
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 49, Number 1, 2019

A NOTE ON SINGULAR POINTS OF BUNDLE
HOMOMORPHISMS FROM A TANGENT

DISTRIBUTION INTO A VECTOR BUNDLE
OF THE SAME RANK

KENTARO SAJI AND ASAHI TSUCHIDA

ABSTRACT. We consider bundle homomorphisms be-
tween tangent distributions and vector bundles of the same
rank. We study the conditions for fundamental singularities
when the bundle homomorphism is induced from a Morin
map. When the tangent distribution is the contact structure,
we characterize singularities of the bundle homomorphism by
using the Hamilton vector fields.

1. Introduction. In [8, 10], the notion of a coherent tangent bun-
dle is introduced. It is a bundle homomorphism between the tangent
bundle and a vector bundle with the same rank with a kind of met-
ric. This is a generalization of fronts and C∞-maps between the same
dimensional manifolds. Singular points of bundle homomorphisms
ϕ : TM → E are points, where ϕp : TpM → Ep is not a bijection.
In [8, 10], differential geometric invariants of singularities of bundle
homomorphisms are defined and investigated. On the other hand, in
[11], topological properties of singular sets of bundle homomorphisms
without metric are studied. See [3] for another type of application of
the coherent tangent bundle.

In this paper, we consider rank r, r < m, tangent distributions
instead of tangent bundles of m-dimensional manifolds. Since r < m,
the singularities appearing on the bundle homomorphisms are slightly
different from the case ϕ : TM → E, where dimM = rankE = m.
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Let D1 be a rank r tangent distribution on an m-dimensional
manifold M . Let N be an r dimensional manifold and f : M → N a
map. Then, a bundle homomorphism ϕ = df : D1 → f∗TN is induced
from f . Singularities of ϕ should be related to D1 and f . In this paper,
we consider the low-dimensional case, we study the relationships when
f is a Morin map and D1 is a foliation or a contact structure when
m = 3, r = 2.

2. Bundle homomorphisms and their singular point.

2.1. Singular points of bundle homomorphisms. With the ter-
minology of [10], we give a definition of singular points of bundle ho-
momorphisms. Let M be an m-dimensional manifold, and let D1 be a
rank r, r < m, tangent distribution of M , namely, a subbundle of TM .
Let D2 be a rank r vector bundle over M and ϕ : D1 → D2 a bundle
homomorphism. If the rank of the linear map ϕp : (D1)p → (D2)p is
less than r, then p ∈ M is called a singular point of ϕ. We denote by S
the set of singular points of ϕ. If the rank of ϕp is r−1, then p is called
a corank one singular point. Let p ∈ M and U be a sufficiently small
neighborhood of p. Taking frames {e1, . . . , er} and {g1, . . . , gr} of D1

and D2 on U , respectively, then ϕ can be considered as a matrix-valued
function Mϕ by

(2.1) (ϕ(e1), . . . , ϕ(er)) = (g1, . . . , gr)Mϕ.

Lemma 2.1. If p is a corank one singular point of ϕ, then there exist a
neighborhood U of p and a section ηϕ ∈ Γ(D1) such that, if q ∈ S∩U ,
then (ηϕ)q is a generator of the kernel of ϕq.

Proof. By taking frames ofD1 andD2 near p, we takeMϕ as in (2.1).
Since rankMϕ(p) = r−1, only one eigenvalue of Mϕ(p) is zero, and the
others are not zero. Thus, the eigenvalue having minimum absolute
value among the eigenvalues of Mϕ is uniquely determined and is a
real-valued C∞ function near p. Hence, corresponding eigenvector ηϕ
is also well defined. We have the desired section identifying ηϕ as a
section. �

We call ηϕ the null section of ϕ. We say that p ∈ S is non-degenerate
if dλϕ(p) ̸= 0, where λϕ is defined by
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(2.2) λϕ = detMϕ,

near p and Mϕ is as in (2.1).

The notions of null section and non-degeneracy are introduced in [4].

Lemma 2.2. Non-degenerate singular points are of corank one.

Proof. Let p be a non-degenerate singular point. We assume that
rankMϕ(p) < r − 1. Then, any r − 1 columns of Mϕ(p) are linearly
dependent. Let m⃗j denote the jth column of Mϕ, namely, Mϕ =
(m⃗1, . . . , m⃗r). Since any r−1 columns of Mϕ(p) are linearly dependent,

(detMϕ)ui(p) =
r∑

j=1

det
(
m⃗1, . . . , m⃗j−1, (m⃗j)ui , m⃗j+1, . . . , m⃗r

)
(p) = 0

holds for any 1 ≤ i ≤ m, where (u1, . . . , um) is a coordinate system
near p, and ( )ui = ∂/∂ui. This contradicts the non-degeneracy. �

Since S = {λϕ(p) = 0}, S is a codimension one submanifold near
a non-degenerate singular point. With the terminology of [9], we give
the following definition.

Definition 2.3. We say that a non-degenerate singular point p ∈ S is
an Ak-like singular point (k ≤ m) if ηϕλϕ(p) = · · · = ηk−1

ϕ λϕ(p) = 0,

ηkϕλϕ(p) ̸= 0, and the rank of the differential of the map

(λϕ, ηϕλϕ, . . . , η
k−1
ϕ λϕ) : U −→ Rk

is k at p, where U is a neighborhood of p. An A1-like singular
point is also called a fold-like singular point. Furthermore, an A2-
like (respectively, A3-like) singular point is also called a cusp-like
(respectively, swallowtail-like) singular point.

We remark that, if k = 1, then the above condition is reduced
to ηϕλϕ(p) ̸= 0. If k = 2, then it is reduced to ηϕλϕ(p) = 0 and
η2ϕλϕ(p) ̸= 0. Here, ξf stands for the directional derivative of a function

f by the vector field ξ, and ξif stands for the i times directional
derivative by ξ. See [5] for other characterizations of these singularities.
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Lemma 2.4. The definitions of Ak-like singular points (1 ≤ k ≤ m)
do not depend on the choice of the frames of D1, D2, nor on the choice
of the null section.

Proof. Let p be a singular point, and let U be a neighborhood of p.
We change the frames of D1 by a GL(r,R)-valued function C1 : U →
GL(r,R) and change the frames of D2 by a GL(r,R)-valued function
C2. Then, Mϕ is changed to C−1

2 MϕC1. Thus, the independence of
the choice of frames is clear. We show the independence of the choice
of the null section, and the case of fold-like singular points is also clear
since ηϕλϕ(p) is a directional derivative of (ηϕ)p. Furthermore, the
independence of the non-degeneracy is also clear. We assume that p is

a non-degenerate singular point, and ηϕλϕ(p) = 0. We set η̃ = aηϕ + b̃,

where a is a non-zero function, and b̃ is a vector field which vanishes

on S. Since dλϕ(p) ̸= 0, and b̃ vanishes on S = λ−1
ϕ (0), there exists a

vector field b, such that b̃ = λϕb. Thus, η̃ = aηϕ + λϕb. Then, we have

(2.3)

η̃ 2λϕ = (a(ηϕbλϕ) + (ba)(ηϕλϕ) + a(bηϕλϕ) + (bλϕ)
2 + λϕ(b

2λϕ))λϕ

+ a(ηϕa+ bλϕ)ηλϕ + a2η2ϕλϕ.

We show, for any i ≤ k, that there exist functions αi,0, αi,1, . . . , αi,i−1

such that

(2.4) η̃ iλϕ =

i−1∑
j=0

αi,jη
j
ϕλϕ + aiηiϕλϕ,

where η0ϕλϕ = λϕ by induction. By (2.3), the case i = 2 is true. By

(2.4),

η̃ i+1λϕ=a

( i−1∑
j=0

(
(ηϕαi,j)η

j
ϕλϕ + αi,jη

j+1
ϕ λϕ

)
+ (ηϕa

i)ηiϕλϕ + aiηi+1
ϕ λϕ

)
+ λ

(
b(η̃ iλϕ)

)
holds, and this shows the assertion. Then, it is seen that, for any i ≤ k,

λϕ = ηϕλϕ = · · · = ηiϕλϕ = 0, ηi+1
ϕ λϕ ̸= 0
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is equivalent to

λϕ = η̃λϕ = · · · = η̃ iλϕ = 0, η̃ i+1λϕ ̸= 0.

Next, we assume that dλϕ(p) ̸= 0 and λϕ = ηϕλϕ = · · · = ηiϕλϕ = 0

for i ≤ k. We choose a frame {e1, . . . , em−1, ηϕ} of TM . Then,
{e1, . . . , em−1, η̃} is also a frame of TM . By (2.4), we see that, for
1 ≤ l ≤ m− 1 and 0 ≤ q ≤ i,

elη̃
qλϕ =

q−1∑
j=0

(
(elαq,j)η

j
ϕλϕ +αq,j(elη

j
ϕλϕ)

)
+ (ela

q)ηqϕλϕ,+aq(elη
q
ϕλϕ)

and

elη̃
qλϕ =

q−1∑
j=0

αq,j(elη
j
ϕλϕ) + aq(elη

q
ϕλϕ)

at p. By this formula and by the elementary row operations, we see
that the ranks of the matrices

e1λϕ · · · em−1λϕ ηϕλϕ

e1ηϕλϕ · · · em−1ηϕλϕ η2ϕλϕ

...
...

...
...

e1η
i
ϕλϕ · · · em−1η

i
ϕλϕ ηi+1

ϕ λϕ


and 

e1λϕ · · · em−1λϕ η̃λϕ

e1η̃λϕ · · · em−1η̃λϕ η̃ 2λϕ

...
...

...
...

e1η̃
iλϕ · · · em−1η̃

iλϕ η̃ i+1λϕ


are the same at p. This proves the lemma. �

We have the following characterization in regards to the relation with
the singular set and the null section. (This is analogous to the standard
Ak singular point for wave front and Morin map. See [9] for details.)
Let p be an Ak-like singular point and U a neighborhood of p. We set
S1 = S, and Si = {q ∈ U | λϕ(q) = ηϕλϕ(q) = · · · = ηi−1

ϕ λϕ(q) = 0},
i ≤ k.
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Proposition 2.5. If p ∈ S is an Ak-like singular point, then Si,
i = 1, . . . , k, are submanifolds with codimension i, and

Si = {q ∈ Si−1 | ηϕ(q) ∈ TqSi−1}.

Moreover, ηϕ(p) ̸∈ TpSk.

Proof. By the definition of Si and the property that the map
(λϕ, ηϕλϕ, . . . , η

k−1
ϕ λϕ) is a submersion, Si is a codimension i. Since

Si = {q ∈ U | λϕ(q) = ηϕλϕ(q) = · · · = ηi−1
ϕ λϕ(q) = 0}

= {q ∈ Si−1 | ηi−1
ϕ λϕ(q) = 0}

= {q ∈ Si−1 | ηϕ(q) ∈ TqSi−1},

the last assertions are obvious. �

2.2. Geometric interpretations of singularities. We give geome-
tric interpretations of singularities of bundle homomorphisms assuming
(m, r) = (2, 1), (3, 1) and (3, 2). We set r = 1. Then, D1 is generated by
a vector field e, and ηϕ on S can be chosen as e. Thus, the configuration
of S and ηϕ is the same as the standard Ak-singularities of wave fronts
[9]. The pictures of S and D1 are drawn in Figure 1 (case m = 2) and
Figure 2 (case m = 3).

foldlike singular points

swallowtail like singular point

Figure 1. S and D1 of fold-like singular point and of cusp-like singular
point in the case of m = 2.

We set m = 3 and r = 2. If p is a fold-like singular point, then
(ηϕ)p ̸∈ TpS; thus, (D1)p ̸= TpS. Let p be a cusp-like singular point.
If e1λϕ = e2λϕ = 0 at p, then (D1)p = TpS, where {e1, e2} is a frame
of D1. In this case, we call p a cusp-like singular point of tangent type.
If (e1λϕ, e2λϕ) ̸= (0, 0) at p, then (D1)p is transversal to TpS. In this
case, we call p a cusp-like singular point of transverse type. The picture
of S and D1 is drawn in Figure 3.
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fold-like singular points

cusp-like

points
singular

fold-like singular points

cusp-like singular points

cusp-like singular points

swallowtail-like singular points

Figure 2. S and D1 of fold-like, cusp-like and swallowtail-like singular
points in the case of m = 3.

Figure 3. S and D1 of fold-like singular and cusp-like singular points of
tangent and transverse types.

If p ∈ S is a swallowtail-like singular point, then S2 is a one-
dimensional submanifold of S. Let (u, v) be a coordinate system of
S and (u, v, w) a coordinate system of M near p. For a function c̃(u, v)
which vanishes on S2, let us set a coordinate expression of a null section
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ηϕ associated to (u, v) near p as

ηϕ = ã(u, v)∂u + b̃(u, v)∂v + c̃(u, v)∂w.

We take a parametrization of S2 with respect to (u, v) as γ(t) =
(γ1(t), γ2(t)) (γ(0) = p) and set the functions as

a(t) = ã(γ1(t), γ2(t)), b(t) = b̃(γ1(t), γ2(t)).

Then, ηγ(t) = a(t)∂u + b(t)∂v is the restriction of a null section ηϕ on
γ(t). We have the following proposition.

Proposition 2.6. Let p ∈ S be a swallowtail-like singular point. We
set

µ(t) = det

(
γ′
1(t) a(t)

γ′
2(t) b(t)

)
.

Under the above notation, it holds that µ(0) = 0 and µ′(0) ̸= 0.

Proof. Let (u, v) be a coordinate system of S satisfying ∂v = ηp. We
assume that (ηϕλϕ)u(p) = 0. Then, since S = {λϕ = 0}, it holds
that (λϕ)u = (λϕ)v = 0 at p. Moreover, since ∂v = ηp, it holds
that (ηϕλϕ)v(p) = (λϕ)vv(p) = 0. Thus, ((λϕ)u, (λϕ)v, (λϕ)w)(p) and
((ηϕλϕ)u, (ηϕλϕ)v, (ηϕλϕ)w)(p) are linearly dependent, where (u, v, w)
is a coordinate system on M . This contradicts the condition rank
d(λϕ, ηϕλϕ, η

2
ϕλϕ)(p) = 3. Thus, (ηϕλϕ)u(p) ̸= 0. Since (ηϕλϕ)u(p) ̸= 0,

we have a parametrization of γ as γ(t) = (γ1(t), t). Since η2ϕλϕ(p) = 0,

we have γ′
1(0) = 0. On the other hand, we may take ηγ(t) = a(t)∂u+∂v

(a(0) = 0). Then, µ(t) = γ′
1(t)− a(t), and thus, µ(0) = 0.

Since η2ϕλϕ(p) = 0, it holds that (λϕ)vv(p) = 0 by (λϕ)u = (λϕ)v =

ã = c̃ = c̃v = b̃ − 1 = 0 at p. Then, we see that η3ϕλϕ(p) ̸= 0 is
equivalent to
(2.5)
(λϕ)w(p)

(
ãv(p)c̃u(p) + c̃vv(p)

)
+ 3ãv(p)(λϕ)uv(p) + (λϕ)vvv(p) ̸= 0.

On the other hand, since ηϕ(λϕ)ϕ(γ1(v), v) = 0, we have

(2.6) γ′′
1 (0) = −2ãv(p)(λϕ)uv(p) + c̃vv(p)(λϕ)w(p) + (λϕ)vvv(p)

c̃u(p)(λϕ)w(p) + (λϕ)uv(p)
.
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By a′(0) = ãv(p), (2.5) and (2.6), we have

−µ′(0) = −γ′′
1 (0) + a′(0)

=
ãv c̃u(λϕ)w+3ãv(λϕ)uv+c̃vv(λϕ)w+(λϕ)vvv

c̃u(λϕ)w+(λϕ)uv
(p) ̸= 0.

�

As in the case of a cusp-like singular point, a swallowtail-like singular
point has tangent and transverse types. Let {e1, e2} be a frame of D1.
If e1λϕ = e2λϕ = 0 at p, then (D1)p = TpS. In this case, we call p a
swallowtail-like singular point of tangent type. If (e1λϕ, e2λϕ) ̸= (0, 0)
at p, then (D1)p is transversal to TpS. In this case, we call p a
swallowtail-like singular point of transverse type (Figure 4). Ignoring
arrangements of D1, the relationship of S, S2 and ηϕ is similar to that

of the Morin singularities of (R3, 0) → (R3, 0) [9].

Figure 4. S and D1 of swallowtail-like singular points of tangent and
transverse types.

3. Generic singularities. We show that, if m = 3 and r = 2, then
the generic singularities of ϕ are fold-like, transversal cusp-like, tangent
cusp-like and transversal swallowtail-like singular points. The bundle
homomorphism ϕ can be regarded as a section of the homomorphism
bundle hom(D1, D2). We set E = hom(D1, D2). Since the set of sec-
tions Γ(E) is a subset of C∞(M,E), we consider Γ(E) as a topological
subspace of C∞(M,E) with the Whitney C∞ topology.

Proposition 3.1. Let M be a smooth 3-manifold, D1 a rank 2 distri-
bution on M and D2 a rank 2 vector bundle on M . Let ϕ : D1 → D2

be a bundle homomorphism. If ϕ admits only corank one singularities,
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then the set

{ϕ ∈ Γ(E) | any p ∈ S is fold-like, transversal cusp-like,

tangent cusp-like or transversal swallowtail-like}

is dense in Γ(E).

For the proof of Proposition 3.1, we need the jet transversality
theorem for vector bundle sections. Let Jk(Γ(E)) be the subbundle
of Jk(M,E) consisting of all k-jets of sections. Let jk : M → Jk(Γ(E))
be the jet-extension.

Proposition 3.2. Let M be a manifold, and let K be a submanifold
of Jk(Γ(E)). Then, the set

{f ∈ Γ(E) | jkf is transverse to K}

is residual in Γ(E), and open dense if K is closed.

This is shown [12, Theorem 2.6] for sections of the tangent bundle.
However, the proof uses the local triviality of the tangent bundle; thus,
the same proof works for the case of interchanging the tangent bundle
to a general vector bundle E.

Proof of Proposition 3.1. We set

Z = {j3ϕ(p) ∈ J3(M,E) | ϕ(p) = O}.

Then, Z is independent of the choice of frames, a closed submanifold
of codimension 4, and J3(M,E) \ Z is an open submanifold. Next, we
set

D = {j3ϕ(p) ∈ J3(M,E) | λ(p) = 0, dλ(p) = (0, 0, 0)},

where λ = λϕ is the function defined in (2.2). Then, D is independent
of the choice of frames and is a closed submanifold of J3(M,E) \ Z of
codimension 4.

Next, we consider

W1 = {j3ϕ(p) ∈ J3(M,E) | λ(p) = 0, ηλ(p) = 0,

η2λ(p) = 0, η3λ(p) = 0},
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W2 = {j3ϕ(p) ∈ J3(M,E) | λ(p) = 0, ηλ(p) = 0,

η2λ(p) = 0, rank d(λ, ηλ)(p) = 1},

W3 = {j3ϕ(p) ∈ J3(M,E) | λ(p) = 0, ηλ(p) = 0,

η2λ(p) = 0, eλ(p) = 0},

where {e, η} is a local frame of D1. The sets W1,W2,W3 are indepen-
dent of the choice of the frames. If we show that W1,W2,W3 are
closed submanifolds of J3(M,E) \ (Z ∪D) of codimension 4, then, by
Proposition 3.2,

O = {ϕ ∈ Γ(E) | j3ϕ is transverse to Z, D, W1, W2 and W3}

is a residual subset of Γ(E), and so, is dense. On the other hand, since
dimM = 3, j3ϕ is transverse to Z, D, W1 and W2 are equivalent to
j3ϕ(M) ∩ (Z ∪D ∪W1 ∪W2) = ∅. Thus, any ϕ ∈ O has only fold-like,
transversal cusp-like, tangent cusp-like and transversal swallowtail-like
singular points as singular points. Hence, the proof is reduced to
showing the next lemma. �

Lemma 3.3. The set W1,W2,W3 are closed submanifolds of J3(M,E)\
(Z ∪D) of codimension 4.

Proof. Let p ∈ M , and take a coordinate neighborhood U near p.
It is sufficient to show that W1,W2,W3 are closed submanifolds in
J3(U,E|U ) \ (Z ∪D). Since W1,W2,W3 are independent of the choice
of coordinate systems, we choose a coordinate system (u, v, w) on U
satisfying ∂v = e and ∂w = η. Let

j3ϕ(p) =

(
j3a(p) j3b(p)
j3c(p) j3d(p)

)
,

where a, b, c, d are functions. Then, in J3(U,E|U ) \ (Z ∪D),

W1 =

{(
j3a(p) j3b(p)
j3c(p) j3d(p)

) ∣∣∣∣ p ∈ U, h1(p)=h2(p)=h3(p)=h4(p)=0

}
,

W2 =

{(
j3a(p) j3b(p)
j3c(p) j3d(p)

) ∣∣∣∣ p ∈ U, h1(p)=h2(p)=h3(p)=h5(p)=0

}
,
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W3 =

{(
j3a(p) j3b(p)
j3c(p) j3d(p)

) ∣∣∣∣ p ∈ U, h1(p)=h2(p)=h3(p)=h6(p)=0

}
,

where h1 = ad − bc, h2 = (ad − bc)w, h3 = (ad − bc)ww, h4 =
(ad− bc)www,

h5 = (ad− bc)u(ad− bc)vw − (ad− bc)v(ad− bc)uw

and h6 = (ad− bc)v. We define three functions

Hi : J
3(U,E|U ) \ (Z ∪D) −→ R4, i = 1, 2, 3,

by H1 = (h1, h2, h3, h4), H2 = (h1, h2, h3, h5), H3 = (h1, h2, h3, h6).
Then, it is sufficient to show that (0, 0, 0, 0) is a regular value of each
H1, H2 and H3. We calculate the derivative of H1 with respect to the
16 coordinates of J3(U,E|U ) corresponding to the zero, first, second
and third derivatives by ∂w of a, b, c, d. The matrix representation of
them is (

M
∗ d −c −b a

)
,

M =

 d −c −b a
∗ ∗ ∗ ∗ d −c −b a
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ d −c −b a

 ,

where the blank entries are zero. Since (a, b, c, d) ̸= (0, 0, 0, 0), we have
the assertion for H1. We calculate the derivative of H2 with respect to
the 20 coordinates of J3(U,E|U ) corresponding to the zero, first and
second derivatives by ∂w of a, b, c, d and corresponding to the derivatives
by ∂u, ∂w, and ∂v, ∂w of a, b, c, d. The matrix representation of them
is (

M
∗ X

)
,

X =(d(h1)v,−c(h1)v,−b(h1)v, a(h1)v, d(h1)u,−c(h1)u,−b(h1)u, (h1)u).

Since (a, b, c, d) ̸= (0, 0, 0, 0), and (h1)u(p) = (h1)v(p) = h2(p) = 0
means that d detϕ(p) = (0, 0, 0), we have the assertion for H2.

Next, we calculate the derivative of H3 with respect to the 16
coordinates of J3(U,E|U ) corresponding to the zero, first and second
derivatives by ∂w of a, b, c, d and corresponding to the derivatives by ∂v
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of a, b, c, d. The matrix representation of them is(
M
∗ d −c −b a

)
.

Since (a, b, c, d) ̸= (0, 0, 0, 0), we have the assertion for H3. �

Using the same method, we have the following:

Proposition 3.4. Let M be a smooth 3-manifold, D1 a rank 1 distri-
bution on M and D2 a rank 1 vector bundle on M . Let ϕ : D1 → D2

be a bundle homomorphism. If ϕ admits only corank one singularities,
then the set

{ϕ ∈ Γ(E) | any p ∈ S is fold-like, cusp-like or swallowtail-like}

is dense.

Proposition 3.5. Let M be a smooth 2-manifold, D1 a rank 1 distri-
bution on M and D2 a rank 1 vector bundle on M . Let ϕ : D1 → D2

be a bundle homomorphism. If ϕ admits only corank one singularities,
then the set

{ϕ ∈ Γ(E) | any p ∈ S is fold-like or cusp-like}

is dense.

Propositions 3.4 and 3.5 can be shown by the same method as
Proposition 3.1. We show the subsets of the jet spaces by applying
Proposition 3.2.

Proof of Proposition 3.4. We set

W1 = {j3ϕ(p) ∈ J3(M,E) | λ(p) = 0, dλ(p) = (0, 0, 0)},
W2 = {j3ϕ(p) ∈ J3(M,E) | λ(p) = eλ(p) = e2λ(p) = e3λ(p) = 0},

where e is a frame of D1. Then, W1 and W2 are closed submanifolds
of codimension 4. �
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Proof of Proposition 3.5. We set

W1 = {j2ϕ(p) ∈ J2(M,E) | λ(p) = 0, dλ(p) = (0, 0)},
W2 = {j2ϕ(p) ∈ J2(M,E) | λ(p) = eλ(p) = e2λ(p) = 0}.

Then, W1 and W2 are closed submanifolds of codimension 3. �

4. Morin singularities from a manifold with tangent distri-
bution. Let D1 be a rank r tangent distribution on M , let N be an
r-dimensional manifold and f : M → N a map. Setting D2 = f∗TN
and ϕ : D1 → D2 by

ϕ(v) = df(v),

we obtain a bundle homomorphism between D1 and D2. We call
the above ϕ a bundle homomorphism induced by f . In this section,
assuming f is a Morin singularity, we consider the relationships of ϕ,
D1 and f in the case of m = 3, r = 2. Moreover, we assume that M is
an open neighborhood of 0 in R3, N is an open neighborhood of 0 in
R2 and f : (R3, 0) → (R2, 0).

4.1. Morin singularities. Here, a brief review is given on the Morin
singularities of (R3, 0) → (R2, 0). The map-germ f : (R3, 0) → (R2, 0)
is called a definite fold (respectively, an indefinite fold) if it is A-
equivalent to the map-germ (u, v, w) 7→ (u, v2 + w2) (respectively,
(u, v2 − w2)) at 0. Two map-germs f, g : (Rm, 0) → (Rn, 0) are A-
equivalent if there exist diffeomorphism-germs σ : (Rm, 0) → (Rm, 0)
and τ : (Rn, 0) → (Rn, 0) such that τ ◦ f ◦ σ−1 = g. The map-germ
f : (R3, 0) → (R2, 0) is called a cusp if it is A-equivalent to the map-
germ (u, v, w) 7→ (u, v2 + w3 + uw). Definite folds, indefinite folds
and cusps are called Morin singularities, and it is known that generic
singularities appearing on maps from a 3-manifold to a 2-manifold are
only Morin singularities. A characterization of Morin singularities is
given as follows: let f : (R3, 0) → (R2, 0) be a map-germ, and let the
origin 0 be a rank one singular point of f , namely, rank df0 = 1. Then,
there exists a triple of vector fields {ξ, η1, η2} such that

⟨ξ(0), η1(0), η2(0)⟩ = T0R
3, ⟨η1, η2⟩ = ker dfp, p ∈ S(f),

where S(f) is the set of singular points of f . We set

λ1 = det(ξf, η1f),
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λ2 = det(ξf, η2f),

H =
(
η1λ1 η2λ1

)
.

Then, f at 0 is a definite fold (respectively, indefinite fold) if and
only if detH(0) > 0 (respectively, detH(0) < 0). We assume that
rankH(0) = 1. Then, there exists a vector field θ = a1η1 + a2η2 on
S(f) such that ⟨θ0⟩ = kerH(0). Then, f at 0 is a cusp if and only if
θH(0) ̸= 0. See [7] for details.

4.2. Conditions for singularities. We take a local frame {e1, e2} of
D1. We regard e1 and e2 as vector fields. We consider the conditions
of singular points of fold-like, cusp-like and swallowtail-like under the
assumption that f is regular, fold and cusp, since these are generic
singular points.

When f is regular at 0, and D1 ̸⊃ ker df0, then ϕ is non-singular.
When f is singular at 0, and D1 ⊂ ker df0, then ϕ is of rank zero at
0. We assume that D1 ∩ ker df0 is one-dimensional. By changing the
frame, we may assume that e1f(0) ̸= 0. The bundle homomorphism ϕ
can be represented by the matrix

(e1f, e2f)

by using {e1, e2} and the trivial frame on R2. Since rankϕ = 1 at 0,
we take a null section ηϕ, and set

λϕ = det(e1f, e2f) = det(e1f, ηϕf).

The following proposition holds.

Proposition 4.1. We assume that D1 ∩ ker df0 is one-dimensional.
The singular point p of ϕ is a fold-like singular point if and only if
det(e1f, η

2
ϕf) ̸= 0 at p. A non-degenerate singular point p is cusp-

like singular point (respectively, swallowtail-like singular point) if and
only if det(e1f, η

2
ϕf) = 0, and det(e1f, η

3
ϕf) ̸= 0 at p, respectively,

det(e1f, η
2
ϕf) = det(e1f, η

3
ϕf) = 0, det(e1f, η

4
ϕf) ̸= 0, and the map(

det(e1f, ηϕf), det(e1f, η
2
ϕf), det(e1f, η

3
ϕf)

)
is a submersion at p.
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Proof. Since ηϕf(p) = 0, it is obvious that the assertion for the
fold-like singular point. Let p be a non-degenerate singular point and
ηϕλϕ(p) = 0. Since ηϕf = 0 on S = {λϕ = 0}, and p is non-
degenerate, there exists a vector-valued function g such that ηϕf =
λϕg. Then, by the assumption ηϕλϕ(p) = 0, η2ϕf(p) = 0. Hence,

η2ϕλϕ(p) ̸= 0 is equivalent to det(e1f, η
3
ϕf)(p) ̸= 0. This proves the

assertion for the cusp-like singular point. Next, we assume that p is a
non-degenerate singular point, and ηϕλϕ(p) = η2ϕλϕ(p) = 0. Then,

by the same reasoning as above, we have η2ϕf(p) = η3ϕf(p) = 0.

Thus, we see that η3ϕλϕ(p) ̸= 0 is equivalent to det(e1f, η
4
ϕf)(p) ̸= 0,

and det(λϕ, ηϕλϕ, η
2
ϕλϕ)(p) ̸= 0 is equivalent to det d

(
det(e1f, ηϕf),

det(e1f, η
2
ϕf) and det(e1f, η

3
ϕf)

)
(p) ̸= 0. This proves the assertion. �

4.3. Restriction of singularities of ϕ by singular types of f . We
are still taking a local frame {e1, e2} of D1 and regarding e1 and e2 as
vector fields. We assume that f at 0 is a definite fold singular point.
Then, rank(e1f, e2f, e3f) = 1 on S(f), where {e1, e2, e3} is a frame of
TR3. Thus, there exist functions k1, k2 such that e2f = k1e1f, e3f =
k2e1f on S(f). Taking extensions of k1 and k2 on R3, we set

η2 = −k1e1 + e2, η3 = −k2e1 + e3,

and also set

λ2 = det(e1f, e2f) = det(e1f, η2f),

λ3 = det(e1f, e3f) = det(e1f, η3f).

Then, we see that η2 is a null section of ϕ, and λ2 is the same as λϕ.
Since f is a definite fold,

H = det

(
η2λ2 η3λ2

η2λ3 η3λ3

)
> 0.

In particular, η2λ2 ̸= 0. Thus, ϕ is fold-like at 0 if rankϕ(0) = 1.

Next, we assume that f at 0 is a cusp singular point. Then, we take
k1, k2, η2, η3 and λ2, λ3 as above. We assume that ϕ is not fold-like.
Since η2 is a null section of ϕ, and λ2 is the same as λϕ, it holds that
η2λ2(0) = 0. Then, since f is cusp,

H(0) = det

(
η2λ2 η3λ2

η2λ3 η3λ3

)
(0) = 0.
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Since η3λ2(0) = η2λ3(0), it holds that η3λ2(0) = 0. Hence, the kernel
of H is θ = η2 at 0. Then, f is cusp if and only if

η22λ2(0) η3λ3(0) ̸= 0.

Thus, ϕ is non-degenerate and not fold-like at 0, then ϕ is cusp-like at
zero.

4.4. The case D1 is a foliation. In this section, we assume that D1

is a foliation. By taking a coordinate system (x, y, z) on R3, we may
assume D1 = ⟨e1, e2⟩ = ⟨∂x, ∂y⟩. Let L be the leaf which contains the
origin, namely, f |L = f(x, y, 0). We have the following.

Proposition 4.2. Let f : ((R3, D1), 0) → (R2, 0) be a map-germ from
a trivially foliated manifold with trivial leaf D1 to a plane around the
origin. Let ϕ be an induced bundle homomorphism of f . If ϕ has a
corank one singular point at p, and D1 ∩ ker df0 is one-dimensional,
then the following hold :

(i) ϕ is fold-like if and only if f |L is a fold ;

(ii) if ϕ is non-degenerate, then ϕ is cusp-like if and only if f |L is
a cusp;

(iii) if ϕ satisfies that rank d(λϕ, ηϕλϕ)(0) = 2, then ϕ is swallowtail-
like if and only if f |L is a swallowtail.

A map-germ g : (R2, 0) → (R2, 0) is called a fold if g is A-equivalent
to the map-germ (u, v) 7→ (u, v2) at 0. Furthermore, a map-germ
g : (R2, 0) → (R2, 0) is called a cusp (respectively, swallowtail) if g
is A-equivalent to (u, v) 7→ (u, v3 + uv) at 0 (respectively, (u, v) 7→
(u, v4+uv) at 0). Criteria for these singularities are obtained as follows:
Let g : (R2, 0) → (R2, 0) be a map-germ. We set λ = det J , where J is
the Jacobian matrix of g. A singular point p ∈ S(g) is non-degenerate
if dλ(p) ̸= 0. A null vector field is a never-vanishing vector field such
that it generates ker dgq at q ∈ S(g). The following fact is known.

Fact 4.3 ([6, 9, 13]). Let g : (R2, p) → (R2, 0) be a map-germ and p
a non-degenerate singular point. Then, we can take a null vector field
η. Let λ be the determinant of the Jacobi matrix of g. Then, g at p
is a fold if and only if ηλ(p) ̸= 0. Moreover, p is a cusp (respectively,
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a swallowtail) if and only if ηλ(p) = 0 and η2λ(p) ̸= 0 (respectively,
ηλ(p) = η2λ(p) = 0 and η3λ(p) ̸= 0).

Proof of Proposition 4.2. Wemay assume that fx(0, 0, 0) ̸= 0. Then,
there exists a function k1(x, y, z) such that, if p ∈ S, then

fy(p) = k1(p)fx(p).

Taking an extension of k1 on a neighborhood U of p, we obtain a null
vector field

ηϕ = −k1e1 + e2.

On the other hand, there exists a function l(x, y) such that, if q ∈
S(f |L), then

fy(q) = l(q)fx(q).

Taking an extension of l on U ∩ {z = 0}, we take a null section of f |L

ηL = −le1 + e2.

Set λL(x, y) = det(e1f(x, y, 0), ηLf(x, y, 0)). Then, since λϕ(x, y, 0) =
λL(x, y), and ηϕ(x, y, 0) = ηL(x, y), we see

(4.1) ηiϕλ(0) = ηiLλL(0), i = 1, 2, 3.

The assertion is obvious by Fact 4.3 and (4.1). �

4.5. The case D1 is a contact structure. In this section, we assume
that D1 is a contact structure. Let M be a three-dimensional manifold
and D a rank 2 distribution. We take a 1-form α such that D = α−1(0)
at each point. Then, D is called a contact structure if α ∧ dα never
vanish. Let H : M → R be a function. It is known that there is a
unique vector field XH such that the interior product iXH

α is equal to
H. This vector field is called the Hamiltonian vector field of H. See
[1], for example.

We denote by X the Hamiltonian vector field of λϕ. Since X is
contained in D1 on S, we consider the relationship with the behavior
of X and the singularities of ϕ. We may assume that D1 = ⟨e1, e2⟩ =
⟨∂x, ∂y − x∂z⟩, without loss of generality. Since ϕ can be expressed by
(fx, fy − xfz),

λ := λϕ = det(fx, fy − xfz).
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The Hamiltonian vector field X of λϕ is

X = (λy − xλz)∂x − λx∂y − (λ− xλx)∂z = (λy − xλz)e1 − λxe2 − λ∂z.

Since S = {λϕ = 0} holds, Xp ∈ D1 is equivalent to p ∈ S. We have
the following.

Theorem 4.4. Let f : ((R3, D1), 0) → (R2, 0) be a map-germ from
a contact manifold with contact structure D1 to a plane around the
origin. Let ϕ be an induced bundle homomorphism of f . If ϕ has a
corank one singular point at p, and D1 ∩ ker df0 is one-dimensional,
then p ∈ S is fold-like if and only if

Xp and (ηϕ)p

are linearly independent, where ηϕ is a null section of ϕ.

Proof. Since ϕ is a corank one singular point at p, there exist
functions k1, k2 on S such that (k1, k2) ̸= (0, 0) and k1e1f +k2e2f = 0.
Expanding k1, k2 to a neighborhood of p, we can take a null section
ηϕ = k1e1 + k2e2. Then,

ηϕλ = k1e1λ+ k2e2λ = k1λx + k2(λy − xλz)

= det

(
k1 −(λy − xλz)
k2 λx

)
shows the assertion. �

By Theorem 4.4, on the set of non-fold-like singular points, X is
parallel to the null section. By Propositions 2.5 and 2.6, we have the
following.

Corollary 4.5. If p ∈ S is a cusp-like singular point, then Xp /∈ TpS2.
If p ∈ S is a swallowtail-like singular point, then

µ̃(0) = 0, µ̃′(0) ̸= 0,

where γ(t) = (γ1(t), γ2(t)) (γ(0) = p) is a parametrization of S2,
ηγ(t) = a(t)∂u + b(t)∂v and

µ̃(t) =

(
γ′
1(t) a(t)

γ′
2(t) b(t)

)
.
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