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META INDUCTION IN OPERATIONAL SET THEORY

LUIS E. SANCHIS

§1.Introduction. Set theory is usually organized as a first order
theory where the variables range over a collection or universe of sets.
This universe is assumed to be a well defined totality, for the theory
involves global quantifiers (∀Y ) and (∃Y ) that range over the universe.
The global quantifiers induce local quantifiers (∀Y ∈ X) and (∃Y ∈ X).

On the other hand, operational set theory (see [6]) rejects the uni-
verse of sets as a well defined totality and in principle questions the
legitimacy of the global quantifiers. Noting that a first order theory
without global quantifiers is difficult to handle, we have tried to avoid
a complete rupture by allowing global quantifiers under some restric-
tions. For example, in [6] we restrict the global quantifiers by imposing
a general control of such quantifiers under intuitionistic logic. We do
not support anymore this type of restriction, as we prefer to preserve
classical logic for the whole system, and we have chosen to impose
restrictions on the axiomatic structure of the theory.

The situation of the local quantifiers (that in standard set theory
are induced by the global quantifiers) is different. In fact, we assume,
and we require, that each set in the universe is a complete totality that
supports local quantification. As we explain below, there is a price to
pay for this requirement, concerning how sets in general are allowed to
enter the theory.

1.1. We are now in position to give a rough description of what we
understand by operational set theory. It is a first order theory involv-
ing set operations, set predicates, classical connectives, local quantifiers
and global quantifiers. Furthermore, the axioms of the theory are op-
erational, and this means that each axiom is a closed formula of the
form (∀Y1)...(∀Yn)φ is where φ is a local formula (no global quantifiers)
and 0 ≤ n. Usually, we identify the axioms via the local formula φ.

1.1.1. We require that the sets in the theory be introduced with
(operational) axioms, but we also require that whenever a set is in-
troduced some argument or construction is provided that shows that
the set is a well defined totality that supports local quantification. For

c© 2003 The Review of Modern Logic.

81



82 LUIS E. SANCHIS

example, the traditional separation rule provides a procedure where a
set is introduced as a subset of another given and available set. Since
the given set is a well defined totality, it follows that the new set is also
a well defined totality and supports local quantification (compare with
2.2.2).

1.2. The purpose of this note is to describe a general technique
that we call metainduction, where new sets can be introduced in oper-
ational set theory by a construction that shows that each such set is a
well defined totality, and in fact describes explicitly this totality. This
technique is a generalization of the approach in [6].

1.3. Local quantifiers appear frequently in contemporary set theory,
most of the time as derivatives of local quantifiers, as in [1]. Enderton
in [2] provides a good introduction to standard set theory. Ershov in
[3] deals with both global and local quantifiers, but the approach is
essentially semantical. Reviews of [6] have been positive but still very
critical (see [4] and [5]).

In the description of metainduction and its applications we assume
a fixed system of operational set theory, that we call OST. Each appli-
cation of metainduction culminates with the introduction in OST of a
set or operation (and in one case a predicate) together with operational
axioms derived from the metainductive construction. In particular, we
assume that the classical separation rule is available in OST. Further-
more, standard operations in set theory are assumed available in OST
with the usual axioms. For example, we have an operation {X} with
the axiom Y ∈ {X} ≡ Y = X.

§2. Meta Induction. Metainduction is a construction that de-
pends on a given set operation ρ and a given set Z, both available in
OST. The construction itself is independent and takes place outside
OST.

2.1. A ρ-branch for Z is a (potentially infinite) sequence of sets
Z0, Z1, ..., Zk, ... (k a numeral), where Z0 ∈ ρ(Z) and Zk+1 ∈ ρ(Zk).
While ρ is a fixed given operation, Z is not necessarily a fixed set,
and can be assumed to be an arbitrary set. On the other hand ρ is
not necessarily a unary operation, and may contain extra arguments
that behave as parameters in the construction. To make explicit this
situation we should write ρ(Z, X) where X is a list of extra variables
X1, ..., Xk. In general we do not take advantage of this notation, but
the reader should keep in mind this more general formulation. In one
application below one extra parameter W is in fact brought explicitly
into the notation (see 5.1.1).
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2.1.1. Note that, essentially, the definition says that Zk+1 is deter-
mined by choice among the elements of ρ(Zk). So here we are assum-
ing a weak informal version of the axiom of choice, in fact close to the
usual axiom of dependent choices. This does not contradict our basic
assumptions, because the choices take place one by one and in each
case over a given set ρ(Zk). This process does not assume the universe
of sets as a complete totality.

2.1.2. If ρ(Z) = ∅ then Z0 is undefined and the ρ-branch is empty.
In general, if for some k, Zk is defined and ρ(Zk) = ∅, then Zk+1 is
undefined and we say that the ρ-branch halts at k. Otherwise, Zk+1 is
defined. We say that the sets Z0, Z1, ... are ρ-residuals of Z. The set Z
is not necessarily a residual.

2.1.3. The structure determined by the totality of all ρ-branches we
call the ρ-tree for Z induced by ρ. More precisely, we mean that the
ρ-tree consists of all the ρ-branches when we assume they are generated
simultaneously. The ρ-residuals in the branches are also ρ-residuals in
the ρ-tree. We say that ρ is the handle for the ρ-branches and also for
the ρ-tree. From now on we omit the prefix ρ unless it is necessary or
convenient.

2.2. At this stage we postulate a completion of the ρ-tree, that
contains all the residuals and all the branches, even if some of them
are infinite. More precisely, the completion looks at the ρ-tree as a
complete totality ( exactly in the way we claim it is not legitimate to
look at the universe of sets). Still, we claim that the completion of the
tree does not involve the universe as a complete totality.

2.2.1. From the completion of a ρ-tree we can derive sets, opera-
tions and predicates, as we show in the applications of metainduction,
where from a given operation ρ and a set Z we introduce the ρ-tree
construction, take the completion and define new operations (eventu-
ally sets) and predicates. These operations and predicates are defined
in the context determined by the ρ-tree, so they are not meaningful
definitions inside OST. Rather, we derive axioms from the construc-
tion, these axioms are formulas in OST, and in fact become axioms
there.

This is a two-step process where first we define operations or predi-
cates in the metainductive construction, and then write axioms for the
operations or predicates in OST. In every application the axioms are
operational in the formal sense explained above (see 1.1).

2.2.2. On the other hand, the construction itself makes explicit the
extension of the sets introduced by the metainduction application, and
in this way satisfies the requirement in 1.1.1.
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§3. Transitive closure. In the first application of metainduction
we assume an operation ρ (in OST) and define a new metainductive
operation tcρ.

tcρ(Z): = the set of all ρ-residuals for Z, where Z is an arbitrary
set in the universe of operational set theory.

We call tcρ the transitive ρ-closure operation. The set tcρ(Z) comes
essentially from the completion of the metainduction construction in-
duced by the operation ρ and the set Z. It is in fact a definition in the
construction and it is meaningless outside the construction (see 2.2.1).
Note that the metainduction construction actually defines explicitly
the extension of the set tcρ(Z) (see 1.2 and 2.2.2).

3.1. The next step introduces the operation tcρ (in fact a symbol)
into OST with the following axioms, where V, Z are arbitrary sets in
OST:

TC 1:
ρ(Z) ⊆ tcρ(Z)

TC 2:
(∀X ∈ tcρ(Z))ρ(X) ⊆ tcρ(Z)

TC 3:

ρ(Z) ⊆ V ∧ (∀X ∈ V )ρ(X) ⊆ V. → .tcρ(Z) ⊆ V

Here, as in every application of metainduction, we must show that
the axioms follow indeed from the definition of tcρ. This argument
takes place outside OST, although it may involve known properties of
the operation ρ, that come from OST. For example, in the example
above concerning the operation tcρ, we note that if X ∈ ρ(Z), then
certainly X is a residual in some ρ-branch, hence ρ(Z) ⊆ tcρ(Z) and
TC 1 holds. Furthermore, if X is a residual and Y ∈ ρ(X), then
Y is also a residual, hence TC 2 holds. Finally, if V is a set that
satisfies the closure properties in axiom TC 3, then in the process that
generates a ρ-branch for Z each generated residual is an element of V .
We conclude that tcρ(Z) ⊆ V , so TC 3 holds.

Technically, the axioms are the universal closure of such assertions.
Still, we refer to them as axioms. The whole application involves the
introduction of a new primitive operation tcρ and three new axioms in
OST. We call these axioms the Peano axioms for the operation tcρ. As
usual, from the Peano axioms we can derive a rule of proof by residual
induction.

3.1.1. In order to prove the rule of residual induction we assume
that the three Peano axioms are valid in OST for an operation tcρ

and arbitrary sets Z, V . Le p be a set predicate in OST. We define a
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predicate p∗ with the axiom p∗(X) ≡ (∀Y ∈ ρ(X))p(Y ). For a fixed
set Z we assume that the following conditions are satisfied:

(i): p∗(Z)
(ii): (∀X ∈ tcρ(Z))(p(X) → p∗(X)

We claim that from these conditions it follows that:

(iii): (∀X ∈ tcρ(Z))p(X)

To prove that (iii) follows from (i) and (ii) in OST we use the
separation rule (available in OST see 1.3) to introduce a set V with
the axiom:

X ∈ V ≡ X ∈ tcρ(Z) ∧ p(X)

We note now that from (i) and (ii) it follows that V satisfies the
conditions in axioms TC 3, hence tcρ(Z) ⊆ V and (∀X ∈ tcρ(Z))p(X)
holds.

3.1.2. The preceding argument depends only on the axioms of OST,
so we have proved in OST that the implication (i)∧(ii) → (iii) is valid
for every set Z, any operation ρ in OST, and any predicate p defined
in OST.

This result supports an inductive procedure, where in order to prove
that p(X) holds whenever X ∈ tcρ(Z), we need only to prove that (i)
and (ii) hold. In such a proof (i) is usually given as an assumption. To
prove (ii) typically we assume that p(X) holds for some X ∈ tcρ(Z)
(the induction hypothesis) and show that p(Y ) holds for every Y ∈
ρ(X)) (here the proof usually depends on properties of the predicate
p). Since we have (i) and (ii) we conclude that (iii) holds.

3.2. The classical example of transitive closure is the set ω, with
the usual meaning in standard set theory (see [6], 4.2 and 7.1). The
notation for the natural numbers can be chosen in many different ways.
The following is very convenient in the frame provided by metainduc-
tion. We set X+ = {X}. We represent 0 with ∅+, and represent n + 1
with X+ when X is the representation of n. We define ρ(X) = X++

and set ω = tcρ(∅). Note that ∅ /∈ ω.
The ρ-tree induced by ρ consists of only one infinite branch of the

form: ∅+, ∅++, ∅+++, ..., and the completion of this tree is the set ω of
natural numbers.

The Peano axioms for the set ω (see 3.1) take the following traditional
form:

NT 1:

∅+ ∈ ω
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NT 2:
X ∈ ω → X+ ∈ ω

NT 3:

∅ ∈ V ∧ (∀X ∈ V )X+ ∈ V. → .ω ⊆ V

.

In these axioms the variables X and V are arbitrary sets. It follows
from residual induction in 3.1.2 that in order to prove p(X) for every
X ∈ ω we need only to prove p(∅+) and p(X) → p(X+) for every
X ∈ ω. As usual, we refer to this procedure as mathematical induction.

3.2.1. On the other hand, the transitive closure construction can
be applied with any operation ρ available in OST, including with op-
erations that have been introduced before via transitive closure. For
example, it is possible to take ρ to be the power set operation, provided
it is available in OST (see 1.1.1).

§4. Bar Induction. Bar induction is, in some sense, the inverse of
residual induction. In fact, it is quite different from the residual con-
struction, because it introduces a predicate, rather than an operation.
Still, it is another application of metainduction.

4.1. Again, we start with a set operation ρ from OST, and Z is an
arbitrary set. We define a predicate WFρ as follows:

WFρ(Z): ≡ every ρ-branch for Z halts.

We read WFρ(Z) as Z is ρ-well-founded.
4.1.1. As usual, we have to write axioms in order to introduce this

predicate in OST.

Closure Axiom:

WFρ(Z) → (∀X ∈ ρ(Z))WFρ(X)

Foundation Axiom:

WFρ(Z) ∧ Z ∈ V. → .(∃Y ∈ V )V ∩ ρ(Y ) = ∅
4.1.2. These are axioms in OST, intended to be valid for arbitrary

sets V, Z. Still, we must show that they indeed follow from the metain-
ductive construction. The closure axiom is trivial noting that if for
some X ∈ ρ(Z), X is not well-founded, then there is a non-halting
branch for X. Clearly, this means there a non-halting branch for Z,
contradicting WFρ(Z).

The foundation axiom is more involved. Assume given sets V, Z,
where WFρ(Z) holds and Z ∈ V . We want to show there is Y ∈ V
such that V ∩ ρ(Y ) = ∅. If V ∩ ρ(Z) = ∅, we take Y = Z and we have
finished. Otherwise, we generate a ρ-branch for Z, say Z0, Z1, ..., Zk, ...
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but we impose the following condition for any k: if V ∩ ρ(Zk) 6= ∅,
then Zk+1 ∈ V ∩ ρ(Zk) (and otherwise, Zk+1 ∈ ρ(Zk), as usual). Now
we note that there is a k such that ρ(Zk) = ∅ (the branch halts at k).
It follows that there is a first k with the property that Zk ∈ V and
V ∩ ρ(Zk) = ∅. Hence, we take Y = Zk.

4.1.3. The argument in 4.1.2 that validates the foundation axiom
takes place in the metainduction construction and depends on the def-
inition of the predicate WFρ. Still, the axiom itself is a formula in
OST, which now becomes an axiom in OST.

With the two new axioms in OST, we can use them to prove (in
OST) formal properties of bar induction, noting that residual induc-
tion (see 3.1.1) is always available. For example, using residual in-
duction we can prove the following theorem: WFρ(Z) → (∀X ∈
tcρ(Z))WFρ(X). This follows by residual induction, taking as p the
predicate WFρ and using the closure axiom. On the other hand, we
can prove also a rule of proof by bar induction.

4.2. The general rule of proof by bar induction involves an arbitrary
predicate p (from OST, compare with 3.1.1). As in 3.1.1 we define
p∗(X) ≡ (∀Y ∈ ρ(X))p(Y ). For a given set Z we assume the following
conditions are satisfied:

(i): WFρ(Z)
(ii): (∀X ∈ tcρ(Z))(p∗(X) → p(X)

It follows from these conditions that:

(iii): (∀X ∈ tcρ(Z))p(X)

In order to prove (in OST) that (i)∧ (ii) implies (iii) we assume (i)
and (ii) and introduce by separation the following set V :

X ∈ V ≡ X ∈ tcρ(Z) ∧ ¬p(X).

We shall show that V = ∅, so (iii) holds. To get a contradiction, let
X ∈ V . Noting that WFρ(Z) holds by (i), it follows from 4.1.3 that
WFρ(X) also holds, hence by the foundation axiom there is X ′ ∈ V ,
such that WFρ(X

′) also holds, and ρ(X ′) ∩ V = ∅. Furthermore,
ρ(X ′) ⊆ tcρ(Z) holds, hence (∀Y ∈ ρ(X ′))p(Y ) also holds. From the
definition of p∗ and (ii), it follows that p(X ′) holds, and this is a
contradiction because X ′ ∈ V .

4.2.1. The preceding result supports another induction procedure to
prove assertions of the form: (∀X ∈ tcρ(Z))p(X) for a given predicate
p and a given set Z. In fact, if we know WFρ(Z) holds, we need only
to assume p∗(X) and prove p(X) for any arbitrary X ∈ tcρ(Z). The
assumption p∗(X) is here the induction hypothesis (compare with 3.1.2)
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§5. Numerical Functions. We have discussed two applications of
metainduction: transitive closure and bar induction. In the first we
introduce an operation tcρ(Z) and prove that an inductive procedure
is available to prove statements of the form (∀X ∈ tcρ(Z))p(X). In
the second we introduce a predicate WFρ(Z) and show that a different
inductive procedure is available to prove a similar statement under the
assumption that WFρ(Z) holds.

5.1. Now we extend the scope of metainduction with a different
application where we are concerned with numerical functions, which are
functions in the usual sense of set theory: sets of single-valued ordered
pairs. The formal definition is available in OST via the predicate
NF(F, W ) that means F is a numerical function over the set W:

NF(F, W ) ≡ FU(F ) ∧ do(F ) = ω ∧ ra(F ) ⊆ W

For the notation in this definition see [6], Chapter 3. Note that F
is an ordinary set symbol (like X,Y, V ,...), that we intend to use to
denote functions.

5.1.1. We want to introduce in OST, via metainduction, a set
operation F such that the following axiom is satisfied for any sets
W, F :

F ∈ F(W ) ≡ NF(F, W )

The basic idea is quite simple. We identify the numerical functions
in F(W ) with the ρ-branches generated by a handle ρ, defined in such a
way that every branch determines exactly one numerical function over
W , and every numerical function is determined exactly by one branch.
Via the completion of the ρ-tree we get the set of all ρ-branches, hence
the set of all numerical functions over W . The set W is a parameter
in the construction, that appears as an argument in the operation ρ,
so we have now a binary operation ρ(Z,W ) (see 2.1). In this section
we assume that W 6= ∅.

In the following the symbol “n” is a set variable that denotes an
element of the set ω when used in positions that require a set argument.
Otherwise, it is a syntactical symbol that denotes a numeral.

5.1.2. We take as initial set Z = ∅ and define ρ(∅, W ) = {∅+}×W .
Hence Z0 = 〈0, w〉, where w ∈ W .

To complete the definition we define ρ(Z,W ) for the case Z = 〈n, w′〉,
where n ∈ ω and w′ ∈ W . We set ρ(〈n, w′〉) = {n + 1} × W . For
example, ρ(〈4, w′〉) = {5} ×W . Clearly, ρ is an operation in OST. It
follows that a ρ-branch under these definitions takes the form:

〈0, w0〉, 〈1, w1〉, 〈2, w2〉, · · · , 〈n, wn〉, · · ·



META INDUCTION IN OPERATIONAL SET THEORY 89

where w0, w1, w2, ..., wn, ... are arbitrary elements of W . Note that when
n occurs as a subscript it is a numeral, and not an element of ω.

The completion of the ρ-tree induces the completion of each ρ-branch,
which is a set of ordered pairs, in fact it is a numerical function over
the set W . So the completion of the tree induces the set of all such
functions. It should be clear that this construction does not involve the
universe of sets.

5.1.3. We denote by F(W ) the set of all numerical functions on
W , as determined by the preceding metainductive construction. This
construction is a ρ-tree, where the behavior of the operation ρ is deter-
mined by the rules above. The completion of the tree is an objective
structure where each numerical function occurs as a ρ-branch (more
precisely, occurs as the set of all residuals in some particular branch).

5.2. To introduce F in OST we must determine the (operational)
axioms that control the operation F . Note that the argument to sup-
port the axioms takes place in the metainduction construction, al-
though the axioms are written in the language of OST. This is, of
course, the same situation we have found in the applications above
(see 3.1 and 4.1.2)

The first axiom is a trivial consistency property, and simply says
that the elements of the set F(W ) are numerical functions on W . This
follows because the elements of F are (the completions of) ρ-branches,
and each one of these is a numerical function by construction.

Consistency Axiom:

F ∈ F(W ) → NF(F, W )

This axioms is necessary, for example, whenever we introduce a set
F with the assumption F ∈ F(W ), as it provides a minimal basic
information about the meaning of such characterization.

5.2.1. In the other direction, a second axiom appears to be necessary
where if a set F is found to have the necessary properties, we can assert
that it is an element of F(W ). We start with a weak version of this
condition.

Weak Completeness Axiom:

NF(F, W ) → F ∈ F(W )

Clearly, we need this axiom, but it is weak in the sense that it de-
termines that F ∈ F(W ), but it fails to take advantage of the metain-
ductive construction that supports the set F(W ). For example, the
fact that the elements of F(W ) are actually generated by free choices
(see 2.1.1) plays no rôle in the axiom. So, we propose next a stronger
second version of the axiom, where under given circunstances we assert
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the existence of some F ∈ F(W ), that satisfies an extra condition that
depends on a given binary predicate p (from OST).

5.2.2. The strong completeness axiom requires a technical construc-
tion, available in OST (see [6], definition 2.4.1). If F is a numerical
function, and n is a natural number, then F �n is also a function where
do(F �n) = n and for i < n, F �n(i) = F (i). This construction is
usually referred to as the restriction of F to n.

The strong completeness axiom takes the following form, where p is
a given predicate. Note that this is in fact an operational axiom, the
predicate p is given, and W is an arbitrary set in the universe of OST.

Strong Completeness Axiom:

(∃F ∈ F(W ))(∀n ∈ ω)[(∃X ∈ W )p(F �n,X) → p(F �n, F (n))]

This axiom is operational, and it is intended to be valid for any non-
empty set W . As explained above, the predicate p is given, so here we
have an axiom schema that becomes an axiom once the predicate p has
been determined.

5.2.3. The argument that supports this axiom involves a simple
application of the definition of metainduction. We assume the predicate
p and a non-empty set W , and want to prove that there is F ∈ F(W )
that satisfies the axiom. To prove there is such a function F we generate
a branch 〈0, w0〉, · · · , 〈n,wn〉, · · · as follows. Suppose that at n there
is in fact some X ∈ W such that p(F �n, X) holds. If this is the case
we proceed to set wn = X, where X is arbitrarily chosen among those
sets in W that satisfy the condition. If it is not the case, we take wn

arbitrarily. By applying systematically this strategy we get a numerical
function F that satisfies the axiom.

Note that the operation F (that comes from the metainduction con-
struction) is essential for the argument. For this operation provides
the local existential quantifier that it is required for the axiom to be
operational.

5.2.3.1. Furthermore, the argument in 5.2.3 is essentially recursive,
for the value of F (n) depends on the values F (0), ..., F (n−1), although
it is not completely determined by such values. In fact, the determi-
nation involves a choice, so we have a combination of recursion with
choice.

5.2.4. The weak completeness axiom follows (in OST) from the
strong completeness axiom. To prove this, assume F ′ is a numerical
function over W , so the predicate NF(F ′, W ) holds. We want to show,
using the strong completeness axiom, that F ′ ∈ F(W ). To apply the
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strong completeness axiom we take a predicate p defined:

p(Y,X) ≡ F ′(do(Y )) = X.

where do(Y ) is the domain of Y in case Y is a function (otherwise it
does not matter). From the strong completeness axiom it follows that
there is F ∈ F(W ) such that whenever for some n there is X ∈ W such
that p(F �n,X) holds, then p(F (�n, F (n)) holds. Hence (noting that
do(F �n) = n), it follows that F ′(n) = F (n). Now, using induction
on n, it follows that F ′(n) = F (n) for every n, hence F ′ = F and
F ′ ∈ F(W ). This proof can be formalized in OST using mathematical
induction on n from 3.1.2.

5.3. The set P (ω), the power set of ω, can be derived from the
operation F . For example, we can introduce this set with the following
axioms, where h is an auxiliary operation:

X ∈ h(F ) ≡ X ∈ do(F ) ∧ F (X) = 0(1)

Z ∈ P (ω) ≡ (∃F ∈ F({0, 1}))Z = h(F )(2)

The operation h follows by the standard separation rule, which is avail-
able in OST. On the other hand, the operation P (ω) follows by the
general separation rule, proposed in [6] as the replacement rule.

5.3.1. The set P (ω) in the axiom above is actually generated via
the strong completeness axiom, and this means that it can be forced
to satisfy a previous inductive condition defined by a predicate p. As
explained in 5.2.3.1, this process is essentially recursive, although it
involves an element of choice.

On the other hand, the set W in this application is actually {0, 1}
and this means that the tree in 2.1.3 is simply a binary tree where each
branch is an infinite sequence of 0’s and 1’s.

§6. Recursion. Whenever there is a rule of proof by induction
we have an associate recursion rule, where an operation f can be de-
fined (in the metainduction construction) and the values f(X) of the
operation are derived in a manner similar to the proof of p(X) in the
corresponding induction rule. Such a rule may not be well defined in
somes cases.

6.1 The first rule we must consider is residual induction in 3.1.1.
Here, the purpose of the recursion rule is to introduce an operation
f with domain tcρ(Z) where the value of f(Y ) for Y ∈ tcρ(Z) is
determined by the values of f(X) whenever Y ∈ ρ(X). In principle,
such a rule is not well defined because for a given Y there are many
residuals X ′ such that Y ∈ ρ(X ′) and the value of f(Y ) will depend
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on which X ′ is used. In other words, a recursion rule in this situation
is not single-valued.

6.1.1. Obviously, we can overcome the difficulty in the preceding
paragraph by considering a case where ρ is strongly single-valued. This
happens when tcρ(Z) is in fact the set ω in 3.2. Here the recursion
rule takes the following form: the value of f(X++) is determined from
the value of f(X+), and the value of f(∅+) is given.This is, of course,
the well-known rule of primitive recursion.

6.1.2 In the case of bar induction, the order of dependency is re-
versed, and there is no ambiguity in the recursion. Here the value of
f(X) is determined from the values of f(Y ) when Y ∈ ρ(X). This
form of recursion is known in the literature as bar recursion.

6.1.3 The application of metainduction to numerical functions in-
duces a form of induction combined with recursion, via the strong com-
pleteness axiom (see 5.2.3.1). This axiom depends on a given predicate
p, so it is essentially inductive. At the same time it asserts the existence
of a function F ∈ F({0, 1}), where the value of F (n) is determined, up
to some point, from the values in F �n, and this is essentially recursion.

6.2. Operational set theory by itself, as explained in the introduc-
tion, is an extremely weak theory, where not even the existence of an
infinite set can be proved. By allowing metainductive constructions we
move to a different system where a substantial portion of standard set
theory can be formalized.

From metainduction, we get not only the set ω, but also the set
P (ω), hence the set P (ω × ω), which is the set of all countable rela-
tions, in particular the countable well-orders. Finally, we get the set
of all countable ordinals, hence the ordinal ω1, the first non-countable
ordinal. Still, the general power set operation is missing.

7. Why Operational? We have explained before our reservations
concerning the notion of a universe of sets as a complete totality, and
the need for restrictions where the extension of sets is determined in-
dependently of the universe (see 1.1.1).

We discuss now a pair of examples where sets are introduced in
violation of this condition and in one case the result is the actual in-
consistency of the theory. We note first, that in most systems of set
theory, the introduction of a set V with the properties of the universe
(say via the axiom (∀Y )Y ∈ V ) is inconsistent.

7.1. The first example is the Russell paradox, where a set R is
introduced with the axiom:

Z ∈ R ≡ Z /∈ Z
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We know that the set R is inconsistent, but here we are interested
in the fact that the axiom involves a quantification over the universe.
More precisely, in order to determine the extension of the set R we
must check every set Z in the universe, to determine whether Z /∈ Z.
For example, if we write (∃Y ∈ R)φ for some formula φ, it may appear
that we are using a local quantifier, but in fact to determine whether
such Y exists we must search over the whole universe.

Of course, it is not worthwhile to discuss the quantification involved
in the definition of R because it happens that R is inconsistent. Still,
one cannot help considering to what extent the two phenomena are
related, and the universe is intrinsically inconsistent.

7.2. The second example is more important, because it involves the
power set axiom, which is crucial in classical set theory.

We write P (X) to denote the power set operation, which can be
defined with the the following operational axiom:

Z ∈ P (X) ≡ (∀Y ∈ Z)Y ∈ X.

The problem with this axiom is essentially the same: the axiom fails to
determine the extension of the set P (X), or more precisely describes
the extension implicitly via the universe of sets.

On the other hand, the axiom is universally assumed to be consistent,
and there is no expectation, in classical or non-classical set theory, that
the axiom may eventually turn out to be inconsistent.

7.2.1. There are two general principles of set existence in standard
set theory. One is the separation axiom, that requires that a new
set should be expressed as a subset of an already available set. The
second is the replacement axiom ([2],page 179), which is necessary, for
example, in order to prove the principle of transfinite recursion. The
power set axiom violates both principles. It does not involve separation
and it does not involve replacement. Not only that, the power set
operation is a crucial element in applications of separation, as in many
cases it provides the extra set required by the rule.

It appears to us that the status of the power set axiom has not
been properly examined. The axiom is included in most systems of set
theory, apparently because it has always been there, and because it is
essential for some constructions. Without the power set axiom more
than half of standard set theory collapses.

7.3. We think that, at this stage, the power set axiom is not consis-
tent with the operational program. Still, we are prepared to allow the
axiom if an adequate construction is proposed. One such construction
is proposed above, in 5.3, for the set P (ω). On the other hand no
similar approach seems to be available for P (P (ω)).
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A more general construction was proposed in [6], Chapter 8. Un-
fortunately, we must withdraw this construction, now that we think it
involves the universe as a complete totality (see also Section 8.5 in [6]).
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