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§1. INTRODUCTION.

Jean van Heijenoort was best known as a historian of logic. He was
famous for his editorial work, and especially for his anthology From Frege
to Godei {1967), which, as a representative documentary history of modern
logic during the formative period of 1879-1931, has attained, in the words
of Solomon Feferman (Feferman 1986; Feferman & Feferman 1987, p. 5),
"the status of a classic." Not very well known, however, is van Heijenoort's
non-historical work in logic, which consisted primarily of results in model-
theoretic proof theory and which circulated in the narrow circle of his
students and colleagues and remain largely unpublished. It is not known
why these technical contributions remained unpublished, although van
Heijenoort's well-known perfectionism may have played a prominent role
in his decision that the writings in which these results appeared did not
satisfy his standard of excellence. Many of the papers in this category
circulated in manuscript form; and even those which circulated in
typescript were frequently only drafts. It is the object of this paper to
survey the technical content of van Heijenoort's contributions to model-
theoretic proof theory. A physical description of the unpublished works in
which these contributions were made was given in (Anellis 1988).

In order to understand the choice of topics on which van Heijenoort
worked, it is necessary to view his technical interests in the history of
logic. Trained as a geometer and topologist (his doctoral thesis was in the
field of convex sets), van Heijenoort traced questions in metamathematics
and foundations of mathematics to problems of axiomatization of mathe-
matics. He saw the development of quantification theory, beginning with
the work of Frege, as the crucial factor in the history of mathematical
logic. Van Heijenoort understood the primary goal of quantification theory
to be the elucidation of the concepts of consistency, completeness, and
{being a) proof. In this sense, van Heijenoort's technical work belongs to
the tradition of Hilbertian metalogic, elaborated by Hubert and Bernays as
Beweistheorie as the logical study of the proofs of logic. Let us begin, then,
by reviewing van Heijenoort's study of the relevant history.
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§2. VAN HEIJENOORT'S VIEW OF THE HISTORY OF PROOF THEORY

In El desarrollo de la teoría de la cuantificación (1976) van
Heijenoort gave an exposition and historical analysis of the theory of
quantification from a metamathematical perspective. He argued that
quantification theory is a "family of formal systems" ("la teoría de la
cuantificación es una familia de sistemas formales;" (1979, p. 7)), the
creator of which was Frege in the Begriffsschrift. The family members of
quantification theory are the axiomatic method, Herbrand quantification,
the Gentzen sequent calculus, and natural deduction as developed by
Jaskowski and Gentzen. The axiomatic method has two distinct branches,
Frege-type systems and Hilbert-type systems. A Hilbert-type system is
distinguished by being simply a set of well-formed formulae (wffs),
including a list of axioms, a set of "rules of passage", that is derivation
rules, for which a proof is a sequence of wffs, the last wff of the sequence
being the formula which is proven. A Frege-type system is a formal
language ("Begriffsschrift") containing an arbitrary set of axioms, a set of
equivalence and inference rules, and in which nothing exists outside of
proofs. These represent for van Heijenoort the four principal methods of
approach to first-order predicate calculus. In Desarrollo, van Heijenoort
traced the mutual relations among these four approaches, and traced their
histories. He examined each in its classical, intuitionistic, and minimal
versions, and pointed out the strengths and weaknesses of each.1 Thus, for
example, he noted that Herbrand's method is particularly suited for use
with computers, but is not easily generalized to second-order logic.
However, he showed in his paper on Herbrand (1975b, p. 6) that we can
establish the constructive equivalence of a second-order Herbrand formula
to a classical second-order formula, provided the formula (VJC) (h- Q F <=>
Ь QH F), properly gödelized, that is having an infinite list {0,1, 2, ...} of
variables of Q not occurring in F, can be shown to be provable in primitive

1 As presented by Johansson (1937), a "minimal version" is a reduced intuitionistic
formalism, in which only one of (1) h (n a v b) -• (a -»• b) or (2) h (a -• b) -»•
(-i a v b) holds.
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recursive arithmetic, where Q is classical quantification theory and QH is
Herbrand quantification theory.

In Desarrollo, van Heijenoort treated the principal methods of
quantification theory proof-theoretically. The axiomatic method attains
results based on the concept oí formal system and provides an analysis of
theorems, but is not yet itself a study of proofs. For Herbrand's system,
quantifier-free formulae can be obtained effectively from quantified
formulae, such that these quantifier-free formulae are sententially valid, by
using Herbrand expansions. Thus, Herbrand helped introduce a new
conception of validity into logic, where for Löwenheim the essential con-
sideration was still satisfiability, or validity invariant with respect only to a
particular model.

Gentzen's work in the sequent calculus rests on the results given by
Herbrand. Herbrand's Fundamental Theorem, for example, can be under-
stood to be a special case of Gentzen's verschärter Hauptsatz, and Gentzen's
Mittelsequenz corresponds to Herbrand's valid disjunction £>&. Beyond that,
Gentzen also gives an analysis of the sentential parts of the proof of
validity. Thus, van Heijenoort was particularly interested in the ways in
which proofs are carried out in the axiomatic, Herbrand, Gentzen
sequential, and natural deduction methods. Indeed, it could be said that, for
van Heijenoort, quantification theory is a family of methods of logical
deduction.

The various methods for quantification theory, according to van
Heijenoort, taken together, represent an evolution or development
{desarrollo) of quantification theory, starting from the definition of the
Hubert program and Herbrand quantification, through the Godei incom-
pleteness results, to the Gentzen sequences and natural deduction, rather
than provide an opportunity for possible conflict. The Hubert program of
metamathematical study of proofs arose just because the axiomatic method
fails to study proofs even while it provides an analysis of theorems. It was
Hubert who undertook to define and carry out systematically the
construction of mathematics within his system. This required a fully
developed concept of proof, for the Hubert program had two aspects: to
define the technical apparatus which would permit a finitist construction of
all of mathematics, and to ensure that the set of (mathematical) sentences
derived within the axiomatic system was consistent. Frege's Begriffsschrifi-
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program, however, focussed almost exclusively on only part of the first
aspect of the Hubert program, namely the attempt to derive all of mathe-
matics from the Begriffsschrift's logical apparatus.

Consistency and completeness were raised as questions for quanti-
fication theory as soon as the universality of logic was proclaimed and
deductive validity replaced satisfiability as the defining characteristic of
being a proof. Universality, raised as an issue by Frege, required that all of
mathematics should be constructed within the logical theory presented by
the Begriffsschrift. It also required that the Begriffsschrift theory deal with
what we now call "metamathematical" problems, such as completeness and
consistency, since there is no extrasystematic or metasystematic apparatus
to be distinguished from the system. Frege also required that every
function in the system be defined for every argument in the universe of the
system's syntax, that is, that every object in the semantics of the system be
in the range of every function. Thus, there was no longer a question of
restricting a theory to a select model. Thanks to Frege, the model was the
universal domain - the Universe - rather than some arbitrary domains that
acted as interpretations for submodels of the universal domain. This
universal domain in effect contained only two objects, the True and the
False. In practice, every object of the universe was, according to the
assignment of truth-values, an element of either the True or the False.
Now, as understood semantically by van Heijenoort, a formula (or theory)
is satisfiable if there is some (at least one) assignment of truth-values which
makes the formula (or theory) true, and valid if the formula (or theory) is
true for every assignment of truth-values. These definitions by van
Heijenoort of satisfiability and validity were based on Löwenheim's work,
and in particular the realization that (a) a formula may be valid in some
domain but false in another, and that (b) a formula may be valid in every
finite domain but not valid in every domain.

Van Heijenoort's definition of proof was in essence model-theoretic.
If Ф is a sequence of formulae FQ, F\, ..., Fn, Q, then Ф is a proof of Q
provided the deduction theorem holds, according to which Ф I- Q if and
only if Ф -* Q and
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(Fo л Fi л ... л Fn-ù - (Fn - ô)

(Fo - Fi - ... - F) - ô

The proof is satisfiable if there exists a model of Фн Q for which
t= Ф -> ß for at least one assignment of truth-values to Ф, and the proof is
valid if Ф -+ Q for every such assignment of truth-values to Ф. Defining a
proof as an extended formula built up from a sequence of formulae, van
Heijenoort's model-theoretic approach makes no distinction between
deductive validity, that is the validity of proofs, and the validity of
formulae. Extending these definitions, he was able to assert that
satisfiability can be understood as validity with respect to a specific model,
while validity can be understood as satisfiability invariant with respect to
any particular model. The contrapositive gives us validity invariant with
respect to a particular model as our definition of satisfiability.

In his comments on the work of Löwenheim and Herbrand, van
Heijenoort stated (in From Frege to Godei and elsewhere) that Herbrand's
work on elucidating the concept oi proof for Hubert's axiomatic system
was inspired by questions raised by the Löwenheim-Skolem theorem. To
the two theses presented by van Heijenoort in Desarrollo that quantification
theory is a family of formal systems, and that the four principal theories,
rather than being in competition, represent a natural development, I add a
third (introduced in 1978; 1979 and detailed in 1991), namely that the
technical developments in Hilbert-type systems, including the development
of Beweistheorie by Hubert and Bernays, and the development of
alternative theories of quantification, are primarily due to questions raised
about the Löwenheim-Skolem theorem.

It is clear from Herbrand's own comments in his (1930) thesis
Recherches sur la théorie de la démonstration that his investigations were
undertaken to clarify the concept of being a proof for a Hilbert-type
quantification system. In the introduction to his Recherches, Herbrand
spoke of the recursive method to "prove that every true proposition has a
given property A" (see the translation by Goldfarb 1971, 49), and he
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immediately tied this to the finitist limit on recursive proofs enunciated by
Hubert. For Herbrand, this finitist limit challenges the transfinitist proofs
of Löwenheim, in terms of No-satisfiability, and requires that Löwen-
heim's infinite conjunction be reinterpreted as Herbrand expansion, the
basis for Herbrand's method of quantification. Thus, as van Heijenoort
stated (1967, 526) in his introduction to Herbrand's Recherches, "Her-
brand's work can be viewed as a reinterpretation, from the point of view
of Hubert's program, of results of Löwenheim and Skolem," and that
Herbrand's fundamental theorem is, as Herbrand himself stated (1931, 4) in
his paper Sur la non-contradiction de l'arithmétique, "a more precise
statement of the Löwenheim-Skolem theorem."2

It was, then, Herbrand, working with applications of Löwen-heim's
concepts to Hubert's system, who initiated the shift from satisfiability to
validity, and Hubert who explicitly made Beweistheorie a fundamental task
for the logician.

§3. HERBRAND QUANTIFICATION

For van Heijenoort, Herbrand is a major figure in the history of
logic, and he devoted much attention to the work of Herbrand, defending
Herbrand against such critics as Fraïssé, whose criticisms of Herbrand's
concept of validity had already been dealt with by van Heijenoort in his
edition of Herbrand's Écrits logiques (van Heijenoort 1968) and in the
introduction to Herbrand's "Sur la non-contradiction de l'arithmétique" (in
van Heijenoort 1967; see Goldfarb also 1975), for example.

In his "Préface" to Herbrand's Écrits logiques, van Heijenoort
(1968a, 1-2) briefly traced the history of the development of quantification
theory, with special emphasis on Herbrand's role as the focal point in that
history. Van Heijenoort pointed out in particular that Herbrand studied
Löwenheim's treatment of satisfiability for Hubert's axiomatic system and

2 For a more detailed consideration of the role of the Löwenheim-Skolem theorem on the
work of Herbrand and on the rise of quantification theory from the proof-theoretic
perspective, see (Anellis 1991).
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in Recherches generalized Löwenheim's (1915) results to validity by
showing how to obtain, from the satisfiable quantified formulae of
Hubert's system, quantifier-free formulae that are sententially valid. Thus,
if F is a formula in Hubert's system which is satisfiable, then it is provable.
Using methods developed by Löwenheim and strengthened by Skolem, F is
rewritten in Skolem normal form as a new formula F'. Employing the
method now known as Herbrand expansion, quantifiers are eliminated from
F' to obtain a quantifier-free formula FQ, where F = Exp[F', D], i.e. FQ is
the Herbrand expansion of F', and D is the domain containing the elements
that are terms of Hubert's quantification theory.

A quantifier of a classical formula F is existentialoid (universaloid)
if it would become existential (universal) if F were put in prenex form. In
the matrix of F, each existentialoid variable y is replaced by a functional
term whose arguments are the universaloid variables that are superior to y,
where a variable JC is superior to a variable y in case the quantifier binding
y is in the scope of the quantifier binding JC.

The existential quantifiers are eliminated by Herbrand disjunction, so
that

BxFx = (F(xlh\D) v (F(x/t2),D) v ... v (F(x/tk),D)

where D is a £-ary model and t¡, t2, ..., tk are the terms of D that are
arguments for the functions of the formula of Hubert's system; and
universal quantifiers are eliminated by Herbrand conjunction, so that

VxFx = (F(xltx\D) л (F(xlt2),D) л ... л (F(x/tk),D)

for the £-ary model D and its terms.

When he came to develop the apparatus for falsifiability tree proofs,
van Heijenoort used this distinction between satisfiability and validity and
showed how these concepts can be applied both to formulae and to proofs.

Thus, in Desarrollo, van Heijenoort studied the members of the
quantification theory family of formal systems as attempts to elucidate the
concepts of validity and satisfiability and to develop the technical apparatus
for carrying out valid proofs of logic. Thus, he not only dealt there with
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the historical development of quantification theory, but also made
comparisons of the relative strengths and weaknesses of the various family
members.

It was also in Desarrollo that van Heijenoort presented, in the context
of his evaluations of the family members of quantification theory, a defense
of the tree method. Indeed, nearly all of van Heijenoort's technical, that is
to say non-historical and non-philosophical, writings were devoted to
developing the tree method as a powerful method of logical deduction and
validity checking. It is these papers that largely remain unpublished
(although they were distributed to students and colleagues).

§4. BRIEF HISTORY OF THE TREE METHOD

It is probable that van Heijenoort first learned about Smullyan trees
around 1964-1965, at precisely the same time that Smullyan was beginning
his work developing the tree method.

Richard Jeffrey reported (1987) that he first encountered van
Heijenoort in 1964-1965, at a time when he and Jeffrey both were in New
York City, Jeffrey teaching at City College of New York and van
Heijenoort at New York University and Columbia University. The two men
met several times during this period as members of an informal group that
convened occasionally to discuss logic and philosophy. It was also during
this period, perhaps in 1964, that Jeffrey met Smullyan in New York and
possibly also attended SmuUyan's lectures at Princeton University. Jeffrey
immediately became an enthusiastic supporter and proselytizer for the
tableau method, and in particular of the so-called "Smullyan tree" as a one-
sided Beth tableau.3 It is safe to suppose then that this was when van
Heijenoort, too, first learned about Smullyan trees, either directly from

3 So-called because Zbigniew Lis developed a full-fledged analytic tableau or tree method
by 1962 independently of Smullyan, and published his method in (1960) at a time when
Smullyan was just beginning his work.
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Smullyan or through Jeffrey.4 In any event, the first important document
we have available in van Heijenoort's hand on the tree method dates from
1968.

In the paper "On the Relation Between the Falsifiability Tree Method
and the Herbrand Method in Quantification Theory", van Heijenoort
(1968b) showed how the falsifiability tree method could easily be adapted
to Herbrand expansion to test the validity of quantified formulae whether
those formulae were in prenex form or not. Van Heijenoort (1970) is the
published abstract of this result. Thereafter, van Heijenoort was a strong
proponent of the falsifiability tree method, a method which, like its
immediate precursors, united model theory with proof theory. Van
Heijenoort's technical writings were all aimed at broadening and deepening
the scope and capabilities of the tree method.

The tree method was first developed by Lis and presented by him in
its first form in 1960, based directly upon Beth's deductive and semantic
tableaux. However, Lis's paper, published in Polish with brief English and
Russian summaries that gave no hint that a new and simpler method than
that found in Beth's semantic tableaux was being presented, has largely
been ignored. The method was reinvented by Hintikka and Smullyan from
Beth's semantic tableaux. This reincarnation differed from Lis's develop-
ment by being based on the method of model sets developed by Hintikka
(1955; 1955a) as well as Beth's semantic tableaux (1955; 1959; 1962).
Hintikka's work on the model set method in prepositional logic (Hintikka
1953) already mentions the basic idea of the tree method.

Hintikka's model set is a set of formulae that can be interpreted as a
partial description of a model in which all formulae are true. A proof of a
formula F in Hintikka's theory is a failed attempt to build a countermodel
~F to F. Beth's tableau method does much the same thing, except that, for
the tableau method, a proof of a formula F -*• G is a failed attempt to
build a countermodel of F -+ G by describing a model in which F is true
but G is not.

4 Smullyan (1987) states that he had met van Heijenoort several times, but does not state
whether they ever discussed the tree method.
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For Beth's method, it is necessary to keep track of both trae
formulae and non-true formulae. Formulae are listed in tabular form; all
trae formulae and their derivations are collected in the left-hand column of
the table, all non-true formulae and their derivations in the right-hand
column. A tree is a one-sided (left-sided) tableau in which all formulae are
trae. There are a small number of tree decomposition rales, one for each
of the truth-functional connectives which we choose for our base, and one
each for the universal and existential quantifiers.5 Thus, for example, if
we follow Jeffrey and provide decomposition rales for (disjunction, con-
junction, material implication, material equivalence), along with the
corresponding rales for the negation of these connectives, and double
negation, we obtain the following rales:
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For the universal and existential quantifiers, we introduce the rales

5 A base is the smallest set of connectives chosen for a deductive system and in terms of
which the remaining connectives are defined. For example, the base in the first edition of
the Principia mathematica is {-, v}, the Sheffer stroke in the second edition; and the base
for Frege's Begriffsschrifi is {-, =>}.
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VxGx
G{XI\XQ)

» where |Uo, ..., Д& are mutants (permissible substitution

instances) of the bound variable,

and

3x Gx

G(x/v) , where v is a mutant of the bound variable provided v

is new to the path in which it occurs.

Tree decomposition rules may be applied to any formula which is nonbasic.
A formula is called basic if it is atomic or the negation of an atomic
formula, that is, if it contains no subformulae, and hence no connectives to
which decomposition rules can be applied.

Let Ф be a set of formulae at the initial node of a tree. By
application of tree decomposition rules to the nonbasic formulae of Ф, we
obtain successor nodes, each containing some subformulae of (one of) the
nonbasic formulae of Ф. A path of a tree, or sequence of such nodes, is
terminated or finished if tree decomposition rules have been applied to
every nonbasic formula in the path. A path is closed if there appears a
formula F at some node n in the path and its negation ~F occurs at some
successor node n of n in the same path; otherwise the path is open
{nonclosed). A tree is closed if each of its paths is closed. The tree for Ф is
a proof of each formula at a terminal node of an open path in the tree for
Ф. The set of all formulae in the open paths of the tree for Ф is a
satisfiability model for Ф. By downward induction on the tree, if each of
the formulae of Ф at the initial node of the tree is true, then so are all of
the subformulae at each of the successor nodes of the tree, and so are each
of the formulae at the terminal nodes. Moreover, by upward induction on
the tree, if each formula at the terminal nodes of the tree are true, then so
are all formulae at their predecessor nodes, and so too are the formulae at
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the initial node of the tree. Thus, if we obtain a tree in which some path
contains both a formula F and its negation ~F, so that the path closes, then
we have derived a contradiction. We will make use of this fact to consider
falsifìability trees that allow us to determine whether a formula or set of
formulae is valid.

Afalsifiability tree is a tree or sequence of trees in which we attempt
to find a falsifying assignment for (a set of formulae) F. Let Fo, F\,..., Fn,
Q be the formulae of Ф, and let the sequence Fo, F\, ..., Fn be a proof of
Q. Construct a new tree for either Fo, F\, ..., Fn, ~Q or the negation of
the entire sequence Fo, F\, ..., Fn, Q such that we have either the formula

Ф' = F o л Fi л ... л Fn л ~Q or the formula Ф = F o л Fi л. . .л Fn л Q

at the initial node of the tree. (Thus, a proof can be understood as an
"extended" formula obtained by the conjunction of each of the formulae,
including the "Endformula" or conclusion, of the sequence; and a formula
can be said to be valid or not, in this system, in precisely the same way that
a proof is said to be valid or not.) If, after application of tree
decomposition rules to each of these formulae (and any other of their
decomposable subformulae), each path of this new tree closes, then Ф' or
Ф is inconsistent and Ф is valid.

An assignment for a set S of formulae is a a function which, when
we are given a nonempty set U called the universe of the assignment,
associates either (a) an element of U to some atomic term of 5, (b) a к-ату
function (k > 0) of S to some &-ary functional symbol of U; (c) an element
of the set of truth-values {t, f} to some propositional symbol of S; or (d) a
k-ату function (k > 0) of U in {t, f} to some к-агу predicate symbol. We
say that [the value of] an assignment a of truth-values to Ф is true (written
v[oc, Ф] = t) is valid if v[oc', Ф] = f for each related assignment a' and
v[oc", Fi] = t for each formula F/ of Ф.

The falsifiability tree, then, is an mechanization of proof by

contradiction. It is likewise, as van Heijenoort (1968b) called it, "the dual

of that [method] presented in (Jeffrey 1967)? Moreover, it is a test for

validity of proofs.

The falsifiability tree method is sound if each provable formula in

the system is valid and can be proven to be valid by the falsifiability tree

method, i.e. if a formula is provable, then it is valid. The falsifiability tree
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method is complete if each valid formula or set of formulae of the system
is provable by the method, i.e. if a formula is valid, then it is provable. In
his unpublished papers distributed to his students, van Heijenoort proved
the completeness and soundness of the falsifiability tree method for
classical quantification theory and for intuitionistic logic.

§5. VAN HEIJENOORT's WORK ON THE FALSIFIABILITY TREE METHOD

In (1973), van Heijenoort gave a proof of the soundness and
completeness of the falsifiability tree method for sentential logic, that is,
for classical propositional calculus. This was followed by the (1974) paper
"Falsifiability Trees", which gives a proof of the soundness and com-
pleteness of the falsifiability tree method for quantification theory, that is,
specifically for classical first-order calculus (without identity). One
consequence of van Heijenoort's completeness and soundness proof is the
Löwenheim-Skolem theorem, for which van Heijenoort therefore was able
to give a one-line proof. Van Heijenoort's proof makes use of König's
lemma, and (1974) also contains a proof of this lemma. In connection with
his proof of the soundness and completeness of the falsifiability tree
method for quantification theory, van Heijenoort (1974a) also gave a proof
of Quine's Law of Lesser Universes, according to which, if a and b are two
cardinal numbers such that 0< a < b, then if a formula is ö-satisfiable, then
it is ô-satisfiable; and if a formula is ¿-valid, then it is a-valid. Several
years earlier, in (1972), van Heijenoort had already given a proof of the
soundness and completeness of the falsifiability tree method for the simple
theory of types with extensionality.

In 1975, van Heijenoort gave his first proof of the soundness and
completeness of the tree method for intuitionistic logic. In the case of
intuitionistic propositional logic, we are shown in his paper on "The Tree
Method for Intuitionistic Sentential Logic" (1975) that a tree for an
intuitionistic formula A is consistent if and only if Л is classically provable;
and that every nonconsistent ramified branch of a finished tree for an
intuitionistic formula A yields a Kripke model which fails to satisfy A. The
same reasoning is applied in the paper "The Tree Method for Intuitionistic
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Quantification Theory" (1975a), in which a proof of the soundness and
completeness of the tree method for first-order intuitionistic logic is
carried out by adding to the proof for intuitionistic propositional logic the
three cases of TV (true universal quantification), T3 (true existential
quantification), and F3 (false existential quantification).6 In his (1979)
book Introduction à la sémantique des logiques non-classiques, van
Heijenoort gave more elegant proofs of the soundness and completeness of
the tree method for intuitionistic logic.

Also in 1975, van Heijenoort once again turned his attention to the
work of Herbrand. We noted that in Desarrollo van Heijenoort (1976)
considered Herbrand quantification primarily from an historical context,
although he there also made comparisons of the relative strengths and
weaknesses of the various members of the family of formal systems called
quantification theory. Among the weaknesses of Herbrand quantification
were that it was not easily generalized to second-order logic, and that there
are no simple results which allow us to obtain an analogue of the Herbrand
Fundamental Theorem for arbitrary formulae of intuitionistic quanti-
fication theory. One of the main strengths of Herbrand quantification was
that it permitted reduction, through Herbrand expansion, of quantified
formulae, whether in prenex form or not, to propositional formulae. We
recall that a major result of van Heijenoort's (1968b) paper "On the
Relation Between the Falsifiability Tree Method and the Herbrand Method
in Quantification Theory" was that Herbrand quantification could readily
be adapted to validity tests by the tree method precisely because quantified
Herbrand formulae could be rendered quantifier-free. Now in 1975, van
Heijenoort, in his paper on "Herbrand" (1975b) examined in detail the
technical apparatus of Herbrand expansion and gave a proof of Herbrand's
Fundamental Theorem.

The Fundamental Theorem states that: given a formula F of classical
quantification theory, we can effectively generate an infinite sequence of
quantifier-free formulae Fj, F2 , ..., such that F is provable in (any
standard system of) quantification theory if and only if there is a k such

6 In his lectures on foundations of mathematics, van Heijenoort declared that intuitionistic
logic does not permit universal denial; therefore he did not have to consider the case of FV
(false universal quantification).
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that Fjc is (sententially) valid; and moreover, Fk can be recovered from F

through certain special rules.

Now if we analyze Herbrand's theorem, we notice that its main
connective is the biconditional, so that it can therefore be reduced to two
independent statements: that F is provable in standard quantification theory;
and that the Herbrand expansion of a formula F to an infinite sequence of
quantifier-free formulae is valid for each formula Fk of that sequence. Van
Heijenoort uses this analysis to obtain his proof of the soundness and
completeness of Herbrand quantification. Given the statements:

(1) F is valid

and

(2) there is а к such that the kth Herbrand expansion of F is

(sententially) valid

van Heijenoort shows that the implication from statement (2) to statement

(1) is the soundness of Herbrand's proof procedure, and that the

implication from statement (1) to statement (2) is its completeness. The

conjunction of (1) and (2) is called the "semantic" Herbrand theorem.

Herbrand expansion, according to which we obtain a quantifier-free

formula by obtaining a ^-length conjunction from a universally quantified

formula and a ^-length disjunction from an existentially quantified

formula, where we have a &-ary universe, is in fact just an enlargement of

the Löwenheim-Skolem infinite conjunction presented by Skolem in his
normalform translations of Hubert's quantified formulae. What led
Herbrand to develop his method was precisely his dissatisfaction with the
Löwenheim-Skolem theorem, which asserts (if I may express it in its
simplest terms) that if a formula of classical quantification theory is k-
satisfiable for every finite k, then that formula is Ko-satisfiable. What
disturbed Herbrand, as we hinted earlier, was that this theorem was
restricted to satisfiability. Herbrand's Fundamental Theorem was, in the
words of Herbrand (1931, p. 4, quoted in English translation by van
Heijenoort 1967, p. 526 in his "Introduction" to Herbrand 1930), a "more
precise statement of the...Löwenheim-Skolem theorem," and thus can be
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viewed, as van Heijenoort {1967, 526) noted, "as a reinterpretation, from
the point of view of the Hubert program, of the results of Löwenheim and
Skolem." In fact, what Herbrand did was to permit us to state that if a
formula is No-valid, then it is £-valid for every finite k, provided there
exists no countermodel to that formula. Consequently, it is thanks to van
Heijenoort's work on Herbrand that we are able to argue that the technical
developments in Hilbeit-type systems, including the development of proof
theory by Hubert and Bernays, as well as of the development of alternative
theories of quantification, are due primarily to questions raised by
Herbrand about the Löwenheim-Skolem theorem from the point of view of
the Hubert program.

Van Heijenoort's historical interests and his technical work in
expanding and developing the tree method coincide, and focus on the need
to define and explore the concepts of satisfiability, validity, and being a
proof.

In 1978, van Heijenoort further extended his results of (1975) and
(1975a) in which he applied the falsifiability tree method to intuitionistic
logic and proved the soundness and completeness of the tree method for
intuitionistic logic. To this he added an application of the tree method to
propositional and first-order modal logic, together with a proof of the
soundness and completeness of the tree method for modal logic. At the
same time, he suggested, but did not carry out, the possibility of applying
the tree method to two variants of three-valued logic. These new results on
intuitionistic logic, modal logic, and three-valued logic were published in
(1979) in van Heijenoort's booklet Introduction à la sémantique des
logiques non-classiques. It represents the only formal publication of a
proof by van Heijenoort of the soundness and completeness of the tree
method. The first chapter of this work, which considers classical logic,
contains, in much more sinewy form, parts of the same materials found in
van Heijenoort's earlier, unpublished, technical papers, in particular from
the (1974) paper on "Falsifiability Trees", although the material and their
presentation are far from identical.

328



Modern Logic CO

§6. SKETCH OF VAN HELFENOORT'S PROOFS OF THE SOUNDNESS AND

COMPLETENESS OF THE FALSIFIABILITY TREE METHOD

Van Heijenoort's proofs of the soundness and completeness of the
tree method are far more rigorous than the intuitive, informal proofs given
in (Jeffrey 1967). Van Heijenoort's proofs employ the same concepts and
follow the same patterns as do the proofs presented by (Bell & Machover
1977), although van Heijenoort's proofs are somewhat longer and require
more bookkeeping, in part because van Heijenoort proofs, unlike those of
(Bell & Machover 1977), do not make explicit use of Hintikka sets. Of
course, van Heijenoort's proofs, although for the most part unpublished,
predate by several years the published proofs found in (Bell & Machover
1977) or van Heijenoort's own published proofs in his Introduction à la
sémantique des logiques non-classiques.

By way of example, we can give a simplified sketch of van
Heijenoort's (1973) proof of the soundness and completeness of the
falsifiability tree method for propositional logic.

Assume that we have both downward and upward induction on the
tree. Suppose the following theorem has already been proven.

Theorem l.IfT is a falsifiability tree for a formula F and there is
an assignment a of truth-values to the sentential variables of F such that
v[a, ~F] = t, then there is a formula G occurring at a node of a branch ß
ofT such that v[a, GJ = t.

We now prove soundness.

Theorem 2. If there is a closed falsifiability tree for a formula,
then that formula is valid.

Proof. Let T be a closed falsifiability tree for a formula F. Assume that
there is an assignment a such that v[a, F] = f or v[a, -F] — t. By the
previous theorem, there is then a branch ß of T such that, if formula G is
at a node of ß, then v[oc, G\ = t. Since T is closed, so is ß, and there is a
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formula H such that both H and ~H are at nodes of ß, so that we have
obtained the contradiction v[a, H\ = t and v[a, ~H\ = t. |

Now we prove completeness.
Consider the following theorem.

Theorem 3. If there is a nonclosed finished falsifiability tree for a
formula F, then there is an assignment a such that v[a, F] -f

Proof. The nonclosed finished tree for F has a nonclosed branch ß. Let a
be an assignment of truth-values to the sentential variables of F such that if
p is a basic formula occurring at a node of ß, then v[oc, p] = t, and if ~q is a
basic formula occurring at a node of ß, then v[a, q] = f. By upward
induction on the tree, we then have either v[a, ~F] = t or v[a, F] = f.

If there is a node n of ß at which the formula is not basic but T is
finished, then we apply the appropriate tree decomposition rule to the
formula at n. By doing so, we obtain one or two successor nodes of n
containing subformulae of the formula at n. By induction on the tree, these
subformulae are true for assignment a. |

Now by contraposition on Theorem 3, we obtain

Theorem 4. If a formula F is valid, then there is a closed tree for
F,

which is the completeness theorem for trees. |

§7. CONCLUSION

It is to be hoped that a collection of van Heijenoort's technical papers
on quantification theory and the tree method, whether unpublished or
merely distributed to students and a few colleagues, can be published in the
near future, so that his work will become better known and receive the
attention which it deserves and which has already been accorded to his
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historical writings. Brief evaluations of his work, especially of his work on
quantification theory and the falsifiability tree method, have already been
given in (Anellis 1987; 1987a).
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