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SUMMARY. It is generally held that Peano and his school played an important role at
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motivation behind their work, thus demonstrating the validity of their reputation.
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1. INTRODUCTION AND BACKGROUND. Peano and his school provide an important
landmark for historians of logic and the foundations of mathematics. At the same time
they pose a problem that is not easy to solve. It is generally acknowledged that Peano’s
school played a very important role at the end of the last century in developing a
modern approach to logic and the foundations of mathematics. Yet it is by no means
easy to ascertain how much their work really influenced further research in these areas.
Nor is it easy to explain the rapid decline of Peano’s school, a decline that began
already in the first years of this century, despite very promising beginnings.

This paper will survey the results actually obtained by Peano’s school and will
examine the motivation behind their work. In a future paper we will explore the relation
of Peano’s school to later developments in logic and foundations of mathematics, and

* Research partially supported by Italian CNR (National Research Council). The present work is
based in part on the work of M. Borga, P. Freguglia, D. Palladino [1983a; 1983b,; 1985].
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we will explain why they did not join new and more modern fields of foundational
research.

Before proceeding, we will briefly examine the state of logical research and the
foundations of mathematics prior to the time of Peano, particularly those phases of the
history that are significant for our analysis.

It is well known that the logicians of the so-called algebraic tradition (Boole, De
Morgan, Schroder, et al.) thought that mathematical logic was essentially an algebra of
logic. For them, logic was characterized by the application of algebraic techniques to
traditional logic; there was an almost total lack of applications of logic to mathematics.
(This is due in part to the fact that the algebraic logicians’ aims were different from
those of later logicians. Boole’s primary purpose, for example, was to present a
mathematical system that captured the “laws of thought” generally accepted by
logicians. But it is also due to the fact that the Boolean calculus is inadequate for
symbolizing mathematical reasoning.) Peano and Frege, on the other hand, deemed it
useful to apply logic to the study of mathematical reasoning and the foundations of
mathematics. While Peano meant to reach the highest possible level of rigour, Frege
had in mind the more ambitious goal of securing a firm foundation for mathematics by
defining its fundamental concepts in logical terms and by proving its primitive
propositions as theorems of logic.

This happened at the turn of the century, but we are still far from the goals presently
attributed to mathematical logic. Following the substantial failure of the logicist attempt
to reduce mathematics to logic (Frege, Whitehead and Russell) and the gradual
disappearance of that trend of thought which conceived of mathematical logic as the
study and rigorous justification of mathematical arguments, mathematical logic has
today in principle become an “autonomous” mathematical discipline. It is increasingly
detached from the foundations of mathematics conceived in traditional terms while, at
the same time, it interacts with mathematics in quite a different sense, i.e., with
algebraic geometry through model theory or, recently, with information science. (This
does not mean, however, that it has completely lost contact with its origins in the
philosophical framework; cf., e.g., [Agazzi 1986]).

The evolution of mathematical logic along the lines just outlined makes it difficult
to evaluate the contributions of Peano and his students in this field. On the one hand,
we ought not to judge the production of the Peano school a posteriori; on the other
hand, we must examine the extent to which their results influenced new research or can
be deemed substantial anticipations of later developments.

In considering the historical development of the foundations of mathematics, we
are bound to adopt a similar approach. The contributions of Peano’s school to
arithmetic and geometry, together with their remarks on the axiomatic method and their
many investigations aimed at reducing to the lowest possible number the primitive
concepts and axioms of mathematical theories undoubtedly are a part of “foundational”
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research. But here we are a long ways from the criticisms of the foundations of
mathematics as intended by logicism; and we are still farther from various reactions to
the crisis in foundations, with respect to which, as we shall see later, Peano’s school
always adopted a rather detached attitude.

2. Logic. According to the current interpretation, the first significant application of logic
to mathematics is due to Peano and was obtained by means of the logical symbolism
for which he is rightly famous, a symbolism which allows us to give mathematical
propositions and proofs a symbolic form.

In the {/888] booklet Calcolo geometrico secondo I’Ausdehnungslehre di H.
Grassmann, preceduto dalla operazioni delle logica deduttiva, in which Peano began
his logical studies, we find an innovation that is important for the application of logic to
mathematics, namely the distinction between logical and mathematical symbols. In
order to avoid any ambiguity that might be caused by the use of the same symbols both
in the logical context and in mathematical formulas, Schroder’s logical symbols are
replaced by new ones. Thus, Peano writes [/888; see 1957-59, vol. 11, 18]** :

I deemed it useful to replace the signs N , U, —A, o, * with the logical
symbols *, +, Ay, 0, 1, used by Schroder, so as to prevent any possible
confusion between logical and mathematical symbols (a danger which
was noted by Schroder himself).

(The use of punctuation instead of brackets, which will constantly appear beginning in
1889, must be considered an aspect, although marginal, of this requirement. Peano
himself wrote: “To separate the various propositions among them, we could use
brackets as in algebra. We arrive at the same result, with greater simplicity and without
producing equivocals with the brackets in algebraic formulas, using an opportune
punctuation” (Peano [/891b; see 1957-59, 11, 93}).

Furthermore, we find what surely is the most important part of the work, the
distinction between “categorical” and “conditional” (containing variables) propositions,
and in particular, the introduction of the abstraction operator, which allows us to pass
from a conditional proposition to a class. Thus, if a is a conditional proposition
containing the variable x, then “x:0” denotes the class of all those entities for which the
proposition « is true. (This notation will be modified several times in Peano’s later

** The quotations from Peano’s work have been drawn, whenever possible, from the reprint of the
same in Opere Scelte [1957-1959], edited by U. Cassina. Similarly, for Pieri’s contributions, we
refer to [1980].
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work. It becomes “(x€)a” in Arithmetices principia [1889a], “X€EQ” in
“Démonstration de 1’intégrabilité des équations différentielles ordinaires” {1890d], and
afterwards “x3a” (for instance in the third edition of the Formulario)). The abstraction
operator can be considered a device that allows us to define logical operators on
conditional propositions as well as on classes. The procedure that Peano follows is
essentially the following: writing “x:a< x:f ” means, according to Peano’s notation,
that the class of entities for which o is true is included in the class of entities for which
B is true. If we agree to write “a < B ” instead of “x:a < x:f”, we can interpret this
new expression to mean “the proposition o has as its consequence the proposition f§”,
or “if o is true, then f is also true” (notice that the symbol “< ” will be replaced by
“D7” in Peano’s later writings).

In Arithmetices principia, nova methodo exposita [1889a], where we find the first
version of “Peano’s axioms” for arithmetic, the relation that today we call the relation
of membership is introduced. Peano denotes it with “€” and explicitly stresses its
difference from class inclusion. (In this paper, however, Peano still confuses the two
relations in the case of a class containing just one element. This is corrected the
following year, in “Démonstration de I'intégrabilité des équations différentielles
ordinaires” [/890d].) As Russell [/903, 31] rightly observes, “It is one of the greatest
of Peano’s merits to have clearly distinguished the relation of the individual to its class
from the relation of inclusion between classes.” Furthermore, we find a notation for
universal quantification: “a D,y b” means “for every x, y, from a one can deduce
[deducitur] b™.

Peano identifies as the main aspects of his symbolism the abstraction operator and
the membership relation, which give him the possibility of writing the propositions of
arithmetic in symbolic form. Thus, for instance, in the review of Frege’s Grundgesetze
der Arithmetik published in Rivista di Matematica in [1895b; see 1957-59, 11, 190], he
writes:

A few years ago, considering the class determined by a condition {...], I
showed that the entire logical calculus of classes was transformed into a
calculus of propositions (Calcolo geometrico, 1888); [...] And then, it
was sufficient to introduce a convention for denoting individual
propositions (€ sign) in order to develop completely a theory in
symbolic form, i.e. in Arithmetices principia (1889).

In 1894, in Notations de logique mathématique (Introduction au Formulaire de

mathématiques), the distinction between real and apparent variables is introduced,
although these terms will be used only beginning in 1897, in the second edition of the
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Formulario. Peano’s distinction corresponds to the one we now make between free
and bound variables.

Starting in 1897, we can find a systematic use of the symbol “3” to denote
existential quantification. This symbol was used for the first time in “Studii di logica
matematica,” and Peano attributes its introduction to his assistants (see [1957-59, 11,
215D:

The proposition a ~=A, where q is a class, means therefore “the a’s
exist.” Since this relation occurs quite frequently, some collaborators
deem it useful to denote it with only one notation instead of the group
~=A. Those who hold this opinion can write for instance: g€ K .2 : 3 a
=. a ~=A Def.

(This is read as follows: if a is a class, then the a’s exist if and only if a is not empty.)

While the creation of an adequate logical apparatus certainly represents one of the
merits still attributed to Peano (van Heijenoort [/967, 84] writes, for instance: “The
ease with which we read Peano’s booklet today shows how much of his notation has
found its way, either directly or in a somewhat modified form, into contemporary
logic™), an enlargement of perspective is essential in order to understand the deepest
motivations out of which the research carried out by Peano’s school originated. In
particular, it is useful, in our opinion, to consider the scientific production of the Peano
school in a broader sense, without limiting ourselves exclusively to their contributions
to logic.

Actually, Peano’s first works were concerned with mathematical analysis and
might, at first sight, appear to be unrelated to the work devoted to logic that followed.
In our opinion, however, these early works give us some keys to reflect upon the entire
Peanesque corpus, provided emphasis is given to their methodological aspects. An
inspection of these early works, in fact, reveals that these non-logical contributions,
although having a strictly technical character (they concern, for instance, differential
equations and the integrability of functions), have in common with the succeeding
work in logic the pursuit of precision in definitions and proofs, the attempt to eliminate
unnecessary hypotheses, and the use of counterexamples in order to show the
incorrectness of certain assertions. (In the work “Sull’integrabilita delle funzioni” of
1883 the definition of definite integral is introduced in terms of the least upper bound
and of the greatest lower bound of the set of circumscribed and inscribed rectangular
areas, and the definition of the measure (today called the Peano-Jordan measure) of a
plane surface is sketched. The latter will be developed in the book Applicazioni
geometriche del calcolo infinitesimale of 1887, and extended to the surfaces of
Euclidean space in the paper “Sulla definizione dell’area d’una superficie” of 1890. The
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definition of the famous “Peano curve,” a continuous curve which completely fills an
area, passing through each point in a square (found in the paper “Sur une courbe qui
remplit toute une aire plane”), dates from the same year. Clarifications and extensions
of many topics in infinitesimal analysis are presented in the book Calcolo differenziale
e principii di calcolo integrale, pubblicato con aggiunte dal Dr. Giuseppe Peano of
1884, which, although the title page lists A. Genocchi (one of Peano’s teachers) as the
author, was actually written entirely by Peano. Other important results concern the
independence of functions (“Sur les wronskiens” of 1889 and “Sul determinante
wronskiano” of 1897), the theorem, called the Peano-Schwarz theorem, on second-
order mixed partial derivatives (“Sur I’intervertion des dérivations partielles” of 1890),
and on a form of the remainder in Taylor’s formula (*Une nouvelle forme du reste
dans la formule de Taylor” of 1889). In the works “Sull’integrabilita delle equazioni
differenziali del primo ordine” of 1886 and “Integrazione per serie delle equazioni
differenziali lineari” of 1887, Peano proves the existence and the (local) unicity of the
solution of a differential equation of the form y” = f(x,y) under the hypothesis only of
the continuity of £, and finds the (local) solution of a system of differential equations as
the sum of a series of iterated integrals. Peano’s results on differential equations and
systems are extended and systematically expounded in the work “Démonstration de
Pintégrabilité des équations différentielles ordinaires” of 1890.) Even though the
tendency toward rigour that characterized most research in analysis during the last
century was already under way, we believe that, in Peano’s case, we can speak of it
being a matter of permeating attitude and mentality. The debates — for instance the
famous one with C. Segre — on the importance of rigour and on ways to pursue it, in
our view confirm the fact that Peano was more interested in specifying, in a rigorous
way, concepts and proofs concerning widely developed theories than in venturing into
unexplored areas of research. (Segre, in a paper in Peano’s Rivista di Matematica,
wrote that sometimes, in the initial exploration of a new field of mathematics, it is
necessary to sacrifice rigour and resort to incomplete procedures (see Segre [/89]a,
53}). Peano answered [1891d, 66}: “the lack of rigour in mathematical work cannot, in
our opinion, by any means be defended or excused;” Peano’s conviction was that “a
result cannot be considered as obrained if it is not rigourously proved, even if
exceptions are not known.” Farther on, Peano [1891d, 67] added: “Absolute rigour, if
it is a necessary condition for a work’s being scientific, is not yet a sufficient condition.
Another condition concerns the hypotheses from which one starts. If an author starts
from hypotheses which are in conflict with experience [...}, he can, actually, deduce
some wonderful theory, such that one may exclaim: what an advantage, if the author
had applied his reasoning to practical hypotheses!” Segre [/891b, 55] replied: “In my
opinion, if a theory is wonderful, and therefore reaches the main aim of science, the
honour of the human mind, I cannot ask anything else” and argued that “in most cases
the period of discovery preceded the period of rigour.” Peano objected with harsh
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criticism to some of Segre’s work and wrote [1891d, 158], among other things, that “I
have never seen in any branch of mathematics, from arithmetic to theoretical
mechanics, that a period of discovery precedes the period of rigour. In mathematics, a
theorem is discovered when it is proved. The progress of mathematics always consists
in adding new truths to old ones. Nor do these two periods occur at different times to
individual researchers: there is, instead, the period of research which precedes the
moment of discovery.”) _

Peano’s love for rigour, and the sensibility he always showed for mathematics
education, were the most likely motivations underlying the project of the Formulario —
which undoubtedly is the most original, but also the most questionable work carried
out by Peano and his school. (Peano’s sensitivity for mathematics education was
witnessed, among other things, by the fact that Rivista di Matematica was founded by
Peano with openly declared didactic intent. On the second title page of the first number,
for instance, we read: “Rivista di Matematica has an essentially didactic aim, since it is
especially interested in improving teaching methods. It will also include papers and
discussions concerning the fundamental principles of science and the history of
mathematics; the review of treatises and of all publications concerning teaching will
play an important role.”)

The Formulario had five later editions. These were not mere reprints, but contain
improvements and even remarkable extensions. The first edition was published in 1895
with the title Formulaire de mathématiques and included, in addition to Norations de
logique mathématique (Introduction au Formulaire de mathématiques) of 1894, many
papers that were published in Rivista di Matematica since 1892. The second edition
was published in three parts in the years 1897, 1898, and 1899 respectively; to this one
must add the “Introduction au tome II du Formulaire de mathématiques,” published in
Rivista di Matematica in 1896. The third edition, again with the same title, was
published in 1901. In the fourth edition, of 1903, the title was changed to Formulaire
mathématique and the French was retained for the explanations and notes. In the last
edition, of 1908 (reprinted in facsimile, with introduction and notes by U. Cassina,
published by Edizioni Cremonese in Rome in 1960), the title was changed to
Formulario mathematico, and the work was written in Latin “sine flexione” (a
language created by Peano in 1903 and intended to serve as the universal scientific
language, playing the role assumed by Latin in previous centuries).

The aim of the Formulario, whose structure makes it look like a sort of
mathematical encyclopedia (in some respects comparable to Bourbaki’s project), and
whose elaboration took the best energies of Peano and his collaborators for about
fifteen years, was to present all of the different mathematical theories with both the
highest degree of synthesis and precision and with didactic purposes. As Peano
explained [1896a; see 1957-59, 11, 199]:
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Or il est possible de publier un Formulaire de mathématiques
qui contienne toutes les propositions connues dans les sciences
mathématiques, toutes les démonstrations, toutes les méthodes. Elles,
écrites en symboles, occupent peu de place, beaucoup moins qu’on ne
pourrait croire. 11 y a une infinité de livres et Mémoires inutiles, erronés,
ou dans lesquels on répéte ce que d’autres auteurs ont déja dit. Ce qui
reste a écrire dans le Formulaire n’est qu’une partie infiniment petite de |
ce qu’on a publié jusqu’a présent. [...] Chaque professeur pourra
adopter pour texte ce Formulaire, car il doit contenir toutes les
propositions et toutes les méthodes.

The birth date of the Formulario project must be fixed in 1891, when, in a passage
from the article “Sul concetto di numero” [1891¢; reprinted: 1957-59, 111, 109], Peano
expressed himself in the following terms:

It would be very useful to assemble all known propositions
concerning certain points of mathematics and to publish those
collections. Limiting ourselves to arithmetical propositions, I do not
think it would be difficult to express them in logical symbols; and then
they would gain conciseness as well as precision. And it is likely that
the propositions regarding certain arguments of mathematics can be
contained within a number of pages no larger than the one required by
their bibliography. [...] Rivista di Matematica will manage, next year, to
publish some collections of this kind. We therefore invite readers to
write some of them and kindly send them to us.

It seems reasonable to think, on the other hand, that some contributions to
arithmetic and geometry, for instance Peano’s famous axioms for arithmetic, or the
axiomatization of (a part of) elementary geometry, also given in 1889, can be
considered to be anticipations of the Formulario project. And already in these
anticipatory works we find the formulation for which Peano is so rightly famous — the
use of mathematical logic. Both Arithmetices principia and I principii di geometria
logicamente esposti are preceded by an introductory logical part, an essential use of
which is made in the rest of these two works. For instance, Peano writes in I principii
di geometria logicamente esposti [1889c; reprinted: 1957-59, 11, 57}:

We thus have the means to express the propositions of geometry in a
rigorous way, which cannot be obtained in the common language, and
the solution of the proposed problems is therefore much easier.
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Logic is essentially understood as an artificial language that is able to express with
the highest possible clarity mathematical concepts and proofs, which up to then had
been expressed principally by means of ordinary language. As Peano himself
underlines on several occasions, the principles of logic are nothing other than the
symbolic transcriptions of the correct modes of reasoning in mathematics. Thus, for
example, he wrote [1900; reprinted in 1957-59, 11, 320]: “Le lois de logique, contenues
dans la suite, on été en général trouvées en énongant, sous form de régles, les
déductions qu’on rencontre dans les démonstrations mathématiques.”

This is the main role logic plays in Peano’s school. The creation of the artificial
language mentioned above is, as we said before, the kind of contribution to which
many rightly refer when they stress the most original aspects of Peano’s production in
logic.

Mathematical logic, then, is fundamentally intended as an instrument for realizing
the Formulario project, and not, as we are used to considering it nowadays, as an
autonomous mathematical discipline.

There was, to be sure, a stage in the development of Peanesque logic, starting with
the “Formole di logica matematica” of 1891 and ending with the “Formules de logique
mathématique” of 1900, in which logic was also studied as a mathematical discipline,
capable as such of being given an adequate axiomatic treatment. Peano himself, in fact,
wrote, as far back as his I principii di geometria logicamente esposti of 1889 [reprinted
in 1957-59, 11, 81}, that:

The list of logical identities we are using had already been made in the
booklet of mine mentioned above [the booklet in question is
Arithmetices principia of 1889]; many of them had been brought
together by Boole. Their number is large; it would be an interesting
study, which we will not undertake here, to distinguish the fundamental
ones — those which must be admitted without any doubt — from the
remaining identities which are included along with the fundamental
ones. This research would produce a study concerning logic that would
be similar to the ones made in the present case for geometry and made
in the previous booklet for arithmetic.

In previous works, logical laws were simply listed, but in this new treatment a
distinction is made between logical axioms and theorems, in the sense that some logical
laws are derived from other laws. We also find a distinction being made between
primitive and defined logical symbols. Regarding the concept of proof, an explicit
characterization is given that remains at a rather intuitive level. Peano, for example,
writes in the “Formole di logica matematica™ [189c; reprinted in 1957-59, 11, 103-
104] that: “Proving a proposition means getting it by suitably combining the
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propositions which have already been admitted.” Moreover, Peano’s proof procedures
allow us to only partially determine the precise nature of the notion of proof under
which he operates. For example, starting from the propositions

3.ab2a
4.ab D ba
8.ad2b.bDc:D.a>c

(for which we maintain Peano’s numbering), the proposition ab > b, which for Peano
is P10, is proved in the following way:

b,a
P4~(a,bj P3 .P8:D.PI10

(the second proposition is obtained by replacing a with b and b with a in P3, that is, ba
D b).

Some criticisms of Peano’s procedure have been set forth by J. van Heijenoort,
who, in presenting the English translation of the Arithmetices principia in the well-
known collection From Frege to Gdidel, writes [van Heijenoort 1967, 84], among other
things, that:

There is, however, a grave defect. The formulas are simply listed, not
derived; and they could not be derived, because no rules of inference are
given. [...] What is far more important, he [Peano] does not have any
rule that would play the role of the rule of detachment. The result is that,
for all his meticulousness in the writing of the formulas, he has no logic
that he can use. [...] when ultimately he does detach, it is a move totally
unjustified in his system.

This criticism hits the mark inasmuch as it points out the missing distinction
between axioms and rules of inference that is the basis of modern logical calculi and
allows one to develop proofs in a purely formal way. It can be argued, however, that
the logical laws also play the role of rules. (We read, for instance, in Notations de
logique mathématique that “Les régles du raisonnement sont les formules mémes de
logique” [1957-59, 11, 174]. See also the quotation, already given, from [Peano 1900,
reprinted in 1957-59, 11, 320].) The step that, according to van Heijenoort, is “totally
unjustified” would then appear to be justified in case Peano explicitly referred to the
formulaa.a D b:> . b. This formula, however, does not appear in the list of logical
laws proposed in Arithmetices principia (most likely because it does not readily admit
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of translation within class theory), although it will systematically appear in all of the
later works by Peano, beginning in 1891 with his “Formole di logica matematica”.
Nevertheless, it does not play the role that today we assign to the rule of detachment (it
is not, for instance, used explicitly in the proof quoted above).

While this interpretation, in our opinion, weakens van Heijenoort’s criticism, we
should not forget that the failure to distinguish between logical laws and inference rules
is an aspect of the failure to distinguish between theory and metatheory. Symbolic
propositions are not understood, as we say today, as strings of symbols, but rather as
translations of the corresponding propositions of the natural language; and we always
find in them a semantic interpretation in addition to the syntactic representation of the
logical form. In other words, syntactic and semantic aspects are simultaneously
present, so that we do not find the distinction that will characterize the subsequent
development of logical calculi. (Frege [cf. /897] emphasizes that while the calculus of
Boole is a calculus ratiocinator, but not a lingua characteristica, and the mathematical
logic of Peano is mainly a lingua characteristica and only secondarily a calculus
ratiocinator, his own ideography is both things with equal strength. Frege is right, and
his contributions are actually substantial anticipations of modern logical calculi,
although, as we know, his work had no perceptible influence, whereas Peano’s
contributions gained recognition from the outset, mainly from Russell. For instance,

Blanché [1970, 323] writes: “Dans les derniéres années du XIX€ siécle, ce n’est pas
vers Frege que se tournent les regards de ceux qui s’intéressent i la philosophie des
mathématiques et a la symbolisation de leur langage; c’est vers Giuseppe Peano (1858-
1932) et vers I’équipe de mathématiciens italiens qui travaille en group avec lui.”)

On the other hand, the language proposed by Peano is perfectly in line with the aim
pursued by Italian mathematicians to express mathematical propositions without the
prolixities and ambiguities found in ordinary language, thereby obtaining a highly
synthetic and rigorous exposition.

In order to stress further the instrumental character attributed to logic, we quote the
following passage included in Peano’s review of Whitehead and Russell’s Principia
Mathematica [ 1913; reprinted in 1957-59, 11, 391]:

In Formulario, mathematical logic is only an instrument to express and
deal with propositions of ordinary mathematics; it does not have an
autonomous aim. Mathematical logic is expressed in 16 pages; one hour
of study is sufficient to know what is necessary for applying this new
science to mathematics.

Strangely enough, this happened just when, abroad, the studies which led to the
maturation of logic as a really autonomous discipline, and, above all, to metalogical
studies, began to flourish.
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This was the prevailing attitude within the school too. Most of the logical work
carried out by Peano’s collaborators (Vailati, Padoa, Pieri, Burali-Forti) can in fact be
considered to be either the incorporation of new material into the Formulario or
expositions that have a didactic or informative character (sometimes they simply aim at
“praising” Peano’s merits). We can recall, for instance, Vailati’s contribution to the
section on mathematical logic — and in particular to the historical notes — of the
Formulario’s first edition. Peano himself, in his Notations de logique mathématique,
quotes Vailati’s work “Le prorieta fondamentali delle operazioni della logica deduttiva”
of 1891, where an interesting study of relations can be found (among other things, this
article introduced the term “reflexivity” for the first time in its usual contemporary
meaning). The second edition of the Formulario adopted the procedure of
accompanying formulas, including logical formulas, with the names of the people who
first enunciated them, and several formulas are attributed to Burali-Forti (e.g. from his
“Sul quelques propriétés des ensembles d’ensembles et leurs application a la limite
d’une ensemble variable” of 1896), while Padoa, Pieri, and Vailati are also mentioned.
In the case of the logic section of the third edition of the Formulario, Peano points out
that some changes were due to “important remarks” by Padoa (from Padoa’s “Note di
logica matematica” of 1899).

Similarly, the first edition of Burali-Forti’s volume Logica matematica of 1894
gives a very detailed account of Peano’s logic. There are some points in this work —
concerning, for instance the concept of proof — in which explanations are given that
cannot be found in Peano’s work. The second edition of 1919 is far more complete,
containing in fact S00 pages as compared with the 150 pages of the first edition. It is
nevertheless disappointing to note that, despite the natural enrichment of the subject, we
still find the same approach so far as the role and aims of mathematical logic are
concerned.

Peano and his school continued to maintain their approach as time went on. In
1930, for instance, on the eve of the publication of Gddel’s theorem, Padoa again
proposed some themes and problems that faithfully reflect the ones found in a work he
wrote in 1912; this earlier work, in turn, arose from previous contributions of his and
Peano’s. Padoa [1930, 79] writes, for instance:

May the reading of these pages urge some young student to devote
himself to logic and give it new contributions, especially concerning the
choice of a suitable system of postulates, in order to overcome the
paradoxical phase of this science which, while supplying other sciences
with the instrument for their deductive reconstruction, has not yet been
able to reconstruct itself and thus to satisfy the methodological
requirements which it has imposed upon other disciplines.
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Nevertheless, Bertrand Russell’s well-known remarks about Peano’s stimulus
upon his own development leave no doubt about the actual value of Peano’s research
and its cultural impact in this seminal period of history. (See, e.g., [Russell 1967, 217-
218], where Russell writes: “In July 1900 [in fact it was in August] there was an
International Congress of Philosophy in Paris [...]. The Congress was a turning point in
my intellectual life, because there I met Peano. I already knew him by name and had
seen some of his work, but had not taken the trouble to master his notation. In
discussion at the Congress I observed that he was always more precise than anyone
else, and that he invariably got the better in any argument upon which he embarked. As
the day went by, I decided that this must be owing to his mathematical logic. I therefore
got him to give me all his works, and as soon as the Congress was over I retired to
Fernhurst to study quietly every word written by him and his disciples. It became clear
to me that his notation afforded an instrument of logical analysis such as I had been
seeking for years, and that by studying him I was acquiring a new and powerful
technique for the work that I had long wanted to do.”) Whatever their shortcomings
over against the later development of logic, Peano’s school exerted a significant
influence on logic at the end of the nineteenth century.

3. Foundations of Mathematics. The foundational research in which logic is applied
to mathematics and the contributions that can be considered to be anticipations of more
recent metatheoretical investigations deserve separate treatment.

3.1. Foundations of geometry and the new axiomatics. The contributions of
Peano’s school to the axiomatization of geometry are very important, and the writings
in this field, especially those of Peano and Pieri, are significant milestones for those
who study the historical development of the foundations of geometry.

The writings of Peano that explicitly concern the foundations of geometry are /
principii di geometria logicamente esposti of 1889 and “Sui fondamenti della
geometria” of 1894, both of which are chronologically located between Pasch’s
Vorlesungen iiber neuere Geometrie of 1882 and Hilbert’s Grundlagen der Geometrie
of 1899, In the first of these works, Peano’s intention is to use deduction to obtain the
main theorems of positional geometry, namely the ones concerning the relations of
membership and order, starting from the smallest number of primitive geometrical
entities and axioms. Peano takes point and segment as primitive concepts, even if, in
fact, the latter is the ternary relation ¢ € ab, which means “c is an inner point of the
segment ab” (or “c is between a and »”). Peano is able to use this relation to define the
concepts of straight line and plane and to develop a positional geometry which is
improved significantly in comparison with Pasch’s.
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In the second of the writings mentioned, Peano’s treatment also includes
contributions to metric geometry based upon the notion of congruence, which is
defined in terms of the concept of motion (which in turn is characterized as a special
affinity satisfying appropriate axioms).

Some of Peano’s other contributions to geometry must be mentioned even though
they are only indirectly connected with the aims of the present work, because, in our
opinion, they are important for an exhaustive evaluation of the global results achieved
in this field. In the Calcolo geometrico of 1888 (which was inspired both by
Grassmann’s work and the work of Mobius and Schlegel), Peano considers vectors,
on which he bases his geometrical calculus (vector algebra). In this work, we find,
among other things, the first axiomatic definition of the (abstract) structure of vector
space (including a vector space with an infinite basis). These topics were then
developed in the booklet Gli elementi di calcolo geometrico of 1891 and the paper
“Saggio di calcolo geometrico” of 1896.

For some aspects of Peano’s work along these lines, the next essay, “Analisi della
teoria dei vettori” of 1898 is more interesting. In this paper, there is a conceptual
reversal: whereas in the previous works vector theory was developed within the
framework of elementary geometry, in this new work vector theory is presented
axiomatically and is used to derive elementary geometry. Peano takes as primitives the
concepts of point and the quaternary relation of equidifference among four points a, b,
¢, d, denoted by a - b = ¢ — d (which can be interpreted in different ways; e.g. the
segments ab and cd have the same length, direction and are parallel, or the figure abcd
is a parallelogram). In order to introduce additional metric considerations, he also takes
the inner product to be a primitive concept. Thus Peano has anticipated the modern
way of founding elementary geometry on linear algebra, and it is essentially different
from the traditional way of founding elementary geometry.

Pieri’s attention in the field of geometry was directed to the axiomatization of
projective geometry. In the work “Sui principii che reggono la geometria di posizione”
of 1895, the concepts of projective point, projective straight line, and projective
segment are taken as primitive, and the theory is developed up to the proof of Staudt’s
theorem. In a subsequent essay, “Sugli enti primitivi della geometria projettiva astratta”
of 1897, the primitive concepts are reduced to two, projective point and straight line
Joining two projective points (the segment can, in fact, be defined by means of the
notion of a harmonic group). Later, in the paper “Nuovo modo di svolgere
deduttivamente la geometria projettiva” of 1898, Pieri introduces a new axiomatization
of projective geometry in accordance with the suggestion of the Klein’s Erlanger
program, taking point and the homographic transformation as the primitive concepts.
In the paper “I principii della geometria di posizione composti in sistema logico
deduttivo”, also of 1898, a new exposition of projective geometry is presented that is
still based upon the concepts of point and straight line joining two points. It is with
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regard to this work that Russell wrote [1903, 382n.}: “This is, in my opinion, the best
work on the present subject.” The work “Sui principii che reggono la geometria delle
rette” of 1901 presents a new treatment of projective geometry, based upon the
concepts of ray and incidence berween rays, in which point is not taken as primitive.

While working on the axiomatics of projective geometry, Pieri also devoted
himself to a rigorous treatment of Euclidean geometry, improving on Peano’s
exposition. In the important essay “Della geometria elementare come sistema ipotetico
deduttivo” of 1899, elementary geometry is developed assuming only the two
primitive notions of point and motion. This work anticipates one of the most
remarkable contributions to the foundations of geometry by Peano’s school. The
contribution is the foundation of all of elementary geometry on the two primitive
notions of peint and the ternary relation “C belongs to the sphere with center A and
passing through B”. The contribution will be made by Pieri himself several years later
in his work “La geometria elementare istituita sulle nozioni di ‘punto’ e ‘sfera’” of
1908, and it is the first actual example of an exposition of elementary geometry
founded on the properties of the group of isometries.

The work of Padoa and Vailati must also be included in any survey of the
contributions of Peano’s school to geometry. In Padoa’s paper “Un nouveau systéme
de définitions pour la géometrie euclidienne” of 1900, elementary geometry is founded
on the primitive notions of point and overlapping of points. In the essay “Sui principii
fondamentali della geometria della retta” of 1892, Vailati considers the points of a
given straight line with the binary relation bSa (“the point b follows the point a”), by
means of which he defines Peano’s ternary relation (c€ ab) and, assuming only three
primitive propositions concerning the relation S, proves all of the properties that are
given by the axioms of Peano’s system. In two works of 1895, “Sulle relazioni di
posizione tra punti d’una linea chiusa” and “Sulle proprieta caratteristiche delle varieta a
una dimensione,” Vailati characterizes the fundamental properties of the quaternary
relation of separation (of points of a closed line), which are even today assumed as
axioms of order for elliptic and projective geometry.

In nearly all of the work of Peano’s school, the main goal (besides presenting the
specific geometrical content) is to find the smallest number of primitive concepts and
axioms required for the different theories. This aim is also shared by their contributions
to arithmetic and is motivated by the need to characterize the “fundamental ideas” and
“principles” of every science within the framework of a program that will be realized in
the Formulario. On many occasions, Peano and his collaborators will explicitly state
that they carried out the Leibnizian project of developing the characteristica universalis,
even if their success in fact seems questionable.

In the works considered, we find a conception of the axiomatic method that
displays many interesting and innovative features deserving of a more detailed analysis.
In particular, we owe to Pieri the clearest formulation of many of the characteristics of
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the so-called “modern” conception of the axiomatic method, according to which
mathematical theories are understood, in the terminology we owe to Pieri, as
hypothetico-deductive systems. (For instance, in [Pieri /898a; see 1980, 106], we read:
“The most peculiar characteristic of primitive entities of any hypothetico-deductive
system is that they can be given arbitrary interpretations within certain restrictions that
are imposed by the primitive propositions (axioms or postulates). In other words, the
ideal content of propositions and of the symbols that denote some primitive subject is
determined only by the primitive propositions concerning it, and the reader can assign
an ad libitum meaning to those words and to those symbols, provided that this is
consistent with the general properties demanded for this entity by the primitive
propositions.” Furthermore, Peano had already anticipated the conceptual turning point
usually ascribed to Hilbert when he explicitly stated that the primitive entities of
geometry are totally undefined and that it is possible to assign arbitrary meanings to
them provided those meanings satisfy the axioms. Peano writes in [/88%c; reprinted in
1957-59,11,61, 77}

The sign 1 is read point. {...] If a and b are points, then by ab we intend
the class of points inside the segment ab. Therefore, the formula c€ab
means “c is an inner point of the segment ab”. [...] We thus have a
category of entities called points. These entities are not defined.
Moreover, given three points, we consider a relation among them,
represented by c€ ab, and this relation is likewise undefined. The reader
may understand by the sign 1 any category of entities whatever, and by
c€ab any relation among three entities of that category. All of the
definitions (of §2) will always have meaning, and all of the propositions
of §3 will hold. Depending upon the meaning given to the undefined
signs 1 and c€ ab, the axioms can be satisfied or not. If a certain group
of axioms is verified, then all of the propositions deduced from them
will be true, since these propositions are transformations of those
axioms and of the definitions.

Peano is in many respects, however, still tied to the intuitive content of
mathematical theories, and thinks that the axioms must reflect the simplest
observations of the physical world. Thus, for example, in the “Sui fondamenti della
geometria” [1894; reprinted in 1957-59, 11, 119, 141}, he
writes:

[...} it will be necessary to determine the properties of the entity p and of
the relation c€ab by means of axioms or postulates. The most
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elementary observation shows us a long list of properties of these

entities. We must only collect these common notions, order them, and

assume as postulates only those that cannot be deduced from more

simple ones. {...] Certainly it is permitted to anyone to put forward

whatever hypotheses he wishes and to develop the logical consequences

contained in those hypotheses. But in order for this work to deserve the

name of Geometry, it is necessary that these hypotheses or postulates
express the result of the more simple and elementary observations of

physical figures.

Pieri, on the other hand, is very explicit in taking a step beyond Pasch and Peano in
the direction of freeing geometry from experience, and it seems more reasonable,
therefore, to compare his approach to Hilbert’s. In an essay of 1896 dealing with
projective geometry, for instance, he proposes to adopt a “purely deductive and abstract
approach,” which he specifies as follows [Pieri 1896; see 1980, 84}:

Abstract, as it leaves out any physical interpretation of the premises, and
therefore also their evidence and geometrical intuition, unlike another
trend (which I shall call physical-geometrical) according to which the
primitive entities and the axioms are to be deduced from direct
observation of the external world and identified with the ideas we get by
means of experimental induction from some particular objects and
physical facts (Pasch, Peano, ...).

An idea usually attributed to Hilbert but anticipated by Gergonne is the conception
of axioms as “implicit definitions”. The question of the treatment of axioms as
“implicit definitions” is in fact complex, and in our opinion careful investigation shows
that its usual historical interpretation is misleading (cf. [Borga 1981}). If Gergonne
used the term “implicit definitions” in the context of his theory of definitions, then the
meaning attributed to it is hardly adaptable to the case of the axioms of a theory. The
correct conception of axioms as implicit definitions must instead be attributed to the
members of Peano’s school. We owe to Pieri in particular a very explicit formulation
of this conception, which he spoke of as “definitions by postulates,” when he wrote
[1900; see 1980, 264n.]:

Si par définition on entende une pure et simple imposition de nom a des
choses déja connues ou acquises a 1a science, les idées premiéres seront
les concepts non définis. Mais on entend encore 1a “définition” en un
sense plus large: c’est ainsi qu’on dira, par exemple, que les concepts
primitifs ne sont pas définies autrement que par les postulats. En effet,
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ces derniéres, attribuent & ces concepts certaines propriétés qui suffisent
4 les caractériser en vue des finis déductives qu’on se propose.

This conception was often applied by Peano’s school before it was popularized as a
result of Hilbert’s work. Moreover, it is worth noting that Hilbert’s attitude, in its turn,
is not easy to interpret. On the one hand, one may say that his Grundlagen der
Geometrie was in fact inspired by this conception. On the other hand, one may
maintain that Hilbert’s attribution to the axioms of a definitional character was, at least
in the beginning, unclear to the point of raising a number of objections by Frege in a
short but intensive correspondence.

3.2. Foundations of arithmetic. Peano’s first contribution to the axiomatic treatment
of arithmetic, as we have aiready mentioned, is found in the essay Arithmerices
principia, nova methodo exposita of 1889. Here, Peano assumes the four primitive
concepts of number (N), successor (a +1 denotes the successor of a), identity (=), and
the following nine axioms [Peano 1889q; reprinted in 1957-59, 11, 34}:

.1eN.

a€ND.ag=a.

abe N> .a=b.=.b=a.

abce ND .. a=b.b=c:D.a=c.
a=b.be N:D . a€N.

a€N D .a+l1 €N
abeND:a=b.=.a+l=b+1,
a€N.DO. g +1-=1,

ke K- lek x€k:Dx.x+t1€k:D . NDk.

R R I N

(Notice, incidentally, that the symbol “=" is also used in axioms 3 and 7 to denote
logical equivalence between propositions.) With the aid of the logical symbols
introduced in the first part of his work, Peano is able in a few pages to summarize
many arithmetical results, and then to also extend his treatment to the rational and real
numbers.

In the introduction to this work, Peano explicitly points out that he was inspired by
H. Grassmann’s results, and he adds that Dedekind’s book Was sind und was sollen
die Zahlen?, published in 1888, had also been useful to him. Some people have seen in
Peano’s acknowledgement of Dedekind an indication that Dedekind’s work had
directly influenced Peano’s axiomatization of arithmetic. On the contrary, however,
Peano observes in his paper “Sul §2 del Formulario, t. II: Arithmetica” appearing in
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Rivista di Matematica in 1898 that the Arithmetices principia had been completed
independently of Dedekind’s work. Peano read Dedekind’s booklet after his own had
already been sent to press, and he simply drew from Dedekind’s work the “moral
proof” (as he wrote) of the independence of the propositions that he had assumed to be
primitive. Moreover, beyond the strict formal analogy between the conditions that
Dedekind assumes to characterize the natural numbers and Peano’s axioms, there is a
substantial difference between the two approaches. Thus, while Peano takes the concept
of number as primitive and hence irreducible to simpler notions, Dedekind’s aim was
to start from more general “set-theoretical” notions.

Peano makes his ideas about the value of his approach to foundational studies more
explicit in the paper “Sul concetto di numero” of 1891. In this paper, only five
primitive propositions are assumed, since identity is no longer taken to be a primitive
concept of arithmetic but instead is now inciuded among the logical concepts. When we
refer to Peano’s axioms for arithmetic, we usually mean the formulation of the axioms
which is presented in this paper. In non-symbolic form, the axioms are [Peano, 189/¢;
reprinted in /1957-59, 111, 185.}:

1. “One is a number”.

2. “The symbol + after a number produces a number”.

3. “If a and b are numbers, and if their successors are equal,
they are equal well”.

4. “One does not follow any number".

5. “If s is a class including one and if the class formed by the
successors of s is included in s, then every number is included in s”.

In the fifth edition of the Formulario [Peano 1908, 27], finally, there are six axioms of
arithmetic, with the primitive symbol “0” replacing “1”:

Ng € Cls.

0eNy.

a€ Ng.©.a+ € Ny.
s€Cls.0€s:a€s5>.a+ €5:.2.Ng.Ds.
abe Ng.a+ =b+.2.a=>b .

a€ Ng.2.a+-=0.

kWD - o

The idea for introducing axiom 0 is due to Padoa, who in his “Note di logica
matematica” of 1899 noticed that the proposition “Ng € Cls,” although used in the
proofs, is not provable from the other axioms. Later, in the paper “Théorie des
nombres entiers absolus” of 1902, Padoa was able to reduce the number of arithmetical
axioms to five by assuming that the proposition “x€ a . 2 . @ € Cls ” is a primitive
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proposition belonging to logic. With this new logical proposition and from arithmetical
axiom 1, one immediately obtains axiom 0. In this same work, moreover, Padoa
presents a different axiomatization of arithmetic, based on two primitive concepts,
namely number and successor, and four axioms. In place of Peano’s axioms 1 and 5,
he assumes that “there exists at least one number which is not the successor of any
number.” After proving the uniqueness of the number that is not the successor of any
number, he can define it to be zero. :

Pieri in turn gives another axiomatization of arithmetic in his paper “Sopra gli
assiomi aritmetici” of 1908. Pieri’s axiomatization is based on two primitive concepts
and four axioms, and it differs from Padoa’s in that it replaces the principle of
induction used by Padoa with the equivalent principle of the least integer (“in an non-
illusory class of numbers there exists at least one number which is not the successor of
any number of the class”). Members of Peano’s school thought that the “arithmetical”
character of the principle of the least integer confirms the “mathematical” nature of
induction, although contemporary opponents of mathematical logic, among them H.
Poincaré, considered it to be of purely logical character.

3.3. Metatheoretical problems. The Peano school’s reduction of the number of
primitive concepts and axioms of mathematical theories to the smallest possible
number quite naturally led them to consider the problem of independence. Thus, for
example, Peano gave a proof of the independence of his axioms for arithmetic as early
as 1891 in his paper “Sul concetto di numero”. This is obtained by means of suitably
constructed interpretations that make one axiom of the set false and all the others true.

Padoa’s contributions to the question of independence likewise merit attention for
the novelty of his approach. The novelty resides in the fact that Padoa also deals with
the independence of primitive concepts. The results of his analysis, given during the
International Congress of Philosophy in Paris in 1900, include in particular a technique
~ later to be known as “Padoa’s method” — capable of proving the independence
(understood as mutual undefinability) of primitive symbols. In order to prove that a
primitive symbol x cannot be defined in terms of other primitive symbols, two
interpretations of the theory are to be built that must both satisfy the axioms and differ
only with respect to their interpretation of x.

This method, although clearly analogous to the technique used to prove the
independence of axioms, is justified by Padoa only by an appeal to intuitive
considerations. Furthermore, Padoa deems his method to be not only a sufficient
condition, but even a necessary condition, for independence. Today we know that
accepting it as a necessary condition amounts to Beth’s theorem (1953), whose proof is
not at all trivial. While we may be inclined to regard this insight in the theory of
definitions as an “intuition” of Padoa’s, we cannot help noting at the same time that
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there was only a small amount of meaningful research following up on Padoa’s work
on the theory of definitions that would subsequently allow Tarski and others to deal
with these problems in a rigorous way.

While the problems of independence were widely studied within Peano’s school,
the same cannot be said of the problem of consistency that will later come to play a
central role in studies of logic. Even as late as 1906, after the statement of the Russell
antinomy and after Hilbert had outlined his foundational program in 1904, Peano stili
continued to display a certain indifference to the issue of consistency, to the extent that
he claimed in his paper “Super theorema de Cantor-Bernstein” [Peano 7906; reprinted
in 1957-59,1, 343}:

A consistency proof for arithmetic, or for geometry, is in my opinion
not necessary. In fact, we do not create the axioms arbitrarily, but
assume instead as axioms very simple propositions which appear
explicitly or implicitly in every book of arithmetic or geometry. The
axiom systems of arithmetic and geometry are satisfied by the ideas of
number and point that every author in arithmetic or geometry knows.
We think of numbers, and therefore numbers exist. A consistency proof
can be useful if the axioms are intended as hypotheses which do not
necessarily correspond to real facts.

In a paper on “Le probléme n. 2 de M. David Hilbert”, Padoa [/903] attacks
Hilbert, believing that Hilbert failed to realize that Padoa had solved the problem of the
consistency of analysis (Hilbert’s second problem) in the [/902] paper “Théorie des
nombres absolus” delivered at the same International Congress of Mathematicians in
Paris in 1900 during which Hilbert had posed his famous list of open problems.
(Today we would say that Padoa’s “solution,” which is proposed for the theory of
integers, is based on the existence of the standard model. This solution is, of course,
very different from what Hilbert had in mind.)

A more critical attitude was taken by Pieri, who diverged sharply from Padoa’s
views and sought to obtain a proof of the consistency of arithmetic (see in particular
[Pieri 1904, 307n.]). In today’s terminology, we would say that Pieri [/906a]
essentially constructs a model of arithmetic within set theory.

Some attention should also be given to the so-called “Burali-Forti paradox.”
Burali-Forti is usually credited with the discovery, or at least the publication, in 1897,
of the first antinomy in Cantorian set theory. The Burali-Forti paradox is now more
commonly referred to as the antinomy of the greatest ordinal number, according to
which the class of all ordinals has an ordinal number greater than each number in the
class itself and is therefore also greater than every ordinal number and in particular is
greater than itself.
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Although this current interpretation seems to link Burali-Forti’s contribution
directly to the problem of consistency, Burali-Forti’s actual purpose was quite different.
He meant, in fact, to prove by reductio ad absurdum that the trichotomy law does not
hold for ordinal numbers, writing [/897a, 154] that:

The main purpose of this paper is to prove that there indeed exist
transfinite numbers (or order-types) a, b such that a is neither equal to, .
nor less than, nor greater than, b.

Using reasoning that involves the class of all ordinal numbers in an essential way,
Burali-Forti indeed obtains a contradiction. But this is intended as the natural
conclusion of an indirect proof. And when Cantor proved in 1897, contrary to Burali-
Forti’s conclusion, that the law of trichotomy does in fact hold, Burali-Forti
misunderstood Cantor’s result, while recognizing, in his short note “Sulle classi bene
ordinate”, that he had appealed to a different definition of ordinal number. (Burali-Forti
misunderstood the Cantorian notion of ordinal number. He thought of ordinal numbers
as order types of those classes he called “perfectly” ordered, while Cantor identified
ordinal numbers with order types of well ordered classes.) Burali-Forti did not realize
that his argument could also be applied to ordinal numbers as conceived by Cantor, and
that the crucial point, after all, was the assignment of an ordinal number to the class of
all ordinal numbers. Only after Russell’s antinomy had gained currency did a modified
form of Burali-Forti’s argument attain the character of an antinomy. (For a deeper
historical analysis of Burali-Forti’s paradox, see Moore & Garciadiego [/98]] and
Garciadiego [1985}.)

4. Conclusion. In the light of our historical analysis, we claim that the foundational
contributions of Peano and his school show beyond a doubt that the origin of the
“modern” conception of the axiomatic method is more properly ascribed to Peano’s
school, and in particular to Pieri, than to Hilbert. For Peano and his school, however,
the axiomatic method retained its traditional purpose of providing a rigorous treatment
of mathematical theories and was not understood, as it will be by the formalists, as an
instrument of research for the creation of new mathematical theories.

The Peano school also articulates and tackles metatheoretical problems, especially
the problem of the independence of the axioms. Once again, it must be recognized,
however, that they were still far from the modern spirit of metatheoretical investigation,
not so much with respect to the techniques employed, but with respect to the meaning
attributed to those investigations. The foundations of mathematics attains full
maturation, in modern terms, when metatheoretical problems are thought to possess
intrinsic value. Thus, for example, the primary interest in an independence proof,
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beginning from the time of Hilbert’s earliest contributions, resides in the possibility of
creating a new theory, namely a theory that includes among its axioms the negation of
the proposition whose independence is being proved. In Peano’s school, on the other
hand, the principal attitude was to consider metatheoretical properties as conditions for
the “purity” and “logical perfection” of deductive theories. Padoa writes, for instance,
in his contribution to the 1900 International Congress of Mathematicians in Paris (see
[Padoa 1902, 309}]):

In the Introduction logique @ une théorie déductive quelconque that
precedes our Essai d’une théorie algébrique des nombres entiers, we
have analyzed the formal structure of a deductive theory in order to state
the main conditions for its logical perfection and the practical rules to
see if these conditions are satisfied by a given theory.

Similar views were also expressed by Pieri in a lecture delivered in 1906, when he said
[1906b; see 1980, 423]:

Besides the consistency or compatibility of the hypotheses, logicians
also prove the relative independence of the primitive notions (the fact
that none can be defined in terms of others) and the relative
independence of the postulates (that is, none is a consequence of the
others). These conditions ought to be satisfied in a perfect hypothetico-
deductive system.

A similar situation, as has already been pointed out, also holds for logic. The
conception of a rigorous logical symbolism for mathematics and the attainment of the
project of the Formulario without doubt constitute Peano’s major achievements. The
symbolism has survived, and it led Russell to attain remarkable improvements in logic.

Nevertheless it is difficult to maintain that the work actually performed by Peano
and his school, taken in its totality, constitutes an anticipation of subsequent
developments. It seems more appropriate, instead, to characterize their work as a
synthesis of and capstone to the contributions of the nineteenth century. We believe,
moreover, that Peano’s school may be asserted to have accomplished its purpose of
using the instrument of logic in order to reach the highest possible level of rigor in
mathematics. This fact may perhaps also provide the most satisfactory explanation for
the Peano school’s lack of interest in new trends of research. The philosophical
atmosphere and the hostility from some mathematicians surely played a role as well in
the decline of Peano’s school. But the primary reason appears to be that Peano and the
members of his school thought they had completely carried out their program. The
impact of the philosophical climate on the direction of the research of Peano and his
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school and on its decline will be considered in more detail in a future paper. In that
paper we will also examine the influence exerted by Peano’s school on other logicians
(such as Russell) and the relationships between the contributions of Peano’s school and
that of other logicians.

LIST OF THE MENTIONED WORKS BY PEANO AND HIS SCHOOL

(The complete list of Peano’s works can be found in [Kennedy 1980). Pieri’s works are listed in
[Pieri 7980}, those by Vailati in [Vailati 1911].)

Giuseppe PEANO

[1883] Sull’integrabilita delle funzioni, Atti della Reale Accademia delle Scienze di Torino
18, 439-446; reprinted: {1957-591, 1, 25-32.

[1884] A. Genocchi, Calcolo differenziale e principii di calcolo integrale, pubblicato con
aggiunte dal Dr. Giuseppe Peano, Torino, Bocca; (partially) reprinted: [71957-59], 1, 47-73.

[1886] Sull’integrabilita delle equazioni differenziali del primo ordine, Atti della Reale
Accademia delle Scienze di Torino 21, 677-685; reprinted: [1957-59), 1, 74-81.

[1887a] Integrazione per serie delle equazioni differenziali lineari, Atti della Reale
Accademia delle Scienze di Torino 22, 437-446.

[1887b] Applicazioni geomerriche del calcolo infinitesimale, Torino, Bocca.

[1888] Calcolo geometrico secondo l’Ausdehnungsiehre di H. Grassmann, preceduto dalle
operazioni della logica deduttiva, Torino, Bocca; (partially) reprinted: {1957-59], 11, 3-19.

[1889a] Arithmetices principia, nova methodo exposita, Torino, Bocca; reprinted: [1957-59], 11,
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