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REVIEW

PAUL RUSNOCK

Bernard Bolzano (1781-1848) devoted the better part of his life to the
cause of reform in his homeland Bohemia, then part of the Hapsburg
Empire. Beginning in 1805, he held a chair as Professor of Religious
Science at the Charles University in Prague, where he soon became
known as a fearless critic of the abuses of the regime and a leader of
the “Bohemian Enlightenment,” a movement which combined a ratio-
nally clarified Catholicism with an ambitious programme for social and
political reform. In his spare hours, Bolzano took up his other great
passions: philosophy, mathematics and logic. He was, he tells us in
his autobiography, especially drawn towards the “part of mathematics
that is at the same time philosophy,” ([8], p. 19) that is, in what we
would call foundations in the broad sense of the term. A large part of
his research accordingly focused on the search for proofs of propositions
most mathematicians thought too obvious to require proof (such as the
intermediate value theorem), and for definitions of concepts generally
thought to be so clear in themselves that they neither admit of nor re-
quire definition (e.g., “line”, “surface” or “solid”). More or less alone
in taking this approach in the early part of the nineteenth century, he
had the field almost to himself, and accomplished far more than one
might have thought possible for an amateur, arriving at a number of
important results usually thought to stem from a later period. Among
his achievements, we mention the following: in 1816, he gave one of the
first rigorous treatments of power series; in 1817, he gave the first rigor-
ous proof of the intermediate value theorem, which involved a precise
definition of continuity, a statement of the sufficiency of the Cauchy
criterion for the convergence of a sequence, and a statement and proof
of the least upper bound theorem; in his later work (dating from the
1830s), he developed an arithmetical theory of real numbers, used the
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Bolzano-Weierstrass theorem1 to prove central results about continu-
ous functions, distinguished pointwise from uniform continuity, stated
Heine’s theorem2, and constructed a variety of “monster functions”,
including one which is continuous at every point in an interval, but not
monotone on any subinterval, and also nowhere differentiable. These
mathematical discoveries are interesting enough, but all the more so
in view of the fact that Bolzano was engaged at the same time in sys-
tematic reflections on logic and scientific methodology. In his logical
writings, especially the monumental Theory of Science of 1837 [9], we
see important parts of the modern conception of axiomatic theories
take shape, among them a sophisticated understanding of definition, a
general theory of collections (including sets), and the first viable def-
inition of consequence. Bolzano is a major thinker, one of the truly
great philosophers of the nineteenth century, and deserves to be more
widely known.

With the publication of The Mathematical Works of Bernard Bolza-
no, Steve Russ has done great service for this cause. Here we find a
substantial collection of translations from Bolzano’s mathematical writ-
ings, the beginnings of which date back some thirty years [23]. There
are complete translations of all five of the mathematical works Bolzano
published between 1804 and 1817 ([3], [4], [5], [6], [7]), significant parts
of the Theory of Quantities [12], (including Bolzano’s theory of “mea-
surable numbers”, which is often taken to be an arithmetical theory
of real numbers, and his Theory of Functions) and a complete trans-
lation of the posthumously published Paradoxes of the Infinite [13].3

This volume will go a long way towards making Bolzano’s mathemat-
ical work better known, and not only on account of the translation.
Most of these writings have been extremely difficult to find even in
the German originals, the notable exceptions being the often reprinted
Purely Analytic Proof and the Paradoxes.4

1Any infinite set of real numbers contained in a closed, bounded interval has at
least one limit point in the interval.

2A real-valued function continuous on a closed, bounded interval is uniformly
continuous there.

3Readers should not be misled by the title of Russ’s collection, which by no
means contains all of Bolzano’s mathematical writings. The introductory parts of
the Theory of Quantities are not included, for example, nor are any of Bolzano’s
later geometrical writings.

4Apart from the original publications, The Institute of Czechoslovak and General
History published, in 1981, facsimile reprints of the five early mathematical works
(Acta historiae rerum naturalium nec non technicarum Special issue 12). Not sur-
prisingly, copies are hard to come by. The Theory of Functions, for its part, only
appeared in the critical edition of Bolzano’s works in 2004 (ed. B. van Rootselaar;
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A few words on Bolzano’s writings on mathematics and logic are
in order here. At first, inspired by the example of German-language
authors such as Ch. Wolff and A. G. Kästner, Bolzano seems to have
aimed at producing nothing less than a complete, systematic presenta-
tion of the entirety of mathematics. The 1810 treatise, Contributions
to a Better-grounded Presentation of Mathematics (pp. 83–137), was
intended to be the first installment of such a work. In it, Bolzano
presents the programme, including his views on mathematical method,
(which he claims to be nothing other than logic [p. 103]), as well as a
proposed definition of mathematics as a “science of forms” (pp. 91-95)
and a classification of its sub-disciplines (pp. 95-102). Not surpris-
ingly, the response to this poorly circulated publication by an obscure
Bohemian priest was less than enthusiastic. Bolzano was nevertheless
disappointed, and decided, as he tells us,

to attempt [. . . ] to make myself better known to the
academic world by publishing some works whose titles
would be better suited to arouse attention (p. 262).

The fruits of this attempt were three papers of 1816-1817: the Bino-
mial Theorem (pp. 155–248), the Purely Analytic Proof (pp. 253–277),
and the Three Problems of Rectification, Complanation and Cubature
(pp. 279–344). Though the first and third of these are tough sledding
for the reader, they do contain original and significant contributions.
The Purely Analytic Proof, however, is a gem: concise and focused, it
presents in a few short pages a compelling justification for the “arith-
metization of analysis” and a paradigm of how to go about it.

These works would eventually find the right readers. The Purely
Analytic Proof, especially, was greatly admired by Weierstrass and his
students (see [22], p. 85 ff.). But this recognition came too late for
Bolzano. Discouraged again by the poor reception of these shorter
works by his contemporaries, he returned to his original plan of writ-
ing comprehensive, systematic treatises. Logic came first: writing the
Theory of Science occupied most of the twenties. Next came the turn
of mathematics, as Bolzano began work on another massive treatise
which was to be called the Theory of Quantities [Größenlehre].5 This
decision was regrettable in many ways. First, due to advancing age

[16], Series 2A Vol. 10/1); beforehand it was only available in a rare edition by K.
Rychĺık published in 1930 by the Royal Bohemian Society of Sciences [14]. As a
result, even quite knowledgeable historians of mathematics are sometimes unaware
of Bolzano’s accomplishments.

5Part of the Theory of Quantities is a brief account of Bolzano’s logic (“On the
Mathematical Method”), a mature counterpart to the Contributions of 1810. This
has been translated into English in Bolzano [2004].
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and illness, Bolzano never finished his project, and never published
his discoveries. Small fragments of his later writings appeared in the
Paradoxes of the Infinite, but the bulk of his manuscripts were passed
on to a promising student (Robert Zimmermann, who would become
professor of Philosophy at Vienna), who did nothing with them. It was
only in the 1920s, after many of Bolzano’s results had been indepen-
dently rediscovered, that scholars began to pay attention to the Theory
of Quantities. Second, perhaps precisely on account of the scope of the
treatise, Bolzano’s work is very uneven. On the one hand, we find
astonishing precision, great insight and creativity, on the other, some
rather elementary blunders. Had he chosen to publish even a handful
of research papers containing his more important discoveries, his work
might have been of more consistent quality and had considerably more
influence on the development of mathematics.

The first piece translated here, Considerations on some Objects of
Elementary Geometry [3], is derived from Bolzano’s doctoral thesis.
Many of the themes of his mature mathematical work are already
clearly present. He is interested to begin with in the nature of rig-
orous, or scientific proof, and sets out two rules (p. 31 f.): first, simply
because we find a proposition to be obviously true does not mean that
it does not need to be proved. Rather, we should follow the example of
the ancients in seeking proofs even for obvious truths. This is done not
for the sake of certainty, but rather for the sake of understanding. For
if we know the objective connections between the truths of mathemat-
ics, we will not only find it easier to grasp them, we will also be better
able to discover new truths. Second, in a correct proof, no “alien”
intermediate concepts should be introduced—a rule which Bolzano as-
similates to Aristotle’s ban on crossing from one genus to another ([1],
I, 7). In the case of geometry, for example, no appeal should be made
to the concept of motion. For if we do appeal to motion, for instance
in proving the congruence of two figures, we must establish that such
a motion is possible—e.g., that one and the same object can occupy a
certain collection of spaces, etc. But in order to do this, we will have
to presuppose the very geometrical proposition we are attempting to
prove. This situation is by no means untypical: often, crossing from
one genus to another simply produces a vicious circle, where a special
case is invoked to support the general result which grounds the special
case (cf. p. 126). Somewhat more controversial are Bolzano’s claims
that in the theory of triangles and parallel lines no use should be made
of the concept of a plane, and that no use of the concept of an angle
or a triangle should be made in the theory of the straight line.
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The Considerations then attempts to reformulate geometry in line
with these methodological strictures. The key notions are those of
determination, similarity, and equality, the key principles the following:

(1) If the determining elements (“pieces”) of the spatial objects A
and B are equal, then A and B are equal (p. 36).

(2) If the determining elements of the spatial objects A and B are
similar, then A and B are similar (p. 40).

Similarity is defined as by Leibniz and Wolff:

Two spatial objects are called similar if all the charac-
teristics which arise from the comparison of the parts of
each one among themselves are equal in both . . . (p. 40)

Unfortunately, Bolzano does not give a precise definition of determina-
tion in the 1804 treatise, perhaps taking it for granted as sufficiently
understood (for Bolzano’s later views on the subject, see [7], §§13-14;
[9], §180; cf. [2], p. 15 ff.). He adopts as an axiom (§19, p. 40) the
proposition that there is no absolute measure of length, an assumption
which later permits him to prove the parallel postulate (§59, p. 60).

The second part of the Considerations is given over to a sketch of
a theory of the straight line. Bolzano takes as primitive notions the
concepts of distance, direction, and opposition, and defines betweenness
as follows:

A point m may be said to be [. . . ] between a and b if
the directions ma,mb are opposite (p. 25).

The straight line (segment) ab can then be defined as “an object which
contains all and only those points which lie between the two points a
and b” (p. 76). We notice here that Bolzano is already clearly inclined
to conceive of geometrical objects as structured point-sets.

The second work in Russ’s collection is the 1810 essay Contributions
to a Better-grounded Presentation of Mathematics. As remarked above,
this work contains Bolzano’s first sketch of a logic, as well as his defi-
nition of mathematics and a classification of its branches. Once again
Bolzano’s boldness is in evidence, as he not only disagrees completely
with Kant’s claims about mathematics (pp. 132-137) but also repeats
the charge, implicit in the Considerations, that Euclid’s presentation of
geometry is thoroughly defective and indeed past saving (pp. 87-88).
Analysis and arithmetic, too, are in rough shape:

Have not the greatest mathematicians of modern times
recognised that in arithmetic the theory of negative num-
bers, together with all that depends on it, is still not
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clear? Is there not a different presentation of this the-
ory in almost every textbook? The chapter on irrational
and imaginary numbers is still more ambiguous, and in
places full of self-contradictions—not to mention the de-
fects of higher algebra and the differential and integral
calculus (p. 87).

Bolzano’s prescription is a reconstruction of mathematics from the
ground up, in line with an improved methodology, which is sketched
in part II of the work. Again he stresses that the function of scientific
proof is not to engender conviction, but rather to display the “objective
dependence” of one truth upon others. Where Descartes had written:

None of the conclusions one deduces from a principle
which is not evident can themselves be evident, even if
the deduction is evident. . . ( [18], Vol. IX-2, p. 8)

Bolzano counters that, since proofs concern the objective dependence
of truths, “which is independent of our subjective recognition of it,”
(p. 103) it is entirely conceivable that an axiom may be less evident
than the propositions it supports.

Indeed, it could even be that an axiom may appear ques-
tionable and dubious . . . because we do not immediately
see that the things we recognise at once as true can be
derived from it (p. 119).

The things we are most certain of, he maintains, are usually provable
propositions. Axioms are propositions which are by their very nature
unprovable, but this does not mean they must be self-evident. They too
may need to be justified in the Cartesian sense, that is, we may need
to be convinced that they are true, often by showing that they support
exactly the (provable) results which we take to be certain (ibid.).

With definitions, similarly, the Cartesian view that indefinables are
those notions which are so clear in and of themselves that no clearer
terms can be found to define them is replaced by a corresponding objec-
tive notion: indefinable concepts are those which, in and of themselves,
have no parts. This property is by no means the same as the Cartesian
one. How then are we supposed to convey the primitive concepts of
mathematical theories to others? Here Bolzano appeals to a notion
quite like implicit definition:

But how does he begin to reach an understanding with
his readers about such simple concepts and the words he
chooses for their designation? This is not a great diffi-
culty. For either his readers already use certain words or
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expressions to denote the concept and then he need only
indicate these to them, e.g., ‘I call possible that of which
you say that it could be’, or else they have no particu-
lar symbol for the concept he is introducing, in which
case he assists them by stating several propositions in
which the concept to be introduced occurs in different
combinations and is designated by its own word. From
the comparison of these propositions the reader himself
then abstracts which particular concept the unknown
word designates (p. 107).

A final point of interest in the Contributions are two criteria for the
correctness of proofs set out in §28 and §29 of Part II (p. 122 ff). The
second of these (pp. 123-126) is a slightly more general version of the
ban on crossing from one genus to another in the course of a proof.
The first reads as follows:

If the subject (or the hypothesis) of a proposition is as
wide as it can be so that the predicate (or the thesis) can
be applied to it, then in any correct proof of this propo-
sition, all characteristics of the subject must be used,
i.e., they must be applied in the derivation of the pred-
icate, and if this does not happen, the proof is incorrect
(pp. 122-123).

To take a simple example: if, in proving a proposition which is true of
the real numbers but not of the rational numbers (e.g., every polyno-
mial of odd degree with integral coefficients has a root), we make no
mention of any property which the reals have and the rationals lack,
then our proof must be incorrect.

It might seem as if these principles were so obvious that no mathe-
matician could possibly violate them. Yet the next two works in Russ’s
collection show the opposite to have been the case. The Binomial The-
orem [5] takes up the problem of power series, attempting to produce
a rigorous proof of Newton’s binomial theorem:

(1 + x)n = 1 + nx+ n · (n− 1)

2
x2 + · · ·+ n!

r!(n− r)!x
r + · · ·

for all real values of n.
Now when n is not a positive integer, Newton’s expansion results

in an infinite series. Bolzano, who had looked through dozens of at-
tempted proofs, noted that everyone knew that in these cases the series
only converged for |x| < 1, but—amazing as it may sound—no one had
made any use of this condition. (p. 159) Thus all of these proofs break
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Bolzano’s first rule: if they were correct, they would show that the
series converges for every value of x. They prove too much, and hence
prove nothing (ibid.).

In order to prove Newton’s theorem, Bolzano claims, we must first
come to a precise understanding of what it says (p. 157 ff.). Concep-
tual analysis—which Kant had claimed to be worse than pointless in
mathematics ([20], A712/B740 ff.)—is thus very much the order of the
day. Bolzano begins by carefully setting out a definition of what we
would call the convergence of an infinite series6 in terms of the conver-
gence of the associated sequence of partial sums. With this definition
in hand, he is able to give a clear meaning to the binomial equation
even in the cases where the right hand side is an infinite series. He
then proves the theorem, first for positive integral values of n, then for
rational values of n (when |x| < 1), and finally for irrational n and
|x| < 1.

Bolzano’s second criterion shows its worth in the Purely Analytic
Proof [6]. Again, his aim is to prove the obvious: a real-valued function
which is continuous on an interval [a, b] with f(a) < 0 < f(b) must have
a zero on (a, b). Interestingly, some previous mathematicians had tried
to prove this theorem. Yet they all violated Bolzano’s second rule, by
appealing to geometry, the theory of motion, or the like. Consider,
for example, the “purely analytic proof” offered by Lagrange ([21], p.
133.). Suppose g(x) is a polynomial with g(α) < 0 < g(β), where
0 < α < β (which we may suppose without loss of generality). Let
f(x) represent the sum of the terms of g(x) preceded by a plus sign,
and φ(x) the sum of terms of g(x) preceded by a minus sign (taken in
absolute value), so that g(x) = f(x)− φ(x). Then for x = α, we have
f(x) < φ(x), while for x = β, f(x) > φ(x). Lagrange continues:

Now from the form of the quantities f and φ, which con-
tain only positive terms and positive, integral exponents,
it is obvious that these quantities will necessarily in-
crease as x does, and that, in making x increase through
all the insensible degrees, they will also increase by in-
sensible degrees, but in such a way that f will increase
more than φ, since from being smaller it becomes the
greater of the two quantities. Therefore there will neces-
sarily be a term between the two values α and β where f
will equal φ, just as two bodies which one assumes to be

6At that time, the term “convergence” was usually taken to mean that the terms
of a series

∑
an went to zero with increasing n—a condition clearly compatible with

what we would call the divergence of the series.
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moving in the same direction along the same trajectory
and which, leaving at the same time from two different
points, arrive at the same time at two other points, but
in such a way that the one which was behind at first is
afterwards ahead of the other, must necessarily meet on
their path (ibid.7).

Bolzano’s criticisms of Lagrange’s proof are simple but devastating. If,
as Lagrange himself maintains, the concepts of motion and time are
foreign to analysis, they can play no role in a purely analytic proof. At
best, we can consider their use here to be merely figurative, and hence
eliminable in favour of terms belonging to analysis. But at this point,
the emptiness of the proof becomes obvious;

The deceptive nature of the whole proof really rests on
the fact that the concept of time has been involved in
it. For if this were omitted, it would soon be seen that
the proof was nothing but a re-statement in different
words of the proposition to be proved. For to say that
a function fx, before it passes from the state of being
smaller than φx to that of being greater, must first go
through the state of being equal to φx is to say, without
the concept of time, that among the values that fx takes
if x is given every arbitrary value between α and β,
there is one that makes fx = φx, which is exactly the
proposition to be proved (p. 257).

Having shown the nullity of previous proofs of the intermediate value
theorem, Bolzano proceeds to develop his own. Again, a clear under-
standing of the proposition is a necessary preliminary to a correct proof,
and he begins by formulating a definition of (pointwise) continuity:

According to a correct definition, a function fx varies
according to the law of continuity for all values of x
inside or outside certain limits means only that, if x
is any such value, the difference f(x + ω) − fx can be
made smaller than any given quantity, provided ω can
be taken as small as we please (p. 256).

Again, the result concerns real-valued functions, so a correct proof will
have to appeal to some characteristic properties of the reals. Bolzano
formulates two:

7I have changed the names of the functions and the points in order to make
Lagrange’s text uniform with Bolzano’s, quoted below.
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(1) Any infinite sequence x1, x2, x3, . . . of real numbers with the
“Cauchy property” (in modern language, ∀ε > 0 ∃N (m,n >
N → |xn − xm| < ε) has a real limit (p. 266 ff).

(2) Any set of real numbers which is bounded above has a least
upper bound (p. 269 ff).

The proof of the first theorem is flawed, but the proof of the second
is a thing of beauty, as Bolzano shows how to determine the least
upper bound through successive approximation by means of a (possibly
infinite) convergent sequence of the form:

u, u+
D

2m
, u+

D

2m
+

D

2m+n
, · · · , u+ D

2m
+

D

2m+n
+

D

2m+n+···+r
, · · ·

Where u is not an upper bound of the set but u+D is.8

The main result is then proved as follows. Given that f(a) < 0 and
f is continuous on [a, b], it follows that f(x) < 0 for all x in a one-sided
neighborhood of a, [a, a+ω) for some ω > 0. On the other hand, since
0 < f(b), the set of ω such that f(a + ω) < 0 is bounded above. By
the second theorem stated above, this set has a least upper bound, say
h, and it is easy to show (appealing to continuity, trichotomy, and the
fact that h is the least upper bound) that f(a+ h) = 0.

The Purely Analytic Proof is Bolzano’s greatest single mathematical
work. It is here that anyone interested in his mathematical thought
should begin.

The last of Bolzano’s early publications, The Three Problems of Rec-
tification, Complanation, and Cubature combines two rather different
inquiries. On the one hand, Bolzano is concerned to demonstrate, with
the help of his concept of determination, the correctness of the well-
known formulae for the length of a line, the area of a surface, and the
volume of a solid:

(1) L =
∫ √

dx2 + dy2 + dz2

(2) A =
∫ ∫

dxdy
√

1 + ( dz
dx
)2 + ( dz

dy
)2

8This proof was much admired in Weierstrass’s circle, and on account of the
similarities between Bolzano’s proof method and the technique of repeated bisection
of an interval, Bolzano’s name was attached along with that of Weierstrass to the
theorem that every infinite set of points contained in a closed, bounded interval
has a limit point on the interval (which Weierstrass proved using the technique of
iterated bisection). It was not known at that time that Bolzano had stated and
used the “Bolzano-Weierstrass theorem” in the (unpublished) Theory of Functions
(see pp. 459-460; also p. 582). Bolzano did show the Theory of Functions to some
other mathematicians and he presented some of his discoveries at meetings of the
Bohemian Royal Society, but I am aware of no evidence that would suggest that
Weierstrass did not simply re-discover the Bolzano-Weierstrass theorem.
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(3) V =
∫ ∫ ∫

dxdydz

His second concern is to advance his project of reconstructing geometry
from the ground up, here by formulating adequate definitions of a num-
ber of geometrical concepts, among them “line”, “surface” and “solid”.
(p. 301 ff; p. 322 ff; p. 334 ff). Geometrical objects are explicitly
conceived of as structured point sets (p. 301, note), and his proposed
definitions are clearly topological in character. A line, for example, is
defined as “a spatial object, at every point of which, beginning at a
certain distance and for all smaller distances, there is at least one and
at most a finite set of points as neighbours” (p. 301), a surface as “a
spatial object at each point of which, beginning from a certain distance
and for all smaller distances, there is at least one and at most only a
finite set of separate lines full of points” (p. 322)9.

The second half of Russ’s collection begins with Bolzano’s theory of
infinite quantity concepts. These are number concepts which involve
an infinite number of the elementary operations +,−,×,÷ performed
on natural numbers, e.g.,(

1− 1

2

) (
1− 1

4

) (
1− 1

8

) (
1− 1

16

)
· · · ·

A number concept A is measurable, for Bolzano, if for every positive
integer q, there is an integer p and number concepts P1, P2 (where P1

is either zero or “purely positive” and P2 is purely positive), such that:

A =
p

q
+ P1 =

p + 1

q
− P2

(
p

q
and

p+ 1

q
are called the measuring fractions of A.) A number con-

cept is said to be infinitely small and positive if it is not simply zero

yet for every q, the corresponding p is 0, e.g.,
1

1 + 1 + 1 + 1 + · · · . A

number concept A is infinitely small and negative iff −A is infinitely
small and positive. Infinitely large, positive number concepts are those

for which for all q, only the equations A =
p

q
+P1 can be satisfied, while

A is infinitely large and negative if only the equations A =
p+ 1

q
− P2

can be satisfied. Thus all infinitely large number concepts are unmea-
surable, but the converse doesn’t hold, witness:

1− 2 + 2− 2 + 2− 2 + · · ·
9For more on Bolzano’s work on these and related questions, see [19] and [24],

p. 56 ff.
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Finite as well as infinite numbers concepts can be measurable, and
Bolzano proves among other things that all rational numbers are mea-
surable. In §54 Bolzano suggests that the notion of equality (or equiv-
alence) might be extended in the case of measurable number concepts
from simple identity to identity of measuring fractions (equality “in
the process of measuring”); similar extensions are suggested for the
relations of order. Bolzano sees the desirability of having A±J = A in
this extended sense whenever A is measurable and J infinitely small.
Unfortunately, with his original definitions, this claim is an antitheo-

rem, for if A is rational (say =
3

4
and J =

1

1 + 1 + 1 + 1 + · · · , then
for q = 4, the corresponding p for A is 3 while for A − J it is 2. At
this point, Bolzano suggests changing the definition of equality (in the
extended sense) to the following: A = B iff |A−B| behaves like zero in
the process of measuring. He remarks: “this section is to be rewritten”
(p. 391), but to judge from the manuscripts that survive, he never
found the time for the required revisions.

If the foundations of Bolzano’s theory were somewhat unsettled, it is
clear from the later parts that he had an exceptionally clear idea of just
what a theory of real numbers should accomplish. Among other things
he states and proves that the measurable numbers are closed under the
elementary operations, that they have the Archimedean property (§74,
p. 399), that they form a dense set (§79, p. 400), that every sequence
of measurable numbers with Cauchy’s property converges (§107, p. 412
ff), that every set of measurable numbers which is bounded above has a
least upper bound (§109, p. 416 ff), and that every measurable number
is representable as a Cantorian series (§48, p. 385 ff.):

α

a
+
β

ab
+

γ

abc
+

δ

abcd
+ · · ·

where a ≥ 1, b, c, d, . . . > 1 are natural numbers, α is an integer and
β, γ, δ, . . . are natural numbers with β < b, γ < c, . . .

On the whole, Bolzano’s theory compares unfavorably with the later,
more polished theories of H. Méray, G. Cantor, R. Dedekind, et al.
Nonetheless, his recognition that such a theory was called for, and his
mastery of so many important details, make his efforts worth a closer
look.

The next selection is Bolzano’s Theory of Functions, probably the
most polished part of the Theory of Quantities. Among the highlights
of this work are Bolzano’s precise definitions of left-, right- and two-
sided continuity (pp. 448-449), his distinction between pointwise and
uniform continuity (§49, p. 456; cf. p. 575 ff., where Bolzano states
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Heine’s theorem and attempts a proof), his proofs of central theorems
about functions continuous on closed intervals (namely, that such func-
tions are bounded [§§56-57, pp. 459-460], assume extreme values on
the interval [§§58-60, pp. 460-461], and take on all values between any
two values they assume on the interval [§65, pp. 463-464]), and the
construction of the “Bolzano-function”, which is continuous on an in-
terval [a, b], but not monotone on any subinterval of [a, b], and nowhere
differentiable (§111, pp. 487-489; Bolzano only proves [§135, pp. 507-
508] that his function is not differentiable at a set of points which is
dense in [a, b]).

The Theory of Functions is as remarkable for its general approach as
it is for such individual results. It is clear from the start that Bolzano
has rejected the traditional conception of functions as analytical expres-
sions (better, whatever is designated by these expressions) in favour of
the modern notion of an arbitrary, many-one correlation between ob-
jects. This break with the older concept of a function forces a host
of others; generally speaking, functions may not be continuous, may
not have derivatives, still less (as Lagrange had maintained) be repre-
sentable by their Taylor series (except perhaps at certain isolated val-
ues). New definitions are needed, conditions need to be pinned down,
before the usual theorems of the calculus can be properly stated and
proved. Here we see Bolzano at his best, producing a treatise that is, for
all its mistakes, strikingly modern, living proof of the basic soundness
and fruitfulness of his methodology.

By way of illustration, consider Bolzano’s proof that a function con-
tinuous on a closed interval [a, b] is bounded there. (pp. 459-460) Sup-
pose that a function f(x) is unbounded on an interval [a, b]. Then for
n = 1, 2, 3, . . ., there must be x1, x2, x3, . . . ∈ [a, b] such that f(xn) > n.
By the Bolzano-Weierstrass theorem, the set of xn must have a limit
point in [a, b]:

. . . the infinitely many numbers x1, x2, x3, . . ., either all
of them, or a part of them which is so large that its
multitude is itself infinite, can be enclosed in a pair of
limits p and q, which can approach one another as close
as we please, and it follows from § that one of these
limits could be represented by c, the other by c ± ω, if
we denote by c a constant number lying not outside of a
and b, but by ω a number which can decrease indefinitely
(p. 459)10.

10Though Bolzano claims that a proof of this theorem is to be found in the theory
of measurable numbers (marginal note to the Functionenlehre, reproduced in [16],



252 PAUL RUSNOCK

The function f is unbounded in every neighborhood of c, and hence
cannot be continuous there, nor a fortiori on the interval. Hence a
function which is continuous on [a, b] must also be bounded there.

Like the theory of measurable numbers, the Theory of Functions is
quite uneven. There are moments of true brilliance. At times, though,
Bolzano is just downright sloppy, carelessly extending results from the
finite to the infinite case (e.g., §155, p. 527), and overlooking complica-
tions caused by multiple quantification or multiple variables. The man-
uscript also raises some puzzles. As Bob van Rootselaar has pointed out
([16], 2A 10/1, p. 155 note), Bolzano became aware in 1832 of Cauchy’s
example of a function which has derivatives of all orders at a given value
but is not represented there by its Taylor series, yet Bolzano’s manu-
script betrays no awareness of this: in §206, for instance, he states a
proposition for which Cauchy’s function is a counterexample (p. 561).

The final work in the collection is the Paradoxes of the Infinite.
Readers will once again notice the unevenness of Bolzano’s work. On
the one hand, we find a number of very acute observations: the usual
objections to the existence of actual infinites are shown to be un-
founded, useful distinctions are introduced (e.g., in spatial terms, un-
bounded is not at all the same thing as infinite), and Bolzano recognises
as a characteristic, non-contradictory property of infinite sets that they
can be mapped one to one onto proper subsets of themselves. (§20, p.
615 ff) On the other hand, Bolzano seems to have been reluctant to
abandon the principle that the whole is greater than the part, when
this is interpreted to mean that the parts of the whole must always
be more numerous than the parts of its parts. Thus he never took
the first step towards Cantor’s transfinite arithmetic, in that he never
recognised a conception of number according to which the existence of
a bijection between two sets establishes equinumerousness. Even after
establishing that the set of points of any line segment can be mapped
1:1 onto those of any other, he continues to maintain that the multi-
tudes of points in the two cases are not equal, but rather proportional
to the lengths of the segments (p. 626).

Though the shortcomings of Bolzano’s technique are evident on al-
most every page of his mathematical writings, the overwhelming im-
pression is one of solid achievement. In his introduction, Russ sums up
the situation quite well:

2A 10/1, p. 47, but not in Russ’s translation), none has so far been found. Bolzano
does sketch part of a proof in the manuscript “Improvements and Additions to the
Theory of Functions,” (Russ, p. 582).
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Some of Bolzano’s mathematics is very good by any
standards: some is rather amateurish and long-winded,
some is plain eccentric. But in each of the works in-
cluded here, whether it be with notions of proof, con-
cepts of number, function, geometry or infinite collec-
tions, his thinking is fundamental, pioneering, original,
far-reaching, and fruitful. In each case his key contri-
butions were taken up later by others, usually indepen-
dently and of course improved upon, but they all entered
into the mainstream of mathematics. I know of no other
mathematician, working in isolation, with such a consis-
tent record of independent, far-sighted, and eventually
successful initiatives (p. xiii).

For the most part, Russ’s translations are accurate, and the mathe-
matics has been faithfully transcribed.11 Equations have been carefully
typeset so that they resemble the originals as closely as possible, and
well-executed diagrams have been inserted into the text at appropri-
ate places (in the originals, diagrams were generally included in the
end-matter). The translation of the Paradoxes, however, could have
benefitted from further revision. There are more translation problems
here than with the other works, among them some which are serious
enough that Bolzano’s point is lost entirely. This is unfortunate, espe-
cially given that the previous English translation by D. A. Steele [15]
sometimes has a more just or fluid rendering.12

11Russ writes (p. xix) that he will maintain a web-site with a list of errata
(http://www.dcs.warwick.ac.uk/bolzano/).

12Here is one example: in §12, Bolzano writes:
Ebensowenig kennt der Mathematiker an der Kreislinie und an so
vielen anderen in sich zurückkehrenden Linien und Flächen eine
Grenze, und betrachtet sie doch nur als endliche Dinge (es müßte
denn sein, daß er auf die unendliche Menge der in ihnen enthalte-
nen Punkte zu sprechen käme, in welchem Betrachte er aber auch
an jeder begrenzten Linie etwas Unendliches anerkennen muß).

Russ has (p. 605):
Just as little does the mathematician regard the circumference
of a circle and many other lines and surfaces which turn back
on themselves as a limit and consider them only as finite things
(It would have to be that he may come to speak of the infinite
multitude of points contained in them, and in that respect he must
also recognise in every bounded line something infinite.)

While Steele’s translation runs (p. 83):
Or for another example: mathematicians know of no bounding
point in the circular periphery, of no bounding point or line in the
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The translations are accompanied by a general introduction, includ-
ing some reflections on the process of translation in general, and the
challenges of translating Bolzano in particular. Each subdivision of the
work is also furnished with an introduction, setting out the historical
context of Bolzano’s writings, sketching their contents, and providing
helpful commentary along with references to the secondary literature.
There are a few rough spots, but on the whole, Russ’s collection is an
admirable achievement, one which will do much to advance the study
of Bolzano in the English-speaking world.
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