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In his introduction, editor Philip Ehrlich asserts that the arithmetico-
set-theoretic conception of real number due to Cantor and Dedekind
supplanted two competing conceptions of magnitude — one Euclidean
and geometrical and the other invoking infinitesimals. While the Cantor-
Dedekind conception now forms a cornerstone of orthodox foundations
of mathematics, the twentieth century has witnessed a number of im-
portant generalizations of the real number system and various alter-
native theories of continua. It is these generalizations and alternatives
that form the subject matter of this anthology.

A useful vantage point from which to consider the need for an arith-
metic account of the continuum, as perceived by Dedekind, say, is that
of analytic number theory. During the first half of the nineteenth cen-
tury, Dirichlet and others obtained surprising number-theoretic results
using arguments involving continuous variables and the theory of lim-
its. If, however, the latter were to turn out to rest ultimately upon
the “geometrically evident,” then the results of Dirichlet would depend
upon the likes of spatial intuition. Dedekind’s goal of establishing a
truly “scientific foundation for arithmetic” was an effort to free the the-
ory of the continuum, and hence the theory of limits, from any reliance
upon geometrical intuition. By arithmetizing the continuum, Dedekind
thereby secured Dirichlet’s striking results concerning the primes.

Of course, in doing so, Dedekind laid himself open to attacks from
those who argued against the philosophical cogency of any reduction
of the continuous to the discrete. In the words of Du Bois-Reymond
(1882), as quoted by Ehrlich: “No matter how dense a series of points
may be, it can never become an interval, which always must be regarded
as the sum of intervals between points.” And Ehrlich’s sympathies ap-
parently lie with those such as Du Bois-Reymond, who challenged the
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new orthodoxy on philosophical grounds. More generally, Du Bois-
Reymond and others were objecting to the new situation whereby the
ordered field of real numbers was deemed an adequate replacement for
two competing conceptions of the continuum, one geometrical and com-
posed of infinitesimal line segments, the other analytical and composed
of infinitesimal quantities of some sort.

E. W. Hobson’s 1902 address consists, in large measure, of a his-
torical account of ideas regarding the infinitely large and the infinitely
small leading up to the Cantor-Dedekind philosophy of the continuum,
which he wishes to defend. Hobson’s address is useful in reminding us
of the extent to which the ideas of Cantor concerning the transfinite
had their origin in the study of real analysis. Its position at the front
of this anthology also serves as another reminder of the degree to which
the various theories of the continuum propounded in the more recent
papers in this anthology are grounded in various informal conceptions
— each of which amounts to a philosophy of the continuum — detailing
the intuitive properties of R: its property of continuity, its unbounded
character, its “consisting of one piece” (its unbrokenness or connected-
ness), and so forth. Any mathematical theory of the continuum must
attempt to account for these intuitive properties, and Hobson’s survey
of the method of indivisibles, the method of infinitesimals, the intro-
duction of fluxions, and so forth, places Cantor-Dedekind at the end of
a long series of such attempts. As for the Cantor-Dedekind philosophy
of the continuum itself, we might characterize it as follows, if only for
the purpose of clarifying differences with views to be considered later.

(1) The Cantor-Dedekind philosophy of the continuum postulates
a correspondence between the geometric linear continuum and
the arithmetized real continuum.

(2) All the usual properties, e.g., connectedness, of continuous phe-
nomena may be reduced to corresponding properties of discrete
phenomena. Related to this, there is nothing incoherent about
discrete entities being used to model continuous ones.

Both (1) and (2) are mirrored in Cantor’s and Dedekind’s technical
achievements. For, as is well known, assuming the Hausdorff-Wiener-
Kuratowski definition of the ordered pair, Cantor and Dedekind showed
how the notion of real number may be defined, set theoretically, in
terms of the notion of natural number. Zermelo then took it a step
further and showed how the latter notion is itself set-theoretic. Zer-
melo’s own concepts- and objects-reductionism may thereby be seen
as an extension of the Cantor-Dedekind philosophy of the continuum:
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with regard to (2) in particular, continuous entities, like all mathemat-
ical objects, are ultimately sets, and their properties are set-theoretic
properties (see [6]).

The most well-known alternatives to Cantor-Dedekind are the vari-
ous constructivist conceptions of the continuum. Nearly one-quarter of
Ehrlich’s anthology is given over to Douglas Bridges’ description of just
one of these conceptions, namely, that of Bishop. Bridges’ discussion is
very clear and completely self-contained, so that it will make an excel-
lent, relatively rapid introduction to the constructivist school of Bishop
and his students for those who lack the time to work through [1]. Along
the way, Bridges distinguishes Bishop’s brand of constructivism from
the recursive constructivist school associated with Markov, as well as
from the sort of constructivism associated with Brouwer. Very briefly,
Markov is described as committed to the thesis that every sequence
of natural numbers is recursive. Brouwer adheres to two principles
that ensure strong continuity properties of functions on intervals of
the real number line. Bridges does not argue for his own particular
brand of constructivism, however. Nor does he indicate what form
such arguments would take. Rather, he is content here to investigate
the conception of the continuum that follows from not adopting any of
the principles adhered to by competing schools.

It is remarkable that the statements of many of Bridges’ theorems
generally differ not at all from their classical counterparts — something
that is frequently pointed out with respect to Bishop’s writings as well.
On the other hand, Bridges’ definitions of central notions such as func-
tion, empty set(s), countable set, and so on differ decisively from those
of classical mathematics. Typically, the effect of this is that, whereas
the classical proof of a given proposition may be completely trivial,
the constructivist proof of that proposition will be nontrivial. If one
grants that the meaning of proposition P is revealed only by its proof,
then it follows that the meaning of P within the constructivist setting
will differ considerably from its meaning within the classical setting.
For the classically trained reader, Bridges’ proofs, although not really
hard to follow, frequently have a quite unpredictable character. This
is often due to Bridges’ use of the following constructively acceptable
replacement (4.9v) for Trichotomy: for any reals x and y, if x > y,
then for any real z, either x > z or z > y.

Bridges’ assertion on page 31 that “every proof of a proposition P
within [Bishop’s constructive mathematics] is ... a proof of P in classi-
cal mathematics” must be construed accordingly. What must be meant
here, of course, is that the constructive proof of P , without any mod-
ification whatever, becomes a classical proof of P ′, where P ′ is the



REVIEW: REAL NUMBERS AND THEIR GENERALIZATIONS 199

result of building into P the constructive understandings of the vari-
ous concepts such as empty set, function, countable set, and so on that
occur within it. To give an example, consider the proposition P , stat-
ing that a nonempty set is countable if and only if it is the range of a
function with domain N (pp. 38-39). Within this proof, the notions of
nonempty set, countable set, and function are given their constructivist
readings. In particular,

(1) A set is nonempty provided we can construct a member of that
set.

(2) A function with domain A and range B is an algorithm that
associates a unique member of B with any member of A.

(3) A set A is countable if there exists a function mapping a decid-
able subset of N onto A.

Explicitly incorporating these understandings into the statement of
the proposition, one obtains the following proposition P ′: where the
notions nonempty set, function, and countable set are understood as in
(1)–(3), we have that a nonempty set is countable if and only if it is the
range of a function with domain N . Now Bridges’ proof is acceptable,
even within classical mathematics, as a proof of P ′.

Turning specifically to the real number system, what is the construc-
tivist philosophy of the continuum in Bishop’s sense? Reals are defined
as Cauchy sequences of rationals and a notion of equality is introduced
that is an equivalence relation. Bridges’ discussion focuses on a variety
of classical properties of the reals that do not hold in the constructivist
context. Among these are:

(1) For all reals x and y, we have that xy = 0 implies that either
x = 0 or y = 0.

(2) For any real x and y, either x > y or x = y or x < y (Tri-
chotomy).

(3) For any real x, either x ≥ 0 or x ≤ 0.
(4) For any real x, if the assumption that x ≤ 0 leads to contradic-

tion, then x > 0.

Bridges’ method consists in showing that each of (1) through (4) en-
tails one of three classical principles concerning binary sequences that
is not acceptable to constructivists. This gives a welcomed unity to
his development of the constructivist theory of the continuum. The
classical principles in question are:

• The Limited Principle of Omniscience (LPO): if (an) is a binary
sequence, then either there exists n such that an = 1 or else
an = 0 for all n.
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• The Lesser Limited Principle of Omniscience (LLPO): if (an)
is a binary sequence containing at most one term equal to 1,
then either an = 0, for all even n, or else an = 0, for all odd n.

• Markov’s Principle (MP): if, for a binary sequence (an), it is
impossible that all the terms equal 0, then there exists (that is,
we can find) a value m such that am = 1.

The last of these principles, we are told, is accepted by the school of re-
cursive constructive mathematics but not by either Brouwer or Bishop.
Those who reject it base their criticism upon the fact that no bound
is provided in advance on the number of terms that must be examined
before a 1 will be found. Later on, the following additional, classically
acceptable but constructively unacceptable principles are cited:

• The Principle of Finite Possibility (PFP): to each binary se-
quence (an) there corresponds a binary sequence (bn) such that,
for all n, an = 0 if and only if bm = 1 for some m.

• The Weak Limited Principle of Omniscience (WLPO): if (an)
is a binary sequence, then either, for all n, we have an = 0 or
else it is not the case that, for all n, we have an = 0.

Bridges, following Bishop, rejects the usual formulation of the Axiom
of Choice (AC) and presents the proof of Goodman and Myhill that
AC implies the Law of Excluded Middle. On the other hand, Bridges
accepts the so-called Principle of Dependent Choice (DC) as given on
page 41.

Bridges shows that the set of reals is complete in the sense that it
contains a limit for each of its Cauchy sequences. A discussion of open
and closed sets of reals is provided, where a set is closed provided that it
contains all its cluster points essentially. In the constructivist setting,
we have (1) the complement of an open set is closed but (2) from the
fact that the complement of S is closed, it does not follow that S itself
is open. Further, (3) the complement of a closed set may not be open
and (4) from the fact that the complement of S is open, it does not
follow that S itself is closed. Most strikingly, we have (5) the union
of two closed sets is not in general closed. Again, in the case of each
of (2)–(5), Bridges’ proof consists of an appeal to the unacceptability
of either LPO or LLPO. For example, regarding (5), he shows that if
taking unions were to preserve closedness, then LLPO would follow.

One of the classical analyst’s tools is the rule that every nonempty set
of reals that is bounded above possesses a least upper bound or supre-
mum. In the constructivist setting, this Least-Upper-Bound Principle
implies LPO. A constructive substitute is available in the form: Let S
be nonempty and bounded above. Then S has a supremum if and only
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if, for all x, y ∈ R with x < y, either y is an upper bound of S or there
exists z in S with z > x. A corresponding result regarding infima is
available as well.

The important notion of locatedness is introduced on page 58: where
X is a set of reals, a nonvoid subset S of X is located in X if, for each
x in X, we have that inf{|x− y| : y ∈ S} exists. In the absence of the
classical mathematician’s Greatest-Lower-Bound Principle, not every
bounded set S of reals is going to be located (in R) in this sense. So
when is such an S located? Bridges shows that it is necessary and
sufficient that S be totally bounded in the sense that, for arbitrary
ε > 0, there exists nonvoid finite E ⊆ S such that, for each x ∈ S,
there exists y ∈ E with |x − y| ≤ ε. (Subset E is termed a [finite] ε-
approximation to S.) Further, it is shown that if every nonvoid closed
set of reals were to be located (in R), then LPO would follow.

Bridges’ Theorem 8.2 amounts to a constructive version of Cantor’s
Theorem and at the same time attempts to clarify a certain miscon-
ception. Namely, it is often said that the constructive continuum is
countable. However, this can only mean that it is countable when
viewed classically. Within the constructivist setting, the continuum is
uncountable, which is what Theorem 8.2 says in effect. (This sort of
situation will be familiar to any reader who has considered the so-called
Skolem Paradox.) Bridges’ proof of Theorem 8.2 is related to the no-
tion of the ternary (base-3) expansion of a real number. As it turns
out, in the constructivist setting, not every real number has a ternary
expansion. (Supposing the contrary commits us to LLPO.) Moreover,
even if two reals x and y do happen to possess expansions, sum x + y
may yet have none, which explains why the constructivist, in devel-
oping a theory of the continuum, cannot focus exclusively upon reals
with computable expansions.

In the classical setting, every pointwise continuous function f is uni-
formly continuous as well: the character of its continuity does not
vary throughout its entire domain. Bridges shows that, in the con-
structivist setting, matters are very different. Namely, assuming the
Church-Markov-Turing Thesis whereby every partial number-theoretic
function is partial recursive, there exist pointwise continuous functions
that are not uniformly continuous. The final three sections of Bridges’
article investigate constructive concepts of locatedness, density, con-
vexity, and connectedness for subsets of R. With respect to convexity
in particular, Bridges shows how a single classical concept yields a
variety of classically equivalent, but constructively nonequivalent, con-
cepts, viz., convexity, weak convexity, paraconvexity, weak paraconvex-
ity, and ultraweak paraconvexity. For example, any weakly paraconvex
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set turns out to be ultraweakly paraconvex, even constructively. But
the converse implies LPO and hence is constructively unacceptable.
Bridges’ point regarding the branching of a single classical concept
into a plurality of nonequivalent constructive concepts is illustrated
again in the case of connectedness. Classically, the connected subsets
of R are all and only the intervals. But connectedness, in the con-
structivist setting, spawns three distinct properties, of which it can be
said constructively only that the first (C-connectedness) implies the
second (O-connectedness), which in turn implies the third (connected-
ness) (Theorem 14.9). For instance, it is shown that, assuming LPO
to be false, there exists a connected set that is not O-connected (The-
orem 14.17). Further, any interval has all three properties (Theorem
14.13). On the other hand, if any of the three properties should turn
out to characterize precisely the intervals, then the three properties
would coincide, contradicting Theorem 14.17.

The great value of Bridges’ contribution to this anthology lies in the
clarity of his exposition and in his habit of repeatedly showing how
the constructivist’s rejection of various classical principles can serve as
the methodological basis for the investigation of the properties of the
continuum. No doubt, Bridges’ unified presentation — always showing
how our classical preconceptions conflict with the constructivist’s rejec-
tion of certain classical principles — will enable many readers to come
away with a much clearer idea of just what constructivism is. Just as
valuable is his having clearly exposed a certain methodology that effec-
tively likens mathematics to the empirical sciences. Namely, imagine
the situation whereby a constructivist proceeds to develop the theory of
the continuum in a way that involves showing that every nonvoid closed
set of reals is located (see above). Later on, someone recognizes that
this would imply LPO, at which point the constructivist reexamines
the proof in order to uncover some constructively unacceptable step. If
the variety of constructivism at issue is consistent, then there will be
such a step, and identifying it may necessitate other changes in the the-
ory. Something like this occurs in the experimental sciences. Imagine
laboratory results that conflict directly with some well-established set
of equations. In such a case, the scientist would presumably look back
over the results in question in order to discern some faulty procedure
or inexact measurement and would no doubt repeat the experiment.
This sort of analogy suggests that the methodology of mathematics is
not so different from that of the empirical sciences. But the broader
analogy is to the methodology of the systematic philosopher or, more
generally, to that of any rational individual attempting to render a
belief set consistent.
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In his brief contribution to this volume, J. H. Conway looks back at
his construction of the reals in [2]. He describes that construction only
in broad outline, providing few details and no proofs. Nonetheless,
it is a useful and engaging introduction to an important alternative
theory of real numbers in the tradition of Cantor and Dedekind. Real
numbers turn out to be a subclass of the so-called surreal numbers,
where a surreal number is anything of the form (XL, XR) with XL and
XR sets of numbers and x > y for no x ∈ XL, y ∈ XR. (It is easiest
to think of (XL, XR) as the ordered pair 〈XL, XR〉, although Conway
himself urges that surreals be construed as “bisets” characterized by
both left- and right-membership.) If XL and XR are permitted to both
consist solely of rationals such that XL ∩XR = ∅ and XL ∪XR = Q,
then we have the Dedekind reals. On the other hand, XL and XR may
contain previously constructed surreals starting with 0 =def. ( ∅ , ∅ ).
It is this, together with the peculiar semantics of quantification over
the empty domain, that gives Conway’s theory its novel features. We
mention the following.

(1) ({0, 1, 2, . . .}, ∅), which Conway calls ω, satisfies the definition
of surreal given above. Moreover, it can be shown that ω > n for
any natural number n in the sense that is given to the relation
>. Thus there exist surreals that are infinite.

(2) Conway, with some misgivings, suggests that real numbers be
taken to be finite surreals of the form ({x − 1, x − 1/2, x −
1/3, . . .}, {. . . , x + 1/3, x + 1/2, x + 1}), where x is a (finite)
surreal number.

(3) Analogous to (1), there exist surreals that are infinitesimal.
Take, for example, the surreal defined by ({0}, {1, 1/2, 1/3, . . .}),
which is smaller than any positive real.

Along the way, Conway makes a number of interesting logical points.
It turns out that, under the proposed definition of = for surreal num-
bers, the equivalence class of any real x under = will be a proper class
in any model of ZF. This is unfortunate to the extent that it is natural
to think of the continuum as the collection of these equivalence classes.
Still, Conway asserts that his approach affords the simplest construc-
tion of the reals “from a purely logical point of view.” Part of what
this involves apparently is a definition of multiplication that enables
us to avoid the usual splitting into cases according to the signs of the
factors. (Conway makes much of the pedagogical value of his definition
of multiplication for surreal numbers appearing on page 96 [see below].)
Also, it is noted that the theory of reals that emerges from the notion of
surreal number entails a rather rigid ordering of both construction and



204 R. GREGORY TAYLOR

proof. For example, 1/4 must be constructed before either 3/8 or 1/3,
and 0 ≤ 0 must be proved before any propositions concerning other
numbers can be proved. Finally, in considering briefly an alternative
construction of the surreals as binary sequences (cf. [3]), Conway re-
marks that if we want to define the ordinal numbers as certain surreals,
“then we should not make the definition of the surreals depend on some
previously defined notion of ordinal number.” This remark suggests the
possibility of predicative versions of this alternative construction.

Conway’s invention of surreal numbers is a reflection of the extent
to which Hilbert’s axiomatic conception, making conceptual indepen-
dence paramount and relativizing notions of mathematical truth and
existence to particular models, has become the presiding Zeitgeist of
twentieth-century mathematics. Knuth’s [5], novelistic in character,
brings home the point by portraying Conway as a god figure whose cre-
ative activity appears to be restricted to number systems. (The same
thing could be said of the results presented in the papers of Keisler and
Klaua [see below]).

Philip Ehrlich’s own paper in his anthology presents, in some de-
tail, his alternative tree-theoretic account of Conway’s theory of surreal
numbers. He begins by briefly recounting the classical presentation as
contained in [2] and [5]. As mentioned above, we take x = (XL, XR) to
be a surreal provided XL � XR, i.e., provided no member of XL is ≥
any member of XR. Even though ≥ has yet to be defined, our under-
standing of quantification already renders 0 =def. ( ∅ | ∅ ) a surreal num-
ber. For the case where left- and right-sets are nonempty, one stipulates
that x ≤ y provided XL � y and x � YR , i.e., provided no member of
XL is ≥ y and no member of YR is ≤ x. From this minimal beginning,
one generates everything. Relation ≤ is shown to be transitive. Fur-
ther, for arbitrary x = (XL, XR), we have that every member of XL is
< x and that x is < every member of XR, where x < y provided x ≤ y
but not vice versa. Relation ≤ is seen to totally order No, the class of
all surreals. Moreover, if YL < x < YR, then x ≡ YL ∪ XL, XR ∪ YR),
where we are writing a ≡ b just in case both a ≤ b and b ≤ a. Addition
is defined by x + y =def. ((XL + y) ∪ (YL + x), (YR + x) ∪ (XR + y))
and is shown to have all the usual properties. Subtraction is defined by
x − y =def. x + (−y), where −y = (−YR,−YL). Similarly, subtraction
is shown to be well-behaved, e.g., x − x ≡ 0 and (x + y) − y ≡ x.
It can be shown that, given any number y, if x is the first number
created with the property that YL < x < YR , then x ≡ y. Finally,
multiplication is defined by xy =def. ((XLy + xYL − XLYL) ∪ (XRy +
xYR −XRYR), (XLy + xYR −XLYR) ∪ (XRy + xYL −XRYL)). And we



REVIEW: REAL NUMBERS AND THEIR GENERALIZATIONS 205

have that xy = yx, 0y = 0, 1y = y, and −(xy) = (−x)y. Further,
multiplication is associative and distributes over addition.

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .
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Ehrlich’s goal is to describe the complete binary tree 〈No, <S〉, where
x <S y provided x is a child of y in that tree (see figure). (An infinite
binary tree is complete if every node has two children and if every
infinite path starting at the root possesses one successor node.) Thus,
1/4 is said to be simpler than 1/8 but not simpler than 5/4, although
both 1/8 and 5/4 appear at a level of the tree that is higher than the
level at which 1/4 appears. Ehrlich defines a surreal x to be an ordered
pair (XL, XR) with XL ∩ XR = ∅ such that (1) if y ∈ XL ∪ XR, then
y is itself of the form 〈YL, YR〉, where YL ∩ YR = ∅ and YL ⊆ XL and
YR ⊆ XR, and (2) there exists a well-ordering <x of XL∪XR such that,
for each y ∈ XL∪XR, we have that YL∪YR = {z ∈ XL∪XR | z <x y}.
(The advantage of Ehrlich’s approach is that a surreal is identified
with a particular pair of sets of surreals, whereas, following Conway’s
own approach, a surreal would be an equivalence class of pairs of sets
of surreals, as was noted above.) With respect to 〈No, <S〉, Ehrlich
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proves, in effect, that (1) root 〈∅, ∅〉 is a number, that (2) for any
number x in the tree, both children of x are numbers, and, finally, that
(3) any infinite path P within the tree is associated with a number
whose left-(right-)set is the sumset of all the left-(right-)sets of the
numbers along P (Theorem 1.1). Each member of No then comes to
be associated with a unique binary sequence (“genetic code”) in the
obvious way (cf. [3]).

Regarding the placement, within this anthology, of the two articles
on surreal numbers, Conway’s article describes the real number system
as a proper part of the system of surreal numbers. To this extent, his
theory of the continuum is an alternative to Cantor-Dedekind. On the
other hand, the existence of infinite reals, infinitesimals, and their recip-
rocals indicates that Conway’s theory of real numbers itself constitutes
a generalization and extension of the theory of real numbers, which
explains the placement of Ehrlich’s own article under the eponymous
heading.

Gordon Fisher’s contribution is largely given over to an account of
Giuseppe Veronese’s construction of a nonarchimedean linear contin-
uum as carried out in the latter’s Fondamenti di geometria (1891).
By all accounts, that work is difficult in the extreme. Contempo-
rary estimations of its value varied widely, however, as Fisher recounts.
Peano’s review was scathing — perhaps due to Veronese’s obvious in-
terest in epistemological issues. (The present reviewer found this aspect
of Veronese’s thought, as described by Fisher, quite intriguing although
nonetheless perplexing.) Fisher reports Hilbert’s favorable reaction as
well as Veronese’s influence on algebraist Hans Hahn, who, in his 1907
article “Über die nichtarchimedischen Grössensysteme,” set himself the
task of giving an algebraic account of Veronese’s “intuitive continuum.”
Fisher’s article actually begins with a discussion of Hahn’s reconstruc-
tion. Since readers will unquestionably find Hahn’s treatment clearer
than Veronese’s own discussion, this seems a reasonable choice.

Hahn takes a nonarchimedean system S (of quantities or magnitudes)
to be a linearly ordered group in which the archimedean axiom may fail
to hold. (The archimedean axiom asserts that, for any two positive a
and b with a < b, there exists natural number n with na > b.) Hahn was
able to show that the quantities of such a system S may be partitioned
into equivalence classes, within each of which the archimedean axiom
does hold. Moreover, since the equivalence classes of S are themselves
linearly ordered, it becomes possible to assign to S a certain class type,
namely, the Cantorian order type of the set of its equivalence classes.
It then turns out that an archimedean system is just a nonarchimedean
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system of class type 1. The complex numbers can be ordered in such
a way as to yield a nonarchimedean system of class type 2, and the
generalization to hypercomplex numbers having n basis elements yields
a nonarchimedean system of class type n. Indeed, Hahn goes on to
extend this process so as to obtain nonarchimedean systems of arbitrary
class type.

In his review of Hilbert’s Foundations of Geometry, Poincaré makes
it clear that he regards Hilbert’s nonarchimedean geometry — again,
the axiom of Archimedes fails — as the most original part of that work.
For this purpose Hilbert had introduced a system of nonarchimedean
numbers consisting of all series of the form

am tm + am−1 tm−1 + am−2 tm−2 + . . . + a0 t0

where m is any integer and where the coefficients am, am−1, am−2, . . .
are real. The sign of such a nonarchimedean number is taken to be
the sign of its leading coefficient. The arithmetic operations on these
entities are defined in the usual way and, for two such nonarchimedean
numbers r1 and r2, we have r1 < r2 provided r2 − r1 has positive sign.
It follows that t itself is greater that any real x. Moreover, for any real
x, there exist infinitely many nonarchimedeans that are at once less
than x and greater than any real y with y < x.

A further generalization of the reals is needed for Hilbert’s nonpas-
calian geometry wherein multiplication is not commutative. Take the
nonpascalian (and nonarchimedean) numbers to be those of the form

Tm sm + Tm−1 sm−1 + Tm−2 sm−2 + . . . + T0 s0

where m is any integer and where the coefficients Tm, Tm−1, Tm−2, . . .
are nonarchimedeans. Arithmetic operations are the usual ones except
that s · t = − t · s. The sign of such a nonpascalian number is that
of Tm, and order is imposed in analogy with the nonarchimedean sys-
tem. It turns out that nonarchimedean t exceeds any real x and that
nonpascalian s exceeds any nonarchimedean.

Hourya Sinaceur’s historical article aims to show how the real alge-
bra of Artin and Schreier (1926) enabled mathematicians to achieve
the long-standing goal of rendering the linear continuum numerical.
Sinaceur places these authors and their work within the context of
the Hilbert school, by which is meant Hilbert’s emphasis upon the ax-
iomatic method and finiteness theorems. A class of algebraic structures
— the real closed fields — is defined, of which the reals turn out to be a
model. Since Skolem-Löwenheim implies that the reals of such models
are not determined even up to isomorphism, it is natural to ask in pre-
cisely what sense the reals have thereby been characterized. According



208 R. GREGORY TAYLOR

to Sinaceur, the innovation of Artin and Schreier rests in the point of
view whereby the reals are taken to have been successfully character-
ized just because the various versions of R are elementarily equivalent,
i.e., they model the same first-order sentences. Although Sinaceur does
not herself do so, it is interesting to contrast this approach with that
of Zermelo during the same period. As a metaphysical realist, he views
axiomatic set theory as describing a determinate, independently exist-
ing reality — a platonist realm of sets. So the question arises: How
after all does set theory, given the model-theoretic conception, which
Zermelo by this point in time has made very much his own, determine
its subject matter as the sets? A certain common expectation with
respect to the semantics of formal systems expresses itself as a demand
for categoricity. The Skolem Paradox gives an unfavorable ruling in
the case of the axioms of first-order ZF: they fail to determine their
subject matter even up to isomorphism. Zermelo’s idea in the late
twenties is to move to a second-order formalism so as to obtain several
results that together give something approximating categoricity (cf. [7]
and [4]). That Zermelo could not have been satisfied with elementary
equivalence would appear to stem from his foundationalism — in par-
ticular, from his foundationalist aspirations for axiomatic set theory.
At the very least, the contrast between Artin and Schreier, on the one
hand, and Zermelo, on the other, shows again the diversity of views
held by those belonging to the Hilbert school.

Sinaceur sees Artin and Schreier as at least “approximating” Hilbert’s
finitist method to the extent that they provide a countable algebraic
description of the continuum, i.e., a countable set of first-order state-
ments. But, again, this description does not characterize R even up to
isomorphism, so in what sense has the linear continuum been captured
really?

Finally, a small point. Sinaceur asserts that, because two of Artin
and Schreier’s axioms are in fact first-order schemata, Hilbert’s ax-
iomatic method is only being approximated. It is true enough that
Hilbert called for “finite” axiomatizations. However, it is also clear
that the distinction between an axiom and an axiom schema was not
always significant in this regard. Consider that Hilbert plainly regarded
Zermelo’s 1908 axiomatization as being quite on the mark, despite its
incorporation of an axiom schema (Aussonderung). Viewed in this
light, Sinaceur’s qualification is probably unnecessary.

H. Jerome Keisler’s article is a very interesting, introductory treat-
ment of that extension of the continuum known as the hyperreal line.
Like Conway’s surreals, the hyperreals include both infinite and infin-
itesimal numbers. However, in the case of the hyperreal numbers, it
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is model-theoretic, rather than algebraic, ideas that drive the theory.
Significantly, the hyperreal number system has the same first-order
properties as the real number system. It is best known from the work
of A. Robinson, who used it as the basis for his development of non-
standard analysis.

An element of an ordered field is said to be infinitesimal if its abso-
lute value is less that 1/n for every n. Infinitesimals are a feature of
any ordered field having at least one positive infinite element — any
nonarchimedean ordered field. Any element x of such a field possesses
a monad of elements that differ from x by an infinitesimal amount.
Similarly, for arbitrary element x, the galaxy of x consists of those ele-
ments differing from x by a finite amount. The monad of 0 is thus the
infinitesimals, and its galaxy comprises the finite elements of the field.

Keisler motivates the introduction of hyperreals by citing a deficiency
in Tarski’s celebrated completeness result for the first-order theory of
real closed ordered fields. Namely, that result applies only to first-order
formulas built up from predicates = and ≤, function symbols + and
·, and constants 0 and 1. The goal is to extend this result to the full
range of first-order properties of the reals. The hyperreals are con-
structed explicitly as an ultrapower of the real number system. The
fundamental features of the hyperreal number system are expressed by
(1) the Transfer Principle — the analog of Tarski’s theorem — stating
that the hyperreal number system satisfies the same first-order formu-
las as does the real number system and (2) the Saturation Principle
stating that any countable decreasing chain of nonempty internal sets
of hyperreals has nonempty intersection, where the internal sets are
those whose first-order properties are those of corresponding sets of re-
als. This leads to an informative presentation of the notion hyperfinite
grid. Relative to a given positive infinite H, this might take the form

{−H,−H+1/H,−H+2/H, . . . ,−2/H,−1/H, 0, 1/H, 2/H, . . .

. . . , H − 2/H,H − 1/H,H}
so that, by the Transfer Principle, every real number is infinitesimally
close to some element of the grid.

At the end of his article, Keisler turns to foundational issues. Whereas
in Zermelo set theory one can prove the existence of a unique real line,
one can prove the existence of the hyperreal line in ZFC but not its
uniqueness. This leads Keisler to consider alternative set theories that
enable one to prove uniqueness. The first of these alternatives is based
on the superstructure approach of Robinson and Zakon. In this theory,
both the real line and the hyperreal line can be proved to be unique.



210 R. GREGORY TAYLOR

The same is true of Nelson’s Internal Set Theory, which is the other
set theory considered.

Keisler contrasts what he terms the platonistic approach with a prag-
matic approach to theorizing about the geometric line. Following the
former approach involves the search for some mathematical structure
exhibiting properties attributed to the geometric line, which is assumed
to exist and to be accessible to us. The pragmatic approach consists
in proposing mathematical structures useful in explaining natural phe-
nomena or obtaining mathematical results. Keisler suggests that both
platonistic and pragmatist justifications for the study of the hyperreal
number system are available. The article closes with a brief review
of applications within economics and physics and of the fruitfulness of
hyperfinite computations for probability theory and analysis.

Dieter Klaua’s brief article recounts efforts — his own and that of
others — to develop a generalization of the rational and real number
systems based upon ordinals. An addition and a multiplication that
are commutative and absorption-free are obtained, following Hessen-
berg, by adding and multiplying the Cantor normal forms of ordinals
in a manner suited to polynomials. In that case, for α an arbitrary
ordinal, ωα is closed under + and ·. Nα = ωα is defined as the set of
natural ordinal numbers of type ωα, ordered by membership and oth-
erwise structured by the Hessenberg operations. The set Zα of integer
ordinal numbers of type ωα is obtained from Nα ×Nα by taking equiv-
alence classes under difference equality =D and using the induced
ordering and operations. Next, the set Qα of rational ordinal num-
bers of type ωα is obtained from Zα × (Zα \ {0}) by taking equivalence
classes under quotient equality =Q . By isomorphic embedding, we
have Nα ⊆ Zα ⊆ Qα, and ℵα is the cardinality of all three sets. Klaua
stresses that the transfinite rational domains Qα differ in essential ways
from their classical counterpart Q : whereas not every ω-sequence of
members of Q contains a convergent subsequence, Sikorski showed long
ago that, in Qα, every bounded ωα-sequence does possess a convergent
ωα-sequence (generalized Bolzano-Weierstrass Theorem for Qα).

A metric on Qα is available, and the collection of all open subsets of
Qα constitutes a topological space (of type ωα) in a recognizable sense.
Transfinite versions, for Qα, of well-known properties of classical real
analysis are then seen to hold. For example, analogous to the Heine-
Borel Theorem, one has the following: If M ⊆ Qα is a closed, bounded
set and, for every x ∈ M , we have that U(x, εx) is an open ball with
center x, then there is a subset X ⊆ M with M ⊆

⋃
x∈X U(x, εx) and

card(X) < ℵα.
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As for the real extension of Qα, one defines Rα as the set of all cuts
(A, B) in Qα such that A has no maximum element. One obtains a
total ordering of Rα by setting A < B with A = (A1, A2) and B =
(B1, B2) provided that A1 ⊂ B1. The elements of Rα are the real
ordinal numbers of type ωα in the most general sense, Klaua tells us.
This is because isomorphic embedding gives Qα ⊆ Rα and yet the
arithmetic properties of Rα are not the ones we seek. For instance,
for γ ∈ Rα, we can show only that γ − γ ≤ 0 unless γ ∈ Qα. This
situation leads Klaua to define the set R∗

α ⊆ Rα having algebraic and
topological properties superior to that of Rα, e.g., R is isomorphically
embedded in R∗

α.
In an appendix, Klaua provides axioms for ZFC that enable one to

define the rank relation (“a is of lower rank than b”) without presup-
posing ordinals.

With the exception of the Hobson, Poincaré, and Veronese pieces,
none of the articles in this collection has appeared previously. (The
article by Veronese appears here for the first time in English transla-
tion.) The articles by Bridges and Keisler could serve as introductions
to intuitionistic analysis and the theory of hyperreal numbers, respec-
tively. The same cannot be said of the two papers on the theory of
surreal numbers included here, which clearly presuppose considerable
familiarity with the surreal numbers. Ehrlich’s anthology contains very
few typographical errors. It includes a name index but lacks a subject
index, which some readers might have found helpful.

Ehrlich has brought together some valuable work on issues of great
interest to logicians and philosophers of mathematics. This work re-
veals once again the extent to which the various players, in present-
ing whatever theory of the continuum, have been motivated by basic
philosophical attitudes regarding infinity and mathematical existence
generally. This motivation is, of course, well known in the case of
disagreements between platonists and constructivists. The value of
Ehrlich’s anthology lies in reminding us that other, less well-known, or
even forgotten, theories of the continuum were likewise motivated by
views that were equally philosophical. In particular, his anthology gives
tangible form to one’s sense that metaphysics, and, in particular, ontol-
ogy, has made a difference for mathematical analysis. Turning matters
around, these papers collectively embody the efforts of a group of math-
ematicians to give scientific, technical answers to what are, essentially,
philosophical questions concerning the nature of the continuum1.

1The reviewer wishes to thank Jane Stanton for editorial assistance.
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