, however.

Ewald’s summary (p. 344) of the significant differences between
Russell and Hilbert begins by noting that the paradoxes were, after all,
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important to Hilbert, and the need to deal with them resulted in much
expended energy on Hilbert’s part. But they played a significantly
different role for Hilbert than for Russell. For Russell, Ewald tells us
(p. 244), “the paradoxes were the sole reason for much of his logical
work, and without them he would have had no reason to develop the
theory of types of the axiom of reducibility.” For Hilbert, however, “the
paradoxes are a subordinate issue within a consistency program that
has much deeper reasons for existing.”

For Hilbert, the axiomatic method was the new tool for unifying
and deriving all of mathematics, and, more essentially, for establish-
ing thereby the validity of the theorems derived therefrom. Moreover,
many of the mathematical structures to be deduced took their ini-
tial intuitive inspiration from the natural world. Real mathematical
problems, including problems from both pure mathematics and ap-
plied, physics foremostly in the case of the latter, supplied the grist
for Hilbert’s axiomatic mill and, more importantly, provided one of
the main supports for the axioms. Russell meanwhile continued to rely
upon Platonic Ideals as the quintessential mathematical objects. Thus,
when consistency failed in his system, so did certainty; and, more to
the point, when certainty failed, so also did his world.

Ewald can be said, however, to have denigrated the full impact of
the paradoxes in order the more to emphasize the radical differences
between him and Hilbert and to emphasize thereby the mathematically
deeper and more acute purposes of Hilbert. For Russell, the paradoxes
challenged not merely the consistency of set theory, but the very pos-
sibility of the truth of mathematics, and therefore of the existence of
mathematics itself and of mathematical objects. In effect, although
Russell’s purpose may be philosophical, even existential rather than
merely epistemological, and what is at stake for Russell is more than
the constructibility of mathematical objects, structures, and theories,
as it was for Hilbert. What is at stake for Russell is the possibility
of mathematics as the fundamental aspect of reality. Mathematical
truth for Russell is absolute truth, and mathematical reality, although
a Pythagorean-Platonic Ideal, is absolute reality, and hence the basis
of and sole guarantor of epistemological apodictcity, of certainty, and
not merely the certainty of empty tautology. (If Russell’s encounter
with Wittgenstein and Wittgenstein’s Tractatus Logico-Philosophicus
was so painful for Russell, as painful perhaps even as the paradoxes,
it was because, according to the Tractarian understanding, logic, and
by extension mathematics, was empty truth, comprised of nothing but
tautologies behind which stood no Platonistic reality that could pro-
vide the certainty that Russell craved.) In this sense, Ewald is wrong
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to downplay, even if merely for the sake of contrast with Hilbert’s
conception of logic, the significance of Russell?s philosophical concep-
tion of logic, mathematics, and the import of the paradoxes for his
views of logic and mathematics. Should we distinguish the philosophi-
cal purpose of Russell’s logicism and logical approach to a foundation
for mathematics on the one hand and Hilbert?s formalism and founda-
tional, metalogical, approach to foundations of logic and mathematics
on the other, we need be more attuned than Ewald apparently is, to the
immense significance which their respective philosophical/metalogical
concerns in their technical contributions, whether the focus of those
concerns were with the technical apparatus designed to disarm the
paradoxes and its consequences, as they were for Russell, or with the
technical apparatus of proof theory developed for investigation of the
conditions and characteristics of axiomatization designed to provide for
the consistency of one’s axiomatic system.

Still, for Hilbert, the selection of axioms and the fruitfulness of his
axiomatic system did not alone suffice to underwrite the consistency
of the system. The “narrow” Hilbert program had as its purpose,
Ewald explains (p. 248), to “prove the consistency ultimately of for-
malized second-order arithmetic by finitary means.” This concept of
Hilbert’s endeavor was what led the intuitionist to insist that Hilbert
merely studied “meaningless” formal systems. Narrowly construed,
Ewald concludes (p. 248), this program would indeed be demolished by
Gödel’s incompleteness proof. But the wider program, of deriving the
theorems of all branches of mathematics, pure and applied, within an
axiom system, deduced from a well-chosen set of axioms, such that the
mathematical structures of pure and applied mathematics could be ob-
tained, was the purpose of Beweistheorie, which would provide knowl-
edge of the limitations of what could be achieved with, and within,
the axiomatic system, and supplied the tools required for checking the
system itself, the axioms and derivation rules of the system, to ascer-
tain that the theorems obtained within the system withstand the test
of validity, and of consistency. To Ewald?s characterization we may
also add the following: Existence, in this approach, is constructibility.
We no longer deal, as Russell sought to do, with mathematical entities
that are abstract Ideals existing in a Platonic realm of pure Being.

It is this broader conception of the Hilbert program that Hilbert and
Bernays adopted and was the source for their researches and which, as
carried out by them and their successors, brought contemporary proof
theory to its current state and made proof theory a central and pivotal
feature of mathematics. Proof theory, then, however else Ewald might
characterize it, is Hilbert’s technical answer to the older problem of
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philosophy and foundations of mathematics. And Hilbert’s successors,
starting with Bernays, have moved it beyond a philosophical concern.
Ewald (p. 248) quotes Hilbert [1922, §59] thus: “Just as the physicist
investigates his apparatus and the astronomer investigates his location;
just as the philosopher practices the critique of reason; so, in my opin-
ion, the mathematician must secure his theorems by a critique of his
proofs, and for this he needs proof theory.”

Finally, we must add that, in the remaining years of Hilbert’s life-
time, and despite the incompleteness proofs and the devastation it
wreaked on Principia and Principia-like systems and wreaked or was
supposed to have wreaked upon Hilbert’s efforts, logicians, Gödel among
them, were proving the consistency and completeness of important
parts of logic. Gödel, just prior to proving his incompleteness re-
sults for first-order logic with identity, had proven the consistency of
the propositional calculus and first-order logic without identity [Gödel
1929; 1930]. It was not yet clear that Gentzen’s [1936] proof of the con-
sistency of arithmetic was erroneous. By the mid-1950s, Leon Henkin
would soon provide a reasonable expectation that there is a notion of
finitary systems in which consistency could be achieved when he pub-
lished his “Generalization of the Concept of ω-consistency” [Henkin
1954]. Henkin’s “Generalization. . .” at least opens the possibility that
there indeed could be finitary methods which are not formalizable in
Hilbert-type systems and which would yield the required consistency
proofs, with the concept of finitary properly redefined and refined. But
Ewald, taking his history up to Hilbert’s researches of 1917/18, does
not take proper account either of Gödel’s challenges or of the researches
of Hilbert and his successors after 1917/18 to deal with the challenges
posed either by Gödel or by Hilbert himself.
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Incompleteness Theorems”, in Thomas Drucker (edi-
tor), Perspectives on the History of Mathematical Logic
(Boston/Basel/Berlin: Birkhuser), 84-100.

[Ewald 1996] Ewald, William Bragg (ed.), 1996. From Kant to Hilbert.
A Source Book in the Foundations of Mathematics, vol.
2. Oxford/New York: Oxford University Press.

[Fang 1970] Fang, Joong. 1970. Hilbert. Hauppauge, N.Y.: Paideia
Press.

[Freudenthal 1976] Freudenthal, Hans. 1976. “Hilbert, David”, in Charles
Coulton Gillespie (ed.), Dictionary of Scientific Biogra-
phy (New York: Charles Scribeners Sons), vol. 6, 388-395.

[Gentzen 1936] Gentzen, Gerhard. 1936. “Die Widerspruchsfreiheit der
reinen Zahlentheorie”, Mathematische Annalen 112, 493-
565.
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