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INTRODUCTION.

In this paper we argue that in his 1930 thesis, Jacques Herbrand developed the concept
of unification central to automatic theorem proving and logic programming, not peripher-
ally as has been suggested, but as an element essential to the proof of his Fundamental
Theorem, hereafter abbreviated, FT.

Excellent surveys of Herbrand’s work can be found by Goldfarb in [Herbrand 1971, 1~
20}, in Jean van Heijenoort [ 1967, 525-529; 1968; 1986}, and Irving Anellis [1991; 1992].
Herbrand set out to develop a unified approach to proof theory. His method of investi-
gation, involving the notions of completeness, consistency, and decidability, was directed
toward answering the question: what finite sense can generally be ascribed to the truth
property of a formula with quantifiers, particularly the existential quantifier, in an infinite
universe? The existential quantifier, interpreted as standing for a choice function, posed the
main difficulty. Since it is not generally replaceable by a computable function, it is not
always possible to constructively instantiate these quantified variables.

The major influence on Herbrand’s development of unification came from Russell and
Whitehead’s Principia Mathematica, hereafter abbreviated, PM. Herbrand, like Hilbert,
used PM as the example that classical mathematics can be codified and presented as a
formal system. His key concept of a normal identity and what he refers to as Property A,
are derived from a method used by Russell and Whitehead to construct quantificational
logic. This method appears in Herbrand’s 1928 paper, “On Proof Theory” [Herbrand, 29—
32]. As Goldfarb [Herbrand, 4] writes,

* The author is indebted to the editor, Irving Anellis, for his critical reading of this manuscript and his
constructive suggestions which have enormously improved the manuscript.

63




Volume 4, no. 1 (January 1994)

Herbrand applied the approach of the Hilbert school to pure quantification theory;
his goal was to analyze quantificational provability in terms of truth-functional
validity.... Herbrand’s solution to this problem [of instantiating quantified variables]
arises from two ways of connecting quantified formulas with quantifier-free ones.
The first is an extension of Russell and Whitehead’s construction of quantified
logic in PM, and rests on a procedure for obtaining the proof of a formula P
containing quantifiers from that of a quantifier-free tautology (that is, truth-
functionally valid formula) related to P in a canonical way.

The second way, constructing a finite model, is based on the work of Lowenheim and
Skolem on quantifer-free formulas. It is important to the development of Herbrand’s FT,
but does not directly bear on unification.

DEFINTTIONS.

Before proceeding further, we need definitions of the following terms: A clause is a
finite disjunction of literals or the empty clause. A literal is a predicate followed by a list of
terms or arguments. A term is a constant, variable or function symbol followed by 0...n
terms denoting the degree of the function. Terms of degree 0 are constants. Any well-
formed-formula (WFF) in the first order predicate logic can be converted to clausal form
which can be thought of as an extension of conjunctive normal form. A literal having no
variables is a ground literal, and a clause whose members are only ground literals is a
ground clause. If we associate with the set of clauses S, the set of all terms containing only
function symbols F in S of degree 0, otherwise the function symbols {a} UF, where ais a
constant, we have the Herbrand Universe of S. Herbrand’s FT implies that a set § of
clauses is unsatisfiable (i.e. inconsistent or self-contradictory) if and only if there exists a
finite subset P of the Herbrand Universe of § that is truth-functionally unsatisfiable. Van
Heijenoort [1992, 247-248] provides an illustration of the expansion method Herbrand
employed to obtain sententially valid quantifier-free formulas from satisfiable quantified
formulas. '

UNIFICATION AND RESOLUTION. -

In 1963 J. Alan Robinson invented resolution, a single inference method for first order
logic. Resolution, first announced by Robinson in 1963 in an abstract in the Jownal of
Symbolic Logic, was developed in his 1965 article. Resolution is a refutation method
operating on clauses containing function symbols, universally quantified variables and
constants. Quantified variables can be handled in a deductive system if there are tests of
unifiability that act like tests of equality. The essence of the resolution method is that it
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searches for local evidence of unsatisfiability in the form of a pair of clauses, one
containing a literal and the other its complement (negation). Herbrand’s FT permits clauses
with variables to stand for all their ground instances, so that resolving two of these clauses
~ requires resolving all their ground instances. The simulation of ground resolution is the
essence of unification. In automated deductive systems, a unification algorithm is the basis
of resolution.
Robinson [1992, 43-44] writes,

Dag Prawitz [1960] had also forcefully advocated the use of the process which we
now call unification..., he apparently had independently rediscovered unification in
the late 1950’s. He apparently did not realize it had already been introduced by
Herbrand in his thesis of 1930 (albeit only in a brief and rather obscure passage)....
I was immediately very impressed by the significance of this idea. It is essentially
the idea underlying Herbrand’s ‘Property A Method” developed in the same thesis.

In a recent article, Jean-Pierre Jouannaud and Claude Kirchner give their view of the
connections between Herbrand’s and Robinson’s work. They write [Iouannaud and Kirch-
ner, 257}, :

Solving equations on first-order terms emerged with Herbrand’s work on proof
theory and was coined unification by Alan Robinson.... Invented by Alan
Robinson, resolution was the first really effective mechanization of first-order
logic.... Unification bridges the conceptual gap between ground and non-grouad
‘atoms [i.e. literals] by computing a representative of all their common instances.
Alan Robinson gave the first algorithm ever for computmg such a representative,
callmg it a most general unifier [MGU], and showed its uniqueness (up to an
eqmvalence)

UNIFICATION ALGORITHMS. |

Herbrand never used the name unification algorithm for his equation solving process.
His algorithmic method transforms a solvable equation set, one that has a solution of the
form X = G Xk = B, where the x; are variables that do not occur on the right hand side of
any equation and the ¢j are terms, into an equivalent solved form equation set. For any
unsolvable equation set the algorithm halts with failure. The definition of a set of equations
in solved form is given by [Martelli and Montanari, 261] as satisfying the conditions: (1)
the equations are xj =, j = 1,.. ..k and (2) every variable whlch is the left member of some
equation occurs only there. ~

Herbrand’s algorithm appears as follows [Herbrand, 148}:
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Now, to find an appropriate set of associated equations is easy, if such a set
exits; it suffices, for each system of equations between arguments, to proceed by
recursion, using one of the following procedures, which simplify the system of
equations to be satisfied.

(1) If one of the equations to be satisfied equates a restricted variable x to an
individual, either this individual contains x [or some other restricted variablel, and
then the equation cannot be satisfied, or else the individual does not contain x for
any other restricted variable, or any general variable that is not superior to x], and
then the equation will be one of the associated equations that we are looking for; in
the other equations to be satisfied we replace x by the individual;

(2) If one of the equations to be satisfied equates a general variable to an
individual that is not a restricted variable, the equation cannot be saﬁsﬁed;

(3) If one of the equations to be satisfied equates fi(d1, $2, ..., On) t0 (W1, W2,
- Pm), either the elementary functions fj and f; are different, and then the equation
cannot be satisfied, or they are the same, and then we turn to those equations that
equate the ¢; to the y;.

Therefore, if we successively consider each prenex form of P, we shall be able,
after a finite and determinate number of steps, to decide whether the proposition P
is a normal identity.

Similarly, given a proposition P and any scheme, we can test whether a
proposition P” derived from P by the scheme is a normal identity, hence whether
the scheme permits us to show that P has property A.

In 1982, Alberto Martelli and Ugo Montanari described the unification problem in first-

order logic in this way: Find the simplest substitution, i.e. the assignment of some term to
each variable, for two given terms containing some variables. This substitution, if it exists,
is a MGU. They present the unification problem as the solution of a set of equations, and

follow it by an example [Martelli and Montanari, 261-262]:

A set of equations is said to be in solved form iff it satisfies the following
conditions:

(1) the equations are xj =1, j= 1, ..., k;

(2) every variable which is the left member of some equation occurs only there.
A set of equations in solved form has the obvious unifier

8= {(tla xl)’ (tz’ x2)s"-’(lk, xk)}

If there is any other unifier, it can be obtained as
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0 = {(t155 X1)s (20 XDeerslthg X1)} U @

where o is any substitution instance which does not rewrite variables xi,..., Xz.
Thus 8 is called a most general unifier (mgu).

The following nondeterministic algorithm shows how a set of equations can
be transformed into an equivalent set of equations in solved form.

Algorithm 1
Given a set of equations, repeatedly perform any of the following trans-
formations. If no transformation applies, stop with success.
(a) Select any equation of the form
t=x
where 7 is not a variable and x is a variable, and rewrite it as
x=t

(b) Select any equation of the form

X=X
where x is a variable, and erase it.
(c) Select any equation of the form

where ¢’ and ¢” are not variables. If the two root function symbols are different,
stop with failure; otherwise, apply term reduction.
(d) Select any equation of the form

x=t
where x is a variable which occurs somewhere else in the set of equations and
where ¢ # x. If x occurs in ¢, then stop with failure; otherwise apply variable

elimination.
As an example, let us consider the following set of equations:
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80x2) = x1;

Sx1, A(xa),(x2) = Rgxs), x4, x3).
By applying transformation (c) of Algorithm 1 to the second equation we get

8(x2) = xy;
x1 = g(xs);
h(x1) = x4;
Xy =Xa.

By applying transformation (d) to the second equation we get

g(x) = g(x3);

x; = g(x3);
h(g(x3)) = x4;
X2 = X3.

We now apply transformation (c}) to the first equation and transformation (a) to
the third equation:

X2 = X3,

X1 = g(x3);
x4= h(g(x3));
Xy = X3.

Finally, by applying transformation (d) to the first equation and transformation
(b) to the last equation, we get the set of equations in solved form:

X2 = X33
X1 = g(x3);

x3= h(g(x3)).
Therefore, an mgu of the system is
9= {(g(x3), x1), (33, X2), (h(g(x3)), x4)}.
The following theorem proves the correctness of Algorithm 1.

THEOREM 2.3. Given a set of equations S,
(i) Algorithm 1 always terminates, no matter which choices are made.
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(ii) If Algorithm 1 terminates with jailure, S has no unifier. If Algorithm 1
terminates with success, the set S has been transformed into an equi-
valent set in solved form.

Like Jouannaud and Kirchner they credit unification to Robinson. “Unification was
first introduced by Robinson as the central step of the inference rule called resolution”
[Martelli and Montanari, 258]. :

In his Unification Theorem

UNIFICATION THEOREM. Let A be any finite nonempty set of well-formed
expressions. If A is unifiable, then A is most generally unifiable with most
general unifier c4; moreover, for any unifier © of A there is a substitution
A such that © = cuA.

PROOF. It will suffice to prove that under the hypotheses of the theorem
the Unification Algorithm will terminate, when applied to A, at step 2; and
that for each k¥ 2 0 until the Unification Algorithm so terminates, the
equation 6 = OxAL holds at step 2 for some substitution A,

Robinson was the first to establish the correctness of the Unification Algorithm

UNIFICATION ALGORITHM. The following process, applicable to any finite
nonempty set A of well-formed expressions, is called the Unification
Algorithm:

Step 1. Set 6p= € and k=0, and go to step 2.

Step 2. If Aoy, is not a singleton, go to step 3. Otherwise, set 64 = 0%
and terminate. »

Step 3. Let Vi be the earliest, and Uy, the next earliest, in the lexical
ordering of the disagreement set By of Aoy . If Vi is a variable, and does
not occur in Uy, set 0+ 1 = ok {Ur/ Vi}, add 1 to k, and return to step
2. Otherwise, terminate.

and systematically relate a set of equations in solved form with a MGU [Robinson, 1965,
32-34]. In both Robinson’s and Martelli/Montanari’s algorithms, when the set of equa-
tions in solved form is produced, its solution is a MGU of the system. To present all the
necessary preliminaries for Robinson’s algorithm is not feasible, but we can observe as
Donald Loveland and Hao Wang did, that resolution depends on Gentzen’s cut rule which,
as Wang added, ensures the complexity of each step in a proof is not more complex than
its conclusion [Loveland 1984, 8; Wang 1970, 228]. To understand how the algorithm
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works, consider two lists /3, /; containing the actual parameters of the activation call and the
formal parameters of the selected procedure. A third list ¢ acts as a temporary, recording the
assignments made when the contents of /; and /; are compared. When the algorithm is
successful, the final state of ¢ is a MGU for that step. If the algorithm fails, no unifier
exists. At each step, two well-formed expressions (WFF’s) are compared in one of the
following ways determined by the form of the expressions: If both expressions are terms
with the same principal function symbols, their arguments are added to /; and b
appropriately; if both expressions are terms with different principal function symbols, the
algorithm fails. If either expression is a variable occurring in the other, the algorithm fails;
if either expression is a variable not occurring in the other, the first expression is assigned
the value of the second, thereby updating z. If either expression is a constant and the other is
either a different constant or a term with function symbols, the algorithm fails.

HERBRAND’S FT.

Herbrand’s test of when a proposition is a normal identity, a quantifier-free propo-
sitional identity obtained from certain provabsility rules, a stronger version of which he had
discussed in his 1928 paper [Herbrand, 29-34], involves finding appropriate equations
between arguments. He used his algorithm to obtain a simple form of those equations.

Herbrand developed property A to deal with propositions containing quantifiers. In
Chapter 2 of his thesis, he proved that all quantified tautologies are normal identities
(strong form), and implicitly that all quantified tautologies have a special case of property
A. In his FT, he provided a constructive proof that a proposition is provable in his
quantification theory if and only if it has property A. (A proposition has property A if there
is a scheme — an array of signed letters and braces defined by recursion on the number of
bound variables of the proposition, that generates a normat identity from that proposition.)
Herbrand stated his FT this way: (1) If for some number p a proposition P has property B
of order p, the proposition P is true. Once we know any such p, we can construct a proof
of P. (2) If we have a true proposition P, together with a proof of P, we can, from this
proof, derive a number p such that P has property B of order p [Herbrand, 168-169]. (A
proposition expanded according to a certain set of rules [Herbrand, 153] that is free of both
quantifiers and functions has property B.)

Anellis has provided a modern statement of Herbrand’s FT: “For some formula F of
classical quantification theory, an infinite sequence of quantifier-free formulas F, F,,...can
be effectively generated, for F provable in (any standard) quantification theory, if and only
if there exists a k such that F is (sententially) valid; and a proof of F can be obtained from
Fp” [Anellis 1991, 75].
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CONCLUSION.

A comparison of the unification algorithms presented here indicates that although their
formalizations differ, conceptually they are the same. For example, the first two steps in
Herbrand’s algorithm correspond to item d in Martelli/Montanari’s; Herbrand’s step 3 is
Martelli/Montanari’s item €. The first two items in Martelli/Montanari have no counterpart
in Herbrand because they are necessary only for machine computation.

I think Herbrand was hinting at a mechanical process, a computational procedure, that
could be applied to a mathematical statement to answer the question of whether it was
provable. Hao Wang understood the role of Herbrand’s work linking provability and
machine computation when he wrote,

A fundamental result of Herbrand has the effect that any derivation of a theorem in
a consistent axiom system corresponds to a truth-functional tautology of a form
related to the statement of the theorem and the axioms of the system in a
predetermined way. This and the possibility...of viewing axiom systems as proof-
grinding machines can both be used to bring about the application of computing
machines to the investigation of the question of derivability in general, and
inconsistency (i.e., derivability of contradictions) in particular axiom systems.
[Wang 1970, 157]

Wolfgang Bibel [Bibel, 11-12] claims that Herbrand’s FT, when applied as a con-
structive tool for providing an effective proof procedure, fails because it generates so much
redundancy that it exhausts the available computational resources. (And the correction of an
error Herbrand made in the proof of his FT results in an even larger number of terms than
originally envisaged [Goldfarb, 1993].) Bibel goes on to say that it is not surprising
because Herbrand could not have thought of this application for his FT. But the fact that the
FT produces redundancies does not invalidate the notion of a mechanical process.
Robinson’s resolution method, a mechanical process, also produces redundancies. Bibel
notes that resolution can generate a large number of redundant new clauses and is even less
advanced than the FT because it requires a formula to be in normal form, itself another
source of redundancy.

In a paper published in 1931, “Sur la non-contradiction de I’arithmétique” [Herbrand,
282-298], Herbrand also hinted at the definition of a general recursive function. Herbrand
and Godel had exchanged letters — unpublished correspondence discussed by Godel —in
which Herbrand in 1931 had proposed a more general definition of a recursive, i.e.
effectively calculable, function [Godel, 70-71] Less that thirty years later, Godel writes:

[Herbrand] probably believed that such a proof [of the existence and unicity of a
given recursive function] can be given only by exhibiting a computational
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procedure.... So I don’t think there is any discrepancy between his two definitions
as he meant them. What he failed to see (or to make clear) is that the computation,
for all computable functions, proceeds by exactly the same rules. 1t is this fact that
makes a precise definition of general recursiveness possible [Herbrand, 283-284].

Herbrand’s use of general recursive functions is noted by Goldfrab who identifies asa
key element in Herbrand’s proof of his FT,

the elimination of the induction axiom schema...through the introduction of
functions.... The functions are, in fact (general) recursive functions, and here is the
first appearance of the notion of recursive (as opposed to primitive recursive
function [Herbrand, 283].

The effects of Robinson’s work on unification based resolution are profound.
Programming resolution based proof procedures led to the birth of logic programming.
Furthermore, in Robinson’s own words [Robinson 1992, 4],

The earliest versions of the predicate calculus proof procedure were all based on
human-oriented reasoning patterns — on types of inference which reflected
formally the kind of ‘small’ reasoning steps which humans find comfortable....
Finally, in the early summer of 1963, I managed to devise a clausal logic with a
single inference scheme...[producing] a rather inhuman but very effective new
inference pattern, for which I proposed the name resolution. Resolution permits the
taking of arbitrarily large inference steps which in general require very considerable
computational effort to carry out.

~ Unification based resolution is essentially a machine-oriented reasoning pattern whose
implications we have only begun to explore.
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