
The Review of Modern Logic

Volume 9 Numbers 1 & 2 (November 2001–November 2003) [Issue 29], pp. 167–182.

José Ferreirós
Labyrinth of Thought:
A History of Set Theory and its Role in Modern Mathematics
(Science Networks. Historical Studies, Volume 23)
Basel and Boston: Birkhäuser Verlag, 1999
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REVIEW

ROGER COOKE

The language of set theory is so all-pervasive in modern mathemat-
ics that it is difficult to imagine how mathematicians ever talked and
wrote without it. Yet they did, for thousands of years. People wrote
about geometric figures rather than sets, or they phrased propositions
in terms of points having a particular property, focusing on the individ-
ual points rather than their totality and thus ignoring what we would
now refer to as the set of points having a property. The absence of
this useful concept and the concept of membership in a set led to some
unfortunate lapses in reasoning. In philosophical writing, for example,
an object was sometimes conflated with what we now call the singleton
set whose only element is that object, leading to confusion about the
meaning of the word unique. On the other hand, the notions of set and
membership in a set are so primitive that it is easy to find prefigura-
tions of them very far in the past. The story of set theory is therefore
best told as the gradual coming into focus of a common intuitive no-
tion. The many independent trends that brought about this focusing
and thus created modern set theory form the subject of the book under
review.

The author’s title comes from his epigram, which in turn is a quo-
tation from Jorge Luis Borges’s 1981 book La cifra. Discussing his
reading in the subject of set theory, Borges says, “It was not given to
me to enter that delicate labyrinth.” And what a labyrinth it is! In
studying it, the reader is constantly confronting topics that could be
said to belong to logic, topology, real analysis, algebra, geometry, and
so on. If you take any convenient turning, you will soon encounter
another, and there simply is no systematic way to explore the entire
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place. (If I might be allowed to mix classical literary references, I would
refer to this labyrinth rather as an Aladdin’s Cave for the treasures of
thought it contains.) The classical allusion to the labyrinth is immedi-
ately followed by another, in the introduction. The author begins by
explaining that set theory is too often made to appear as if it sprang
fully formed from the head of Cantor, like Athena from the head of
Zeus. He might have continued these pleasant images by telling us
that he proposed to play the role of Ariadne to the reader’s Theseus,
with this book as the thread to guide the reader out of the labyrinth.
In the classical myth Ariadne also gave Theseus a sword to slay the
minotaur in the labyrinth. But here it might be wise to stop and let
the readers of this review supply their own parallels.

Most of the events described in this book occurred in the century
between 1850 and 1950. The five chapters in Part 1 discuss the early
period, up to the early 1870s, in which a number of classical areas
of mathematics — algebra, analysis, and geometry — came under
the scrutiny of mathematicians determined to organize them coher-
ently and make them logically secure. Thus, even in its origins, set
theory (the organizing part) was entangled with mathematical logic.
Part 2 consists of three chapters discussing the crystallization of set-
theoretic ideas, especially the notion of cardinal number, over the next
two decades. The final part, also containing three chapters, discusses
the spread of set theory in the work mostly of Continental mathemati-
cians, the problems surrounding its logical basis, especially the Axiom
of Choice, and attempts to systematize the systematization by formu-
lating a reasonable set of axioms for set theory.

The reader should know immediately that this is going to be a lauda-
tory review. The author paints on a grand scale. He sees clearly, and he
sees whole. The result is a spacious canvas full of intriguing scenes and
portraits from the history of set theory, seamlessly juxtaposed to form
a fascinating and accurate picture of a vast area of modern mathemat-
ics. It is a must-have book for anyone who wishes to gain a balanced
picture of this history. It is written in clear and elegant language for
the learner, while experts in the area will enjoy seeing this beautiful
presentation of what they already know, perhaps arguing about some
of the author’s conclusions and choices of material. The review that
follows is an attempt to explain the structure of the book and some of
the author’s main points, together with an indication of what is nec-
essarily left out since it could not be included without writing a much
longer book.

In relating any history of mathematics it is necessary to take account
of the currently popular view of the subject. As mentioned above, in
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the case of set theory, there is a widespread view that credits Cantor
with the primary rôle as its creator. While not minimizing Cantor’s
contributions, the author takes pains to present the earlier and contem-
porary work of a large number of other authors who made significant
contributions to set theory, thus presenting a richer, multi-dimensional
picture to replace the predominant one-dimensional version.

One thread in the tapestry of set theory is easy to trace: the con-
nection with the theory of uniqueness of multiple trigonometric series.
This thread has one end in an 1854 paper by Riemann that was not
published until 1867, after Riemann’s death. This thread breaks off in
1916, but resumes in the 1980s.

In the 1854 paper Riemann considered the question whether there
could be a trigonometric series with some of its coefficients different
from zero that converged to zero at every point. Riemann assumed
what Cantor was later to show could be proved, namely that the co-
efficients of the series necessarily tend to zero if the series converges.
(Kronecker pointed out that the general case could be deduced from
the case in which the coefficients tend to zero, so that it was in fact
not necessary to prove that they tend to zero.) By performing formal
term-wise integration on the supposed series twice, Riemann produced
a series that was a Fourier series, that is, one whose coefficients were
obtained by integrating the product of a continuous function F (x) with
the corresponding trigonometric functions. If one could show that all
the coefficients of this Fourier series were zero, it would immediately
follow that all the coefficients of the original series were also. Rie-
mann’s technique for doing so was to introduce a generalized second
derivative D2F (x) which is zero wherever the original series converges
to zero. This generalized second derivative has in common with the
ordinary second derivative that, if it vanishes on an interval, then F (x)
is linear on that interval. Thus, if D2F (x) vanishes identically, as fol-
lowed under Riemann’s assumption that the original series converges
to zero everywhere, then F (x) had to be a linear function on the entire
line. That, in turn, meant that a polynomial had to be equal to the
sum of the trigonometric functions, which was a function of period 2π.
Since the only periodic polynomial is a constant, it followed that the
periodic function was constant and then easily that all the coefficients
had to be zero.

An important piece of set theory arose from the attempt to strengthen
this result by allowing the series to diverge or converge to a non-zero
limit for a finite number of points. Riemann’s reasoning is still valid.
The function F (x) is still continuous and linear in each interval whose
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endpoints are the finite number of exceptional points. But then, Rie-
mann’s second theorem comes into play. This theorem asserts that the
function F (x) cannot have a corner, that is, if it has a one-sided deriva-
tive at any point, then it has a two-sided derivative. As a result, if this
function is linear on [a, c] and also on [c, b], then it is in fact linear on
[a, b]. This result made it possible to allow isolated exceptional points
in the hypothesis of convergence to zero, since they do not invalidate
the argument that F (x) is globally linear.

It is the step from a finite number of exceptional points to an infi-
nite number (undertaken by Cantor in 1872) that connected with set
theory. Allowing an infinite number of exceptional points brings us
up against the Bolzano–Weierstrass theorem, producing at least one
point of accumulation for the exceptional points. Cantor knew this
fact, having attended Weierstrass’ course on analytic function theory
in 1864. The isolated exceptional points cause no problems at all, so
that the function F (x) is still continuous, and still piecewise linear on
intervals whose endpoints are now the points of accumulation of the
exceptional points. If these intervals are finite in number, once again,
the no-corners principle applies, and the uniqueness theorem continues
to hold. Hence when the exceptional set has only finitely many points
of accumulation, the proof continues to hold, and one is led to con-
sider the case when the exceptional set has infinitely many points of
accumulation. It was in connection with this train of ideas that Cantor
began to speak of a Wertmenge (set of values) and a Punktmenge (set
of points).

It was Cantor who first gave a name to the concept of a point of
accumulation. Weierstrass had simply said that when a quantity can
assume infinitely many values within finite limits, there would be a
point every neighborhood of which contains infinitely many of the val-
ues. Observe how neatly this phrase talks around the idea of an infinite
set without ever mentioning sets. Very soon after he first looked at the
problem of allowing infinitely many exceptional points for convergence
of a trigonometric series, Cantor had introduced the concept of a point
set and its derived sets of all finite orders. The uniqueness theorem
is obviously valid if the exceptional set is, as Cantor described it, von
der ersten Gattung (of first kind), that is, some derived set of finite
order is empty. Looking beyond this point, Cantor saw that, since all
the derived sets after the first were nested, it would be possible to talk
about sets of second kind, that is, sets of infinite order. One could de-
fine the derived set of infinite order to be the intersection of all the sets
of finite order, then start over again (at “infinity plus one”) with a new
derived set. In other words, the germ of the later idea of a transfinite
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ordinal number was contained in the notion of derived sets of sets of
real numbers.

Looked at in isolation, this story seems to justify the large amount
of credit traditionally assigned to Cantor for originating the basic con-
cepts of set theory. All this history is duly given in Chapter V of the
present book. Two points, however, show how wrong such a conclu-
sion would be. First, Cantor abandoned the problem of uniqueness of
trigonometric series in the early 1870s, yet he continued to develop set
theory for the rest of his life. Second, Cantor did not create the no-
tion of set ex nihilo. In the first four chapters we learn just how much
Cantor was indebted to earlier and contemporary mathematicians.

Dedekind, for example, came to set theory via algebra. He seems
to have been the first (in the years 1855–1858) to realize that groups
could be studied as completely abstract objects. All one needed was
a set — Dedekind called it variously a domain (Gebiet) or a complex
— made up of a finite number of elements, things (Dinge), or concepts
(Begriffe), on which some binary composition was defined. He regarded
number fields in the same way, and thus met the author’s major crite-
rion for serious involvement with set theory, the consideration of actual
infinities. Dedekind’s set theory included a theory of mappings (which
he called substitutions). Although the details are harder to trace, since
Dedekind was a perfectionist in relation to publication, it is known that
Dedekind also reworked much of Riemann’s material on manifolds, es-
pecially those of nonconstant curvature, and even attempted to prove
the Dirichlet Principle, seven years before Weierstrass published his cri-
tique of this principle. The connection of this material with Dedekind’s
set theory is not completely established, but the author refers to some
papers in the Dedekind Nachlass bearing the title “Ideale Geometrie”
which may shed further light on the matter. Thus, although he used
such words as domain or system rather than set, Dedekind took the
crucial step of regarding a collection of objects as a single object, and
he allowed the collective object to have infinitely many members.

The author finds prefigurations of set theory even further back than
Dedekind, in the work of Gauss and Bolzano. Bolzano is quoted (p.
75) as having used the word set in a sense that seems modern in a
posthumously published (1851) paper in which he showed that intervals
of different lengths could be in one-to-one correspondence. (Of course,
Galileo had shown this two centuries earlier.) However, he argued that
this correspondence did not establish the equality of the two sets.

The author emphasizes the influence of Riemann on both Dedekind
and Cantor. In the case of Dedekind, who edited Riemann’s Nachlass,
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there is no doubt about this influence. In the case of Cantor, be-
sides the obvious work that Cantor did on the theory of uniqueness of
trigonometric series, there is a second, less obvious influence, which the
author finds in Riemann’s study of manifolds of various dimensions. He
notes particularly Riemann’s consideration of discrete manifolds. This
alleged connection with set theory would not quite have rung true to
the reviewer before reading this book, despite Riemann’s well-known
background in philosophy. Riemann’s work is so rich in classical geo-
metric and analytic content that it is difficult to see it as having even
a psychological connection with later abstractions. Even the works on
geometry and complex function theory, which explicitly contain the
words “foundations” in their titles, always seemed to me to aim at
getting a clear and intuitive way of thinking about very concrete and
classical mathematical objects and, even more importantly, breaking
open new areas for study in these areas. They do not have any “point-
set” aspect that I could discern. Two telling points of the author have
caused me to revise this opinion.

First, the author points out that Riemann regarded a manifold as
a single object made up of points, based on the notion of concept-
extension. I confess that I have never been able to associate any clear
idea with the phrase concept-extension, and for that reason would be
inclined to look elsewhere for the roots of set theory. However, I am
impressed by the fact that Riemann adumbrated the abstract notion
of a geometric manifold. By focusing on the parametrization of such
a manifold, one might be led to leave the actual nature of the object
being parametrized vague, effectively regarding it as an abstract point
set, since all the important information about it is encoded in the
parameters. Second, and most convincingly, the discussion (in Chapter
VI) of Cantor’s work on dimensionality and cardinality shows clearly
that Cantor was looking at Riemann’s discussion of manifolds with a
critical eye and had laid his finger on the crucial point, namely the
question of invariance of domain. In the 1870s Cantor tried to do
what was impossible at that time: prove that dimension is invariant
under continuous invertible mappings. His theorems asserting that
the real line is not of the same cardinality as the integers, while all
continua have the same cardinality, represented a large leap forward
in the understanding of what was and was not implied by dimension.
Actually, the author’s discussion of the nondenumerability of the reals
(pp. 176–183) left me with the impression that this particular question
did not arise in the course of Cantor’s development of set theory, but
had been on his mind since his student days, independently of his other
interests.
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The author notes that the publication of Riemann’s paper on trigono-
metric series, which contained the definition of the Riemann integral
and its explicit validity for some discontinuous functions, was simul-
taneous with the publication of his work on manifolds. Thus, in two
areas, Riemann’s work led to the consideration of objects that were sig-
nificantly more abstract than those considered previously. The reviewer
has always regarded the paper on trigonometric series representations
as being anomalous in the canon of Riemann’s works. Compared with
his work on abelian functions, geometry, Riemann surfaces, and so
forth, it has a peculiar “real-variable” flavor. I have always attributed
this quality to the fact that Riemann was assigned this topic; it was
not one that he chose himself. In contrast to all his other work, in this
one paper he gives copious citations of earlier literature (provided to
him, we now know, by Dirichlet, who had set him the problem in the
first place).

However that may be, the author makes the point that “Riemann’s
abstract-conceptual approach to mathematics may have paved the way
for the development of abstract set theory.” After all, those abstract
objects have to be thought of somehow. Given that Riemann was will-
ing to consider even infinite-dimensional manifolds, it is unlikely that
he regarded them as embedded in some Euclidean space. However Rie-
mann himself thought of them (as objects of pure intuition, perhaps),
later mathematicians, as we know, did eventually turn them into pure
abstractions, for which set theory was the necessary basis. When all is
said and done, however, it is very clear that Riemann’s work focuses
on the specific, whereas Dedekind and Cantor were systematizers. The
tone and general trend of Riemann’s thought is very different from that
of Dedekind and Cantor. The latter two were inspired by Riemann’s
thought, and that is as it should be: the specific should inspire sys-
tematization. There is creativity in both, and both are needed for the
healthy growth of mathematical knowledge.

It has always seemed to the reviewer that the biggest problem set
theory faced at the outset was not attaining philosophical respectabil-
ity, but rather showing that it made possible the solution of some in-
teresting problems. In one of her letters to Mittag-Leffler, Sonya Ko-
valevskaya takes pains to point out that Hurwitz had made elegant use
of Cantor’s research to prove that a meromorphic function of several
variables is necessarily a rational function. Toward that same end, the
use of set theory by the French mathematicians Baire, Borel, Lebesgue,
Fatou, and others to give a systematic treatment of the theory of mea-
sure and integration was an epoch-making event. This work was still in
progress at the time of the famous confrontation between Cantor and
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König at the 1904 International Congress, which in turn was followed
by the rather acrimonious discussion of the Axiom of Choice.

The author does a very good job of giving the details of all this
history, and these details lead to a tiny mystery that may interest the
reader. In 1878 Cantor had used a zigzag curve to show that a closed
interval can be placed in one-to-one correspondence with a half-open
interval, from which he deduced that a closed interval and an open
interval can be in one-to-one correspondence. This result, of course,
follows easily from what is commonly called the Schröder–Bernstein
theorem. However, as the author relates on p. 239, Schröder’s alleged
proof of this theorem did not appear until 1896, and it contained a
mistake, so that the theorem is more properly the Cantor–Bernstein
theorem. Thus, Cantor was obliged to construct an explicit one-to-
one correspondence between the two, and he took the time to be very
analytic. That is, he didn’t do what any undergraduate would do
nowadays: extract a countable subset from the interval, shift it by one
index, and map one endpoint onto the now-vacant first term of the
sequence. Had he done so, there would have been no hope of getting
the result accepted by the mathematicians of the time. The author
reports (p. 312) that at the third International Congress in 1904, Julius
König announced a proof that the cardinality of the continuum is not
any aleph (which would, of course, refute the Continuum Hypothesis).
As Cantor had been able to prove that every cardinal number is an
aleph by assuming that every set can be well ordered, König’s result
was, as Gerhard Kowalewski wrote [2, p. 202], “in conflict with two of
Cantor’s basic beliefs.” Naturally Cantor was shaken by this revelation.
Kowalewski reports that “there was also gratitude to God for allowing
him to live long enough to see his mistakes revealed.”

So much is told by the author. As it happens, there is another
account of this confrontation in the Russian literature. A letter from
Nikolai Luzin to his friend Pavel Florenskii [1] reports second-hand
what Luzin had heard about this conference from A. A. Volkov. As
Luzin wrote,

. . . Cantor announced that he had succeeded in mapping an
interval without endpoints onto an interval with endpoints,
but he hasn’t given the proof yet. Then some other mathe-
matician, a young man, rose and said that the possibility of
this mapping entails paradoxes and gave arguments in sup-
port of this. Cantor, who had listened to him in great agi-
tation, declared that these were the most critical moments
of his life, and that he would think further . . .
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It seems unlikely that Cantor would be badly shaken about two en-
tirely different matters at the same conference, even though he was,
as is well known, a very nervous man. Most likely there was confu-
sion in the transfer of information from Volkov’s memory to Luzin to
Florenskii. The assertion that Cantor “hadn’t given the proof yet” is
certainly wrong. Probably Volkov was not current on the subject and
so didn’t understand all that was being said. He obviously did not
recognize König or remember his name, if the discussion he is report-
ing is the same one reported by Kowalewski. It would be interesting
to know more details, but they are not likely to be available now, a
century later. It seems probable that the correspondence between an
interval without endpoints and an interval with endpoints, mentioned
above, was advanced by Cantor as an established fact, intended to re-
fute König’s argument, and that König (if it was he) replied that such
a mapping involved paradoxes, and therefore must be erroneous. The
two humble replies attributed to Cantor by the two witnesses both
ring true. One suspects that he always half-feared that the edifice of
set theory might come crashing down.

According to Kowalewski, the flaw in König’s argument, traceable
to an error of Felix Bernstein, was pinpointed the very next day by
none other than Zermelo, who immediately gave two proofs of the
well-ordering principle. The author, however, points out how unlikely
that scenario is and conjectures that Kowalewski’s memory probably
deceived him.

It is a revealing fact that the controversy over the Axiom of Choice,
and the enormous amount of literature it generated arose at just this
point. There is no logical reason why the axiom could not have been
questioned earlier, since proofs involving arbitrary choices were cer-
tainly used earlier. It must have been the abstraction of the concepts
involved that inevitably led to the explicit formulation and dispute
over this axiom. The fact that such proofs were and are so common is
well illustrated by the fact that Gregory Moore’s encyclopedic study of
the history of this axiom ([4]) contains huge amounts of the history of
general set theory and real analysis.

In a famous paper published in the Comptes Rendus in 1916 and
enlarged in the Bulletin of the Cracow Academy of Sciences in 1918,
Sierpiński revealed the ubiquitous nature of this axiom. The reactions
to his survey were vehement. The reviewer read one such reaction,
by Luzin, in the Archives of the Soviet Academy of Sciences in 1989.1

1Fond 606, opis’ 1, edinitsa khraneniya 57. The notes bore the date January
1917. Sierpiński had been caught in Moscow at the outbreak of World War I and
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To Luzin the central issue in clarifying the Axiom of Choice was the
meaning of the German word Existenz. He wrote:

We see that in the absence of an analytic2 (non-auswahlic)3

rule (which is the only thing that could give us confidence in
the existence of the required class), the existence of a class
becomes mysterious and the problem is actually the ques-
tion of the validity of this existence and the very meaning
of this existence. An analysis of the word “existence” would
be interesting! Philosophically it denotes absolute being.
Only I don’t know whether that is equivalent to objective
being. To exist does not at all mean “to be an object of
our thought.” It is something more, since even a contra-
diction can be an object of our thought, and it is deprived
of existence. Indeed, we speak of objective existence of the
same degree of certainty as the existence of any mathemat-
ical object (in the earlier sense), such as a straight line or a
circle.

There are two types of existenz : First, a thing exists
because it is analytically defined for everyone; here we
do not care what particular analytic procedure is used
for the definition; all that matters is that the definitions
be analytic; the actual procedure is a matter of indiffer-
ence to us, and hence so are the logical functions and
procedures by means of which this analytic definition
is accomplished. We require only operations with arbi-
trariness eliminated. Second, a thing exists by virtue of
the Axiom of Zermelo, that is, it exists, although it can-
not be analytically defined. That is the true meaning
of Zermelo’s Axiom. It contains the concept of “exis-
tenz,” and therefore everything reduces to uncovering
the content of that concept.

At this point it will be well to confess a näıve philosophical prejudice.
To the reviewer much of this passage seems to be based on bad philos-
ophy. The meanings of words are determined by their usage, and the
phrases “absolute being” and “objective being” have no usage outside

had participated in Luzin’s seminar. Luzin admitted that he found Sierpiński’s
survey “horrifying.”

2The Russian word is obshcheobyazatel’nyi, which could be literally translated
“by general obligation,” that is, a priori, but Luzin used this word as a translation
of Lebesgue’s analytique.

3A word coined by Luzin — ausvalicheskii in Russian — to denote the use or
non-use of the Axiom of Choice (Auswahlprinzip) in the definition.
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the ethereal word-spinning of philosophers like Hegel. Because of that,
they are simply nonsense. Luzin very wisely confined these speculations
to his own notebooks, not only because it was personally dangerous to
speculate on such inexact matters in his day, when deviance from the
state-prescribed metaphysics could carry the death penalty, but also
because he realized that they were not well enough formed to be real
mathematics or even mathematical philosophy.

Unfortunately, along with this material, Luzin also suppressed some
very acute insight into the Continuum Hypothesis. For example, ev-
erybody knows the famous diagonal proof that the interval [0, 1] is
uncountable.4 One imagines any sequence in [0, 1]. Then by imagining
a change in the nth digit of the decimal expansion of the nth num-
ber in the sequence, one “constructs” a number not in the sequence.
Luzin pointed out that this proof does not show that no enumeration of
[0, 1] exists, since the construction of the new number depends on more
than the mere existence of the sequence: it requires that the sequence
be explicitly enumerated. Thus, as far as the proof shows, a one-to-one
correspondence between [0, 1] and the positive integers might possibly
“exist” in some abstract sense. It just couldn’t be explicitly written
out.

This same idea, distinguishing carefully between what exists and
what can be named, apparently occurred to Lebesgue as well, and was
used by him to deny that some of the uses of the Axiom of Choice
were essential (see [4, p. 288]). In particular, Lebesgue argued that as
long as explicit enumerations were required, the theorem that a count-
able union of countable sets is countable remained valid. The usual
argument that this proof requires the Axiom of Choice is that one
must choose an enumeration of each set in the collection in order to
enumerate the whole. Lebesgue (1921) argued that the choice would
be unique (and hence not a choice) if each set was explicitly enumer-
ated. Luzin later (1926) distinguished between two cases that he called
Lebesgue choice and Zermelo choice, and he said explicitly that “ap-
plying free choice amounts, in my opinion, to juggling combinations of
empty words, whose meaning does not correspond to any intuitively
accessible fact.”([3, p. 279]) The author (p. 316) cites Hadamard’s
comment that Lebesgue’s insistence on a rule (explicit enumeration)
reminded him of the earlier discussion of what was required in order
to define a function. The reviewer is strongly reminded of that earlier
controversy, in which Weierstrass insisted that analytic functions must

4This proof is not Cantor’s original proof, which relied on the nested set principle.
However, Luzin’s argument would apply equally well to that argument.
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be defined by power series. To any modern mathematician, this seems
to be starting “too far into” the subject. We are all used to considering
abstract unspecified functions possessing only the property that they
have a complex derivative at every point of an open set. From that
point, via the Cauchy integral, we prove that they have convergent
Taylor series. But there is more to be said for Weierstrass than at first
appears. In any application of Cauchy’s theory to a specific function
we have to be told, somehow, what the function is. How is that to be
done, without using some elementary or standard expressions? That
seems to be Lebesgue’s position on the Countable Union theorem: any
specific countable union that could be defined to his satisfaction would
surely be explicitly enumerable. If one is allowed to assign a double
meaning to the word analytic, Weierstrass’ dictum is appropriate here:
“No matter how you twist and turn, you cannot avoid using specific
analytic expressions.”5

To return to the philosophical aspects of the author’s work, however,
the reviewer was especially pleased to see that the discussion of Rus-
sell’s paradox on pp. 307–308 includes the very simple train of thought
by which Russell was led to discover it, trying to refute Cantor’s proof
that the power set of any set is of larger cardinality than the set itself.
The development of this thought is very clearly marked in Russell’s
publications, especially his article “Recent work in the philosophy of
mathematics,” published in the International Monthly in 1901, the very
year in which the paradox was discovered. In this article he challenged
Cantor’s proof with the set of all sets and asserted that “the master
has been guilty of a subtle fallacy,” which Russell proposed to discuss
in more detail elsewhere. When this article was reprinted in Mysticism
and Logic in 1921, Russell added a footnote explaining how he had been
wrong. This interesting and easy material gets ignored in the accounts
of Russell’s paradox in all the standard textbooks of set theory, which
present it as a mere fact devoid of all historical context.

The reviewer can find very little to criticize in the book under review.
It is not to be expected that every sentence in a book of this size will
be perfectly accurate. The present book, however, comes very close,
as far as I am able to judge. One might pedantically point to the
statement (p. 157) that “Weierstrass realized that uniform convergence
was a necessary condition for term-by-term integrability of a series.”
The author, I am sure, knows better; and this statement was merely

5“Wie man sich drehen und wenden mag, man kommt nicht darüber hinweg,
bestimmte analytische Formen. . . zu benutzen.” He is said to have made this remark
in 1885.
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a matter of careless drafting. What I suspect the author meant was
that Weierstrass realized that some additional hypothesis was necessary
to guarantee term-by-term integrability, and that uniform convergence
was a sufficient condition.

The author has chosen his topics well and presented an integrated
history of a vast amount of important material. The following com-
ments are not intended as criticism, but only as a reminder that, even
on a canvas as large as the present book, it is impossible to paint every
aspect of the history of set theory. In selecting the material for the
book the author chose to exclude most of the history of descriptive
set theory. (Had he not done so, the book would have been at least
one-third longer.) This topic is relegated to a section of Chapter IX,
under the heading “other developments in set theory,” and is rather
quickly summarized as follows (p. 333):

Cantor proved for closed sets a decomposition P=R∪S into
a denumerable set and a perfect subset, which implies that
the Continuum Hypothesis (CH) holds in this case. . . In his
dissertation of 1901, Bernstein was among the first to work
on generalizing that result. This kind of work studied sets of
reals that are definable in different ways, and led to descrip-
tive set theory. The contributions of the French analysts
Borel, Baire, and Lebesgue, in their study of real functions
and integration, merged with that line of development . . .

Descriptive set theory emerged from about 1915 with the
work of the Moscow school headed by Luzin, to which Alek-
sandrov and Suslin belonged.

This rapid summary does not make clear why Suslin is mentioned.
Aleksandrov had invented an operation called the A-operation (A for
analytic, although Aleksandrov later claimed it was for Aleksandrov),
which made it possible to label each Borel set with a sequence of pairs
of integers. By use of this operation, he was able to show that an un-
countable Borel set of real numbers contains a non-empty perfect set,
and hence must have cardinality of the continuum. Suslin realized that
this same proof actually applied to a possibly larger class of sets, which
came to be called analytic sets, the word reflecting the belief that they
could be defined analytically in the sense of Lebesgue, that is, without
using the Axiom of Choice. Luzin proved that a set is a Borel set if
and only if both the set and its complement are analytic. The question
whether the complement of an analytic set (called a co-analytic set)
is analytic immediately became important. If so, then analytic sets
would merely be Borel sets. It is this work that the author refers to
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as the emergence of descriptive set theory. In his discussion of Gödel’s
relative consistency results of 1938 (p. 382) the author (again, quite
properly for his purposes) mentions that the Axiom of Choice and the
Generalized Continuum Hypothesis were proved to be consistent rela-
tive to the Zermelo–Fraenkel system. However, Gödel actually showed
that, without introducing any new inconsistency, one could adjoin four
new assumptions to the ZF system, one of which was the existence of
a co-analytic set for which the continuum hypothesis is false (see [4, p.
280]). Thus Gödel, in addition to putting an end to attempts to dis-
prove the Axiom of Choice or the Continuum Hypothesis, also put an
end to attempts to prove that co-analytic sets are analytic. In contrast
to the date of 1915 assigned by the author, the reviewer is more inclined
to date descriptive set theory from the turn of the century, in the work
of the French analysts that he mentions. It was Baire (1898) who be-
gan classifying functions as continuous, pointwise limits of continuous
functions, pointwise limits of pointwise limits of continuous functions,
and so on. In his 1902 dissertation and lectures, Lebesgue used Baire’s
classification of functions to prove that what he called a Borel set (that
is, a set formed by finitely many repetitions of countable unions and
intersections, starting from the open sets) would have a characteristic
function belonging to a finite Baire class. Later Lebesgue was to allow
Borel sets to be formed by countably many countable operations of
union and intersection; as a result, he obtained an even more elegant
correspondence between Borel sets and Baire functions. This work
was absorbed by the Moscow mathematicians just as Luzin entered
the University of Moscow and was expounded in a 1907 monograph
by V. L. Nekrasov bearing the title Structure and Measure. All this
research involved the classification and study of sets according to their
complexity, which is the essence of descriptive set theory, and hence
gave that topic an existence in its own right, separate from the general
problem of measure. In support of the author’s choice of epoch, how-
ever, it should be said that the explicit construction of examples of sets
at a given rank in the Borel hierarchy was one of the preoccupations of
Luzin and his students, especially Nina Karlovna Bari and Lyudmila
Vsevolodvna Keldysh in the 1920s and 1930s.

Similarly, the process of proving the Continuum Hypothesis for a
class of sets by showing that an uncountable set of the class contains a
perfect subset had a more gradual development than one would surmise
from the author’s statement (p. 333) that “Hausdorff [1914] defined a
now classic hierarchy of Borel sets and in [1916], simultaneously with
Aleksandrov [1916], established the pathbreaking result that any un-
countable Borel set of reals has a perfect subset.” Actually, the result
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cited had been proved for Gδ-sets by W.C. Young in 1906, and the
1914 classification by Hausdorff mentioned by the author contained a
second proof of this fact. It was Hausdorff who invented the term “Gδ-
set.” Again, to be fair, the author does note that Bernstein had begun
the generalization of this theorem in 1901.

The author’s discussion of trigonometric series in connection with set
theory is confined mostly to the discussion of Riemann’s work and the
early work of Cantor and Heine. This is a sensible choice, given that
the later connections between the two are less fundamental than these
earlier ones. There were, however, important connections between set
theory and the problem of uniqueness of trigonometric series represen-
tations at both ends of the twentieth century. For example, in 1908
Felix Bernstein proved that the important lemma quoted above for
the proof of Riemann’s uniqueness theorem, namely that a continuous
function F for which D2F (x) = 0 on an interval must be linear, remains
true when exceptional points are allowed, provided these exceptional
points form what Bernstein called a totally imperfect set; that is, a set
containing no non-empty perfect subset. (Obviously, any countable set
is totally imperfect.) Simultaneously with the Aleksandrov–Hausdorff
proof of the Continuum Hypothesis for Borel sets, D. E. Men’shov, a
participant in Luzin’s seminar in 1915–1916, exhibited a trigonomet-
ric series with non-zero coefficients tending to zero that converged to
zero almost everywhere, thereby answering an important question left
open in Luzin’s famous dissertation “Integration and the trigonometric
series.” The attempt to draw a clear line between closed sets of unique-
ness and closed sets of multiplicity continued for a very long time. Es-
sentially the only uncountable closed sets of uniqueness that can be
exhibited are countable unions of sets of Hardy–Littlewood–Steinhaus
type, called H(n)-sets, and the only non-trivial sets of multiplicity ex-
hibited have been constructed as the sets on which a Fourier–Stieltjes
series with coefficients tending to zero either diverges or converges to a
nonzero limit. The gap between these two classes is enormous. In the
1980s descriptive set theory shed important light on this question by
producing what amounts to a metatheorem asserting that no simple
criterion can be both necessary and sufficient for a closed set to be a
set of uniqueness. Specifically, Solovay and Kaufman proved that in
the metric space of closed subsets of the circle with the fractal metric,
the sets of uniqueness form a co-analytic set that is not analytic.

The physical layout of the book is excellent. Birkhäuser has done,
as usual, a beautiful job with typesetting and graphics. The only flaw
the reviewer detected was an apparent font problem that caused the
accented ń in Sierpiński’s bibliography entry to be replaced with ellipsis
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marks. The book feels good: solid and substantial, like its contents,
and it is a pleasure to look at.

In summary, the author has written a brilliant book, carefully an-
alyzing all the sources and meanderings of the stream of set theory.
Although the work of Russian and nineteenth-century British authors
is treated rather briefly, the overall picture is both accurate and fas-
cinating. The book is a true pleasure to read, and the bottom line is
that everyone who wishes to be well-informed on this important subject
should read it.
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