~ X MODERN Loaic ®

THE SET-THEORETICAL PROGRAM OF QUINE SUCCEEDED,
BUT NOBODY NOTICED

M. RANDALL HOLMES

Department of Mathematics
Boise State University
Boise ID 83725, USA

1. Abstract. The set theory “New Foundations” or NF introduced by W.V.0. Quine in 1935 is
discussed, along with related systems. It is argued that, in spite of the fact that the consistency of NF
remains an open question, the relative consistency results for NFU obtained by R. B. Jensen in 1969
demonstrate that Quine’s general approach can be used successfully. The development of basic
mathematical concepts in a version of NFU is outlined. The interpretation of set theories of the usunal
type in extensions of NFU is discussed. The problems with NF itself are discussed, and other
fragments of NF known to be consistent are briefly introduced. The relative merits of Quine-style and
Zermelo-style set theories are considered from a philosophical standpoint. Finally, systems of untyped
combinatory logic or A—calculus related to NF and its fragments are introduced, and their relation to
an abstract model of programming is outlined.
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2. Introduction.

The set-theoretical program of Quine to which we refer began with the system now
called NF introduced in his article “New Foundations for Mathematical Logic” [Quine
1935] in 1935. NF is appealing because it is very simple. It is the first-order theory with
equality and membership with the axiom of extensionality (objects with the same elements
are equal) and the axiom of “stratified” comprehension ({x | &} exists for each stratified
formula ¢). A formula ¢ in the language of NF is “stratified” if and only if it is possible
to assign a non-negative integer type to each variable occurring in it in such a way as to
obtain a well-formed formula of the simple theory of types. NF can be finitely axiomatized
using a short list of particular instances of stratified comprehension (this was first
established in [Hailperin 7944].

It is fairly well-known that the problem of the consistency of NF is very hard; it
remains open after fifty years, and we do not claim to have solved it. Specker proved in
1953 (in [Specker 1953]) that the Axiom of Choice is false in NF, which discouraged
mathematicians from working with this system and raised doubts as to its consistency.
Nonetheless, we claim that the program of Quine has succeeded, at least as well as the
program of axiomatic set theory in the style of Zermelo. But nobody noticed. The proof of
its success came quite a while ago, in 1969, when R. B. Jensen proved in [Jensen 1969]
the consistency of what seemed a slight modification of NF; he restricted extensionality to
objects with elements, so as to allow urelements, obtaining the system which he called
NFU. In Zermelo-style set theory, to have urelements or not is a technical decision,
decided for technical reasons in favor of strong extensionality; in Quine-style set theory, the
effects are profound. NFU is not only consistent (its consistency is a theorem of Peano
arithmetic), but consistent with the Axiom of Choice as well. If the theory is so weak, why
is it interesting? Jensen showed in addition that NFU with the Axioms of Infinity and
Choice is consistent; this is a theory exactly as strong as the theory of types with the
Axiom of Infinity or bounded Zermelo set theory (Zermelo set theory with only the Ag
instances of comprehension, those in which each quantifier is restricted to a set). NFU +
Infinity + Choice is as easy to use as either of these theories. Jensen went on to show that
for each ordinal a there is a model of NFU + Choice which contains a well-ordering of
type «; this implies, for instance, that there are models of NFU with Choice in which all
natural numbers are standard. This implies that NFU admits extensions as strong as any
extension of ZFC in which we have confidence (roughly speaking).

In 1953, interest in NF as a foundation for mathematics was strong enough that J. B,
Rosser could choose this system as the medium for the development of the foundations of
mathematics in his Logic for Mathematicians [Rosser 1973]. While the system of
Rosser’s book (NF + “the axiom of counting” (discussed below) + denumerable choice)
has not been shown to be inconsistent, the result of Specker that the full Axiom of Choice
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fails caused mathematicians to lose interest in applying this system. The system NFU +
Counting + (full) Choice is consistent relative to ZFC, and the development in Logic for
Mathematicians can be duplicated there, except that a different way of introducing the
ordered pair is needed (for a reader of the book, the easiest approach is to treat Rosser’s
pair as a primitive notion). By the time that this was shown by Jensen in 1969, there was
no interest in doing this; in fact, the consistency results for NFU seem not to be well-
known.

The program of Quine has spawned other set theories now known to be consistent,
notably the theory NF3 (extensionality + stratified comprehension using only three types)
shown to be consistent by Grishin in [Grishin 1969], also in 1969 and the theory NFI (an
extension of predicative NF: extensionality + stratified comprehension with no type used
which is higher than that which would be assigned to the set being defined) shown to be
consistent by Marcel Crabbé in [Crabbé 7982] in 1982. The model theory developed by
Specker for NF (in [Specker 1962]) has nontrivial applications in the model theory of
NFU, NF3, and NFI. NF3, NFI, and those of their extensions which are known to be
consistent have independent interest, although they are not, as suitable extensions of NFU
are, well-suited for use as “ali-purpose set theories” in the same way as ZFC.

ZFC works reasonably well as the “all-purpose set theory” at the foundations of
mathematics. Why should we bother considering an alternative theory? First, extensions of
NFU have the property of admitting all the constructions of naive set theory except those
which involve induction on the membership relation; for example, objects like the universal
set and the Frege natural number 3, the set of all sets with three elements, exist. Most
natural categories are sets in NFU (although, as Colin McLarty has pointed out in his note
[McLarty 1992], the properties of these “big” categories are not quite what one would
expect). The von Neumann construction of the ordinals involves induction on the
membership relation and so fails; but the original definition of ordinal numbers as
equivalence classes of well-orderings under similarity succeeds in NFU. The usual
inductive construction of the universe in ordinal-indexed stages also depends on induction
on membership, but it turns out that this, 00, can be modelled in NFU using equivalence
classes of well-founded extensional relations. Moreover, it can be arranged for these
constructions to succeed on a limited domain (not a set) which will look like the universe
of a Zermelo-style set theory, without adding consistency strength. There is a “natural”
extension of NFU in which ZFC can be interpreted in this way.

ZFC has an intuitive motivation; the construction of the universe in iterative stages is a
convincing metaphor helping us to regard the theory and certain of its extensions as
reliable. For a recent discussion of this, see [Maddy /988]. NF was originally proposed as
a “syntactical trick,” and so seems less reliable; we will present an intuitive argument for
the “reasonableness” of the stratification criterion for comprehension. The “intuitive”
motivation we give for Quine-style theories seems to shed more light on the reasons for
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the paradoxes of naive set theory than the “limitation of size” motivation for ZFC, and so
we are able to excise strictly less of naive set theory than we do with the Zermelo approach.
The consistency results for extensions of NFU show that we are not being too liberal.
It is our contention that NF itself is not interesting as a foundation for mathematics.

NFU (with Choice and strong axioms of infinity) is the “useful” theory of this type. But it
remains an infriguing mathematical question why this is so. Why does the strong axiom of
extensionality, harmless in ZFC, have such profound effects when adjoined to NFU? We
believe that we know how to answer this question; we can exhibit a version of the theory of
types and an extension of bounded Zermelo set theory which are equiconsistent with NF
and should help the reader to see why NF is so strange. The consistency question for NF
remains, but Crabbé’s fragment NFI, which has much the same strange character, is
known to be consistent. The obstruction to extending this result has to do with the
impredicativity of NF. We believe that Specker has already shown that NF is not “useful”
by showing that Choice fails there.

Another program for the foundations of mathematics interacts fruitfully with the Quine
program. Curry’s attempt to found mathematics on type-free combinatory logic (see
[Curry and Feys 1958]) can be put on a firm footing using restrictions on function
abstraction analogous to the stratification restrictions on set comprehension in NF. We
have constructed systems of combinatory logic equivalent to NF and NFU + Infinity (in
[Holmes 1991]) and to NF (in [Holmes 7993]) which may have practical applications in
computer science. Qur argument for the “reasonableness” of stratified comprehension,
translated into the context of combinatory logic or A-calculus, turns out to involve concepts
analogous to well-known ideas in computer science. Intuitionistic NF is being investigated
(see [Dziergowski 7993]) but little is known about it as yet.

3. The Historical Motivation of NF.

NF was introduced by W.V. Quine in 1935 in his paper [Quine 7935]. His original
motivation for defining NF was strictly syntactical, arising from the phenomenon of
“typical ambiguity” in Russell’s Theory of Types (introduced in [Russell 1967}), although
in a more complicated form than that presented here). As we will see below, it is possible
to motivate NF (or NFU at least) semantically rather than syntactically, but the theory has
gone through most of its history innocent of semantic motivation.

We present the Theory of Types (77) in a modern formulation. 7T is a first-order
many-sorted theory with equality and membership. The sorts are indexed by the non-
negative integers 0, 1, 2, ...; they are called “types”. Objects of type O are called
“individuals”; objects of type 1 are to be understood as sets of individuals; objects of type
2 are to be understood as sets of type 1 objects (sets of sets of individuals); in general, a
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type n + 1 object is a set of type # objects. In keeping with the indicated interpretation, a
formula x € y is well-formed if and only if the type of y is the successor of the type of x; a
sentence x = y is well-formed if and only if x and y have the same type. It should be noted
that the the types are not “disjoint” in any sense expressible in the theory; it is impossible
to formulate the assertion that objects of different types are either equal or unequal. It is
also useful to note that type 0 objects should not be thought of as urelements; to ascribe
elements to a type 0 object is meaningless rather than false.

The axiom schemes of 77 are extensionality (objects of a positive type n + 1 are equal
if they have the same type n members) and comprehension (for each formula ¢ and
variable x of type » there is an object {x | ¢} of type n + 1 such that for all x of type n, x €
{x | ¢} iff ¢). It is usual to add the Axiom of Infinity and perhaps the Axiom of Choice,
but we do not regard these as part of the basic theory.

We illustrate the phenomenon of “typical ambiguity” which motivated the definition of
NF for Quine. Suppose we want to define the number 3. In 77, we can use Frege’s
definition: 3 is the set of all sets with three elements. This is not a circular definition, since
we can express the property of having three elements in first-order logic with equality and
membership. But observe that we need a different number 3 to count objects in different
types; the number 3 which is the collection of all sets of three type n objects lives itself in
type n + 2. The arithmetic of all these numbers 3 is exactly parallel; it is philosophically
unappealing to have so many copies of what “should” be a single object.

This phenomenon is perfectly general. For any formula ¢ in the language of 77, we
define ¢* as the formula which results if we raise each type index in ¢ by one. Now
observe that if ¢ is an axiom, so is ¢*. It follows immediately that if ¢ is a theorem, so is
¢*. Any object {x | ¢} that we define has a sequence of analogues {x*| ¢*}, {x**| ¢**},
and so on, one in each higher type.

Quine’s suggestion was that the types are redundant; we should understand all the
various versions of the number 3 as being the same object, and, in general, we should
regard the sequence of objects{x | ¢}, {x*|d*}, {x**| $**}, ... as being one untyped
object {x | ¢}. The danger of paradox is apparently avoided by only allowing those
formulas ¢ to define sets which would make sense in the theory of types with a suitable
assignment of types to their variables; we move to a type-free theory, but we only allow
those instances of comprehension which are type-free analogues of instances of compre-
hension in 77. For example, the Russell class {x | x ¢ x} is avoided because there is no
analogous instance of comprehension in 77, but the universe V= {x | x =x} does exist, as
does Frege’s number 3 (now found in only one version).

The notion of an instance of untyped comprehension being analogous to an instance of
comprehension of 77 needs to be formulated precisely. A formula ¢ in the language of
one-sorted first-order logic with equality and membership is said to be “stratified” if it is
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possible to assign a non-negative integer to each variable occurring in ¢ in such a way that
each variable always appears with the same associated integer, each subformula x € y has
successive integers assigned to x and y and each subformula x = y has the same integer
assigned to x and y. It should be clear that ¢ is stratified exactly when a suitable assignment
of types to variables would convert it to a well-formed formula of 77.

With the notion of stratification defined, we can define Quine’s set theory NF. NF is
the one-sorted first-order theory with equality and membership whose axioms are
extensionality (objects with the same elements are equal) and the scheme of stratified
comprehension ({x | ¢} exists, for each stratified ¢ and variable x). We do not add Infinity
or Choice; as we will see below, Infinity is a difficult theorem of this system, while Choice
is false! It is worthwhile to note an error in Quine’s original paper [Quine 7935]: Quine
claimed that NF proved Infinity because of the existence of each of the objects {}, {{}},
£{{3}}, ...; but the collection of iterated singletons of the empty set does not have a
stratified definition and cannot be proven to exist. While Infinity is a theorem of NF itself
for different reasons, the related theory NFU (NF with urelements) proves the existence of
each of the above objects, but has models in which the cardinality of V'is a (nonstandard)
natural number.

Specker, in [Specker 1962}, put Quine’s intuition about the way in which NF is
obtained from 77T by collapsing the type structure on a firm footing. He showed that the
following are equivalent:

a. NF is consistent (i.e., there is a model of NF).

b. TT + the axiom scheme “¢ < ¢*” for all formulas ¢ (the axiom scheme of typical
ambiguity) is consistent.

c¢. There is a model of 7T with a “type-shifting automorphism” (a bijective map which
sends type n onto type n + 1 for each n and respects membership).

These model-theoretic results show that Quine’s intuitive motivation for NF can be
precisely formalized. As yet, no one has been able to show the consistency of TT +
Ambiguity or build a model of 7T with a type-shifting automorphism; the question of the
consistency of NF remains open. But these techniques also apply to fragments of NF
which are known to be consistent, relating them to ambiguous versions of related frag-
ments of T7. We will present an argument below with the same flavour as Specker’s
proofs of the results cited above.

It is interesting to observe that a weak version of the usual set theory can be derived by
collpasing the type distinctions in Russell’s theory in a different way (although we do not
claim that this is the historical motivation for set theory in the style of Zermelo). Suppose
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that we are given an injection of type 0 (individuals) into type 1 (sets of individuals),
witnessed internally to 77 by a bijection on type 1 with domain the set of singletons of
objects of type O; the identity map on these singletons is the simplest example. We can
view this map as an identification of type 0 with part of type 1. We can then identify each
type 1 set with the type 2 set obtained by replacing each of its type 0 elements with the type
1 object with which it is identified, and continue inductively, identifying each type n + 1 set
with the type n+ 2 set which is obtained by replacing each of its type n elements with the
type n + 1 object identified with it. The identification of type r with type n + 1 is in each
case witnessed by a map definable in 77, which takes the singleton of each type n object to
the type n + 1 object with which it is identified. We can then construct a direct limit,
collapsing all the types into one domain. This domain will satisfy the axioms of Zermelo
set theory without foundation (although all failures of foundation are accounted for by the
bad behaviour of a set of objects, the original type 0) and with the restriction on the axiom
scheme of Comprehension that all quantifiers must be restricted to a set Ag compre-
hension). Infinity and Choice will be satisfied if they held in the original 77. The reason for
this restriction is that any attempt to define a set in this theory must be carried out below
some type of TT , itself interpreted as a set which can be taken to bound all quantifiers in
the set definition. The axiom of foundation can be recovered; instead of taking the base of
the construction to be the original type 0, let it be the set of natural numbers in type 2, and
interpret higher types accordingly; use the map which sends 7 to the set of numbers less
than » as the embedding of “type 0” in “type 17, so that the type 0 objects are interpreted
as von Neumann ordinals and Foundation will hold. This construction witnesses the fact
that 77 + Infinity is equiconsistent with Zermelo set theory with Ag comprehension, which
we will call “bounded Zermelo set theory”. The “disjoint” types of Russell’s theory can be
associated with a sequence of consecutive cumulative types in a Zermelo-style theory, but
nothing in the Russell theory corresponds to what happens at cumulative types indexed by
limit ordinals in a Zermelo-style theory.

4. A Survey of Jensen’s Theory NFU,

In 1969, in [Jensen 1969, R. B. Jensen described the theory NFU “New Foundations
with urelements”) whose difference from NF is that it allows “atoms” or “urelements
(objects with no elements which are allowed to be distinct from one another). In [Quine
1935}, Quine had suggested that the choice of strong extensionality for NF was merely a
technical decision; he suggested that extensionality could be extended to atoms by
redefining membership so that they could be taken to be their own sole elements. This
turned out to be incorrect, as the proposal overlooked the effects of stratification, The
difference between NF and NFU is profound.
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Jensen was able to show that NFU is consistent (this is a theorem of Peano arithmetic!)
and that it can be extended with the axioms of Infinity and Choice (unlike NF, it neither
proves the former nor disproves the latter). Moreover, he was able to construct «w—models
of NFU (models in which all natural numbers are standard) and to do this in a way which
could be generalized; Jensen showed that for each ordinal a, there is a model of NFU +
Infinity + Choice which contains a well-ordering of type a (he showed this in ZFC).
Jensen’s result shows that NFU has consistent extensions of essentially the same strength
as any extension of the usual set theory in which we have confidence.

In his remarks accompanying [Jensen 7969}, Quine suggested a convenient form for
the axiomatization of NFU, one wants to distinguish the empty set from the other ur-
elements which are non-sets, so one provides a primitive sethood predicate. The axiom of
extensionality is then modified to assert that any two sets with the same elements are equal,
while an axiom of atoms asserts that non-sets have no elements. The axiom of stratified
comprehension asserts that for each stratified formula ¢, there is a set {x | ¢} (“formula” is
cotrect here in place of “sentence” because parameters can appear in set definitions). Quine
suggests also that it was an error on his part to assume that it was harmless to suppose in
the unfamiliar context of a theory with stratified comprehension that all objects are sets.

We exhibit a version of Jensen’s proof of Con(NFU). We will prove the consistency
of TTU (the theory of types with urelements allowed in each type) with the scheme of
typical ambiguity. Adapting Specker’s results on the model theory of NF in [Specker
1962}, this is equivalent to the consistency of NFU. Below, we shall construct a model of
TTU with a type-shifting automorphism, and indicate how it can be converted into a model
of NFU. |

Let Vi be stage o in the iterative construction of the universe of the usual set theory,
for each ordinal a. For each pair of ordinals a < B, define“x €, y”as“x € y and y €
Va + 1,” for each x, y € Vp. We can then use any ascending sequence of ordinals a; to
determine a model of TTU: let type i be Vi, x {i}, and define “(x, §) € (3, + 1)” as “x
€a,, a;,, Y - Observe that elements of Ve, ; = V., are interpreted as urelements under
the “membership” relation €¢, , g, , -

Let T be a finite set of formulas of the language of TTU. Let n-1 be the highest type
index which appears in . Fix a limit ordinal A. One can associate with £ a partition of the
set of n—element sets of ordinals less than A, determined by the truth-values of the
formulas in I when the sequence of types in an n—element set is used to interpret types 0
through n of TTU as indicated in the paragraph above. Use the Ramsey theorem to choose
an infinite homogeneous set H for this partitition; the interpretation of T7U using any
ascending sequence of ordinals in H will satisfy the scheme of typical ambiguity ¢= ¢*
for all formulas ¢ in £. By compactness, we conclude that the scheme of typical ambiguity
is consistent with 77U, from which it follows by the mode! theory results of Specker that
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NFU is consistent. It is easy to see that Infinity and Choice will hold in the interpretation of
TTU determined in this way if we use infinite ordinals as types and if choice holds in the
underlying version of the usual set theory; it follows easily that Infinity and Choice are
consistent with NFU. Jensen constructed - and a-models of NFU using a more sophis-
ticated argument of this sort involving the Erdos-Rado theorem.

We show how to construct a model of NFU directly. Work in a nonstandard model of
set theory which has an external antomorphism j and an ordinal a such that j(a) > a. This
gives us a model of 77U with a shifting automorphism, determined as indicated above by
the sequence of ordinals a, f{(a), (), .... It is not a problem that this sequence is external
to the model, since constructions in 77U never involve more than finitely many types. We
now build a model of NFU directly as follows: let V be the collection of objects of the
model, and define the membership €’ of the model as follows: x €’ yif and only if x € j(y)
and j(y) € V. 1 (or, equivalently, and referring only to objects in the model, j~1(x) € y
andy€ V}.-l(a) +1)- It is easy to show that the axioms of Infinity and Choice hold in such
a model if they hold in the underlying model of set theory (if o is nonstandard finite, we
get a model of NFU + “the universe is finite”). The elements of Vg~ Vjq)+1 are
interpreted as urelements.

We prove that the model described above is actually a model of NFU. The argument
we give will have the same flavor as Specker’s proofs of his model-theoretic results cited
above. Let ¢ be a stratified formula in the language of first-order logic with equality and
membership. Translate it into a formula ¢’ in the language of equality, membership, and
the automorphism j by translating each occurrence of membership “x € y” as “x € j(y) and
J(¥) € Vg +17; also, restrict all quantifiers to Vz. We have moved from the language of
NFU to the language of the nonstandard model of the usual set theory with the auto-
morphism j. The obstruction to finding the set {x | ¢’} in the latter system is the fact that j
is external; we need to show that j can be eliminated from ¢’. Observe that assertions “x =
y” and assertions “x € y” are precisely equivalent to “#(x) = f(3)” and “F(x) € f()”
respectively. Apply the isomorphism j to both sides of each atomic formula in ¢’ in such a
way that each variable z assigned type i in the stratification of ¢ appears only in the context
Jji(2) (itself not in the scope of further applications of j or its inverse). It should be clear that
this is possible, since the translation of € and the fact that = is left unperturbed by our
original translation means that the conditions on applications of j to variables in atomic
subformulas of ¢’ are exactly that the exponents on both sides of an = are the same, while
the exponents on the left and right sides of an € are successive; these conditions are
preserved by applications of j to both sides of atomic subformulas and correlate exactly
with the conditions for type assignments in stratified formulas. Now we can replace ji(2),
for each variable z assigned type i, with a variable z restricted to 7(Vy) instead of Vg; this
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has the effect that j no longer occurs except in constants, which means that {x | ¢'} actually
exists. The set {x | ¢} in the model of NFU is the set j~1({x | ¢'}) in the nonstandard
model of set theory. Observe that if ¢ had not been stratified, we would not have been able
to eliminate essential occurrences of jin ¢', and we would not have been able to conclude
that the latter formula had an extension.

We will now consider how the foundations of mathematics could be laid in an
extension of NFU. We will present a finite axiomatization of NFU + Infinity + Choice,
modelled on von Neumann’s axioms for constructing proper classes over the usual set
theory combined with ideas of Grishin (see [Grishin /969]) on NF. This axiomatization
should help to dispel the idea that NFU is based merely upon a syntactical trick; like the
usual axiomatization of ZFC, it shows how to build sets using basic sets and constructions
on sets which seem intuitively legitimate, and does not mention the syntactical notion of
“stratification”. The language of NFU is augmented for our present purposes with a
primitive ordered pair; we will discuss the reasons for this below. Although we will
express the axioms using notation like “(x, y),” the official extension of our language adds
relations 7t; and 715, the relations in which a pair stands to its first and second projections,
respectively. For purposes of stratification, the variables in a formula x 7;y should be
assigned the same type.

Note: The usual notation for sets and relations defined as extensions of formulas is
used freely in the statement of the axioms; it can, of course, be eliminated.

Axiom 1. Sets with the same elements are equal.
Axiom 2, Objects which are not sets have no elements.
These axioms reiterate the treatment of extensionality in NFU outlined above. It will be
a theorem of this system that there are non-sets; this theorem will be a consequence of the
Axiom of Choice.
Axiom 3. The universe V= {x | x=x} exists.
Axiom 4. For each set A, the set A°= {x | x ¢ A} exists.
Axiom 35, For each pair of sets A and B, theset A U B= {x |xeAorxe B} exists.
These axioms assert that the universe of sets forms a Boolean algebra with the usual

operations of complement (provided by Axiom 4), union (provided by Axiom 5), and
intersection (definable in terms of the other two as usual). Axiom 3 is actually redundant,

10




X MODERN LogGiC

since axioms below will provide for the existence of specific sets, but it is useful to give it
here for the sake of orderly development. We can now prove the existence of {}, the
unique set with no elements.

Axiom 6. For each x, the set {x} = {y | y=x} exists.
Axiom 7.If (x, 2) = (y, w), thenx=yand z=w,

Axioms 6 and 7 give us the ability to construct finite ordered and unordered structures.
Application of Axiom 6 and the axiom of Boolean union above enables us to construct
finite sets; axiom 7 allows us to construct #-tuples, which we define inductively so that
(xl 3o 'axn) = (xl ’ (x29 sesy xn))-

Axiom 8. For each pair of sets A and B, the set A x B= {(x, y) | x€ A and y € B} exists.

We define a relation as a set of ordered pairs and read xRy as (x, y) € R as usual.
Axiom 9. For each relation R, the set dom(R) = {x | for some y, xR y} exists.

Axiom 10. For each relation R, the relation R™! = {(x, y) | yRx} exists.

Axiom 11. For each pair of relations R and S, the relation R | § = {(x, y) } for some z, xRz
and zRy} exists.

Axiom 12, The relation =, {(x, %) | x € V}, the relation 7r;, {((x, y), | x,y € V}, and the
relation 7, {(x, ),y | x,y € V}, exist. ‘

Axioms 8 through 12 provide us with the machinery for a theory of relations. From
Axioms 1 through 12, it is possible to prove the following:

Meta-Theorem 1: Let ¢ be a formula of first-order logic with equality such that for each
atomic n~place predicate R occurring in ¢ the set {(x1 ..., %z) | Rx1... x5} exists. Then {x |
¢} exists.

Indication of Proof: Using Axioms 1 through 12, it is possible to define the operations of
Tarski’s cylindrical algebra (see [Henkin 1955]) on r—place relations for each n; this can be
used to define sets of n—tuples which satisfy any formula of first-order logic, as long as
each atomic predicate appearing in the formula defines a set. It is possible to define pro-

11
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jections of sets of n—tuples on any coordinate, and this gives us the ability to define any set
{x | ¢} if the atomic relations used in ¢ are available as sets.

From the Meta-Theorem, we can prove the following discouraging theorem:
Theorem: The membership relation {(x, y) | x € ¥} does not exist.

Proof: If this relation existed, the Russell class {x | x ¢ x} would exist by Meta-Theorem 1.
More concretely, if the set above existed (call it E for the nonce), the set R = dom(E° N =),
the Russell class, would exist.

The axiomatization of NFU + Infinity is completed as follows:
Axiom 13, The relation < = {(x, y) | x< y} exists.
Axiom 14. For each set A, the set |JA = {x | for some y,x € y and y € A} exists.

Axiom 15, For each relation R, the relation SI{R} (SI for “singleton image”) = {(x},{y}) |
XRy} exists.

The set & 1{A} = {{x} | x € A} (the “singleton image” of the ser A) can be defined as
dom(SI{A x A}). Since we cannot have the membership relation, we settle for the
inclusion relation. Along with the machinery of set unions and “singleton images” of sets
and relations, this enables us to prove:

Meta-Theorem 2:; If ¢ is a stratified formula in the language of NFU as extended here,
then {x | ¢} exists.

Indication of Proof: We use a technique due to Grishin to eliminate the “non-existent”
membership relation from ¢. Replace “x € y” with “{x} ¢ y”. We demonstrate the
existence, not of the set {x | $} directly, but of a suitable iterated singleton image of this set,
by applying the singleton operation to both sides of each atomic formula of ¢ until a vari-
able y assigned type i in the stratification of ¢ appears only in its (N i)-fold singleton, and
not in its (N i + 1)-fold singleton, for N a suitably large natural number; this is possible
because ¢ is stratified and the applications of the singleton operation in the translation of €
on the left of an inclusion symbol exceed those on the right by one. The (N - i)-fold
singleton of y can then be replaced by a variable y restricted to the set of all (V- 1)-fold
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singletons, 531 I{V}, and the atomic sentences still determine sets because inclusion,

equality, and projection ,relaﬁons are sets and iterated singleton images of these relations are
sets. Meta-Theorem 1 is then applied to establish the existence of § 11 {{x | &}} for some j

(the number of applications of the singleton operation with which x appears), and the
axiom of set union is applied j times to yield the existence of {x | $}. Unstratified formulas
¢ cannot be relied upon to have extensions because the relation between objects and their

singletons is not provided. Note the similarity of the proof to the verification of our model
of NFU above. :

It will turn out that we do not have just NFU here, but NFU + Infinity. The reason is
that we have elected to introduce a primitive ordered pair with the same type as its pro-
jections, instead of using the definable Kuratowski pair {x, ) = {{x}, {x, y}}, which is two
types higher than its projections. There is actually a definable pair in NFU which is one
type higher than its projections. The original finite axiomatization of NF due to Hailperin
used the Kuratowski pair, and could be adapted to NFU without Infinity, but it is much
harder to understand than the axiomatization given here. Our axiomatization can also be
adapted to NFU without Infinity, but it makes it harder to work with, and we will not give
the details here. It should be noted that it is not actually possible to prove the existence of a
type-level ordered pair in NFU + Infinity, so the theory here is inessentially stronger than
plain NFU + Infinity; “inessentially” stronger because it is easy to interpret NFU + “there
is a type-level ordered pair” in NFU + Infinity; it should also be noted that one can prove
the existence of a type-level ordered pair in NFU + Infinity + Choice.

Now that we have Meta-Theorem 2, we will use stratified comprehension freely. We
will do this very informally; the best way to verify to oneself that a construction is stratified
is to verify that it can be carried out in type theory.

Arithmetic in NFU follows Frege. It is most natural to start with some general cardinal
arithmetic. The notion of equivalence of A and B is defined as usual as obtaining exactly
when there is a bijection between A and B. We can then define | A|, the cardinal number of
the set A, as the set of all sets equivalent to A. We define O as | {} | (note that the empty set is
the sole element of 0; the nonsets are not included), and 1 as |0} (any other singleton would
do!). We then define addition and multiplication: |A| + |Bl = [(Ax {opu B x {1})] and

[AlIBl=]AxB|. |

We can now define the natural numbers as the finite cardinals: we call a set of cardinal
numbers inductive if it contains O and is closed under addition of 1. The set N of natural
numbers can then be defined as the intersection of all inductive sets.

13
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The axioms of Peano arithmetic are easily verified (closure of N under addition and
multiplication as defined needs proof, of course); we omit this, but indicate how the Axiom
of Infinity is proven. If the universe were finite, V would be an element of some natural
number n, and n+ 1 would be empty (we can prove by induction that no set belonging to a
natural number has a proper subset belonging to the same natural number). We can prove
for any natural number m which is nonempty that m+1 is nonempty; in fact, the definition
of addition allows us to exhibit an element of k+1 given an element of « for any cardinal
number k! By induction (since { is certainly nonempty), all natural numbers are nonempty
and V can belong to no natural number. The presence of the type-level pair is what makes
this possible; if the pair were not at the same type as its projections, A x {0} would not
necessarily have the same cardinal as A (the definition of the obvious bijection would be
unstratified), and the definition of addition as we have given it would fail.

Defining the exponential function in the natural way (for general cardinals first, then for
natural numbers, as above), presents some problems. We would like to define | Bl |l a5 the
cardinality of the set BA of functions from A to B. This definition succeeds, in the sense
that it does define an operation on cardinals. However, if this operation is carried out in 77,
the cardinal number | B| 14! defined in this way is one type higher than | Al or |B]. Asa
result, we cannot define the function which takes (| BI, |4 ) to | BI 14l; its definition is not
stratified. We cannot define the map which takes | A] t02 14!, either. Another problem is that
the number | A ]2 defined in this way is not necessarily equal to| A | x |A].

There is a “trick” which enables us to cope with this problem. For each cardinal |Al,
define T{A} as | & 1{A} |, the cardinality of the singleton image of A. T is not a function;
T{x} is one type higher than «. It is easy to show that this is a well-defined operation on
cardinals, and that its inverse is a well-defined partial operation on cardinals. We define

| B] 1Al asT-1{| B} |; the exponential | B} 14! is now of the same typeas | A | and | B], butitis
not always defined, as we will see below. The T operation has very nice arithmetic
properties: we can prove that T{x} + T{A} = T{x+ A}, that T{x}T{A} = T{xA}, and that
T{x}T{A} = T{xA}. We will see below that it is nonetheless nontrivial.

In the special context of the natural numbers, we can prove that ™ is defined and a
natural number for all n and m by an inductive argument. It is easy to see that T{0} =0,
and it is also easy to prove that T{n + 1} = n+ 1 if T{n} = n; but it is not possible to prove
by induction that T{n} = n for all natural numbers n; N is defined as the intersection of all
inductive sers, so induction succeeds for any formula ¢ which is inductive and has an
extension; “T{n} = n” is an unstratified formula and need not have an extension. It is
known that the assertion that T{n} = n for all z cannot be proven from the axioms above,
but it is also known that it is consistent with the axioms above. We introduce it, therefore,
as

14
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Axiom 17. For each natural number n, T{n} =n.

This axiom, due to Rosser (in [Rosser 1973}, where it was proposed in the context of
NF), is called the Axiom of Counting. It is easy to show that the set {1, ..., n} of the first n
positive natural numbers belongs to T{n}; thus Axiom 17 justifies the intuitive idea of
counting using the positive integers (Rosser’s original form for the axiom was “{1, ... , n}
€ n,” which is equivalent). Our model construction above will yield a model of NFU +
Counting exactly when the automorphism j moves no natural number. Under the Axiom
of Counting, the two definitions for exponentiation proposed in turn above coincide for
natural numbers.

Note that, although induction for unstratified conditions is not a consequence of our
axioms, this does not indicate any weakness in the arithmetic of our theory; all formulas of
the interpretation of Peano arithmetic (or, indeed, of #** order arithmetic for any concrete )
are stratified, Jensen showed in [Jensen /969] that NFU has w—models, which demon-
strates that it is consistent with full mathematical induction; we will introduce a strong
axiom which will imply full mathematical induction (and much more) below.

We now consider general cardinal arithmetic. The definition of order relations for
cardinal numbers is the usual one, and the Schréder-Bemstein theorem can be proven for
infinite cardinals much as in the usual set theory.

We have the theorem of Cantor, 214! > |A |, but it does not mean quite the same thing as

it does in the usual set theory. The usual form |A| < | © {4} | of this theorem is obviously
false here, because | V| is certainly not less than | § {V}|. The power set of the universe,
£ {V}, is the set of all subsets of the universe, or the set of all sezs. We will see below that
it follows from the Axiom of Choice that | £ {V3 | is considerably smaller than | V1; there are
many urelements! However, 2|4! has not been definedas | & {V} |, butas T-1{ ® {V}].
Cantor’s original proof that [A| < | © {4} | went as follows: suppose that fis a bijection
from A onto & {A} (“clearly” |A] < | © {A}1, so the only possibility which needs to be
eliminated is exact equality). Define the set Ras {x € A | x ¢ f(x)}; now consider whether
FY(R) € R. This fails in NFU because the defining condition for R is not stratified. The
analogous argument in 77 or NFU shows that | © 1{4}] < | ® {a}|. The corresponding
nonstrict inequality clearly holds (it is not necessarily the case that 14} < | £ {4} | in NFU,
by the way). Let f be a bijective map from & 1{A} onto © {A}; consider the set R defined
as {x € A | x ¢ f{x})}, and ask whether f-1(R) C R; a contradiction follows from the ex-

istence of such an f as in the original argument. Nowitisthecasethat2l Cai_| o {arl,
so we have proven a special case of the desired inequality on cardinals (the case in which
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the exponent is the cardinality of a set of singletons); commutativity of T~! with arithmetic
operations turns out to be sufficient to prove the general case from this.

In the special case A = V this establishes that | £ 1{V}| < | £ {V}| < | V|. This means that
the unrestricted singleton map 1 such that 1(x) = {x} for all x) cannot exist in NFU; this
should not be surprising, considering its unstratified definition and its role in the proof of
Meta-Theorem 2 above. For any set A such that [A[ = | § {4} |, the Cantor theorem holds in
its original form; such sets are called “Cantorian” sets and their cardinals are called
Cantorian cardinals; the Cantorian cardinals are the fixed points of the T operation. Observe
that Cantor’s theorem implies that } vl is not Cantorian, and so that the T operation on
cardinals is nontrivial, and that the Axiom of Counting asserts that all finite cardinals are
Cantorian. A set A such that 1] A (the singleton map restricted to A) exists is called a
“strongly Cantorian” set, and the cardinal of such a set is called a strongly Cantorian
cardinal. All strongly Cantorian sets are Cantorian; the converse is a strong axiom of
infinity. |N| = R, can be proven to be Cantorian in NFU + Infinity; the assertion that R is
strongly Cantorian is equivalent to the Axiom of Counting. The conditions “Cantorian”
and “strongly Cantorian” are defined by unstratified formulas and do not determine sets.
The hereditarily strongly Cantorian sets can be thought of as analogous to the “small” sets
of the usual set theory; we will return to this.

We can subvert the stratification restrictions on comprehension with respect to vari-
ables restricted to a strongly Cantorian set. The trick is to use 1] A (the singleton map
restricted to A) to raise or lower the type of a variable x restricted to A. We can raise the
type of x by replacing it with “the element of 1] A(x)”, and lower the type of x by replacing it
with 1] A-1({x}). For example, the set {x € A | x ¢ x} canbe definedas {x € A | 1|4} &
x},if A is strongly Cantorian. Note that the Axiom of Counting allows us to apply this; we
do not need to consider the types of variables restricted to N. The map t | N is defined by in-
duction: (1| N)(0) = {0} and (INYm+ 1) = {n+1} if 1 N)(m) = {n}; this is a stratified
definition, which can be shown in NFU + Infinity to be a bijection between N and
£ 1{N}; the Axiom of Counting is needed to show that f{n) = {n} for each nin N.

In the theory of ordinals, as in the theory of cardinals, our definitions can follow those
of naive set theory. An ordinal number is an equivalence class of well-orderings under
similarity. The natural order on the ordinals (o < f if and only if an element of « is similar
to an initial segment of an element of B) is easily shown to be a well-ordering. Transfinite
induction works for stratified conditions. Since the natural order on the ordinals is a well-
ordering, it belongs to an ordinal Q. In naive set theory, we would now have the Burali-
Forti paradox: the order type of the ordinals below Q in the natural order could be proven
to be Q itself, which would imply that the natural order on the ordinals was similar to a
proper initial segment of itself, which is impossible. The point at which this proof fails in
NFU is the assertion that the order type of the ordinals below Q is Q. The assertion “the
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order type of the ordinals below a is o for each ordinal a”can be proven by transfinite
induction in the usual set theory, but it cannot be proven by induction in NFU, because the
induction is on an unstratified condition, which may not define a set of ordinals. The argu-
ment of the Burali-Forti paradox shows that the purported theorem must in fact be false.
The order type of the set of ordinals below a has relative type two higher than the type of
a; it can be shown by induction to be equivalent to the order type of the double singleton
image of an element of a. We define T{a} as the order type of the singleton image of an
element of a, by analogy with the type-raising operation already defined on the cardinals:
we can show that the order type of the ordinals below a is T2{a}, and the argument of the
Burali-Forti paradox shows that T2{Q} < Q; the order type of the ordinals is smaller than
the largest ordinals (there is, of course, no largest ordinal). Now observe that there is an
external descending sequence of ordinals Q > T2{Q} > T4{Q}...; it is easy to see that the
T operation respects order. This shows that in a model of NFU the “ordinals” cannot be
well-ordered; of course, it should also be noted that in a model of NFU € must be a
relation, so we should expect a model of the theory to be defective. This rules out the
possibility of a Replacement Axiom of the most general form for NFU, since there are
externally countable “proper classes,” but we will introduce an adequate replacement
scheme of a more restricted character below. The fixed points of the T operator on ordinals
are called “Cantorian” ordinals (ordinals of well-orderings whose domains are Cantorian)
and ordinals of well-orderings whose domains are strongly Cantorian are called “strongly
Cantorian” ordinals.

An aspect of the definitions of cardinal and ordinal numbers which we have not
discussed, but which provides a convenient introduction to the use of the Axiom of Choice
in NFU, is the fact that there is no function which takes A to | A| or a well-ordering to the
associated ordinal number. In general, if we take an equivalence relation R, the equivalence
class fx] = {y | yRx} of an element x of the domain of R would be one type higher than x in
TT, so we cannot define a map which takes each x to [x]. It is thus advantageous to choose
representative elements of each equivalence class [x], which would be at the same type as x.
The ability to do this is supplied by

Axiom 18, For any disjoint collection P of nonempty sets, there is a set C € {J P whose
intersection with each element of P is a singleton.

This is the form of the Axiom of Choice most convenient for this application. The
usual equivalences of forms of the Axiom of Choice can be proven in NFU. In particular,
Axiom 18 implies that there is a well-ordering of the universe, and also that the cardinal
numbers are well-ordered by the natural order. In NF, where the Axiom of Choice is
refutable, the technical inconvenience of being unable to define the map which takes x to
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[x] in equivalence class constructions is unavoidable. We could use Axiom 18 to redefine
cardinal numbers as typical sets of each cardinality and ordinal numbers as typical well-
orderings of each order type, but we prefer to stay with the natural definitions in these ‘
cases. In other kinds of equivalence class constructions, the availability of Choice can prove
to be a useful tool. f
A very interesting application of the Axiom of Choice in NFU is the ability to prove
that there are urelements (which is equivalent to the ability to refute the Axiom of Choice in
NF). We will prove this using the further assumption of the Axiom of Counting. The
original proof of Specker is similar in spirit but somewhat more complicated (a proof of
the negation of Choice in NF without Counting will be given below). Our proof is adequate
for any version of NFU in which the natural numbers are standard (since this clearly
implies Counting). '
We define exp as the function which sends each cardinal « to 2¥, We define ST{«} for
any cardinal x as the collection of cardinals A such that exp™(A) = x for some natural
number #. We consider the set ST{|V|}. Let u be the smallest cardinal in ST{|V|}.
Consider the sequence s and number » such that 5; = expi(u) for 0 £ i < n, with exp™() =
| V1. Now consider the sequence Ts of iterated images of T{1} under exp: Ts;=exp’ T{u})
= expTUHT{u}) = T{exp(u)} = T{s;}, when s; is defined (there may be further terms of
Ts). Note the application of the Axiom of Counting. If T{:} is not in ST{ | V| }, then neither
is Tsp+1 = exp(Tsn) =exp(T{ | VI =exp(| £ 1{V}])= | © {V}], 50 & {V} # V, and there
are urelements. If T{p} is in ST{ | V| }, then it is greater than or equal to p by choice of y,
and an easy induction shows that Ts; 2 s; for each i for which the latter is defined, so, in

particular, | ® 1{V} | = Tsp2 sp= | VI , which is absurd. Note that we have shown not only
that there are urelements, but that most objects in the universe are urelements, since

| e {wi<ivi,

The T operation is an external homomorphism from cardinals or ordinals into cardinals
or ordinals, respectively, with respect to the usual operations on cardinals and ordinals.
This should remind us of the fact that we used external automorphisms of models to
construct models of NFU above. It turns out that the T operations inside the theory are
closely related to the isomorphism j used in constructing models of the theory. We will
develop the theory of well-founded extensional relations below, in which it proves possible
to duplicate our technique for constructing models of NFU in NFU itself, using the T
operation on isomorphism types of such relations as the external automorphism (since T is
not a function in NFU, we get an interpretation rather than a model).

At this point, we have developed a theory similar to that in Rosser’s Logic for Mathe-
maticians. The differences are that urelements are allowed, that the ordered pair is primitive
(the theorem above shows that most pairs must be urelements, so there is no hope of a set-
theoretic definition of the pair!), and that we provide the full Axiom of Choice. Rosser used
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the denumerable Axiom of Choice, due to general misgivings about choice; this means that
the system of his book (NF + Counting + denumerable Choice) may well be consistent, as
far as anyone knows. Everything in Rosser’s book can be adapted to the system given
here, except the definition he gives for the type-level ordered pair.

We reiterate Rosser’s claim that this set theory is adequate as a foundation for mathe-
matics. As it stands, it is stronger than the theory of types (Axiom 17 adds considerable
strength), but weaker than ZFC. We will see below how to extend it so that it is at least as
strong as ZFC, but the strength of 77 alone is more than adequate for most classical
mathematics. ‘

We claim, moreover, that this set theory is a convenient medium for mathematics.
Stratification requires us to apply the singleton operation, one of the T operations, or a
similar type-raising device occasionally, but the appropriate use of these is not hard to
learn. Mathematical practice is usually stratified in any case, except for confusion of objects
with their singletons; this is true even of set theory if the objects of ZFC are interpreted as
isomorphism types of well-founded extensional relations. We gain the mild technical
convenience that many large collections become sets; for example, most natural categories
are sets in NFU. We will see below that it is possible to arrange for our universe to contain
an “inner model” (it will not be a set) of a set theory of the usual type, so Quine-style
theories can be understood as strictly extending Zermelo-style theories.

5. Interpreting Set Theory of the Usual Type in NFU; the Axiom of Small Ordinals.

It is possible to interpret bounded Zermelo set theory in a suitable extension of NFU in
a natural way. The cumulative hierarchy appears in NFU as (part of) the set of iso-
morphism types of “connected” well-founded extensional relations. A relation R is well-
founded if for each subset S of the union of the domain and converse domain of R there is
a “minimal” element s € S such that ~ rRs for all r € S. A relation R is “extensional” if the
preimage of an element of the converse domain of R determines the element precisely: if it
is the case for every s that sR¢ if and only if sRu, then ¢ = u. A well-founded extensional
relation is “connected” if and only if there is an element 7 of the converse domain of R such
that for every s in domain of R there is a finite sequence s; such that sg = 5, S;Rs;+1
whenever the terms are defined, and the last term of the sequence is 7. The element 7
(necessarily unique — a consequence of well-foundedness) is called the “top” of the
relation. With each element x in the converse domain of a “connected” well-founded
extensional relation R, we can associate a subrelation of R, the maximal connected well-
founded extensional subrelation of which it is the “top”, called the “component” associated
with x. In the usual set theory, each nonempty set is associated with a unique “connected”
well-founded extensional relation, that of membership on its transitive closure (understood
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as including the set itself); the elements of the set have as their associated relations the
components associated with the preimages of the “top” of the associated relation of the
original set. The empty set presents a technical problem. We handle this by adding the top 7
to the structure: let (7, R) be a “connected well-founded extensional relation with top” in
case R is a “connected well-founded extensional relation” as defined above and ¢ is its
“top”, or in case R is empty. This allows us to associate components with minimal
elements of R as well (elements of the domain which are not elements of the converse
domain). We will usually refer to a structure (7, R) simply as R, which is entirely safe if R
is nonempty. We will call the components associated with the preimages of the top of a
connected well-founded extensional relation the “immediate” components of the relation.
We call the elements of the domain and converse domain of a connected well-founded
extensional relation the “nodes” of the relation.

We call the set of isomorphism types of connected well-founded extensional relations
Z. We define a relation E on Z: xEy holds if an element of x is isomorphic to an immediate
component of an element of y. Notice that the type of the transitive closure of a set A (in the
usual set theory) stands in the relation E to the type of the transitive closure of a set B
exactly when A is an element of B. It is easy to prove that E is a well-founded extensional
relation. It is not connected, but this can be corrected; we can form a relation E* by adding
a top element 7 such that xE*z for all x € Z. Now E* belongs to some isomorphism type v
€ Z. For any x € Zand R € x, we define T{x} as the isomorphism type of the singleton
image SI{R} (which is easily seen to be in Z as well, since SI{R} is clearly connected,
well-founded, and extensional precisely when R is). Note that T{x} ET{y} exactly when
xEy. The restriction of the relation E to the isomorphism types of the components
associated with the nodes of a connected well-founded extensional relation R is parallel in
structure to the relation R itself (it is itself the component of E below the type of R); it is
straightforward to show that if the isomorphism type of R is x, the isomorphism type of
the relation E restricted to isomorphism types of components of R is T2{x} (isomorphism
types of components of R are two types higher than elements of the domain and converse
domain of R). We apply this argument to the isomorphism type v of E*; we see that the
isomorphism type of the component of E determined by v itself is T2{v}. It is easy to see
that there are connected well-founded extensional relations which have types not in this
component; consider the relation obtained by adding a new top node to E*; it follows that
T2{v} is distinct from v, since a well-founded relation cannot be isomorphic to a proper
component of itself. This argument is analogous to the argument from the Burali-Forti
paradox that T2{Q} < Q.

The relation E is being considered as a “membership” relation; thus, we would like to
know what “comprehension” principles it satisfies. For what subsets S of Z are there
elements x of Z such that for alt y, yEx if and only if y € S§? This cannot hold for every set

S; an obvious counterexample is the set of all x € Z such that ~xEx, which is actually the
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set Z itself. But it does hold for every subset Sof T[Z] = {T{z} | z € Z}. We want to build
a well-founded extensional relation which has immediate components in exactly the iso-
morphism classes in $. The trick is that we can construct elements of each class T{x} in §
by replacing each object {p} in a chosen element SI{R} of T{x} with ({p}, R); these
relations are disjoint. Take the union of this collection of relations and add a top element
related to the top of each of the subrelations, and we get an element of the desired iso-
morphism class.

Note the essential use of the Axiom of Choice in constructing relation types repre-
senting subsets of T[Z]; in NF it would not be possible to choose a single element of each
relation type as we did above. Without the Axiom of Choice, we could construct a
connected well-founded relation which would not be extensional by taking disjoint copies
of every relation in each class in T [S] and adding a top node, but we would have no way to
pick one relation from each class. There is a way around this. It is possible to choose a
canonical element of each class T2{x}, namely, E restricted to the component of E
determined by x; any collection of such canonical elements of classes can be made disjoint
by pairing each node of each relation with its top node. Thus, in the absence of the Axiom
of Choice, as in NF, we can find relation types representing each subset of T2{Z].

If we let S be T[Z] itself, we get a relation R in a class x which has components
associated with preimages of its top node in each class in T[Z]. The paradoxical thing about
this is that one of these components must be of type T{x}, and must in its turn have a
component of type T2{x}, and so forth. The top nodes of these components would seem to
form a descending chain in the relation R, which is impossible, since R is well-founded!
But the definition of the descending chain is unstratified, so no contradiction ensues. This is
analogous to the result that there is an external descending sequence in the ordinals.

We now present the local version of the cumulative hierarchy of the usual set theory. If
S is a subset of Z, let P(S) be the collection of elements of Z whose preimages under E
belong to S, if the collection of preimages under E of elements of P(S) is £ {S}, wecall §
complete. 1t should be clear that | P(S)| = exp(|§1) if § is complete. Let H be the intersection
of all sets of subsets of Z which are closed under the P operation {which is a function) and
contain the unions of all chains of their elements under inclusion. H is an analogue of the
- cumulative hierarchy of the usual set theory; we call an element of H a “stage.” The
collection of “transitive” subsets of Z (subsets § such that § © P(S)) is closed under the P
operation and closed under union of nested chains of its elements, so all elements of H are
transitive. We can then prove similarly that the elements of H below any stage x are well-
ordered by inclusion, with successors being images under P and unions being taken at
limits. Consider the set of stages x for which this is true. It should be clear that UH =
P(UH), and that YH=Z.
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Each ordinal belongs to Z (well-orderings are connected well-founded extensional
relations!), and so belongs to some stage, and to a first stage. It should be clear that the first
stage to which o + 1 belongs is the successor of the first stage to which o belongs, and that
the first stage to which the limit of a sequence of ordinals belongs is the limit of the stages
at which the ordinals in the sequence first appear. No stage can contain more than one new
ordinal; but not every stage can contain even one new ordinal: if the last stage Z contained a
new ordinal a, the ordinal o+ 1 would not belong to any stage.

The image under T (T2 in the absence of AC) of a stage with no incomplete pre-
decessors is clearly a complete stage. The image under T (T2 in the absence of AC, as
before) of a stage with incomplete predecessors would not be a stage.

Now consider the complete stages. Z is not complete. There is a first incomplete stage
Zo}; it might be Z itself. Since the image under T (T2 in the absence of AC) of Z, is
complete and a stage, it is distinct from Z (and so below Zg). The cardinalities of the
complete stages are the beth numbers. Each complete successor stage must contain a new
ordinal; we can define the ordinal rank of any stage at or below Zy as the new ordinal
appearing in the successor stage to its image under T (note the type differential; T2 would
be used in the absence of Choice) “realizing™ the set of ordinals appearing in previous
stages. Interesting stages to consider are the first incomplete stage (whose ordinal rank is
the rank of the initial segment of thecumulative hierarchy realized in our system) and the
first stage which does not contain a new ordinal (not necessarily the same).

We can now present an interpretation of NFU inside NFU which is precisely
analogous to the construction of a model of NFU in the usual set theory given above.
Recall that Z is defined as the first incomplete stage (the initial segment of the cumulative
hierarchy encoded in our system). The elements of Z, will be the objects of our inter-
pretation. We define “x €’y ” forx, y € Zp as “T{x} Ey and y EP(T [Zo])”. We omit the
proof that this is an interpretation of NFU, but it is easy to reconstruct if one bears in mind
that E is analogous to membership in the underlying nonstandard model of set theory in
the original construction, T is analogous to the external automorphism j (actually, ana-
logous to its inverse), Zg is analogous to Vg, and P(T[Z]) is analogous to Vja)+1. The
slight technical problem is that one does not have access to analogues of stages above stage
a of the iterative hierarchy in the original construction, but this can be remedied by
considering the fact that j projects fact about these levels to lower levels. A version of this
interpretation could be carried out as well in NF (in which the equivalence relation
interpreting equality must be nontrivial; sece [Holmes /9914] for details), but it would yield
an interpretation of NFU with urelements in NF, not an intepretation of NF; elements of
the analogue of Zp —~ P(T[Z]) will be interpreted as urelements. An interpretation is con-
structed here rather than a model, because €’ is not a relation; its definition is unstratified
(with the same type differential as in the case of € itself).
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We observe that the models of NFU described above and the interpretation of NFU
just outlined satisfy an additional axiom not discussed so far. In the models described
initially, consider the map which sends the singleton of x to x for each x in Vj(q). This map
will be interpreted in the model of NFU as sending the singleton of x to j~1(x); it
implements the external map j~1 as a type-raising operation! Note that j~1(x) is always
interpreted as a set. The internal interpretation of NFU has an analogous map, the one
which sends the type of a relation whose top node has one preimage under E to the type of
the relation obtained by omitting that top node, restricted to the case where the relation with

top node removed is in T{Z]. The axiom satisfied in both cases is the

Axiom of Endomorphism: There is a one-to-one map Endo from £ 1{V} into £ {V} (a

map from singletons into sets) such that for each set A, Endo({A}) = {Endo({B}) | B ¢
A}.

The fact that Endo implements j~1 in models makes it easy to verify this, Note that an
urelement # has Endo({u}) a set as well, but we have less control over what this set may
be. We will write Endo{A} instead of Endo({A}) hereafter. This axiom is mostly of
technical interest, and we will not officially adopt it as an axiom of our system; note that it
adds no strength, since it holds in the interpretation of NFU on Z. It is interesting to note
that general “accessible pointed graphs” can be used to develop an interpretation of a
Zermelo-style set theory with Aczel’s Axiom of Anti-Foundation (AFA), (see [Aczel
1988]) which will generate an internal interpretation of NFU in NFU which satisfies
Endomorphism and an axiom related to AFA which implies AFA for strongly Cantorian
graphs. This is developed in our paper {Holmes 1991a]. The Axiom of Endomorphism is
false in NF as we showed in [Holmes 199/a] (and so implies the existence of urelements;
but it also gives structure to urelements, by associating each urelement » with the set
Endo{u}).

Another tempting candidate for an axiom, which holds in sensible models, is “Z = Z;”.

We observe that the stages of Z with strongly Cantorian rank provide an interpretation
of bounded Zermelo set theory with E as membership. Clearly each strongly Cantorian
rank is complete (every ordinal below a strongly Cantorian ordinal is strongly Cantorian,
and the rank of the first incomplete stage Z, is moved by T). Bounded Zermelo set theory
is interpreted because set definitions involving quantification over all strongly Cantorian
stages cannot be encoded, since the strongly Cantorian ordinals, and so the union of the
corresponding stages, do not make up a set. We are trying to capture the idea that the
notion of “strongly Cantorian” captures the size of the sets of the usual kind of set theory.
A warning is needed: Axiom 17 is needed to establish Infinity in this interpretation of
bounded Zermelo set theory; otherwise, all strongly Cantorian ordinals might be finite.
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It is convenient, as it is in ZFC, to be able to talk about proper classes. Quine
introduced the use of proper classes in NF in his book Modern Logic {Quine 19517); the
system of this book is commonty known as ML. The original system of ML was in-
consistent; one should be careful that one has the later editions which correct the original
error. ML adds an impredicative system of proper classes to NF, and is stronger than NF,
although Wang has shown that the corrected ML is consistent if NF is consistent. Our use
of classes here will be restricted to the sort whlch can be reduced to talk of formulas, and
so involves no strengthening of our theory.

It is possible to arrange for the relation E to coincide with membership € on the
strongly Cantorian stages by using a permutation technique to redefine membership. If n is
a permutation of V, we can redefine membership, defining “x €’y ” as “x € n(y)”, and the
resulting system will still satisfy the axioms of NFU. The application of this method to NF
is due to Dana Scott in [Scott 7962]; all stratified sentences are invariant under such
permutations, and C. W. Henson [/973] showed that some unstratified sentences, such as
the Axiom of Counting, are also invariant. Forster shows in Forster [1992] that, if one
allows certain external permutations, the class of invariant sentences can be made to be
precisely the class of stratified sentences. Such permutation techniques are almost the only
ones known for obtaining consistency and independence results relative to NF (the
methods known for the usual set theory can be adapted to NFU). The permutation 7t which
we will use interchanges each element T{x} of T[{Z] with the set of preimages of x under
E, the application of T is needed for stratification. Each erstwhile element of T {Z] gets the
preimages under E of its preimage under T as its new elements; strongly Cantorian
elements of Z get their own preimages under E as their new elements. Thus, we have a
class inner model of bounded Zermelo set theory in any model of NFU + Counting,

We introduce a notion of “small” ordinal; an ordinal is “small” if it is less than some
Cantorian ordinal. The notion of “strongly Cantorian” as a notion of smallness needs no
corresponding refinement, since an ordinal less than a strongly Cantorian ordinal is
necessarily strongly Cantorian. A more powerful notion of “smaliness,” with which the
following development could be duplicated, asserts that an ordinal « is small if it is less
than some ordinal P such that § <T{p}. ‘

We introduce a powerful axiom scheme to be adjoined to the theory of the previous
section which has the effect that the notions of “smallness” so far proposed (Cantorian,
strongly Cantorian, and “small” itself) are collapsed together and the stages of Z of small
ordinal rank come to interpret full ZFC (at least). With the application of the permutation
technique described above, we get a class inner model of ZFC in our theory. We call it the
Axiom (Scheme) of Small Ordinals.

Axiom scheme 19. For any formula ¢ (not necessarily stratified) there is a set B whose
small ordinal elements are exactly the small ordinals x such that ¢.
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The strength of our full theory with axiom scheme 19 is at least that of ZFC; we
~ conjecture that this is exactly its strength, but we do not know how to prove this. We know
how to model the full theory in the presence of a measurable cardinal (using elementary
embeddings — to be discussed in our pending [Holmes forthcoming b}). The motivation
of the Axiom of Small Ordinals is that the small ordinals are to be identified as the
standard ordinals and the set of all ordinals in NFU is to be understood as an initial
segment of a nonstandard extension of the ordinals. The intuitive argument for the Axiom
is that the condition ¢, whether stratified or not, does define a class of standard ordinals,
and the analogue of that standard class in the nonstandard extension of the ordinals,
intersected with the set of ordinals of NFU, will give the desired set B. We do not see how
to implement this except with large cardinal axioms, but our experience with the Axiom
leads us to believe that it gives no more strength than ZFC. A merit of this axiom is that it
is natural in terms of NFU; it may be considered as an extension of the possibilities of
subversion of stratification restrictions on set formation when variables are restricted to
strongly Cantorian sets. Axioms like “there is an inaccessible cardinal” (which implies that
there is a Cantorian inaccessible cardinal), which certainly give at least the strength of ZFC
(if an inner model of ZFC is desired, the inaccessible cardinal should be strongly
Cantorian) have two vices: their motivation is extrinsic to NFU, and they are generally too
strong; the axiom above, for instance, defines a theory stronger than ZFC, It is not easy to
define a natural extension of NFU which is precisely equiconsistent with ZFC, as we hope
that we have done with axiom scheme 19. Even if the Axiom of Small Ordinals is too
strong (it might be a large cardinal axiom) it remains a natural axiom with which to extend
NFU. In class language, the Axiom asserts that each class of small ordinals is the inter-
section of a set with the class of all small ordinals. '

We present applications of the Axiom of Small Ordinals. First of all, axiom 17 is now
redundant. We can prove the Axiom of Counting as follows: there is a set B whose small
ordinal members are exactly the finite ordinals n such that T{n} = n. Consider the smallest
ordinal m not in this set. If it is a finite ordinal, then T{m—~1} = m~1 and T{m} * m, which
is absurd, It must then be w, and it is established that T{n} = n for each finite ordinal n,
and so the analogous result holds for finite cardinal numbers as well.

More generally, we can prove that every Cantorian ordinal is strongly Cantorian, which
implies that every small ordinal is su'ongly Cantorian, and these three notions collapse
together. Let a be a Cantorian ordinal. There is a set B whose small ordinal elements are
exactly the strongly Cantorian ordinals less than a; the complement of this set has a
smallest element 8. It is straightforward to prove that successors of strongly Cantorian
ordinals are strongly Cantorian and limits of sets of strongly Cantorian ordinals are
strongly Cantorian; it follows that B is strongly Cantorian and equal to a. We have only
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one notion of “smallness,” for which we will use the terms “small” and “Cantorian”
henceforth.

We have already shown that a Replacement scheme of the most obvious form is
impossible in NFU, since there are externally countable proper classes. But we can prove
that any class of Cantorian ordinals which can be placed in an external one-to-one corres-
pondence with a Cantorian set is a set (necessarily Cantorian), The proof goes as follows:
code pairs of ordinals by ordinals in a natural way (pairs of Cantorian ordinals should
correspond exactly to the Cantorian ordinals, which will hold under the usual scheme).
Suppose that for each element x of a Cantorian set A there is exactly one Cantorian ordinal y
such that ¢. By the Axiom of Choice, we may suppose without loss of generality that A is
the set of ordinals less than some Cantorian ordinal a (a bijection exists between any
Cantorian A and such a segment of the ordinals). Consider the class of ordinals which code
pairs of ordinals (x, y) such that x < a and ¢; such ordinals are small, and by the Axiom of
Small Ordinals there is a set B whose small ordinal elements are exactly the elements of
this class. Now consider the set C={y | for some x < a, y is the smallest ordinal such that
(x,¥) € B}; this is the desired set. A version of Separation is easier to prove yet: let abe a
Cantorian ordinal; then {x < a | ¢} is the intersection of a set B with the class of small
ordinals, and the intersection of B with the set of ordinals less than « is the desired set.
Another useful result provable with the Axiom of Small Ordinals is that any set A of
Cantorian ordinals is a Cantorian set: consider the strictly monotone map from the set A to
an initial segment of the ordinals; if its range contains a non-Cantorian ordinal, there isa
non-Cantorian ordinal less than a (strongly) Cantorian ordinal, which is impossible. A
similar argument shows that any class of Cantorian ordinals is either a Cantorian set or is
placed in one-to-one correspondence with the class of Cantorian ordinals by the strictly
monotone class map from the class onto an initial (class) segment of the ordinals.

It is easy to show that exp(x) is Cantorian if x is Cantorian in NFU alone. This
observation allows us to encode the small stages of the cumulative hierarchy into the small
ordinals: when V3 has been encoded into the ordinals of well-orderings of sets with
cardinality less than | V| for each ordinal B less than an ordinal a, V, has already been
encoded if a is limit; if a is successor, encode the sets in Viy ~V-1 into the ordinals of
well-orderings of sets with cardinality greater than or equal to | Vo1 | and strictly less than

| Vgl a collection of ordinals which is easily seen to be the right size. This process can be
generalized to an encoding of elements of Z by general ordinals, but some applications of
type-raising operations would be needed to recover stratification; the elements of the stages
with small index would be encoded by exactly the small ordinals. Use of this encoding
enables us to apply unbounded Separation and Replacement without restriction to bounded
quantifiers in building sets in the interpretation of the cumulative hierarchy, which gives us
the full strength of ZFC (technical details are omitted here). If the Axiom of Choice is not
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desired, it is sufficient for interpreting ZF to have a stronger version of axiom scheme 19
which applies to elements of Z rather than ordinals.

'We hope that we have now indicated that NFU, suitably extended, is an adequate
medium for doing mathematics. The habit of maintaining stratification is not hard to learn,
and the stratification restrictions can be evaded in many applications by using the Axiom of
Counting or the Axiom of Small Ordinals. In return, one recovers attractive definitions of
cardinal and ordinal number, and most of the constructions of naive set theory. The notion
of a set of the cumulative hierarchy is presented as a generalization of the notion of ordinal
number. It is interesting to observe that the surreal numbers of Conway (see [Conway
- 1976]) can be constructed as equivalence classes of suitable relations (his construction is
analogous to the von Neumann definition of the ordinals, and so is unstratified), and that
the surreal numbers form a set in NFU. Most interesting categories are sets in NFU, such
as the category of sets, the category of topological spaces, the category of groups or the
category of categories itself (though it should be noted that the properties of these big
categories are not quite what one might expect; see [McLarty 1992]). A text which
develops the basics in the system of our axioms 1 through 18 already exists in Rosser’s
[1973] (read in accordance with our instructions above).

6. What is Wrong with NF?; “Tangled” Type Theories Introduced.

In ali of this, we have said little about NF itself, except to indicate that NF + Counting
proves that AC is false (since NFU + Counting + Choice proves that there are urelements),
and to comment where the lack of Choice would affect constructions carried out above if
they were done in NF. We have seen that the internal interpretation of NFU in NFU would
give an interpretation of NFU (not of NF?) if carried out in NF.

We will not give Specker’s original refutation of the Axiom of Choice in NF here, but
we give an alternative proof. Suppose that the Axiom of Choice holds. Consider the
cardinalities of the complete stages in Z (the beth numbers). Define 3¢ as the cardinality of
the stage with ordinal rank a, when all stages below stage a are complete. Note that Jg+1
= exp{(2 ¢ for all a in the domain of definition. Consider the first cardinal of an incomplete
stage, g, which is the Iast beth number. Clearly, 3y > T{ { v13, as otherwise we could con-
struct another complete stage (without choice, these cardinals might be incomparable). 3¢
must be the first beth number greater than T{| V] }, unless 3¢ is the first and 3¢ = V1,
because exp(T{ | V1)) =exp(] £ 1{V}| = | © {V}|, whichisequal to | V| because we are in NF
(it follows also that exp(T#*1{| V| }) = T#{ | V| } for each concrete n). In either case, there is a
first beth number greater than or equal to T{ [vi};callit A, Now the first beth number
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gr&terthanorequalto'l’z{lVl}mustbe:T{z;o}andmustbelessthanT{lV|} and the next
beth number after this must be greater than or equal to T{| V13, and so must be 3y itself.

But this implies that T{{o} = (o~ 1 , which is impossible: consider the parity (even or
odd) of the finite part of the ordinal {o, which must be preserved by the T operation (the
finite parts of {o and T{{o} need not be equal themselves, since we are not assuming the
Axiom of Counting, but their parity will be the same). The contradiction establishes that the
Axiom of Choice is false in NF.

This argument shows that there cannot be a first beth number greater than or equal to
T{| |}, and so, since the last beth number is not less than or equal to T{ | ¥}, it must be
incomparable with T{ | V1 }.

An important tool in the study of big cardinals (we use this term to denote cardinals
near the cardinality of the universe, as opposed to large cardinals in the usual sense) in NF
is the “Specker tree” ST{x} (already used in our proof of the existence of urelements in
the system of axioms 1 through 18 above), the set of iterated preimages of a cardinal x
under exp, with the cardinal in question being the top of the tree and the nodes immediately
below any node of the tree being its preimages under exp. A classical theorem of
Sierpiriski, provable in NF, asserts that (k) < exp2(x), where X(x) is the first cardinal of
a well-ordered set not less than or equal to K, or the image (if any) under T-2 of the
cardinality of the set of order types of well-ordered subsets of a set of cardinality x (X isa
stratified version of Hartog’s function). We have improved the exponent in Sierpiriski’s
original result by using a type-level formulation of the ordered pair due to Quine (see
[Rosser 1973]) in place of the usual ordered pair, which raises types by two; this is a minor
technical change which makes no essential difference in the sequel. We prove that the
Specker tree of any cardinal is well-founded: suppose that a subset § of the tree had no
minimal element (element with no preimage in exp also in S). Consider the smallest
cardinal X(x) for x in the Specker tree; choose a x realizing this value, and consider a
preimage A of x under exp? in §, which exists by hypothesis; by the result of Sierpiriski
cited above, X(A) < exp2(A) = k 2 X(x), contradicting minimality of X(x). Note that the
concept of Specker trees makes sense in ZF as in NF(U), and that the theorem that Specker
trees are well-founded is valid there as well. This theorem is due to Forster, and the proof
can be found in {Forster 1992].

ST{ | V1}, the Specker tree of the cardinality of the universe, contains the “descending
sequence” of iterated preimages of | V| under T, since this is also a “descending sequence”
of iterated images of | V| under exp. Since Specker trees are well-founded, this “sequence”
cannot be a set. To avoid sethood for this sequence, ST{ | V1 } must be “bushy”; there must
be many descending paths in ST{ vl }, because if there were only one, it would be the
external sequence and could be defined as a set {a parity argument is required to complete
this argument if not all natural numbers are standard). Moreover, the same argument can
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be applied to any subtree of the Specker tree which contains all elements of the external
- sequence. ST{ | V1 } also has the property of having its own image under T as an immediate
component (ST{T{| V|}}). As we have seen above, the strange properties of ST v}
enable us to disprove Choice in NF + Counting.

The bizarre properties of NF as opposed to NFU are superficially rather surprising; on
the face of it, it is unclear why the assumption of strong extensionality has such profound
effects. It should be clear, though, that the sticking point is the fact that exp sends T{ | V] } to

| vi if 8 {V} =V, so introducing the external descending sequence in the Specker tree of | V1.
We believe that we can explain what is wrong with NF; we will adapt Jensen’s proof of
Con(NFU) to produce a proof of the equiconsistency of NF with a version of type theory
whose strangeness should be obvious. Moreover, we are able to convert this type theory to
a Zermelo-style theory, still equiconsistent with NF, in which the “obvious” strangeness
which NF shares with NFU, the presence of big sets like the universe and the set of all
ordinals, disappears. The reasons for the presence of “bushy” Specker trees and the failure
of the Axiom of Choice will be made clearer.

The crucial feature of the version of 77U interpreted in the proofs of Con(NFU) given
above was that it was possible to define a membership relation €4, Of type a objects
{members of V) in type B objects (members of Vp) for any a < B, in contrast to the
situation in the usual type theory, where f§ would have to be the successor of a. This was
easy to implement in TTU, since we could interpret the excess objects in Vg ~ Vg+1 as ur-
elements. It is unclear why one would think that one could do this in extensional 77. But
we now show that the consistency of NF is precisely equivalent to the question of whether
such a version of 77 is consistent.

Let “tangled type theory” (T7T) be a first-order many-sorted theory with sorts indexed
by the non-negative integers (or, more generally, any linearly ordered set with no upper
bound), with equality and membership. An atomic sentence “x € y” will be well-formed
exactly when the type of x is less than the type of y; an atomic sentence “x = y” will be
well-formed exactly when x and y have the same type.

If ¢ is a well-formed formula of 77 and s is a strictly increasing function from the
non-negative integers into the set of types (sequence of types with non-negative indices),
the formula ¢* produced by replacing each type index i in ¢ with 5; is a well-formed
formula of TTT. The axioms of TTT will be exactly the formulas ¢* for s any appropriate
sequence and ¢ an axiom of 77.

Each object of type T will have independent interpretations as a set of type ¢ objects for
each o < 1; each of the extensions of an object will determine it uniquely. Relative to any
ascending sequence of types, it will be possible to construct sets exactly as they are
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We claim that T7T is consistent exactly when NF is consistent. If NF is consistent, let
M be the universe of a model of NF. Let M * {i} be used as type i for each i, and let “(x, i)
€rrr (7,7)” be defined as “x € yr y”, where €y is the membership relation of the model
of NF; it should be clear that this gives us a model of TTT with € 777 as the membership
relation. ‘

Suppose that we have a model of 777. Let X be a finite set of formulas of the language
of TT. Let n be the number of types which occur in X. Let A be any n—element set of types;
we define ¢4 as ¢S, where s is a strictly increasing sequence of types whose first n
elements are the elements of A. Now X and our model of 77T determine a partition of the
collection of n-element sets of types into finitely many parts, with the element of the
partition into which a set A falls being determined by the truth-values of ¢ for each ¢ in E.
This partition has an infinite homogeneous set H by Ramsey’s theorem, which is the range
of a unique strictly increasing sequence A. The interpretation of 77 obtained by interpreting
each formula ¢ as ¢* satisfies the scheme of typical ambiguity ¢« ¢ for each formula
¢ in Z. Compactness gives us the consistency of the full scheme of typical ambiguity, and
Con(NF) follows by the model theory results of Specker cited above.

It should be clear that 77T with any infinite linearly ordered set of types is equi-
consistent with 77T with the usual types, by a compactness argument.

We can also construct models of NF from models of TTT using automorphisms.
Suppose we have a model of 77T work inside a model of set theory with an external
automorphism j. Suppose that j(t) > t for some type 7. Let type 7 in the model of 77T be
taken to be the model of NF, with membership “x €7 y”defined as “x € 777 j(3)”; note
that j(y) is of the higher type j(7). The proof that this is 2 model of NF is "precisely
analogous to the proof that the model of NFU given above was a model of NFU. If we
wanted to model NF + Counting in this way, we would need all natural numbers to be
fixed by j, so we would need to use more types.

Tangled type theory with urelements proved quite easy to model; it is quite unclear how
to model 77T with its strong extensionality.

It is possible in TT to model part of the type structure internally. If we work with type n
as the universe, we can use the singletons of type n—1 objects to represent type n—1 objects,
the set of double singletons of type n—2 objects to represent type n—2 objects, and so forth
(notice that the sets representing types are actually found in type n+1). Inclusion with its
domain (but not its range!) restricted to the set of singletons then represents membership of
type n—1 objects in type n objects, while the singleton image of this relation represents
membership of type n-2 objects in type n—1 objects. In general, type n — i is represented
by the set of i-fold singletons in type n, and the membership relation of type n—i—1in
type n—i is represented by the i?® iterated singleton image of the inclusion relation restricted
to singletons. We can thus represent the theory of n types of 77 internally to T7 for each
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concrete n. This technique can be carried out in NF (or NFU) as well. In NF, if V is taken
to represent type n, type n—i will be represented by £ zI{V}, and a restriction of SI/{C}will

represent membership of type n—i — 1 in type n — i. This construction can only be carried
out to each concrete finite stage; we have shown above that the set of cardinalities of the
types of this model is not a set, so the complete model cannot be a set. We will return to
this below when we discuss Orey’s proof of the independence of the Axiom of Counting
from NF.

In 77T, the same technique can be used to “introspect” on the type structure. But the
internal picture of the type structure is quite different from the external one. Choose a type
7 and fix a sequence of types above 7 in which to define sets of type T objects, cardinals of
such sets, and so forth. Now observe that each sequence of types below 1 with our fixed
sequence of higher types appended is associated with an interpretation of 77, which can
introspect on its own type structure exactly as in the preceding paragraph. The cardinals of
each set representing a type in each of these interpretations is mapped to the cardinal of the
set interpreting the next higher type in the sequence by the exponential map (as defined for
cardinals of sets of type T objects — the identity of this map as defined in any of these
sequences of types depends only on the fixed sequence of types above type 1). This
ensures that the different representations of each type ¢ < 1, one for each finite sequence of
types beginning with ¢ and ending with 7, are different, because their cardinals have
different behavior under the exponential map. The cardinals of the various representations
of types below T are seen to be elements of the Specker tree of the cardinal of type T itself
(considered as a set in the type above it); so we see that the Specker tree of type T has the
“bushiness” already seen in NF.

Instead of investigating the internal type structure of 777 in detail, we present a new
type theory in which the types form a tree. The types will be the ascending sequences of
non-negative integers whose ranges are cofinite. If s is a sequence, we define the sequence

s*, called the “tail” of s so that s: = 5i+1. A sentence “x € y” will be well-formed exactly

when the type of y is the “tail” of the type of x; a sentence “x =y” will be well-formed
exactly when the types of y is the tail of the the type of x; a sentence “x = y” will be well-
formed, as usual, exactly when the types of x and y are the same. The axioms of the type
theory are those which are obtained from axioms of 77 by substituting types of this
system for types of TT in such a way as to preserve well-formedness, plus an additional
axiom scheme which provides that the truth value of a sentence is completely determined
by the first elements sp of the types s which occur in it. The motivation is that each
sequence s is to be understood as the index of a version of type sp in T77; the additional
information specifies what sequence of higher types we are to use, and we recover the
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uniqueness of the “power set” type for each type. The fact that the sequences used as type

‘indices are increasing and the “power set”of a type is the tail of the sequence which is its
index ensures that our sentences translate to sentences of T77; the additional condition
ensures that the truth values of sentences which translate to the same sentence of 777 are
the same. The simple coding of the types as sequences given here are was suggested
privately by Robert Solovay; the author originally used a more complicated way of
representing the tree of types. The proof of equiconsistency of this system with 777 is
casy. ‘

An advantage of this scheme is that it can be converted into a version of bounded
Zermelo set theory (Zermelo set theory with Ay comprehension). Foundation must be
weakened to allow “Quine atoms” (objects which are their own sole elements). In bounded
Zermelo set theory, each cardinal x determines an interpretation of 77, in which type i is
the itk iterated power set of a set of cardinality x and membership is defined in the obvious
way. The theory of this interpretation of 77 is independent of the choice of base set for the
model; it depends only on the cardinal x. Bounded Zermelo theory with Quine atoms and
cardinals x; for each sequence s which is a type in the theory of the previous paragraph,
with axiom schemes asserting that exp(ks) = K_+ for each concrete sequence s and that

each concrete sentence ¢ in the type theory of i types with a base set of cardinality kg has
truth value depending only on the first i elements of the sequence s is equiconsistent with
the theory of the previous paragraph, and so with 777 and NF. The way in which this
version of bounded Zermelo set theory interprets the theory of the previous paragraph is
obvious; we indicated above how bounded Zermelo set theory can be interpreted in the
usual theory of types — use the method indicated there (noting that elements of type 0
become Quine atoms), with type i being intepreted as the itt iterated image of any fixed
sequence s’ under the tail operation, to interpret this version of bounded Zermelo set theory
in the type theory of the previous paragraph. In the interpretation of bounded Zermelo set
theory in type theory, the cardinality of any set is identified with the cardinality of its
singleton image in the next type up; each type s in the theory of the previous paragraph has
an iterated image under tail which is also an iterated image under tail of s’; the cardinal of
the iterated image of s under the relevant singleton operations in any type which is also an
iterated image under tail of 5" will be interpreted as ;. These constructions are discussed in
detail in our upcoming paper [Holmes, forthcoming b].

An advantage of the reduction of the question of the consistency of NF to the consis-
tency of such an extension of bounded Zermelo set theory is that it shows that the existence
of “big” sets in NF has nothing to do with the consistency question; the problematic as-
pects of NF can be expressed in terms of patterns of cardinals in a set theory of the usual
type without choice. The features which NF shares with NFU are not the problem.

The distinctive results about NF have been or can be obtained with the aid of the
Specker tree of the cardinality of the universe. This construction shows that all distinctive
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features of NF can be expected to be derivable from the properties of the Specker tree of
the cardinality of the universe, since vl will correspond to one of the cardinals «; in this
theory (a nonstandard one), and its Specker tree will include all cardinals corresponding to
sequences which have s as an iterated tail (the tail operation on sequences corresponds to
the exp operation on cardinals). In particular, the descending sequence of iterated images of
| V1 under T will correspond to (nonstandard) cardinals of this kind.

The Axiom of Choice is false in sufficiently high types of 777 by an adaptation of
Specker’s original proof or the one we gave above. But the resulting proof is likely to be
very large (because of the application of Ramsey’s theorem involved). We give a more
natural proof of ~AC in T77. Like the proof we gave above for NF, it relies on the
properties of Zy. Assume that AC holds. In 77, the version of Zg in any type can be
embedded in the version in the next higher type via a natural type-raising operation. In the
presence of AC (also in 77), it is easy to see that going up one type has the effect of adding
one or two stages to Zo (one or two new beth numbers are added). But going “one type
up” in 77T can take us from any given type to any higher type. Work in the sequence of
types 0 — 12. We can first define Zg in type 3. The properties of Zy at any type in a
sequence of types are determined by that type and the three previous types in the sequence.
As we go up from type 3 to type 12, the ordinal rank of Z, increases by between 9 and 18.
Now consider the sequence of types 0 — 3 followed by 9~ 12, As we go from type 3 up to
type 12 in this sequence of types, the rank of Z; goes up by between 4 and 8. This means
that the value of the finite part of the two ordinal ranks associated with type 12 must differ
mod 19; but this is impossible, since the three types preceding 12 are the same in both
sequences, so the ordinal ranks in question must be the same!

There are some interesting fragments of NF which satisfy the strong extensionality
axiom and are known to be consistent.

The first of these to be discovered was NF3, whose axioms are extensionality and those
instances of stratified comprehension in which it is not necessary to use more than three
types. Grishin [1969] demonstrated the consistency of NF3, and showed that NF4 = NF.
Specker’s model theory results can be adapted to show that NF3; is equiconsistent with 773
(IT with only 3 types) with the axiom scheme of ambiguity ¢ +<> ¢* (which only makes
sense for ¢ mentioning only the lowest 2 types). Now it turns out that all infinite models of
TT; satisfy the scheme of ambiguity, so NF3 is a theory with a certain general interest.

Doing mathematics in NF3 is not very easy, basically because the theory lacks a useful
ordered pair. The consistency strength and expressive power of NF3 have been shown to
be precisely the consistency strength and expressive power of second-order arithmetic (by
Pabion in [1980}), but the coding required to show this is rather devious. Grishin showed
that NF3 + the existence of {{{x}, y} | x € y} is precisely NF, so it follows that NF3 + the
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existence of a type-level ordered pair = NF, because one would be able to define {({x},) |
X € y}, and then use this to define the set of Grishin.

In [Orey 1964}, Orey proved interesting results about NF by applying the resuits of
Grishin internally to NF. As we noted above, we can define a model of 774 in NF using

1
©;_{V} as type i for i = 0,1, 2, 3, and using a restriction of inclusion and its first two

iterated singleton images as membership relations. It is then possible to define satisfaction
for Godel numbers of formulas in this model in a standard way. The model of 774
obtained is ambiguous (satisfies ¢ = ¢*) for each standard ¢, but the result which can be
proven in NF is that T{¢} = ¢*, because the three lower types and their membership
operations are the images under type-raising operations of the three upper types and their
membership operations. This implies that NF + Counting, in which we can draw the
further conclusion that T{¢ } = ¢ proves Con(774 + Ambiguity), and so proves
Con(NF4) and Con(NF). By Gdodel’s second incompleteness theorem, the Axiom of
Counting must be independent of NF if NF is consistent. An analogous result can be
proven in NFU, where it is known to be nontrivial. This is the only independence result we
know of for NF other than those which can be obtained using permutation methods. It is
interesting to observe that NF + Counting proves that ST{ | V|} has descending paths of
each finite length; it is not known whether the existence of Specker trees with descending
paths of each finite length is consistent with ZF (it is easily shown to be impossible in
ZFC). Forster has speculated (in [Forster 1983]) that this may indicate that NF + Counting
is a very strong theory.

The other extensional fragment of interest is NFI, the version of NF with strong
extensionality and with a version of stratified comprehension which is restricted to those
instances in which no type is assigned to a variable which is higher than the type which
would be assigned to the set being constructed. This corresponds to a restriction on the

~ impredicative formation of sets in 77. If the additional restriction is imposed that variables
of the same type as the set being constructed must be parameters (must not be bound), we
obtain the theory NFP (predicative NF). The versions of 77 which correspond to these we
will call 777 and TTP, respectively. The fragments of NF are equivalent to ambiguous or
“tangled” versions of the corresponding type theories.

NFI and NFP are weak theories. The consistency of NFI is a theorem of third-order
arithmetic, while the consistency of NFP is a theorem of first-order arithmetic. NFI
interprets second-order arithmetic, while NFP interprets bounded arithmetic with expo-
nentiation. NFP or NFI is strengthened to NF by the addition of the Axiom of Set Union;

it is easy to see that for any stratified formula ¢, we can construct @T{{x | ¢}} in NFP

(and so in NFI) for large enough n‘ by choosing » so that the type of the set being
constructed will be higher than the type of any bound variable in ¢ Iterated applications of
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set union will then recover the desired set. The finite axiomatization for NFU + Infinity
{axioms 1 through 16) can be adapted to NFP by dropping Set Union and strengthening
extensionality; a type-level ordered pair can be defined in NFP as in NF.

NFP and NFI prove Infinity; if Union is true, we are in NF, and Specker’s proof
works; if Union is not true, observe that all finite sets have unions, so there must be an
infinite set.

NFI and NFP invite applications which depend on the fact that they are weak theories
which are very expressive in practical terms. NFP in particular is equivalent to a fragment
of arithmetic (which one precisely is not known), but has the practical expressiveness of a
set theory; it appears to be possible to do a good deal of elementary mathematics in this
system. The author has shown the consistency of very powerful extensions of NFI in his
[Holmes forthcoming].

7. Comparison of Zermelo-Style Theories and Quine-Style Theories.

We consider the possibility of application of the theories with stratified comprehension.
NF3 is too hard to work with to be a useful set theory, although it has an interesting role in
the model theory of 77. NFI and NFP are also not practical set theories for general use,
although they may have some interest precisely becasue they are weak systems. NFP may
have an interesting relationship to systems of weak arithmetic currently being studied. It is
also interesting to note that NFP is essentially Russell’s original theory of types without the
Axiom of Reducibility (basically equivalent to the Axiom of Set Union in modern formu-
lations) and with typical ambiguity construed as identity; it is curious that collapsing the
type structure enables us to dispense with the Infinity Axiom. Strong extensions of NFI
would be hard to work in due to the failure of the Axiom of Set Union.

NF itself is strong enough to be a useful set theory, although the failure of the Axiom
of Choice and the inability (so far) to produce interesting relative consistency and inde-
pendence results makes it inconvenient. We do not believe that it is a reasonable “working
set theory”; we have unmasked the special assumptions which distinguish it from NFU
and force the failure of Choice in our discussion of “tangled type theory,” and they seem to
be of merely technical interest, and not worth the inconvenience of the failure of Choice,
not to mention the opaque model theory! Our attitude might be different if NF had strong
consequences of mathematical interest, but this seems not to be the case; there is no reason
to believe that NF is any stronger than 77 + Infinity or NFU+ Infinity. If it were shown
that NF is not consistent, this would not disturb us at all (although we would find it
surprising): it would imply that the existence of urelements was provable in NFU without
Choice, that the Axiom of Set Union could be disproven in NFP, and that there could be
no type-level ordered pair in NF3; it would also mean that the various theories with
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stratified comprehension would end up seeming more disconnected from each other than
now seems likely. ‘

The prime candidate for a useful working set theory of this type is NFU + Infinity +
Choice, or the theory of Axioms 1 through 16 and 18 above. To this it immediately proves
convenient to add the Axiom of Counting, giving the system of Axioms 1 through 18
above, the system of Rosser’s Logic for Mathematicians modified to allow urelements,
with the ordered pair as a primitive, and with the full Axiom of Choice. Axiom scheme 19
or other axioms could be used to get additional strength; the investigation of natural strong
axioms of infinity for NFU is a possible area of research, This is a practical set theory, as
we hope we have indicated above. Its obvious advantages are the ability to recover most of
the constructions of naive set theory, including the natural definitions of cardinal and
ordinal number, while retaining the ability to do the constructions of a Zermelo-style theory
in ways we have indicated. The necessity of attention to stratification, if it is a disadvantage,
is a slight one; much mathematical work is actually stratified in any case, and the author’s
experience indicates that it is not very hard to learn to keep track of relative type all the time,
and it is sometimes instructive to do so. It is also worth noting that the constructions of the
theory of sets and functions which are easy to implement in category theory are the
stratified ones; elements are frequently represented by their constant functions in category-
theoretic treatments for reasons similar to the reasons we introduce type-raising operations
into constructions in NFU. A more serious difficulty is the odd model theory of NFU;,
there are externally countable proper classes and the ordinals in a model are not well-
ordered. This requires getting used to, but is not unprecedented. The “internal set theory”
approach to nonstandard analysis also involves small proper classes, for example (see
[Robert 1988]); in our motivation of the Axiom of Small Ordinals, there is some
interaction with nonstandard analysis in the most general sense. It should be observed that
membership is not a relation in NFU, so a model of NFU, in which the primitive
predicates must be represented by sets, can be expected to behave oddly.

There is another problem for the Quine-Jensen theory which is more profound. This is
the issue of philosophical motivation. The set theory of Cantor and Zermelo, and its exten-
sions, are founded on the metaphor of the iterative construction of the universe of set
theory in stages indexed by the ordinals, This metaphor helps us to convince ourselves of
the reliability of these thecries (see [Maddy 1988]). The historical motivation of the Quine-
Jensen theories is a syntactical trick, and this fact helped to contribute to the error made at
the outset of choosing strong extensionality, which has made the theories of this kind seem
excessively difficult and mysterious (because NF is indeed difficult and mysterious!).
Quine himself indeed seems to admit that this was an error in his remarks accompanying
[Jensen 1969]. ‘

‘Jensen’s proof and the variation using automorphisms (originally due to Boffa in
[Boffa 1973], although implicit in [Jensen 1969]) give us reason to believe that NFU is
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reliable and has powerful extensions paralieling the extensions of the usual set theory with
equal reliability. But this gives no independent interest to NFU. However, the fact that
NFU recovers the details of its own model construction internally without recourse to the
model-theoretic machinery needed in the usual set theory for the same purpose should
cause one to recover some confidence in the autonomy of the approach. It is interesting to
observe that it seems to be technically easier to interpret set theory of the usual type in ex-
tensions of NF than vice versa; one may be gaining practical expressive power by working
in NFU. :

We attempt a philosophical motivation of stratified comprehension. Consider the
notion of ser as being analogous to an abstract data type in computer science. The idea
behind abstract data types is that the user of a concrete representation of a class of abstract
structures should have access only to those properties of the concrete representation which
represent properties of the abstract objects themselves, as specified by the designer of the
abstract type. Suppose that we have a universe of objects, and we wish to implement
classes of objects (pure extensions, not yet identified with any objects) as objects them-
selves. The abstract structures being represented are very simple: they are pure extensions.
But the implementation of each class as a set has an additional feature: it is identified with
an object. The implementation of each class is not a pure extension (collection of objects),
but an extension with an object label attached. The analogy to abstract data types dictates
that any feature of an implemented set we use should be a feature of the pure extension, not
of the structure “label + extension”which implements it.

Now consider the ““property” of sets “x is an element of itself”. This property, unlike
its notorious negation, is not paradoxical. But we assert that it is illegitimate by the criterion
inidcated above: it is a property of the structure “label + extension” for each set, not a
property of the extension considered by itself. One way to see this is to consider that a per-
mutation technique could be used to reshuffle the “labels” attached to classes without
changing which classes are implemented, and an extension previously labelled by one of its
elements could come to be labelled by an object which is not one of its elements. Thus we
can reject this property (and its paradoxical complement) on a priori grounds before ever
considering the paradoxes.

The difficulty with “x € x” as a property of x is that it involves x in two different roles
which are linked in a way which depends on the implementation of classes as labelled
extensions rather than on the intrinsic properties of objects or classes considered in
themselves. Analysis reveals that there are further roles beyond the roles of “object
associated with an extension (set)” and “bare object (element of a set)” revealed in this
example. An object can be associated with a collection of extensions (set of sets) via the
association of each of the elements of its associated extension with an extension; similarly,
an object can be associated with a set of sets of sets, and so on through the usual type
hierarchy. Any two of these roles for an object are linked only by the details of the labelling
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used to implement sets, so an object should be mentioned in the definition of an intrinsic
property of sets in no more than one of these roles. But this is exactly the criterion of
stratification!

The philosophical motivation is approached from another angle in the discussion of an
abstract model of computation in the next section.

The question of extensionality now enters. Strong extensionality amounts to the asser-
tion that every object is a set, which seems far from natural; NFU seems like the more
reasonable position to start from. It is interesting to observe that Marcel Crabbé has shown
(in [Crabbé forthcoming]) that the theory SC whose sole axiom scheme is stratified com-
prehension interprets NFU, so the weak extensionality of NFU adds no consistency
strength to the theory, while strong extensionality adds at least Infinity. There are other
philosophical questions about the impredicativity of the full stratified comprehension
scheme, which are equally a problem for 77 and the usual set theory, and best answered by
observing that NFU is demonstrably no more dangerous than these theories.

A nice observation, in view of the illustrative role of permutation techniques in the
argument above, is that Forster has shown in [Forster 7992] that the notion that a formula
is invariant under all set permutations of the definition of membership is expressible in
NF(U) (for each formula individually) and can be used as the “necessity” operator of a
modal logic satisfying nice axioms. The notion that a formula is true under some permuta-
tion serves as the “possibility” operator. All stratified sentences are invariant under permu-
tations, as are some unstratified sentences, such as the Axiom of Counting. If a slightly
more general class of permutations, including some external permutations (the “set-like”
permutations defined in [Forster 1992]) is allowed, the invariant sentences become pre-
cisely the stratified sentences.

The basic question for any set theory is “When is there the collection of all objects with
a given property?” The theory of Cantor and Zermelo is oriented toward criteria which
ensure that it will be safe to collect objects (limitation of size, well-foundedness), while the
theory of Quine and Jensen takes the riskier course of defining criteria for sensible
properties. 'The Quine-Jensen approach allows larger collections, and it is possible to
arrange for it to allow all the collections allowed by the Cantor-Zermelo approach as well.

It should be observed that the fact that NFU has a universe, a largest cardinal and a set
of all ordinals does not mean that the Absolute Infinite inconsistent totalities (to use
Cantor’s terminology) are quite invisible from this standpoint. The “limit” of the strongly
Cantorian ordinals in NFU is closely related to the Absolute Infinite “limit™ of all the
ordinals in the usual set theory; the permutation which interchanges {f | B < a} with T{a}
for each ordinal a can be used to redefine membership in such a way that exactly the
strongly Cantorian ordinals become von Neumann ordinals (how many von Neumann
ordinals one gets is a function of how strong an extension of NFU one is working in). The
fact that the (consistent) limit of all ordinals is “above” the analogue of the Absolute
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Infinite is a little surprising, but can be motivated by the idea used to motivate the Axiom
of Small Ordinals: the ordinals of NFU are an initial segment of a nonstandard extension
of the standard ordinals. - ‘

The most serious challenge to the legitimacy of NFU and related theories as set theories
has to do with the existence of the external descending sequence in the ordinals and ana-
logous phenomena,; it could be claimed that this signals something essentially wrong with
the definition of well-ordering in NFU. But this can only be construed as an objection if
one assumes at the outset the doctrine of “limitation of size” as the criterion for sethood,
thus implicitly choosing Zermelo-style set theory. A relation is a well-ordering if each
subset of its domain has a least element, in NFU as in ZFC; the range of the external
descending sequence of ordinals does not meet the criteria for sethood in NFU. If we
require of a well-ordering that each subclass of its domain have a least element, we have
(under the assumption of the Axiom of Small Ordinals and treating classes as being
defined by formulas) restricted ourselves to the proper class of Cantorian ordinals, which
are indeed more closely analogous to the proper class of ordinals of the usual set theory.
There is no reason to expect a class defined using quantification over all classes to be a set;
if one protests that the subclasses of a set must be a set, one is begging the question: “each
subclass of a set is a set” is a formulation of the axiom of comprehension of Zermelo set
theory, which is admittedly incompatible with NFU (or any set theory with a universal set
or set of all ordinals)!

8. Stratified Theories of Functions and Potential Applications in Theoretical
Computer Science.

The “philosophical motivation” for NFU can be recast more explicitly in terms of
theoretical computer science (on a very abstract level) in the context of a theory of functions
rather than of sets.

Let an abstract “machine” be understood as a set X of “addresses”™. Let the same set X

" be used as input or output “data”. Then a “program” can be understood as being a function
from X to X. Let a “state” of the machine be a function from the set of “addresses” to the
set of “programs”; i.e., a function from X to XX the “state” function tells us which
“programs” are stored in which “addresses”. If X is the state of the abstract machine and x
and y are “addresses,” we define the “application” x(y) of x to y as Z(x)(y), the result of
supplying y as input to the program stored in addressx.

It is convenient to have a pair on X: if x and y are addresses, (x, y) is an address. It is
possible to pair programs as well: if P and Q are programs, (P, Q)(x) = (P(x),Q(x)) defines
the pair (P, Q) as a program. It is convenient (and provably possible) to assume that X(x, y)
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= (X(x), Z(y)); the pairing operations on addresses and on programs are parallel. This gives
us the equation (x, y)(z) = (x(2), y(2)) for x, y, and z addresses as well.

Since we have pairing, we would like to have the projection functions stored in
addresses 7; and 7, giving equations 7; (x1, %) = X; for i = 1, 2. We would also like to
encode equality of addresses: Eq(x, y) = m; if x = y and m; otherwise, for some address Eq.

Finally, we would like to have “abstraction”: if T is a term written using application,
pairing, and (recursively) abstraction, plus any other constructions we might include in our
language, we want an address (Ax)(7) such that X(Ax)(7)) is the function which takes each
a to T[a/x] (the result of substituting a for x) for each a in X. If terms § and 7 have the
same values for each value of the variable x, we postulate that (Ax)(S) and (Ax)(7) will be
equal. It is also convenient and proves harmliess to assume that (Ax)(S, 7) = (Ax)(S),
QD). |

It turns out that the system described so far is inconsistent, a result of Curry (see
[Curry and Feys 1958]). Let Neg = (Ax)(Eq(x, 711)(mz, 71). Neg sends m; to m, and each
other x to m;; clearly, it has no fixed point. Now consider R = (Ax){(Neg(x(x))). R(R) =
Neg(R(R)) by the definition of abstraction, which is impossible. The R is in honor of
Russell, for this “Curry paradox” is another version of Russell’s paradox.

Reflections similar to those above on the motivation of stratified comprehension give
an indication why we should reject the definition of R on a priori grounds, before we even
consider the possibility of paradox. Since paradoxical functions make us queasy, we will
use A = (Ax)(x(x)) as our representative “bad” function. A tells us to take our input (an
address) and apply the program stored in the address to the address itself. But there is a
violation of the security of the data type “program” here: it should be even clearer in this
context that the address in which the program x is stored is not an intrinsic feature of the
program X(x) stored there, nor is the program stored in x an intrinsic feature of x as an
address. This association is an essentially arbitrary feature of the state X of our abstract
machine. Thus, A is seen not to be a legitimate operation on programs.

Note that we can represent not only bare addresses and programs, but also functions
from programs to programs (second-order programs), functions from second-order pro-
grams to second-order programs (third-order programs) and so on. In general, we can
define a 07 order program as an address and an (n+1)-st order program as a function from
n*k order programs to n** order programs. Objects of each of these types are represented
on the abstract machine, and the relationship between the m** order program and the nth
order program for m# n stored in the same address x is not a feature of either abstract
object in itself, but in relation to the essentially arbitrary state of the machine, so should not
be reflected in the specifications of legitimate operations on these objects. (Objects of types
like “function from first-order programs to second-order programs” can be encoded in this
scheme, but we do not discuss this here.)
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The criterion for a legitimate operation (of any order) is that it be possible to assign a
fixed order n indicating a role as an n' order program to each term in the definition of the
operation in a sensible way. A fails this test: in x(x), if we assign the first occurrence of x
the order 7, we want to assign the second occurrence the order n-1.

If we assign a term x(y) order n, it should be clear that we want to assign y the same
order n and x the order n+1. If we assign a term (x, y) order n, we assign the same order to
x and y. If we assign order n to an abstraction (Ax)(7), we assign type n—1 to 7, and we
expect to assign no type other than n—1 to x inside 7; if this expectation is disappointed, the
abstract does not represent a legitimate operation. These rules allow us to assign orders to
all subterms of a term in our language once we give the term itself a sufficiently high order;
they also allow us to recognize terms that need to be rejected as ill-formed. The restrictions
on well-formedness of abstraction terms carrespond to the stratification restrictions in
NFU. As in NFU, the objects we are working with are all actually of the same sort; they
are all “addresses”. It is useful to-observe that the relation between addresses of repre-
senting the same n*? order object is definable for each n.

We have shown in [Holmes 7991] that this system of “stratified A—calculus” mterprets
and is interpreted by NFU + Infinity. It should be noted that this degree of strength
depends on a weak extensionality principle supported by the possibility of substitution of
equals for equals in abstracts: if § = T for all values of x, then (Ax)(S) = (Ax)(T). If full
extensionality (if fx) = g(x) for all x, then = g) is added, we obtain a theory equiconsistent
with NF, Models of the theory can be constructed in a way analogous to the construction
of models of NFU above, mod technical considerations (it is necessary to arrange for XX to
“include” X). There is also a subset of extensional stratified A-calculus which is analogous
to and equiconsistent with NFT; the predicative stratified A—calculus analogous to NFP
apparently cannot be shown to be equwonsxstent with NFP by the same methods but
remains interesting.

These stratified A-calculi can also be presented as systems of synthetic combinatory
logic. We present the synthetic combinatory TRC (for “type-respecting combinators™)
shown to be equivalent to NF in our [Holmes /99]], along with some of its fragments. An
advantage of these systems, analogous to the advantage of our axioms 1 through 16 for
NFU + Infinity, is that the axioms and term formation rules make no mention of strati-
fication. | ‘

TRC is a first-order theory with the following term formation rules: m;, 73, Abst, and
Eq, and variables are atomic terms; if fand g are terms, f(g), (f; 8), and K[f] are terms;
write (g, k) for f(g, k)) and K] to abbreviate n-fold application of the K constructor.
The axioms of TRC are as follows:

Axiom 1. 7; (x;, x) =x;(fori=1o0r2).
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Axiom 2. (%), T2(%) =x.

Projection operators are projection operators and pairing is surjective (the latter isalsoa
_ convenient assumption to add to the system above).

Axiom 3. K[AA(g)=f
Axiom 4. (f, g)(l) = (f(h), g(h)).
Axiom 5. Abst(f)(g)(h) = AK[AD(g(R)).

Axioms from which a definition of abstraction can be recovered. K is the constant
function constructor (note that it is nor a function). Products of functions are pairs of
functions. Abst is a stratified analogue of the S combinator in the usual untyped, un-
stratified combinatory logic. An identity function Id can be defined as 7, 77), and axioms
2 and 4 used to verify that Id(x) = x.

Axiom 6. Eq(f, g) = m; if f= g, m, otherwise.
Axiom 7, If fx) = g(x) for all x, then f'=g.
Axiom 8. 7 #* my.

This completes the axioms of TRC. If axiom 7 of extensionality is dropped, it needs to

be replaced by a weak extensionality axiom involving a new atom Ext to retain the strength

of NFU + Infinity or the system above, along with some additional axioms for Ext. Ext
sends each function to a canonical function with the same extension. These axioms follow:

Axiom 7. f{x) = g(») for all x iff Ext(f) = Ext(g).
Axiom E. Ext(Ext(f)) = Ext(f); Ext(f; g) = (Ext(f},Ext(g)).

The system 7RCL which results if these axioms replace axiom 7 is equivalent to the
stratified A-calculus without extensionality or to NFU + Infinity.

The axioms and primitive notions of TRC or TRCL are quite natural, with the

exception of the object Abst and its axiom. If we drop the axiom Abst and its axiom
(retaining axiom 7) and replace it with a new atom Comp with axiom

Axiom 5. Comp(f; g)(h) =fg(%))
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we obtain a synthetic combinatory logic TRCP equivalent to the predicative version of the
stratified A-calculus with full extensionality. The replacement of the peculiar Abst with the
natural notion of composition on functions makes TRCP very appealing; like NFP, it is
weaker than arithmetic, but it is strong enough to do a lot of elementary mathematics. A
version TRCI which is precisely equivalent to NFI in consistency strength and expressive
power is obtained by adding an axiom scheme of a quite forbidding appearance to TRCP,
equivalence results relating 7RCP and NFP are blocked by the failure of the Schroder-
Bernstein theorem in TRCP and NFP. For details on the systems TRCP and TRCI, see
our [Holmes 71993].

In the synthetic theories, it is possible to give an inductive definition of (Ax)(7) and
prove the stratified abstraction scheme “(Ax)(T)(x) = T ™ for each T in which x occurs with
no relative type other than that of T for a suitable definition of relative type (and with other
restrictions in TRCT and TRCP, restricting impredicativity). One can then use characteristic
functions to interpret sets and interpret set theories with stratified comprehension. The
interpretation of these systems of combinatory logic and A-calculus in the relevant frag-
ments of NF is made technically involved by the axiom (f, g)(h) = (Ah), g(h) which
identifies products and pairs of functions, but the gain in convenience is considerable (we
would otherwise need an atomic term denoting the product operation).

We think that these systems of combinatory logic and A-calculus may find applications
in computer science, where closely related typed A—calculi are already in use. These sys-
tems involve a limited kind of polymorphism.

We present observations relating the notion “strongly Cantorian” from NFU to the

- notion of a “data type” from computer science, via our abstract model of computation.
Since the model is extremely abstract, the correspondence is necessarily rather vague, but it
may be suggestive. It is especially interesting because the concept “strongly Cantorian”
corresponds to nothing in the usual set theory.

Recall that a set A is strongly Cantorian exactly when the map 1| A wlnch sends elements
of A to their singletons exists. “Big”sets like the universe are not strongly Cantorian. NFU
+ Infinity by itself does not prove the existence of any strongly Cantorian sets except the

sets of standard finite cardinality. The Axiom of Counting causes all finite sets, N, and
many larger sets to become provably strongly Cantorian. The Axiom of Small Ordinals
has an even more powerful effect.

Since we are now working in a theory whose primitive notion is function application
rather than set membership, we need to indicate what we mean by a “set”. We regard char-
acteristic functions (functions f such that fx) = 7ty or fix) = m» for all x) as the representa-
tives of sets in these systems. We define “x € A” as “A is a characteristic function and A(x)
=711”. Note that the type differential between x and A is the same as it would be in NFU. It
is straightforward to show that stratified A-calculus or TRCL interprets NFU + Infinity
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with this definition of membership (objects which are not characteristic functions are inter-
preted as urelements). _

Instead of defining “strongly Cantorian” in terms of the singleton map, we define it in
terms of the (equally non-existent) constant function operator. We say that a set A is
strongly Cantorian if the function K | A which sends eacha € A to K[a] andeachx ¢ A to
75 (a default value) exists, and so does its “inverse” K | A~1, which sends K[a] to a for a €
A and other objects to the default value. There are technicalities involved in making this
work correctly: an axiom should be added which asserts that each “set” of ordered pairs
which would be interpreted as a function in a set theory corresponds to an actual function;
such an axiom does not strengthen these theories essentially. It is easy to show that this
definition of “strongly Cantorian”is equivalent to the usual one.

The class of strongly Cantorian sets is closed under operations like disjoint union,
Cartesian product, the formation of function spaces, and other constructions on types used
in computer science, and contains sets of standard finite size. If the Axiom of Counting
holds, it contains N and is closed under various inductive constructions. It is not absurd to
think that this corresponds to a notion of “type™.

As we observed above in the set theory context, variables restricted to strongly Can-
torian sets can evade stratification restrictions. The reason for this is that an instance of x
can have its type raised by substituting K | A(x)(Id) for it or lowered by substituting K| A1
(KIx]) for it; either of these is equal to x as long as x is in A. We can raise or lower the
types of each instance of a variable x restricted to A until all have the desired type and ab-
straction relative to x can be carried out.

For example, we can define R| A for each strongly Cantorian set A, where R is the
paradoxical operation which sends x to Neg(x(x)). Neg(x(x)) = Neg(K | A~ 1(K[x])(x)), and
(A)(Neg(K |a- YKxD(x)) is well-formed (all x’s have the correct relative type).

The interpretation of this phenomenon in the light of our abstract model of computation
motivates the identification of the notion of “strongly Cantorian set” with the notion of
“data type”. The reason that the stratification restrictions hold in general is that it is
illegitimate to refer to the relation between programs and the addresses in which they are
stored. The map K |A can be regarded as coding the correlation between elements of A as
addresses and elements of A as programs in a way which our mode} can accept: Kla
associates K[x] (a program which always returns x, understanding x as an address) with x
(which must here be understood as a program). K | A encodes the way in which the abstract
objects interpreted by elements of A are stored in addresses in the “memory” of our
“machine”; a class of objects with which we have associated a protocol for storing them in
memory is a good description of what a “data type” is, on a high level of abstraction. We
combine this analogy and the empirical observation that the class of strongly Cantorian sets
is closed under the usual type constructors to support our basic claim.
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It is amusing (and perhaps interesting as well) to observe that, if we accept this
analogy, the two ways in which the notion of “type”are reflected in NFU are orthogonal to
one another: there is the notion of relative type used in stratification and the notion of a
strongly Cantorian set, understood as “data type”. A strongly Cantorian set is a domain on
which the restrictions imposed by relative typing can safely be ignored!

‘We believe that TRCL, a system with the strength of Russell’s theory of types which is
an untyped system of synthetic combinatory logic, a theory of functions of universal
domain, may be regarded as fulfilling Curry’s program for the foundation of mathematics,
if our philosophical argument for stratified functional abstraction is accepted as a critique of
his original requirement of unrestricted functional abstraction (see the introduction to
[Curry and Feys 1958]).

9. Back to the Sources.

Since interest in this field has hitherto been rather limited, the number of easily
accessible sources is not great. Quine himself wrote the paper [Quine 1937} introducing the
whole idea and the book [Quine 1951], which is based on an extension of NF with an
impredicative theory of proper classes. Neither of these sources is entirely reliable. In
[Quine 7937}, Quine gave an invalid argument for the Axiom of Infinity. In [Quine 1951},
Quine claimed that he had overcome the problems of NF with mathematical induction on
unstratified conditions be defining N as the intersection of all inductive classes instead of
the intersection of all inductive sets. This does indeed enable mathematical induction on
unstratified conditions, but it also means that one can no longer establish that N is a set
rather than a proper class. This is embarrassing in [Quine 79511, where Quine later
constructs the reals in a way which requires certain sets of rational numbers to be elements.
It can be repaired by adding an axiom which asserts that N thus defined is indeed a set,
which amounts to adding strong mathematical induction to NF (a little more than this
because the class theory in [Quine 7951] is impredicative). Also, the theory in the original
version of [Quine 1957] was inconsistent (a fact which has led to pérsistent rumors that
NF itself is inconsistent), because it allowed sets to be defined using quantification over
classes; this was corrected by Wang and the correction has appeared in subsequent
editions.

A better source for studying NF is [Rosser 1973], Rosser’s Logic for Mathematicians,
especially in conjunction with the dicta we have given above for converting his system to
NFU. Make the type level pair a primitive notion, weaken extensionality to allow ur-
elements, and assume the full form of the Axiom of Choice (Rosser discusses the
relationships between various forms of the Axiom of Choice, but only finally commits
himself to the denumerable Axiom of Choice; Specker’s subsequent results did not
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invalidate this system). This is a good book with a public relations problem which attention
to results about NFU can solve. One difficulty with this book is that its notation is
nonstandard for the usual notions of set theory; but a familiarity with Rosser’s notation is
useful for reading some of the papers on NF.
 The watershed papers about NF and related systems from our standpoint are [Scott
1962}, in which Dana Scott first applied the method of permutations to give relative con-
sistency and independence results for NF (but only for unstratified sentences) (this work
was extended by C. W. Henson), Specker’s papers [Specker 1953], in which the Axiom of
Choice was disproved and [Specker 1962] in which the basic model theory results were
given, and the three papers [Jensen 1969], [Grishin 71969], and [Crabbé 1982}, in which
NFU, NF3, and NFI, respectively, were shown to be consistent.

Until very recently the only book-length treatment of NF postdating the results of
Specker was Forster’s {1983], which was not readily available and did not discuss the
consistent subsystems. Forster has remedied this situation with his excellent book Sez
Theory with a Universal Set {Forster 1992]), which, in spite of the generality of its title, is
mostly about NF. It does describe the related systems NFU and NF3 (not NFI or NFP)
and give the basic results. It also has an excellent bibliography, to which we refer the
reader. We hope to write another book, in collaboration with other workers, which will
give a detailed treatment of the consistent fragments of NF and the related A-calculi,
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