ON THE DYNAMICS OF THE d-TUPLES OF m-ISOMETRIES

AMIR MOHAMMADI-MOGHADDAM AND KARIM HEDAYATIAN

Abstract

A commuting d-tuple $T=\left(T_{1}, \ldots, T_{d}\right)$ of bounded linear operators on a Hilbert space \mathcal{H} is called a spherical m-isometry if $\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} Q_{T}^{j}(I)=0$, where I denotes the identity operator and $Q_{T}(A)=\sum_{i=1}^{d} T_{i}^{*} A T_{i}$ for every bounded linear operator A on \mathcal{H}. Also, T is called a toral m-isometry if $\sum_{p \in \mathbb{N}^{d}, 0 \leq p \leq n}(-1)^{|p|}\binom{n}{p} T^{* p} T^{p}=0$ for all $n \in \mathbb{N}^{d}$ with $|n|=m$. The present paper mainly focuses on the convex-cyclicity of the d-tuples of operators on a separable infinite-dimensional Hilbert space \mathcal{H}. In particular, we prove that spherical m-isometries are not convex-cyclic. Also, we show that toral and spherical m-isometric operators are never supercyclic.

1. Introduction and preliminaries. Let \mathcal{H} be a separable infinitedimensional complex Hilbert space and $\mathcal{B}(\mathcal{H})$ the space of all bounded linear operators on \mathcal{H}. An operator $T \in \mathcal{B}(\mathcal{H})$ is called an m-isometry ($m \in \mathbb{N}$), if it satisfies the following property:

$$
\begin{equation*}
(y x-1)^{m}(T):=\sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k} T^{* k} T^{k}=0 \tag{1.1}
\end{equation*}
$$

Since $(y x-1)^{m}(T)$ is a self-adjoint operator, we observe that T is an m-isometry if and only if, for each $x \in \mathcal{H}$,

$$
\begin{equation*}
\sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k}\left\|T^{k} x\right\|^{2}=0 \tag{1.2}
\end{equation*}
$$

It is clear that the notions of 1-isometry and isometry coincide. The m isometric operators were introduced by Agler [2] and were extensively

[^0]studied by Agler and Stankus [3, 4, 5]. Recently, several authors studied m-isometries. In [41], m-isometric composition operators were discussed. Furthermore, the authors in [15] proved that the class of m-isometries on a Banach space is stable under powers; and the product of m-isometries was studied in [20]. In addition, m-isometric weighted shift operators were considered in $[\mathbf{1}, \mathbf{1 8}, \mathbf{2 1}, \mathbf{2 9}, \mathbf{3 5}]$. On the other hand, the dynamics of m-isometries has been studied in $[13,14,16,28]$, and the perturbation of m-isometries by nilpotent operators has been explored in $[17,19,30,48]$. Moreover, Duggal studied the tensor product of m-isometries $[\mathbf{2 6}, \mathbf{2 7}]$. There are two natural generalizations of m-isometries to the tuple of operators. The first generalization is called spherical m-isometries. An initial study of such a tuple of operators on a Hilbert space is due to Gleason and Richter [33]. Hoffmann and Mackey [38] generalized the definition of spherical m-isometries on a normed space. Also, their relation with a moment problem was studied in [7]. Recently, the authors of [36] established some basic and non-trivial properties of spherical misometries. They proved that spherical m-isometries are power regular and are stable under powers and products under an orthogonality condition. Moreover, they showed that, for every proper spherical m isometry T, there are linearly independent operators A_{0}, \ldots, A_{m-1} such that $Q_{T}^{n}(I)=\sum_{i=0}^{m-1} A_{i} n^{i}$ for every $n \geq 0$. For further references, the reader may consult $[\mathbf{1 0}, \mathbf{1 1}, 22,23,24,45]$.

Given $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}^{d}$, we set

$$
|\alpha|=\sum_{j=1}^{d} \alpha_{j}, \quad \alpha!=\alpha_{1}!\cdots \alpha_{d}!
$$

and $T^{\alpha}=T_{1}^{\alpha_{1}} \cdots T_{d}^{\alpha_{d}}$. For every tuple of commuting operators $T=\left(T_{1}, \ldots, T_{d}\right) \in \mathcal{B}(\mathcal{H})^{d}$, there is a function $Q_{T}: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$ defined by $Q_{T}(A)=\sum_{i=1}^{d} T_{i}^{*} A T_{i}$. It is easy to see that $Q_{T}^{j}(I)=$ $\sum_{|\alpha|=j}(j!/ \alpha!) T^{* \alpha} T^{\alpha}, j \geq 1$, where $T^{*}=\left(T_{1}^{*}, \ldots, T_{d}^{*}\right)$. For each $m \geq 0$, denote $\left(I-Q_{T}\right)^{m}(I)$ by $P_{m}(T)$, in other words,

$$
P_{m}(T)=\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} Q_{T}^{j}(I) .
$$

A commuting d-tuple $T=\left(T_{1}, \ldots, T_{d}\right)$ is said to be a spherical m -
isometry, if $P_{m}(T)=0$. When $m=1$, it is called a spherical isometry. It is shown in [33] that a d-shift operator, which played a role in the dilation of d-contractions (also called row contractions), is a spherical d-isometry. Note that

$$
\begin{equation*}
P_{n+1}(T)=P_{n}(T)-Q_{T}\left(P_{n}(T)\right) \tag{1.3}
\end{equation*}
$$

for all $n \geq 0$. Now, observe that, if T is a commuting tuple of operators on \mathcal{H} and $P_{m}(T)=0$, then $P_{m+n}(T)=0$ for all $n \geq 0$. Hence, if T is a spherical m-isometry, then T is a spherical $(m+n)$-isometry for all $n \geq 0$. For a spherical m-isometry T, define

$$
\Delta_{T, m}:=(-1)^{m-1} P_{m-1}(T)
$$

It is proven that, if T is a spherical m-isometry for some $m \geq 0$, then $\Delta_{T, m}$ is a positive operator (see [33, Proposition 2.3]).

The second generalization of m-isometries is called toral m-isometries. Let $n=\left(n_{1}, \ldots, n_{d}\right)$ and $p=\left(p_{1}, \ldots, p_{d}\right)$ be in \mathbb{N}^{d}. We write $p \leq n$ if $p_{j} \leq n_{j}$ for $j=1, \ldots, d$, and we also let

$$
\binom{n}{p}=\prod_{j=1}^{d}\binom{n_{j}}{p_{j}}
$$

A commuting d-tuple $T=\left(T_{1}, \ldots, T_{d}\right)$ is said to be a toral m-isometry if

$$
\begin{equation*}
B_{n, m}(T):=\sum_{\substack{p \in \mathbb{N}^{d} \\ 0 \leq p \leq n}}(-1)^{|p|}\binom{n}{p} T^{* p} T^{p}=0 \tag{1.4}
\end{equation*}
$$

for all $n \in \mathbb{N}^{d}$ with $|n|=m$. Toral m-isometries were introduced and studied in $[\mathbf{1 2}, \mathbf{2 3}]$. Note that, if T is a toral m-isometry, then each $T_{i}, i=1, \ldots, d$, is an m-isometry. Indeed, let n be a d-tuple of nonnegative integers with m in the i th place and zeros elsewhere. Then, (1.4) shows that T_{i} is an m-isometry. The following example shows that the converse is not true.

Example 1.1. Let $\ell^{2}(\mathbb{N})$ be the Hilbert space of complex sequences indexed by \mathbb{N} such that $\sum_{n=1}^{\infty}\left|\alpha_{n}\right|^{2}<\infty$. For $\alpha=\left(\alpha_{n}\right)_{n=1}^{\infty}$ in $\ell^{2}(\mathbb{N})$, let T_{1} be the unilateral weighted shift operator defined by $T_{1} e_{n}=\omega_{n} e_{n+1}$ and T_{2} the unilateral weighted shift operator defined by $T_{2} e_{n}=\nu_{n} e_{n+1}$,
where $\left\{e_{n}\right\}_{n=1}^{\infty}$ is the canonical orthonormal basis in $\ell^{2}(\mathbb{N})$ and

$$
\left(\omega_{n}\right)_{n \geq 1}:=\sqrt{\frac{n+1}{n}} \quad \text { and } \quad\left(\nu_{n}\right)_{n \geq 1}:=\sqrt{\frac{n+2}{n+1}}
$$

Since

$$
\left\|T_{i}^{2} e_{n}\right\|^{2}-2\left\|T_{i} e_{n}\right\|^{2}+1=0, \quad i=1,2
$$

for all $n \geq 1$, we conclude that T_{1} and T_{2} are 2 -isometry. However, simple computation shows that, for $T=\left(T_{1}, T_{2}\right),\left\langle B_{n, 2}(T) e_{1}, e_{1}\right\rangle=$ $-1 / 4 \neq 0$, where $n=(1,1)$, and thus, T is not a toral 2 -isometry.

In the next proposition, we observe that a d-tuple of operators in a length of more than one cannot simultaneously be spherical and toral m-isometry. In order to see this, we need the following result, obtained in [6].

Lemma 1.2 ([6, Theorem 3.1]). Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of real numbers and $m \in \mathbb{N}$. Then, we have

$$
\sum_{k=0}^{m}(-1)^{k}\binom{m}{k} a_{n+k}=0 \quad \text { for all } n \in \mathbb{N}
$$

if and only if there exists a polynomial function f of degree less than or equal to $m-1$ with $f(n)=a_{n}$ for all $n \in \mathbb{N}$.

Proposition 1.3. There is no d-tuple of simultaneously spherical and toral m-isometry when $d>1$.

Proof. Assume that $d>1$ and $T=\left(T_{1}, \ldots, T_{d}\right)$. To keep the exposition simple, let $d=2$. It is straightforward to verify that

$$
\begin{align*}
& \sum_{\substack{n=\left(n_{1}, n_{2}\right) \\
|n|=m+1}} \sum_{\substack{p \in \mathbb{N}^{2} \\
0 \leq p=\left(p_{1}, p_{2}\right) \leq n}}(-1)^{|p|}\binom{n_{1}}{p_{1}}\binom{n_{2}}{p_{2}} T_{1}^{* p_{1}} T_{2}^{* p_{2}} T_{1}^{p_{1}} T_{2}^{p_{2}} \tag{1.5}\\
& \quad=\sum_{\substack{n=\left(n_{1}, n_{2}\right) \\
|n|=m}} \sum_{\substack{p=\left(p_{1}, p_{2}\right) \in \mathbb{N}^{2} \\
0 \leq p_{1} \leq n_{1}+1 \\
0 \leq p_{2} \leq n_{2}}}(-1)^{|p|}\binom{n_{1}+1}{p_{1}}\binom{n_{2}}{p_{2}} T_{1}^{* p_{1}} T_{2}^{* p_{2}} T_{1}^{p_{1}} T_{2}^{p_{2}} \\
&
\end{align*}
$$

$$
+\sum_{\substack{n=\left(n_{1}, n_{2}\right) \\|n|=m}} \sum_{\substack{p=\left(p_{1}, p_{2}\right) \in \mathbb{N}^{2} \\ 0 \leq p_{1} \leq n_{1} \\ 0 \leq p_{2} \leq n_{2}+1}}(-1)^{|p|}\binom{n_{1}}{p_{1}}\binom{n_{2}+1}{p_{2}} T_{1}^{* p_{1}} T_{2}^{* p_{2}} T_{1}^{p_{1}} T_{2}^{p_{2}}
$$

Let $S=(1 / \sqrt{2}) T$. Then, an induction argument on m shows that

$$
\begin{equation*}
P_{m}(S)=\frac{1}{2^{m}} \sum_{|n|=m} \sum_{\substack{p \in \mathbb{N}^{2} \\ 0 \leq p \leq n}}(-1)^{|p|}\binom{n}{p} T^{* p} T^{p} \tag{1.6}
\end{equation*}
$$

Indeed, the above equality holds for $m=1$. On the other hand, by (1.3), (1.5) and the induction hypothesis, we get

$$
\begin{aligned}
& P_{m+1}(S)=P_{m}(S)-Q_{S}\left(P_{m}(S)\right) \\
& =\frac{1}{2^{m}} \sum_{\substack{n=\left(n_{1}, n_{2}\right) \\
|n|=m}} \sum_{\substack{p \in \mathbb{N}^{2} \\
0 \leq p=\left(p_{1}, p_{2}\right) \leq n}} \\
& \cdot(-1)^{|p|}\binom{n}{p}\left[T_{1}^{* p_{1}} T_{2}^{* p_{2}} T_{1}^{p_{1}} T_{2}^{p_{2}}-\frac{1}{2} T_{1}^{* p_{1}+1} T_{2}^{* p_{2}} T_{1}^{p_{1}+1} T_{2}^{p_{2}}\right. \\
& \left.-\frac{1}{2} T_{1}^{* p_{1}} T_{2}^{* p_{2}+1} T_{1}^{p_{1}} T_{2}^{p_{2}+1}\right] \\
& =\frac{1}{2^{m}} \sum_{\substack{n=\left(n_{1}, n_{2}\right) \\
|n|=m}} \sum_{\substack{p \in \mathbb{N}^{2} \\
0 \leq p=\left(p_{1}, p_{2}\right) \leq n}}(-1)^{|p|}\binom{n}{p} T_{1}^{* p_{1}} T_{2}^{* p_{2}} T_{1}^{p_{1}} T_{2}^{p_{2}} \\
& +\frac{1}{2^{m+1}} \sum_{\substack{n=\left(n_{1}, n_{2}\right) \\
|n|=m}} \sum_{\substack{0 \leq p_{1} \leq n_{1}+1 \\
0 \leq p_{2} \leq n_{2}}} \\
& \cdot(-1)^{|p|}\binom{n_{1}}{p_{1}-1}\binom{n_{2}}{p_{2}} T_{1}^{* p_{1}} T_{2}^{* p_{2}} T_{1}^{p_{1}} T_{2}^{p_{2}} \\
& +\frac{1}{2^{m+1}} \sum_{\substack{n=\left(n_{1}, n_{2}\right) \\
|n|=m}} \sum_{\substack{0 \leq p_{1} \leq n_{1} \\
0 \leq p_{2} \leq n_{2}+1}} \\
& \cdot(-1)^{|p|}\binom{n_{1}}{p_{1}}\binom{n_{2}}{p_{2}-1} T_{1}^{* p_{1}} T_{2}^{* p_{2}} T_{1}^{p_{1}} T_{2}^{p_{2}}
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{2^{m}} \sum_{\substack{n=\left(n_{1}, n_{2}\right) \\
|n|=m}} \sum_{\substack{p \in \mathbb{N}^{2} \\
0 \leq p=\left(p_{1}, p_{2}\right) \leq n}}(-1)^{|p|}\binom{n}{p} T_{1}^{* p_{1}} T_{2}^{* p_{2}} T_{1}^{p_{1}} T_{2}^{p_{2}} \\
& +\frac{1}{2^{m+1}} \sum_{\substack{n=\left(n_{1}, n_{2}\right) \\
|n|=m}} \sum_{\substack{0 \leq p_{1} \leq n_{1}+1 \\
0 \leq p_{2} \leq n_{2}}} \\
& \cdot(-1)^{|p|}\left[\binom{n_{1}+1}{p_{1}}-\binom{n_{1}}{p_{1}}\right]\binom{n_{2}}{p_{2}} T_{1}^{* p_{1}} T_{2}^{* p_{2}} T_{1}^{p_{1}} T_{2}^{p_{2}} \\
& +\frac{1}{2^{m+1}} \sum_{\substack{n=\left(n_{1}, n_{2}\right) \\
|n|=m}} \sum_{\substack{0 \leq p_{1} \leq n_{1} \\
0 \leq p_{2} \leq n_{2}+1}} \\
& \cdot(-1)^{|p|}\binom{n_{1}}{p_{1}}\left[\binom{n_{2}+1}{p_{2}}-\binom{n_{2}}{p_{2}}\right] T_{1}^{* p_{1}} T_{2}^{* p_{2}} T_{1}^{p_{1}} T_{2}^{p_{2}} \\
= & \frac{1}{2^{m+1}} \sum_{\substack{n=\left(n_{1}, n_{2}\right) \\
n \mid=m+1}} \sum_{\substack{p \in \mathbb{N}^{2} \\
0 \leq p \leq n}}(-1)^{|p|}\binom{n}{p} T^{* p} T^{p} .
\end{aligned}
$$

Therefore, if T is a spherical and toral m-isometry, then $P_{m}(T)=$ $P_{m}(S)=0$, and thus,

$$
\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left\langle Q_{T}^{j}(I) x, x\right\rangle=\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left\langle Q_{S}^{j}(I) x, x\right\rangle=0
$$

for all $x \in \mathcal{H}$. Consequently,

$$
\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left\langle T_{i}^{*} Q_{T}^{j}(I) T_{i} x, x\right\rangle=0
$$

for all $x \in \mathcal{H}$ and $i=1,2$. By summing up these two equalities, we get

$$
\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left\langle Q_{T}^{j+1}(I) x, x\right\rangle=0
$$

for all $x \in \mathcal{H}$ and, by continuing this process, we conclude that

$$
\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left\langle Q_{T}^{j+k}(I) x, x\right\rangle=0
$$

for all $x \in \mathcal{H}$ and $k \geq 1$. Now, by Lemma 1.2, the mappings $j \rightarrow\left\langle Q_{T}^{j}(I) x, x\right\rangle$ and $j \rightarrow\left\langle Q_{S}^{j}(I) x, x\right\rangle$ are polynomials in j of degree less than or equal to $m-1$. However, since $\left\langle Q_{S}^{j}(I) x, x\right\rangle=$ $\left(1 / 2^{j}\right)\left\langle Q_{T}^{j}(I) x, x\right\rangle$, we obtain a contradiction.

If $T=\left(T_{1}, \ldots, T_{d}\right)$ is a d-tuple of operators, we denote the semigroup generated by T by $\mathcal{F}_{T}=\left\{T_{1}^{k_{1}} T_{2}^{k_{2}} \cdots T_{d}^{k_{d}}, k_{i} \geq 0, i=1, \ldots, d\right\}$ and the orbit of x under the tuple T by $\operatorname{Orb}(T, x)=\left\{S x: S \in \mathcal{F}_{T}\right\}$. A vector $x \in \mathcal{H}$ is called a hypercyclic vector for T if $\operatorname{Orb}(T, x)$ is dense in \mathcal{H}, and, in this case, the tuple T is called hypercyclic. Also, a vector $x \in \mathcal{H}$ is called a supercyclic vector for T if the set $\left\{\lambda S x: \lambda \in \mathbb{C}, S \in \mathcal{F}_{T}\right\}$ is dense in \mathcal{H}, and, in this case, the tuple T is called supercyclic. These definitions generalize the hypercyclicity and supercyclicity of a single operator to a tuple of operators.

Hypercyclicity on Banach spaces was discussed in 1969 by Rolewicz [44] who showed that, whenever $|\lambda|>1, \lambda T$ is hypercyclic where T is the unilateral backward shift on ℓ^{p} for $1 \leq p \leq \infty$. Kitai in her Ph.D. dissertation in 1982 [39], determined the conditions that ensure a continuous linear operator to be hypercyclic. In 1974, Hilden and Wallen [37] proved that every backward unilateral weighted shift is supercyclic. Moreover, they proved that no normal operator on a complex Hilbert space can be supercyclic. Later, Ansari and Bourdon [8] extended this to the class of all isometries on a Banach space. In 2012, Faghih-Ahmadi and Hedayatian [28] proved that no m-isometry can be supercyclic; they showed that the orbit of each vector is norm increasing, except possibly for a finite number of terms. Bermúdez, Marrero and Martinón [16] proved that, under a sufficient condition, m-isometric operators are not N-supercyclic (the operator $A \in \mathcal{B}(\mathcal{H})$ is N-supercyclic if there exists an N-dimensional subspace E of \mathcal{H} such that its orbit under A is dense in \mathcal{H}). Eventually, Bayart [13] showed that m-isometric operators are never N-supercyclic.

On the other hand, the dynamics of perturbation of m-isometries by nilpotent operators were considered in $[17,19,30,48]$. Hypercyclicity of tuples of operators was first investigated by Feldman [31]. He showed that there are no hypercyclic tuples of normal operators on an infinitedimensional Hilbert space, and he also proved that no hypercyclic tuples of subnormal operators have a commuting normal extension on an infinite-dimensional Hilbert space. In addition, the supercyclicity
of tuples of operators was first investigated by Soltani, Hedayatian and Khani-Robati [46]. They proved that there are no supercyclic subnormal tuples of operators in an infinite-dimensional Hilbert space. Recently, the authors in [10] proved that there is a supercyclic spherical isometric d-tuple on \mathbb{C}^{d}, but there is no supercyclic spherical isometry on an infinite-dimensional Hilbert space. Moreover, the supercyclicity of spherical isometries and toral 1-isometries on Banach spaces were investigated in [9].

In Section 3 of this paper, we will show that toral and spherical m-isometric operators are never supercyclic.

If E is a subset of \mathcal{H}, then the convex hull of E, denoted by $\operatorname{co}(E)$, is the set of all convex combinations of members of E, that is, all finite linear combinations of the members of E where the coefficients are non-negative and their sum is one. An operator $S \in \mathcal{B}(\mathcal{H})$ is called convex-cyclic if the convex hull generated by $\operatorname{Orb}(S, x)$ is dense in \mathcal{H} for some $x \in \mathcal{H}$. The concept of convex-cyclicity for a single operator was introduced by Rezaei [42] and has been studied in [14, 32, 40]. In the next section, we define the concept of convex-cyclicity of tuples of operators, and we give some necessary and sufficient conditions for a d-tuple of commuting of operators on a Hilbert space \mathcal{H} to be convexcyclic. We then show that spherical m-isometries are not convex-cyclic.
2. Convex-cyclicity. In this section, we give necessary and sufficient conditions for convex-cyclicity of the d-tuple of commuting operators. Let $T=\left(T_{1}, \ldots, T_{d}\right)$ be a d-tuple of bounded operators on a Hilbert space \mathcal{H}. The Harte spectrum of T is denoted by $\sigma(T)$; recall that $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{d}\right) \notin \sigma(T)$ if and only if there exist bounded operators $A_{1}, \ldots, A_{d}, B_{1}, \ldots, B_{d}$ on \mathcal{H} such that

$$
\sum_{i=1}^{d}\left(T_{i}-\lambda_{i}\right) A_{i}=\sum_{i=1}^{d} B_{i}\left(T_{i}-\lambda_{i}\right)=I
$$

Note that $\sigma(T)$ is compact and non-void. The spectral radius of T is

$$
r_{2}(T)=\max \left\{\|\boldsymbol{\lambda}\|_{2}: \boldsymbol{\lambda} \in \sigma(T)\right\}
$$

where $\|\boldsymbol{\lambda}\|_{2}=\left(\sum_{i=1}^{d}\left|\lambda_{i}\right|^{2}\right)^{1 / 2}$. Also, let

$$
r_{\infty}(T)=\max \left\{\|\boldsymbol{\lambda}\|_{\infty}: \boldsymbol{\lambda} \in \sigma(T)\right\}
$$

where

$$
\|\boldsymbol{\lambda}\|_{\infty}=\left\|\left(\lambda_{1}, \ldots, \lambda_{d}\right)\right\|_{\infty}=\max \left\{\left|\lambda_{j}\right|: 1 \leq j \leq d\right\}
$$

The unit polydisc in \mathbb{C}^{d} is denoted by \mathbb{D}^{d} :

$$
\mathbb{D}^{d}=\left\{\left(z_{1}, \ldots, z_{d}\right):\left|z_{j}\right|<1 \text { for } j=1, \ldots, d\right\}
$$

A point $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ of \mathbb{C}^{d} is said to be a joint eigenvalue of T if there exists a non-zero vector x such that $T_{i} x=\lambda_{i} x$ for $i=1,2, \ldots, d$. The joint point spectrum of T, denoted by $\sigma_{p}(T)$, is defined by

$$
\sigma_{p}(T)=\left\{\boldsymbol{\lambda} \in \mathbb{C}^{d}: \boldsymbol{\lambda} \text { is a joint eigenvalue for } T\right\}
$$

Now, we define the concept of convex-cyclicity for a d-tuple of operators.

Definition 2.1. The polynomial

$$
p\left(x_{1}, \ldots, x_{d}\right)=\sum_{k=0}^{n} \sum_{k_{1}+\cdots+k_{d}=k} a_{k_{1}, \ldots, k_{d}} x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{d}^{k_{d}}
$$

of d variables x_{1}, \ldots, x_{d} is a convex polynomial if the coefficients $a_{k_{1}, \ldots, k_{d}}$ are non-negative and

$$
\sum_{k=0}^{n} \sum_{k_{1}+\cdots+k_{d}=k} a_{k_{1}, \ldots, k_{d}}=1
$$

If $T=\left(T_{1}, \ldots, T_{d}\right)$ is a d-tuple of operators, then the convex hull of an orbit is $\operatorname{co}(\operatorname{Orb}(T, x))=\{p(T) x: p$ is a convex polynomial $\}$. We say that T is convex-cyclic if $\operatorname{co}(\operatorname{Orb}(T, x))$ is dense in \mathcal{H} for some $x \in \mathcal{H}$.

The proof of the next result relies on the following lemma.
Lemma 2.2. If \mathcal{H} is a Hilbert space and $y, z \in \mathcal{H}$ are linearly independent, then the linear map $\Lambda: \mathcal{H} \rightarrow \mathbb{C}^{2}$, defined by $\Lambda(x)=$ $(\langle x, y\rangle,\langle x, z\rangle)$, is continuous and onto.

Proof. By the Cauchy-Schwarz inequality, Λ is continuous. We can assume that $\|y\|=1$. Moreover, suppose that $y^{\perp} \subset z^{\perp}$; therefore, if $\langle x, y\rangle \neq 0$, then $x /\langle x, y\rangle-y \in y^{\perp}$. Thus, $\langle x, z\rangle=\langle x,\langle z, y\rangle y\rangle$. In
addition, the last equality holds if $x \in y^{\perp}$. Hence, $z=\langle z, y\rangle \cdot y$, that is, y and z are linearly dependent. Therefore, $y^{\perp} \not \subset z^{\perp}$, and this implies that there is a $v \in \mathcal{H}$ such that $\langle v, y\rangle=0$ and $\langle v, z\rangle=1$. Similarly, there is a $w \in \mathcal{H}$ such that $\langle w, y\rangle=1$ and $\langle w, z\rangle=0$. Now, if $\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{C}^{2}$, then $\Lambda(x)=\left(\lambda_{1}, \lambda_{2}\right)$, where $x=\lambda_{1} w+\lambda_{2} v$, and the lemma follows.

Theorem 2.3. Suppose that $T=\left(T_{1}, \ldots, T_{d}\right)$ is a convex-cyclic commuting d-tuple of operators on a Hilbert space \mathcal{H}. Then, the following hold.
(a) The joint ℓ_{∞}-spherical radius of T, i.e., $r_{\infty}(T)$ is greater than or equal to one. Consequently, $\sigma(T) \cap\left(\mathbb{C}^{d} \backslash \mathbb{D}^{d}\right)$ is non-empty.
(b) $\sigma_{p}\left(T^{*}\right) \cap\left(\overline{\mathbb{D}}^{d} \cup \mathbb{R}^{d}\right)=\emptyset$.
(c) If $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ and $\gamma=\left(\gamma_{1}, \ldots, \gamma_{d}\right)$ are in $\sigma_{p}\left(T^{*}\right)$, then there exists a $1 \leq i \leq d$ such that $\lambda_{i} \neq \overline{\gamma_{i}}$.
(d) T is not self-adjoint.

Proof.
(a) Following [47],

$$
r_{\infty}(T)=\lim _{k \rightarrow \infty}\left\|T^{k}\right\|_{\infty}^{1 / k}
$$

where

$$
\left\|T^{k}\right\|_{\infty}=\max \left\{\left\|T_{1}^{k_{1}} \cdots T_{d}^{k_{d}}\right\|: k_{1}+\cdots+k_{d}=k\right\}
$$

Let $\operatorname{co}\left(T_{1}, \ldots, T_{d}\right)=\left\{p\left(T_{1}, \ldots, T_{d}\right): p\right.$ is a convex polynomial $\}$. It follows that $\left\{\|S\|: S \in \operatorname{co}\left(T_{1}, \ldots, T_{d}\right)\right\}$ is bounded if $r_{\infty}(T)<1$. Hence, $r_{\infty}(T) \geq 1$ if T is convex-cyclic.

For simplicity, we only prove our results in (b), (c) and (d) for the case $d=2$; for other $d \mathrm{~s}$, the proof is similar. We also assume that x is a convex-cyclic vector for T.
(b) Assume to the contrary that $\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}\right) \in \sigma_{p}\left(T^{*}\right) \cap\left(\overline{\mathbb{D}}^{2} \cup \mathbb{R}^{2}\right)$. Then, there exists a non-zero vector $y \in \mathcal{H}$ such that $\left(T_{i}^{*}-\lambda_{i}\right) y=0$ for $i=1,2$. Hence, for every convex polynomial p,

$$
\begin{aligned}
\left\langle y, p\left(T_{1}, T_{2}\right) x\right\rangle & =\left\langle p\left(T_{1}, T_{2}\right)^{*} y, x\right\rangle=\left\langle p\left(T_{1}^{*}, T_{2}^{*}\right) y, x\right\rangle \\
& =\left\langle p\left(\lambda_{1}, \lambda_{2}\right) y, x\right\rangle=p\left(\lambda_{1}, \lambda_{2}\right)\langle y, x\rangle .
\end{aligned}
$$

Since $\langle y, \cdot\rangle: \mathcal{H} \rightarrow \mathbb{C}$ is continuous and onto, it maps the dense set $\operatorname{co}(\operatorname{Orb}(T, x))$ onto a dense subset of \mathbb{C}. However, for any convex
polynomial $p, p\left(\mathbb{R}^{2}\right) \subseteq \mathbb{R}$ and $p\left(\overline{\mathbb{D}}^{2}\right) \subseteq \overline{\mathbb{D}}$. It follows that

$$
\left\{p\left(\lambda_{1}, \lambda_{2}\right)\langle y, x\rangle: p \text { is a convex polynomial }\right\}
$$

is not dense in \mathbb{C}, and this is a contradiction.
(c) Assume, to the contrary, that $\boldsymbol{\lambda}, \boldsymbol{\gamma} \in \sigma_{p}\left(T^{*}\right)$ and $\lambda_{i}=\overline{\gamma_{i}}$ for $i=1,2$. Let $\left(\beta_{1}, \beta_{2}\right)=\boldsymbol{\beta}=\boldsymbol{\lambda}=\bar{\gamma}$. Then, $\boldsymbol{\beta}, \overline{\boldsymbol{\beta}} \in \sigma_{p}\left(T^{*}\right)$. Thus, there are y and z in \mathcal{H} such that $T_{i}^{*} y=\beta_{i} y$ and $T_{i}^{*} z=\overline{\beta_{i}} z$ for $i=1,2$. However, by part (b), $\boldsymbol{\beta} \notin \mathbb{R}^{2}$. Thus, $\boldsymbol{\beta} \neq \overline{\boldsymbol{\beta}}$. Hence, y and z are linearly independent vectors. Now, for every convex polynomial p, we have

$$
\left\langle p\left(T_{1}, T_{2}\right) x, y\right\rangle=\left\langle x, p\left(T_{1}^{*}, T_{2}^{*}\right) y\right\rangle=\left\langle x, p\left(\beta_{1}, \beta_{2}\right) y\right\rangle=p\left(\bar{\beta}_{1}, \bar{\beta}_{2}\right)\langle x, y\rangle
$$

Also,

$$
\left\langle p\left(T_{1}, T_{2}\right) x, z\right\rangle=\left\langle x, p\left(T_{1}^{*}, T_{2}^{*}\right) z\right\rangle=\left\langle x, p\left(\bar{\beta}_{1}, \bar{\beta}_{2}\right) z\right\rangle=p\left(\beta_{1}, \beta_{2}\right)\langle x, z\rangle
$$

On the other hand, by Lemma 2.2 the linear map $\Lambda: \mathcal{H} \rightarrow \mathbb{C}^{2}$ defined by $\Lambda(h)=(\langle h, y\rangle,\langle h, z\rangle)$ is continuous and onto, so it maps the dense set $\left\{p\left(T_{1}, T_{2}\right) x: p\right.$ is a convex polynomial $\}$ onto a dense subset of \mathbb{C}^{2}. It follows that

$$
\left\{\left(p\left(\bar{\beta}_{1}, \bar{\beta}_{2}\right)\langle x, y\rangle, p\left(\beta_{1}, \beta_{2}\right)\langle x, z\rangle\right): p \text { is a convex polynomial }\right\}
$$

must be dense in \mathbb{C}^{2}, and thus, $\langle x, y\rangle$ and $\langle x, z\rangle$ are non-zero. Hence, for every z_{1} and z_{2} in \mathbb{C}, there exists a convex polynomial p_{n} such that

$$
p_{n}\left(\bar{\beta}_{1}, \bar{\beta}_{2}\right) \longrightarrow \frac{z_{1}}{\langle x, y\rangle} \quad \text { and } \quad p_{n}\left(\beta_{1}, \beta_{2}\right) \longrightarrow \frac{z_{2}}{\langle x, z\rangle}
$$

Put $z_{1}=z_{2} \in \mathbb{R}$. Therefore, $\langle x, z\rangle=\overline{\langle x, y\rangle}$, and consequently, $\bar{z}_{2}=z_{1}$ for all z_{1} and z_{2} in \mathbb{C}, a contradiction. Hence, (c) holds.
(d) Assume that T is a self-adjoint 2 -tuple. We have

$$
\begin{aligned}
\left\langle x, p\left(T_{1}, T_{2}\right) x\right\rangle & =\left\langle p\left(T_{1}, T_{2}\right)^{*} x, x\right\rangle=\left\langle p\left(T_{1}^{*}, T_{2}^{*}\right) x, x\right\rangle \\
& =\left\langle p\left(T_{1}, T_{2}\right) x, x\right\rangle=\overline{\left\langle x, p\left(T_{1}, T_{2}\right) x\right\rangle}
\end{aligned}
$$

for every convex polynomial p. This implies that $\left\{\left\langle x, p\left(T_{1}, T_{2}\right) x\right\rangle\right.$: p is a convex polynomial $\}$ is not dense in \mathbb{C}, a contradiction. Therefore, (d) holds.

Remark 2.4. In part (a) of the above theorem, $\sigma(T)$ can be replaced by the Taylor spectrum or the joint approximate point spectrum of T since the convex hull of all of these spectra coincide [25].

We say that $T=\left(T_{1}, \ldots, T_{d}\right)$ is convex-transitive if, for all nonempty open subsets U and V of \mathcal{H}, there exists a d-variable convex polynomial p such that $p\left(T_{1}, \ldots, T_{d}\right)(U) \cap V \neq \emptyset$. Moreover, T satisfies the convex-cyclicity criterion if there exist two dense subsets Y and Z in \mathcal{H}, a sequence $\left\{p_{k}\right\}$ of d-variable convex polynomials, and a sequence of maps $s_{k}: Z \rightarrow \mathcal{H}$ such that
(a) $p_{k}\left(T_{1}, \ldots, T_{d}\right) y \rightarrow 0$ for every $y \in Y$;
(b) $s_{k} z \rightarrow 0$ for every $z \in Z$;
(c) $p_{k}\left(T_{1}, \ldots, T_{d}\right) s_{k} z \rightarrow z$ for every $z \in Z$.

In the next theorem, we will consider the relationship between convex-transitivity and convex-cyclicity criterion with convex-cyclicity.

Theorem 2.5. Suppose that $T=\left(T_{1}, \ldots, T_{d}\right)$ is a commuting d-tuple of operators on \mathcal{H}. Then, the following hold.
(a) If T satisfies the convex-cyclicity criterion, then T is convextransitive.
(b) If T is convex-transitive, then T is convex-cyclic.
(c) If T is convex-cyclic and $\sigma_{p}\left(T_{i}^{*}\right)=\emptyset$ for $i=1, \ldots, d$, then T is convex-transitive.

Proof.
(a) Let U and V be two non-empty open subsets in \mathcal{H}, and let Y, Z, p_{k} and s_{k} be those obtained by the property of the convex-cyclicity criterion for T. Pick $y \in Y \cap U$ and $z \in Z \cap V$. Then,

$$
y_{k}:=y+s_{k}(z) \longrightarrow y \in U
$$

and

$$
p_{k}\left(T_{1}, \ldots, T_{d}\right) y_{k} \longrightarrow z \quad \text { as } k \rightarrow \infty
$$

Therefore, $p_{k}\left(T_{1}, \ldots, T_{d}\right)(U) \cap V \neq \emptyset$, if k is large enough. This implies that T is convex-transitive.
(b) Let $\left(V_{j}\right)_{j \in \mathbb{N}}$ be a countable basis for the topology of \mathcal{H}. Each $x \in \mathcal{H}$ is a convex-cyclic vector for T if $\left\{p\left(T_{1}, \ldots, T_{d}\right) x: p \in \mathcal{P}\right\}$ is dense
in \mathcal{H}, where \mathcal{P} is a collection of convex polynomials in d-variables, that is,

$$
x \in \bigcap_{j \in \mathbb{N}} \bigcup_{p \in \mathcal{P}} p\left(T_{1}, \ldots, T_{d}\right)^{-1}\left(V_{j}\right)
$$

The convex-transitivity of T implies that, for every non-empty open set U, there exists a convex polynomial $p \in \mathcal{P}$ such that $p\left(T_{1}, \ldots, T_{d}\right)^{-1}\left(V_{j}\right)$ $\cap U \neq \emptyset$, for any $j \in \mathbb{N}$. It follows that, for each $j \in \mathbb{N}$,

$$
\bigcup_{p \in \mathcal{P}} p\left(T_{1}, \ldots, T_{n}\right)^{-1}\left(V_{j}\right)
$$

is a dense open subset in \mathcal{H}. Now, by the Baire category theorem,

$$
\bigcap_{j \in \mathbb{N}} \bigcup_{p \in \mathcal{P}} p\left(T_{1}, \ldots, T_{d}\right)^{-1}\left(V_{j}\right)
$$

is dense in \mathcal{H}, which implies that T is convex-cyclic.
(c) Let T be convex-cyclic with convex-cyclic vector x. Since $\sigma_{p}\left(T_{i}^{*}\right)=\emptyset$ for $i=1, \ldots, d, p\left(T_{1}, \ldots, T_{d}\right)$ has a dense range, and $p\left(T_{1}, \ldots, T_{d}\right) x$ is a convex-cyclic vector for every convex polynomial p. It follows that T has a dense subset of convex-cyclic vectors in \mathcal{H}. Now, let U and V be two non-empty open subsets of \mathcal{H}. Choose a convex-cyclic vector $x \in U$ such that $p\left(T_{1}, \ldots, T_{d}\right) x \in V$ for some convex polynomial p. Hence, $p\left(T_{1}, \ldots, T_{d}\right) U \cap V \neq \emptyset$, and thus, T is convex-transitive.

Corollary 2.6. If $T=\left(T_{1}, \ldots, T_{d}\right)$ satisfies the convex-cyclicity criterion, then $S=\left(T_{1} \oplus T_{1}, \ldots, T_{d} \oplus T_{d}\right)$ also satisfies the convex-cylicity criterion. Hence, S is convex-cyclic.

Remark 2.7. Let a and b be relatively prime integers, both greater than 1, and $T=\left(T_{1}, T_{2}, T_{3}\right)=\left(a I_{1}, 1 / b I_{1}, e^{i \theta} I_{1}\right)$, where I_{1} is the identity operator on \mathbb{C} and θ is an irrational multiple of π. Then, T is convex-transitive on \mathbb{C}, but T does not satisfy the convex-cyclicity criterion. Indeed, let U and V be two non-empty open sets in \mathbb{C}. Let z_{0} be a non-zero vector in U. Since

$$
\left\{\frac{a^{n}}{b^{k}} e^{i m \theta} z_{0}: n, k, m \in \mathbb{N}\right\}
$$

is dense in \mathbb{C}, there are $n_{0}, k_{0}, m_{0} \in \mathbb{N}$ such that

$$
\frac{a^{n_{0}}}{b^{k_{0}}} e^{i m_{0} \theta} z_{0} \in V
$$

Put $p\left(z_{1}, z_{2}, z_{3}\right)=z_{1}^{n_{0}} z_{2}^{k_{0}} z_{3}^{m_{0}}$. Then, p is a convex polynomial and $p(T)(U) \cap V \neq \emptyset$. It follows that T is convex-transitive. However, T does not satisfy the convex-cyclicity criterion since $\left(T_{1} \oplus T_{1}, T_{2} \oplus\right.$ $\left.T_{2}, T_{3} \oplus T_{3}\right)=\left(a I_{2}, 1 / b I_{2}, e^{i \theta} I_{2}\right)$ is not convex-cyclic on \mathbb{C}^{2}, where I_{2} is the identity operator on \mathbb{C}^{2}.

Corollary 2.8. Suppose that A and B are convex-cyclic operators and C is an operator that commutes with B and $\sigma_{p}\left(C^{*}\right)=\emptyset$. If $T_{1}=A \oplus C$ and $T_{2}=I \oplus B$, then the pair $\left(T_{1}, T_{2}\right)$ is convex-cyclic.

Proof. Let x be a convex-cyclic vector for A and y a convex-cyclic vector for B. We show that $x \oplus y$ is a convex-cyclic vector for the pair $\left(T_{1}, T_{2}\right)$. Let U and V be two non-empty open sets. There is a convex polynomial p_{0} such that $p_{0}(A) x \in U$. Moreover, $p_{0}(C)$ has dense range. Indeed, we can factor $p_{0}(C)$ as $p_{0}(C)=a\left(C-\mu_{1}\right) \cdots\left(C-\mu_{d}\right)$, where $a \neq 0$ and $\mu_{1}, \ldots, \mu_{d} \in \mathbb{C}$. Since $\sigma_{p}\left(C^{*}\right)=\emptyset$, each $C-\mu_{i}$ has dense range, and hence, $p_{0}(C)$ has dense range as well. Thus, $p_{0}(C)^{-1}(V)$ is a non-empty open set, so there exists a convex-polynomial p_{1} such that $p_{1}(B)(y) \in p_{0}(C)^{-1}(V)$. Hence,

$$
p_{0}\left(T_{1}\right) p_{1}\left(T_{2}\right)(x \oplus y)=p_{0}(A) x \oplus p_{0}(C) p_{1}(B) y \in U \times V
$$

This implies that $\left(T_{1}, T_{2}\right)$ is convex-cyclic.

Remark 2.9. The authors showed in [14] that there is a convex-cyclic operator S such that $\sigma_{p}\left(S^{*}\right)=\emptyset$, but S^{2} is not convex-cyclic. Let $A=B=S$ and $C=S^{2}$ in the above corollary. Thus, we obtain a convex-cyclic pair $\left(T_{1}, T_{2}\right)$ such that T_{1} and T_{2} are not convex-cyclic. As another example, let $C=M_{\varphi}^{*}$, where M_{φ} is the multiplication operator by φ on the Hardy space $\mathcal{H}^{2}(\mathbb{D})$ with $\varphi(z)=z$. Moreover, $A=B=M_{\psi}^{*}$ is convex-cyclic where $\psi(z)=2 z$. Indeed, M_{ψ}^{*} is hypercyclic [34, Theorem 4.5]. Hence, T_{1} and T_{2} are not convex-cyclic, but the pair $\left(T_{1}, T_{2}\right)$ is convex-cyclic.

The following result is a generalization of [14, Proposition 2.4].

Proposition 2.10. If $T=\left(T_{1}, \ldots, T_{d}\right)$ is a convex-cyclic d-tuple of commuting operators on \mathcal{H} and $c_{i}>1$ for $i=1, \ldots, d$, then $S=\left(c_{1} T_{1}, \ldots, c_{d} T_{d}\right)$ is also convex-cyclic.

Proof. Let x be a convex-cyclic vector for T and y any non-zero vector in \mathcal{H}. Since, $c_{i}>1$ we have

$$
\sup \left\{\operatorname{Re}\langle A x, y\rangle: A \in \mathcal{F}_{S}\right\} \geq \sup \left\{\operatorname{Re}\langle A x, y\rangle: A \in \mathcal{F}_{T}\right\}
$$

Now, the Riesz representation theorem coupled with [14, Proposition 2.1] completes the proof.

The next theorem states that spherical m-isometries are not convexcyclic.

Theorem 2.11. Let $T=\left(T_{1}, \ldots, T_{d}\right)$ be a d-tuple of commuting operators on \mathcal{H}. If T is a spherical m-isometry, then T is not convexcyclic.

Proof. We proceed by induction on m. If $m=1$, then T is a spherical isometry, and so, $\operatorname{co}(\operatorname{Orb}(T, x))$ lies in $\operatorname{ball}(0,\|x\|)$, and hence, is not dense in \mathcal{H}. Therefore, T cannot be convex-cyclic. Let $m \geq 2$ and $T=\left(T_{1}, \ldots, T_{d}\right)$ be a spherical m-isometry. We consider the semiinner product

$$
\langle\langle x, y\rangle\rangle=\left\langle P_{m-1}(T) x, y\right\rangle, \quad x, y \in \mathcal{H}
$$

with semi-norm $|\|\cdot\||$. Note that $\Delta_{T, m}=(-1)^{m-1} P_{m-1}(T)$ is a positive operator [33, Proposition 2.3], and let

$$
N=\{x \in \mathcal{H}:\langle\langle x, x\rangle\rangle=0\}=\operatorname{ker} P_{m-1}(T)
$$

Moreover, define the inner product $\langle\cdot, \cdot\rangle^{\prime}$ on \mathcal{H} / N by

$$
\langle x+N, y+N\rangle^{\prime}=\langle\langle x, y\rangle\rangle .
$$

In order to see that $\langle\cdot, \cdot\rangle^{\prime}$ is well defined, suppose that $x_{1}+N=x_{2}+N$ and $y_{1}+N=y_{2}+N$. Hence,

$$
\begin{aligned}
\left\langle P_{m-1}(T) x_{1}, y_{1}\right\rangle & =\left\langle P_{m-1}(T) x_{1}-P_{m-1}(T) x_{2}+P_{m-1}(T) x_{2}, y_{1}\right\rangle \\
& =\left\langle x_{2}, P_{m-1}(T) y_{1}\right\rangle=\left\langle x_{2}, P_{m-1}(T) y_{2}\right\rangle \\
& =\left\langle P_{m-1}(T) x_{2}, y_{2}\right\rangle
\end{aligned}
$$

Then, \mathcal{H} / N equipped with $\langle\cdot, \cdot\rangle^{\prime}$ is a Hilbert space (we can consider its completion, if needed). Now, if $\widetilde{T}=\left(\widetilde{T}_{1}, \ldots, \widetilde{T}_{d}\right)$ is the tuple induced by T on \mathcal{H} / N, then, by [33, Proposition 2.4], $T_{i}\left(\operatorname{ker} P_{m-1}(T)\right) \subseteq$ $\operatorname{ker} P_{m-1}(T)$ for each T_{i}, and thus, \widetilde{T} is well defined. Furthermore, \widetilde{T} is a spherical isometry on \mathcal{H} / N equipped with the norm $|\cdot|^{\prime}$. In fact, since

$$
P_{m}(T)=P_{m-1}(T)-Q_{T}\left(P_{m-1}(T)\right)
$$

we have

$$
\begin{aligned}
\sum_{j=1}^{d}\left|\widetilde{T}_{j}(x+N)\right|^{2} & =\sum_{j=1}^{d}\left\langle P_{m-1}(T) T_{j} x, T_{j} x\right\rangle \\
& =\sum_{j=1}^{d}\left\langle T_{j}^{*} P_{m-1}(T) T_{j} x, x\right\rangle \\
& =\left\langle Q_{T}\left(P_{m-1}(T)\right) x, x\right\rangle \\
& =\left\langle\left(P_{m-1}(T)-P_{m}(T)\right) x, x\right\rangle \\
& =\left\langle P_{m-1}(T) x, x\right\rangle=|x+N|^{2}
\end{aligned}
$$

On the contrary, suppose that $x \in \mathcal{H}$ is a convex-cyclic vector for T. Now, if p is a convex-cyclic polynomial and $y \in \mathcal{H}$, then

$$
\begin{aligned}
|\widetilde{y}-p(\widetilde{T}) \widetilde{x}|^{\prime} & =|y-p(T) x+N|^{\prime}=\|y-p(T) x \mid\| \\
& \leq\left\|P_{m-1}(T)\right\|^{1 / 2}\|y-p(T) x\|
\end{aligned}
$$

This implies that $\widetilde{x}=x+N$ is a convex-cyclic vector for \widetilde{T}, a contradiction.

Note that, since the weak closure and norm closure of a convex set coincide, we have the following result.

Corollary 2.12. No spherical m-isometry is weakly hypercyclic.
3. Supercyclicity. The norm of every convex-cyclic operator is greater than one [42, Proposition 3.2]. Thus, if an operator $T \in \mathcal{B}(\mathcal{H})$ is supercyclic, then the operator $T / 1+\|T\|$ is supercyclic but not convex-cyclic. On the other hand, Bermúdez, et al. [14] have shown that certain diagonalizable normal operators are convex-cyclic while
they are never supercyclic [37]. It was proven in Theorem 2.11 that spherical m-isometries are not convex-cyclic. Thus, they are not hypercyclic. It is natural to seek their supercyclicity. In the following, we prove that toral and spherical m-isometric operators are not supercyclic. Note that, for $S \in \mathcal{B}(\mathcal{H})$, we define $\beta_{\ell}(S)=$ $(1 / \ell!)(y x-1)^{\ell}(S)$ for $\ell \geq 0$. Using the notion $\beta_{\ell}(S)$, if $S \in \mathcal{B}(\mathcal{H})$ is an m-isometry,

$$
\left\|S^{k} x\right\|^{2}=\sum_{\ell=0}^{m-1} k^{(\ell)}\left\langle\beta_{\ell}(S) x, x\right\rangle
$$

where $k^{(\ell)}=k \cdot(k-1) \cdots(k-\ell+1)$ for $\ell \geq 1, k \geq 0$ and $k^{(0)}=1$ (see [3, equation (1.3)]).

Theorem 3.1. Let $T=\left(T_{1}, \ldots, T_{d}\right)$ be a d-tuple of commuting operators on \mathcal{H}. If
(a) T is a toral m-isometry,
or
(b) T is a spherical m-isometry,
then T is not supercyclic.

Proof.

(a) If T is a toral m-isometry, then each $T_{i}, i=1, \ldots, d$, is an m isometry. Note that we can assume that the $T_{i} \mathrm{~s}$ are also invertible since if, for example, T_{1} is not invertible, then $\left(T_{1}, \ldots, T_{d}\right)$ and $\left(T_{2}, \ldots, T_{d}\right)$ are either both supercyclic or are non-supercyclic. Indeed, every m isometric operator is injective and has closed range [3]; consequently, $\overline{\operatorname{ran} T_{1}}=\operatorname{ran} T_{1} \neq \mathcal{H}$. Suppose that x_{0} is a supercyclic vector for T, and let

$$
A=\left\{\lambda T_{1}^{k_{1}} T_{2}^{k_{2}} \cdots T_{d}^{k_{d}} x_{0}: \lambda \in \mathbb{C}, k_{1}>0, k_{i} \geq 0, i=2,3, \ldots d\right\}
$$

and

$$
B=\left\{\lambda T_{2}^{k_{2}} \cdots T_{d}^{k_{d}} x_{0}: \lambda \in \mathbb{C}, k_{i} \geq 0, i=2,3, \ldots d\right\}
$$

Hence, $\mathcal{H}=\overline{A \cup B}$ and $\operatorname{int}(A)=\emptyset$; thus, $\mathcal{H}=\bar{B}$.
To simplify notation, assume that $d=2$. On the contrary, suppose that $T=\left(T_{1}, T_{2}\right)$ is supercyclic with supercyclic vector x. Therefore, for $y \in \mathcal{H}$, there are two sequences of non-negative integers $\left(k_{i}\right)_{i}$ and
$\left(s_{i}\right)_{i}$ and one sequence of scalars $\left(\lambda_{i}\right)_{i}$ such that $\lambda_{i} T_{1}^{k_{i}} T_{2}^{s_{i}} x \rightarrow y$. Since $\left\|T_{1}^{k_{i}} x\right\|^{2}=\sum_{\ell=0}^{m-1} k_{i}^{(\ell)}\left\langle\beta_{\ell}\left(T_{1}\right) x, x\right\rangle$, we have

$$
\begin{aligned}
\left\|T_{1}^{k_{i}} T_{2}^{s_{i}} x\right\|^{2}= & \sum_{\ell=0}^{m-1} k_{i}^{(\ell)} \frac{1}{\ell!} \sum_{j=0}^{\ell}(-1)^{\ell-j}\binom{\ell}{j}\left\langle\left(T_{1}^{j}\right)^{*} T_{1}^{j} T_{2}^{s_{i}} x, T_{2}^{s_{i}} x\right\rangle \\
= & \sum_{\ell=0}^{m-1} \sum_{j=0}^{\ell} k_{i}^{(\ell)} \frac{1}{\ell!}(-1)^{\ell-j}\binom{\ell}{j}\left\|T_{2}^{s_{i}} T_{1}^{j} x\right\|^{2} \\
= & \sum_{\ell=0}^{m-1} \sum_{j=0}^{\ell} \sum_{\ell^{\prime}=0}^{m-1} k_{i}^{(\ell)} \frac{1}{l!}(-1)^{\ell-j}\binom{\ell}{j} s_{i}^{\left(\ell^{\prime}\right)}\left\langle\beta_{\ell^{\prime}}\left(T_{2}\right) T_{1}^{j} x, T_{1}^{j} x\right\rangle \\
= & \sum_{\ell=0}^{m-1} \sum_{j=0}^{\ell} \sum_{\ell^{\prime}=0}^{m-1} \sum_{n=0}^{\ell^{\prime}} k_{i}^{(\ell)} s_{i}^{\left(\ell^{\prime}\right)} \frac{1}{\ell!} \frac{1}{\ell^{\prime}!} \\
& \cdot(-1)^{\ell-j}(-1)^{\ell^{\prime}-n}\binom{\ell}{j}\binom{\ell^{\prime}}{n}\left\|T_{2}^{n} T_{1}^{j} x\right\|^{2} .
\end{aligned}
$$

This shows that $\left\|T_{1}^{k_{i}} T_{2}^{s_{i}} x\right\|^{2}$ is a polynomial of two variables, k_{i} and s_{i}, with leading coefficient

$$
\sum_{j=0}^{m-1} \sum_{n=0}^{m-1} \frac{(-1)^{n+j}}{((m-1)!)^{2}}\binom{m-1}{j}\binom{m-1}{n}\left\|T_{2}^{n} T_{1}^{j} x\right\|^{2} .
$$

Therefore,

$$
0 \leq \lim _{i \rightarrow \infty} \frac{\left\|T_{1}^{k_{i}} T_{2}^{s_{i}} x\right\|^{2}}{k_{i}^{(m-1)} s_{i}^{(m-1)}}=\sum_{j=0}^{m-1} \sum_{n=0}^{m-1} \frac{(-1)^{n+j}}{((m-1)!)^{2}}\binom{m-1}{j}\binom{m-1}{n}\left\|T_{2}^{n} T_{1}^{j} x\right\|^{2} .
$$

On the other hand, (3.1) implies that

$$
\begin{aligned}
& \left\|T_{1}^{k_{i}+1} T_{2}^{s_{i}} x\right\|^{2}-\left\|T_{1}^{k_{i}} T_{2}^{s_{i}} x\right\|^{2} \\
& \quad=\sum_{\ell=0}^{m-1} \sum_{j=0}^{\ell} \sum_{\ell^{\prime}=0}^{m-1}\left[\left(k_{i}+1\right)^{(\ell)}-k_{i}^{(\ell)}\right] \frac{1}{\ell!}(-1)^{\ell-j}\binom{\ell}{j} s_{i}^{\left(\ell^{\prime}\right)}\left\langle\beta_{\ell^{\prime}}\left(T_{2}\right) T_{1}^{j} x, T_{1}^{j} x\right\rangle \\
& \quad=\sum_{\ell=0}^{m-1} \sum_{j=0}^{\ell} \sum_{\ell^{\prime}=0}^{m-2}\left[\left(k_{i}+1\right)^{(\ell)}-k_{i}^{(\ell)}\right] \frac{1}{\ell!}(-1)^{\ell-j}\binom{\ell}{j} s_{i}^{\left(\ell^{\prime}\right)}\left\langle\beta_{\ell^{\prime}}\left(T_{2}\right) T_{1}^{j} x, T_{1}^{j} x\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{\ell=0}^{m-2} \sum_{j=0}^{\ell}\left[\left(k_{i}+1\right)^{(\ell)}-k_{i}^{(\ell)}\right] \frac{1}{\ell!} \\
& \cdot(-1)^{\ell-j}\binom{\ell}{j} s_{i}^{(m-1)}\left\langle\beta_{m-1}\left(T_{2}\right) T_{1}^{j} x, T_{1}^{j} x\right\rangle \\
& +\sum_{j=0}^{m-1}\left[\left(k_{i}+1\right)^{(m-1)}-k_{i}^{(m-1)}\right] \frac{1}{(m-1)!} \\
& \cdot(-1)^{m-1-j}\binom{m-1}{j} s_{i}^{(m-1)}\left\langle\beta_{m-1}\left(T_{2}\right) T_{1}^{j} x, T_{1}^{j} x\right\rangle .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \lim _{i \rightarrow \infty} \frac{\left\|T_{1}^{k_{i}+1} T_{2}^{s_{i}} x\right\|^{2}-\left\|T_{1}^{k_{i}} T_{2}^{s_{i}} x\right\|^{2}}{s_{i}^{(m-1)}\left[\left(k_{i}+1\right)^{(m-1)}-k_{i}^{(m-1)}\right]} \\
& \quad=\sum_{j=0}^{m-1} \frac{1}{(m-1)!}(-1)^{m-1-j}\binom{m-1}{j}\left\langle\beta_{m-1}\left(T_{2}\right) T_{1}^{j} x, T_{1}^{j} x\right\rangle \\
& \quad=\sum_{j=0}^{m-1} \sum_{n=0}^{m-1} \frac{(-1)^{n+j}}{((m-1)!)^{2}}\binom{m-1}{j}\binom{m-1}{n}\left\|T_{2}^{n} T_{1}^{j} x\right\|^{2} \\
& \quad \geq 0 .
\end{aligned}
$$

Set

$$
a_{i}=\frac{\left\|T_{1}^{k_{i}+1} T_{2}^{s_{i}} x\right\|^{2}-\left\|T_{1}^{k_{i}} T_{2}^{s_{i}} x\right\|^{2}}{s_{i}^{(m-1)}\left[\left(k_{i}+1\right)^{(m-1)}-k_{i}^{(m-1)}\right]} ;
$$

therefore, $\left(a_{i}\right)_{i}$ has a subsequence $\left(a_{i_{j}}\right)_{j}$ such that the entire sequence $\left(a_{i_{j}}\right)_{j}$ is negative or non-negative. Without loss of generality, we denote this subsequence by $\left(a_{i}\right)_{i}$. Now, if all a_{i} S are negative, then

$$
\|y\|=\lim _{i \rightarrow \infty}\left|\lambda_{i}\right|\left\|T_{1}^{k_{i}} T_{2}^{s_{i}} x\right\| \geq \lim _{i \rightarrow \infty}\left|\lambda_{i}\right|\left\|T_{1}^{k_{i}+1} T_{2}^{s_{i}} x\right\|=\left\|T_{1} y\right\|
$$

This shows that T_{1} is a contraction, and thus, T_{1} is an isometry (see [28, Corollary 1]). On the other hand, if all a_{i} s are non-negative, then

$$
\|y\|=\lim _{i \rightarrow \infty}\left|\lambda_{i}\right|\left\|T_{1}^{k_{i}} T_{2}^{s_{i}} x\right\| \leq \lim _{i \rightarrow \infty}\left|\lambda_{i}\right|\left\|T_{1}^{k_{i}+1} T_{2}^{s_{i}} x\right\|=\left\|T_{1} y\right\|
$$

Since the inverse of every m-isometric operator is an m-isometry, the above relation shows that T_{1}^{-1} is a contraction m-isometry, which, in turn, implies that T_{1} is an isometry. A similar argument shows
that T_{2} is also an isometry, which is a contradiction (see [9] or [10, Proposition 1]).
(b) If T is a spherical m-isometry, then, by (1.6), $\sqrt{d} T$ is a toral m-isometry. The proof follows immediately from part (a).

Since the unilateral weighted backward shift operators are supercyclic, the following corollary is a consequence of Theorem 3.1.

Corollary 3.2. Let B be a weighted backward shift on \mathcal{H} and $T=$ $\left(B, T_{1}, \ldots, T_{d}\right)$. Then, T is neither spherical m-isometry nor toral m isometry.

Remark 3.3. Suppose that the d-tuple $T=\left(T_{1}, \ldots, T_{d}\right)$ is convexcyclic and each T_{i} is an m-isometry. Similar to the proof for supercyclicity in Theorem 3.1 (a), we can assume that each T_{i} is invertible. Suppose that each $T_{i}, i=1, \ldots, d$, is a 2 -isometry; thus, $\left\|T_{i}^{2} x\right\|^{2}-2\left\|T_{i} x\right\|^{2}+\|x\|^{2}=0$ for all $x \in \mathcal{H}$. By replacing x by $T_{i}^{-1} x$, we conclude that T_{i}^{-1} is also a 2-isometry. Hence, $\left\|T_{i} x\right\| \geq\|x\|$ and $\left\|T_{i}^{-1} x\right\| \geq\|x\|$ for all $x \in \mathcal{H}$ (see [3] or [43, Lemma 1]) which, in turn, imply that each T_{i} is an isometry. This contradicts the convex-cyclicity of T. A question remains: if each $T_{i}, i=1, \ldots, d$, is an m-isometry for some $m>2$, is the d-tuple $T=\left(T_{1}, \ldots, T_{d}\right)$ convex-cyclic?

REFERENCES

1. B. Abdullah and T. Le, The structure of m-isometric weighted shift operators, Oper. Matrices 10 (2016), 319-334.
2. J. Agler, A disconjugacy theorem for Toeplitz operators, Amer. J. Math. 112 (1990), 1-14.
3. J. Agler and M. Stankus, m-Isometric transformations of Hilbert space, I, Int. Eqs. Oper. Th. 21 (1995), 383-429.
4. \qquad , m-Isometric transformations of Hilbert space, II, Int. Eqs. Oper. Th. 23 (1995), 1-48.
5. \qquad , m-Isometric transformations of Hilbert space, III, Int. Eqs. Oper. Th. 24 (1996), 379-421.
6. M. Aigner, Diskrete Mathematik, Vieweg, Braunschweig/Wiesbaden, 1993.
7. A. Anand and S. Chavan, A moment problem and joint q-isometry tuples, Compl. Anal. Oper. Th. 11 (2017), 785-810.
8. S.I. Ansari and P.S. Bourdon, Some properties of cyclic operators, Acta Sci. Math. 63 (1997), 195-207.
9. M. Ansari, K. Hedayatian and B. Khani-Robati, Supercyclicity of ℓ^{p}-spherical and toral isometries on Banach spaces, Comm. Korean Math. Soc. 32 (2017), 653659.
10. M. Ansari, K. Hedayatian, B. Khani-Robati and A. Moradi, Supercycilicity of joint isometries, Bull. Korean Math. Soc. 52 (2015), 1481-1487.
11. A. Athavale, Alternatingly hyperexpansive operator tuples, Positivity 5 (2001), 259-273.
12. A. Athavale and V.M. Sholapurkar, Completely hyperexpansive operator tuples, Positivity 3 (1999), 245-257.
13. F. Bayart, m-Isometries on Banach spaces, Math. Nachr. 284 (2011), 21412147.
14. T. Bermúdez, A. Bonilla and N.S. Feldman, On convex-cyclic operators, J. Math. Anal. Appl. 434 (2016), 1166-1181.
15. T. Bermúdez, C. Díaz-Mendoza and A. Martinón, Powers of m-isometries, Stud. Math. 208 (2012), 249-255.
16. T. Bermúdez, I. Marrero and A. Martinón, On the orbit of an m-isometry, Int. Eqs. Oper. Th. 64 (2009), 487-494.
17. T. Bermúdez, A. Martinón, V. Müller and J.A. Noda, Perturbation of m isometries by nilpotent operators, Abstr. Appl. Anal. (2014), article ID 745479.
18. T. Bermúdez, A. Martinón and E. Negrín, Weighted shift operators which are m-isometries, Int. Eqs. Oper. Th. 68 (2010), 301-312.
19. T. Bermúdez, A. Martinón and J.A. Noda, An isometry plus a nilpotent operator is an m-isometry, Applications, J. Math. Anal. Appl. 407 (2013), 505512.
20. \qquad , Products of m-isometries, Linear Alg. Appl. 438 (2013), 80-86.
21. \qquad , Weighted shift and composition operators on ℓ_{p} which are (m, q) isometries, Linear Alg. Appl. 515 (2016), 152-173.
22. S. Chavan and R. Kumari, A wold-type decomposition for class of row ν hypercontractions, J. Oper. Th. 75 (2016) 195-208.
23. S. Chavan and V. M. Sholapurkar, Rigidity theorems for spherical hyperexpansions, Compl. Anal. Oper. Th. 7 (2013), 1545-1568.
24. \qquad , Completely hyperexpansive tuples of finite order, J. Math. Anal. Appl. 447 (2017), 1009-1026.
25. M. Chō and W. Żelazko, On geometric spectral radius of commuting n-tuples of operators, Hokkaido Math. J. 21 (1992), 251-258.
26. B.P. Duggal, Tensor product of n-isometries, Linear Alg. Appl. 437 (2012), 307-318.
27. \qquad Tensor product of n-isometries, II, Funct. Anal. Approx. Comp. 4 (2012), 27-32.
28. M. Faghih-Ahmadi and K. Hedayatian, Hypercyclicity and supercyclicity of m-isometric operators, Rocky Mountain J. Math. 42 (2012), 15-23.
29. M. Faghih-Ahmadi and K. Hedayatian, m-Isometric weighted shifts and reflexivity of some operators, Rocky Mountain J. Math. 43 (2013), 123-133.
30. M. Faghih-Ahmadi, S. Yarmahmoodi and K. Hedayatian, Perturbation of (m, p)-isometries by nilpotent operators and their supercyclicity, Oper. Matrices 11 (2017), 381-387.
31. N.S. Feldman, Hypercyclic tuples of operators and somewhere dense orbits, J. Math. Anal. Appl. 346 (2008), 82-98.
32. N.S. Feldman and P. McGuire, Convex-cyclic matrices, convex-polynomial interpolation \& invariant convex sets, Oper. Matrices 11 (2017), 465-492.
33. J. Gleason and S. Richter, m-Isometric commuting tuples of operators on a Hilbert space, Int. Eqs. Oper. Th. 56 (2006), 181-19.
34. G. Godefroy and J.H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991), 229-269.
35. C. Gu, The (m, q)-isometric weighted shifts on ℓ_{p} spaces, Int. Eqs. Oper. Th. 82 (2015), 157-187.
36. K. Hedayatian and A. Mohammadi-Moghaddam, Some properties of the spherical m-isometries, J. Oper. Th. 79 (2018), 55-77.
37. H.M. Hilden and L.J. Wallen, Some cyclic and non-cyclic vectors of certain operators, Indiana Univ. Math. J. 23 (1973/74), 557-565.
38. P.H.W. Hoffmann and M. Mackey, (m, p)-isometric and (m, ∞)-isometric operator tuples on normed spaces, Asian-European J. Math. 8 (2015), 1550022.
39. C. Kitai, Invariant closed sets for linear operators, Ph.D. dissertation, University of Toronto, Toronto, 1982.
40. F. León-Saavedra and M.P. Romero de la Rosa, Powers of convex-cyclic operators, Abstr. Appl. Anal. (2014), article ID 631894.
41. L.J. Patton and M.E. Robbins, Composition operators that are m isometries, Houston J. Math. 31 (2005), 255-266.
42. H. Rezaei, On the convex hull generated by orbit of operators, Linear Alg. Appl. 438 (2013), 4190-4203.
43. S. Richter, Invariant subspaces of the Dirichlet shift, J. reine angew. Math. 386 (1988), 205-220.
44. S. Rolewicz, On orbits of elements, Stud. Math. 32 (1969), 17-22.
45. V.M. Sholapurkar and A. Athavale, Completely and alternatingly hyperexpansive operators, J. Oper. Th. 43 (2000), 43-68.
46. R. Soltani, K. Hedayatian and B. Khani Robati, On supercyclicity of tuples of operators, Bull. Malaysian Math. Sci. Soc. 38 (2015), 1507-1516.
47. A. Soltysiak, On the joint spectral radii of commuting Banach algebra elements, Stud. Math. 105 (1993), 93-99.
48. S. Yarmahmoodi, K. Hedayatian and B. Yousefi, Supercyclicity and hypercyclicity of an isometry plus a nilpotent, Abstr. Appl. Anal. 2011, article ID686832.

Shiraz University, College of Sciences, Department of Mathematics, ShiRAZ, 7146713565 Iran
Email address: a.mohammadi@shirazu.ac.ir
Shiraz University, College of Sciences, Department of Mathematics, ShiRaZ, 7146713565 Iran
Email address: hedayati@shirazu.ac.ir, khedayatian@gmail.com

[^0]: 2010 AMS Mathematics subject classification. Primary 47A13, Secondary 47A16, 47B47.

 Keywords and phrases. Convex-cyclicity, m-isometry, spherical m-isometry, toral m-isometry, supercyclicity, d-tuple.

 This research was in part supported by a grant from the Shiraz University Research Council.

 Received by the editors on June 22, 2017, and in revised form on July 4, 2018.

