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ON THE DYNAMICS OF THE d-TUPLES
OF m-ISOMETRIES

AMIR MOHAMMADI-MOGHADDAM AND KARIM HEDAYATIAN

ABSTRACT. A commuting d-tuple T = (T1, . . . , Td) of
bounded linear operators on a Hilbert space H is called a

spherical m-isometry if
∑m

j=0(−1)j
(m
j

)
Qj

T (I) = 0, where I

denotes the identity operator and QT (A) =
∑d

i=1 T
∗
i ATi for

every bounded linear operator A on H. Also, T is called a
toral m-isometry if

∑
p∈Nd, 0≤p≤n(−1)|p|

(n
p

)
T ∗pT p = 0 for

all n ∈ Nd with |n| = m. The present paper mainly focuses
on the convex-cyclicity of the d-tuples of operators on a
separable infinite-dimensional Hilbert space H. In particular,
we prove that spherical m-isometries are not convex-cyclic.
Also, we show that toral and spherical m-isometric operators
are never supercyclic.

1. Introduction and preliminaries. LetH be a separable infinite-
dimensional complex Hilbert space and B(H) the space of all bounded
linear operators on H. An operator T ∈ B(H) is called an m-isometry
(m ∈ N), if it satisfies the following property:

(1.1) (yx− 1)m(T ) :=
m∑
k=0

(−1)m−k
(
m

k

)
T ∗kT k = 0.

Since (yx − 1)m(T ) is a self-adjoint operator, we observe that T is an
m-isometry if and only if, for each x ∈ H,

(1.2)
m∑
k=0

(−1)m−k
(
m

k

)
∥T kx∥2 = 0.

It is clear that the notions of 1-isometry and isometry coincide. The m-
isometric operators were introduced by Agler [2] and were extensively
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studied by Agler and Stankus [3, 4, 5]. Recently, several authors
studied m-isometries. In [41], m-isometric composition operators were
discussed. Furthermore, the authors in [15] proved that the class
of m-isometries on a Banach space is stable under powers; and the
product of m-isometries was studied in [20]. In addition, m-isometric
weighted shift operators were considered in [1, 18, 21, 29, 35]. On
the other hand, the dynamics of m-isometries has been studied in
[13, 14, 16, 28], and the perturbation of m-isometries by nilpotent
operators has been explored in [17, 19, 30, 48]. Moreover, Duggal
studied the tensor product of m-isometries [26, 27]. There are two
natural generalizations of m-isometries to the tuple of operators. The
first generalization is called spherical m-isometries. An initial study
of such a tuple of operators on a Hilbert space is due to Gleason and
Richter [33]. Hoffmann and Mackey [38] generalized the definition
of spherical m-isometries on a normed space. Also, their relation
with a moment problem was studied in [7]. Recently, the authors of
[36] established some basic and non-trivial properties of spherical m-
isometries. They proved that spherical m-isometries are power regular
and are stable under powers and products under an orthogonality
condition. Moreover, they showed that, for every proper spherical m-
isometry T , there are linearly independent operators A0, . . . , Am−1 such

that QnT (I) =
∑m−1
i=0 Ain

i for every n ≥ 0. For further references, the
reader may consult [10, 11, 22, 23, 24, 45].

Given α = (α1, . . . , αd) ∈ Nd, we set

|α| =
d∑
j=1

αj , α! = α1! · · ·αd!,

and Tα = Tα1
1 · · ·Tαd

d . For every tuple of commuting operators

T = (T1, . . . , Td) ∈ B(H)d, there is a function QT : B(H) → B(H)

defined by QT (A) =
∑d
i=1 T

∗
i ATi. It is easy to see that QjT (I) =∑

|α|=j(j!/α!)T
∗αTα, j ≥ 1, where T ∗ = (T ∗

1 , . . . , T
∗
d ). For each

m ≥ 0, denote (I −QT )
m(I) by Pm(T ), in other words,

Pm(T ) =
m∑
j=0

(−1)j
(
m

j

)
QjT (I).

A commuting d-tuple T = (T1, . . . , Td) is said to be a spherical m-
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isometry, if Pm(T ) = 0. When m = 1, it is called a spherical isometry.
It is shown in [33] that a d-shift operator, which played a role in the
dilation of d-contractions (also called row contractions), is a spherical
d-isometry. Note that

(1.3) Pn+1(T ) = Pn(T )−QT (Pn(T ))

for all n ≥ 0. Now, observe that, if T is a commuting tuple of operators
on H and Pm(T ) = 0, then Pm+n(T ) = 0 for all n ≥ 0. Hence, if T is
a spherical m-isometry, then T is a spherical (m + n)-isometry for all
n ≥ 0. For a spherical m-isometry T , define

∆T,m := (−1)m−1Pm−1(T ).

It is proven that, if T is a spherical m-isometry for some m ≥ 0, then
∆T,m is a positive operator (see [33, Proposition 2.3]).

The second generalization ofm-isometries is called toralm-isometries.
Let n = (n1, . . . , nd) and p = (p1, . . . , pd) be in Nd. We write p ≤ n if
pj ≤ nj for j = 1, . . . , d, and we also let(

n

p

)
=

d∏
j=1

(
nj
pj

)
.

A commuting d-tuple T = (T1, . . . , Td) is said to be a toral m-isometry
if

Bn,m(T ) :=
∑
p∈Nd

0≤p≤n

(−1)|p|
(
n

p

)
T ∗pT p = 0(1.4)

for all n ∈ Nd with |n| = m. Toral m-isometries were introduced and
studied in [12, 23]. Note that, if T is a toral m-isometry, then each
Ti, i = 1, . . . , d, is an m-isometry. Indeed, let n be a d-tuple of non-
negative integers with m in the ith place and zeros elsewhere. Then,
(1.4) shows that Ti is an m-isometry. The following example shows
that the converse is not true.

Example 1.1. Let ℓ2(N) be the Hilbert space of complex sequences
indexed by N such that

∑∞
n=1 |αn|2 <∞. For α = (αn)

∞
n=1 in ℓ

2(N), let
T1 be the unilateral weighted shift operator defined by T1en = ωnen+1

and T2 the unilateral weighted shift operator defined by T2en = νnen+1,
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where {en}∞n=1 is the canonical orthonormal basis in ℓ2(N) and

(ωn)n≥1 :=

√
n+ 1

n
and (νn)n≥1 :=

√
n+ 2

n+ 1
.

Since
∥T 2

i en∥2 − 2∥Tien∥2 + 1 = 0, i = 1, 2,

for all n ≥ 1, we conclude that T1 and T2 are 2-isometry. However,
simple computation shows that, for T = (T1, T2), ⟨Bn,2(T )e1, e1⟩ =
−1/4 ̸= 0, where n = (1, 1), and thus, T is not a toral 2-isometry.

In the next proposition, we observe that a d-tuple of operators in a
length of more than one cannot simultaneously be spherical and toral
m-isometry. In order to see this, we need the following result, obtained
in [6].

Lemma 1.2 ([6, Theorem 3.1]). Let (an)n∈N be a sequence of real
numbers and m ∈ N. Then, we have

m∑
k=0

(−1)k
(
m

k

)
an+k = 0 for all n ∈ N,

if and only if there exists a polynomial function f of degree less than
or equal to m− 1 with f(n) = an for all n ∈ N.

Proposition 1.3. There is no d-tuple of simultaneously spherical and
toral m-isometry when d > 1.

Proof. Assume that d > 1 and T = (T1, . . . , Td). To keep the
exposition simple, let d = 2. It is straightforward to verify that

∑
n=(n1,n2)
|n|=m+1

∑
p∈N2

0≤p=(p1,p2)≤n

(−1)|p|
(
n1
p1

)(
n2
p2

)
T ∗
1
p1T ∗

2
p2T p11 T p22

(1.5)

=
∑

n=(n1,n2)
|n|=m

∑
p=(p1,p2)∈N2

0≤p1≤n1+1
0≤p2≤n2

(−1)|p|
(
n1 + 1

p1

)(
n2
p2

)
T ∗
1
p1T ∗

2
p2T p11 T p22
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+
∑

n=(n1,n2)
|n|=m

∑
p=(p1,p2)∈N2

0≤p1≤n1
0≤p2≤n2+1

(−1)|p|
(
n1
p1

)(
n2 + 1

p2

)
T ∗
1
p1T ∗

2
p2T p11 T p22 .

Let S = (1/
√
2)T . Then, an induction argument on m shows that

(1.6) Pm(S) =
1

2m

∑
|n|=m

∑
p∈N2

0≤p≤n

(−1)|p|
(
n

p

)
T ∗pT p.

Indeed, the above equality holds for m = 1. On the other hand, by
(1.3), (1.5) and the induction hypothesis, we get

Pm+1(S) = Pm(S)−QS(Pm(S))

=
1

2m

∑
n=(n1,n2)

|n|=m

∑
p∈N2

0≤p=(p1,p2)≤n

· (−1)|p|
(
n

p

)[
T ∗
1
p1T ∗

2
p2T p11 T p22 − 1

2
T ∗
1
p1+1T ∗

2
p2T p1+1

1 T p22

− 1

2
T ∗
1
p1T ∗

2
p2+1T p11 T p2+1

2

]
=

1

2m

∑
n=(n1,n2)

|n|=m

∑
p∈N2

0≤p=(p1,p2)≤n

(−1)|p|
(
n

p

)
T ∗
1
p1T ∗

2
p2T p11 T p22

+
1

2m+1

∑
n=(n1,n2)

|n|=m

∑
0≤p1≤n1+1
0≤p2≤n2

· (−1)|p|
(

n1
p1 − 1

)(
n2
p2

)
T ∗
1
p1T ∗

2
p2T p11 T p22

+
1

2m+1

∑
n=(n1,n2)

|n|=m

∑
0≤p1≤n1

0≤p2≤n2+1

· (−1)|p|
(
n1
p1

)(
n2

p2 − 1

)
T ∗
1
p1T ∗

2
p2T p11 T p22
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=
1

2m

∑
n=(n1,n2)

|n|=m

∑
p∈N2

0≤p=(p1,p2)≤n

(−1)|p|
(
n

p

)
T ∗
1
p1T ∗

2
p2T p11 T p22

+
1

2m+1

∑
n=(n1,n2)

|n|=m

∑
0≤p1≤n1+1
0≤p2≤n2

· (−1)|p|
[(
n1 + 1

p1

)
−

(
n1
p1

)](
n2
p2

)
T ∗
1
p1T ∗

2
p2T p11 T p22

+
1

2m+1

∑
n=(n1,n2)

|n|=m

∑
0≤p1≤n1

0≤p2≤n2+1

· (−1)|p|
(
n1
p1

)[(
n2 + 1

p2

)
−
(
n2
p2

)]
T ∗
1
p1T ∗

2
p2T p11 T p22

=
1

2m+1

∑
n=(n1,n2)
|n|=m+1

∑
p∈N2

0≤p≤n

(−1)|p|
(
n

p

)
T ∗pT p.

Therefore, if T is a spherical and toral m-isometry, then Pm(T ) =
Pm(S) = 0, and thus,

m∑
j=0

(−1)j
(
m

j

)
⟨QjT (I)x, x⟩ =

m∑
j=0

(−1)j
(
m

j

)
⟨QjS(I)x, x⟩ = 0

for all x ∈ H. Consequently,

m∑
j=0

(−1)j
(
m

j

)
⟨T ∗
i Q

j
T (I)Tix, x⟩ = 0

for all x ∈ H and i = 1, 2. By summing up these two equalities, we get

m∑
j=0

(−1)j
(
m

j

)
⟨Qj+1

T (I)x, x⟩ = 0

for all x ∈ H and, by continuing this process, we conclude that

m∑
j=0

(−1)j
(
m

j

)
⟨Qj+kT (I)x, x⟩ = 0
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for all x ∈ H and k ≥ 1. Now, by Lemma 1.2, the mappings
j → ⟨QjT (I)x, x⟩ and j → ⟨QjS(I)x, x⟩ are polynomials in j of de-

gree less than or equal to m − 1. However, since ⟨QjS(I)x, x⟩ =

(1/2j)⟨QjT (I)x, x⟩, we obtain a contradiction. �

If T = (T1, . . . , Td) is a d-tuple of operators, we denote the semigroup

generated by T by FT = {T k11 T k22 · · ·T kdd , ki ≥ 0, i = 1, . . . , d} and the
orbit of x under the tuple T by Orb(T, x) = {Sx : S ∈ FT }. A vector
x ∈ H is called a hypercyclic vector for T if Orb(T, x) is dense in H,
and, in this case, the tuple T is called hypercyclic. Also, a vector x ∈ H
is called a supercyclic vector for T if the set {λSx : λ ∈ C, S ∈ FT } is
dense in H, and, in this case, the tuple T is called supercyclic. These
definitions generalize the hypercyclicity and supercyclicity of a single
operator to a tuple of operators.

Hypercyclicity on Banach spaces was discussed in 1969 by Rolewicz
[44] who showed that, whenever |λ| > 1, λT is hypercyclic where
T is the unilateral backward shift on ℓp for 1 ≤ p ≤ ∞. Kitai in
her Ph.D. dissertation in 1982 [39], determined the conditions that
ensure a continuous linear operator to be hypercyclic. In 1974, Hilden
and Wallen [37] proved that every backward unilateral weighted shift
is supercyclic. Moreover, they proved that no normal operator on a
complex Hilbert space can be supercyclic. Later, Ansari and Bourdon
[8] extended this to the class of all isometries on a Banach space. In
2012, Faghih-Ahmadi and Hedayatian [28] proved that no m-isometry
can be supercyclic; they showed that the orbit of each vector is norm
increasing, except possibly for a finite number of terms. Bermúdez,
Marrero and Martinón [16] proved that, under a sufficient condition,
m-isometric operators are not N -supercyclic (the operator A ∈ B(H)
is N -supercyclic if there exists an N -dimensional subspace E of H such
that its orbit under A is dense in H). Eventually, Bayart [13] showed
that m-isometric operators are never N -supercyclic.

On the other hand, the dynamics of perturbation of m-isometries by
nilpotent operators were considered in [17, 19, 30, 48]. Hypercyclicity
of tuples of operators was first investigated by Feldman [31]. He showed
that there are no hypercyclic tuples of normal operators on an infinite-
dimensional Hilbert space, and he also proved that no hypercyclic
tuples of subnormal operators have a commuting normal extension on
an infinite-dimensional Hilbert space. In addition, the supercyclicity
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of tuples of operators was first investigated by Soltani, Hedayatian
and Khani-Robati [46]. They proved that there are no supercyclic
subnormal tuples of operators in an infinite-dimensional Hilbert space.
Recently, the authors in [10] proved that there is a supercyclic spherical
isometric d-tuple on Cd, but there is no supercyclic spherical isometry
on an infinite-dimensional Hilbert space. Moreover, the supercyclicity
of spherical isometries and toral 1-isometries on Banach spaces were
investigated in [9].

In Section 3 of this paper, we will show that toral and spherical
m-isometric operators are never supercyclic.

If E is a subset of H, then the convex hull of E, denoted by co(E),
is the set of all convex combinations of members of E, that is, all finite
linear combinations of the members of E where the coefficients are
non-negative and their sum is one. An operator S ∈ B(H) is called
convex-cyclic if the convex hull generated by Orb(S, x) is dense in H
for some x ∈ H. The concept of convex-cyclicity for a single operator
was introduced by Rezaei [42] and has been studied in [14, 32, 40].
In the next section, we define the concept of convex-cyclicity of tuples
of operators, and we give some necessary and sufficient conditions for a
d-tuple of commuting of operators on a Hilbert space H to be convex-
cyclic. We then show that spherical m-isometries are not convex-cyclic.

2. Convex-cyclicity. In this section, we give necessary and suffi-
cient conditions for convex-cyclicity of the d-tuple of commuting op-
erators. Let T = (T1, . . . , Td) be a d-tuple of bounded operators on
a Hilbert space H. The Harte spectrum of T is denoted by σ(T ); re-
call that λ = (λ1, . . . , λd) /∈ σ(T ) if and only if there exist bounded
operators A1, . . . , Ad, B1, . . . , Bd on H such that

d∑
i=1

(Ti − λi)Ai =
d∑
i=1

Bi(Ti − λi) = I.

Note that σ(T ) is compact and non-void. The spectral radius of T is

r2(T ) = max{∥λ∥2 : λ ∈ σ(T )},

where ∥λ∥2 = (
∑d
i=1 |λi|2)1/2. Also, let

r∞(T ) = max{∥λ∥∞ : λ ∈ σ(T )},
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where

∥λ∥∞ = ∥(λ1, . . . , λd)∥∞ = max{|λj | : 1 ≤ j ≤ d}.

The unit polydisc in Cd is denoted by Dd:

Dd = {(z1, . . . , zd) : |zj | < 1 for j = 1, . . . , d}.

A point λ = (λ1, . . . , λd) of Cd is said to be a joint eigenvalue of T if
there exists a non-zero vector x such that Tix = λix for i = 1, 2, . . . , d.
The joint point spectrum of T , denoted by σp(T ), is defined by

σp(T ) = {λ ∈ Cd : λ is a joint eigenvalue for T}.

Now, we define the concept of convex-cyclicity for a d-tuple of
operators.

Definition 2.1. The polynomial

p(x1, . . . , xd) =

n∑
k=0

∑
k1+···+kd=k

ak1,...,kdx
k1
1 x

k2
2 · · ·xkdd

of d variables x1, . . . , xd is a convex polynomial if the coefficients
ak1,...,kd are non-negative and

n∑
k=0

∑
k1+···+kd=k

ak1,...,kd = 1.

If T = (T1, . . . , Td) is a d-tuple of operators, then the convex hull of an
orbit is co(Orb(T, x)) = {p(T )x : p is a convex polynomial}. We say
that T is convex-cyclic if co(Orb(T, x)) is dense in H for some x ∈ H.

The proof of the next result relies on the following lemma.

Lemma 2.2. If H is a Hilbert space and y, z ∈ H are linearly
independent, then the linear map Λ : H → C2, defined by Λ(x) =
(⟨x, y⟩, ⟨x, z⟩), is continuous and onto.

Proof. By the Cauchy-Schwarz inequality, Λ is continuous. We can
assume that ∥y∥ = 1. Moreover, suppose that y⊥ ⊂ z⊥; therefore,
if ⟨x, y⟩ ̸= 0, then x/⟨x, y⟩ − y ∈ y⊥. Thus, ⟨x, z⟩ = ⟨x, ⟨z, y⟩y⟩. In
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addition, the last equality holds if x ∈ y⊥. Hence, z = ⟨z, y⟩ ·y, that is,
y and z are linearly dependent. Therefore, y⊥ ̸⊂ z⊥, and this implies
that there is a v ∈ H such that ⟨v, y⟩ = 0 and ⟨v, z⟩ = 1. Similarly, there
is a w ∈ H such that ⟨w, y⟩ = 1 and ⟨w, z⟩ = 0. Now, if (λ1, λ2) ∈ C2,
then Λ(x) = (λ1, λ2), where x = λ1w+λ2v, and the lemma follows. �

Theorem 2.3. Suppose that T = (T1, . . . , Td) is a convex-cyclic com-
muting d-tuple of operators on a Hilbert space H. Then, the following
hold.

(a) The joint ℓ∞-spherical radius of T , i.e., r∞(T ) is greater than
or equal to one. Consequently, σ(T ) ∩ (Cd \ Dd) is non-empty.

(b) σp(T
∗) ∩ (Dd ∪ Rd) = ∅.

(c) If λ = (λ1, . . . , λd) and γ = (γ1, . . . , γd) are in σp(T
∗), then

there exists a 1 ≤ i ≤ d such that λi ̸= γi.
(d) T is not self-adjoint.

Proof.

(a) Following [47],

r∞(T ) = lim
k→∞

∥T k∥1/k∞ ,

where
∥T k∥∞ = max{∥T k11 · · ·T kdd ∥ : k1 + · · ·+ kd = k}.

Let co(T1, . . . , Td) = {p(T1, . . . , Td) : p is a convex polynomial}. It
follows that {∥S∥ : S ∈ co(T1, . . . , Td)} is bounded if r∞(T ) < 1.
Hence, r∞(T ) ≥ 1 if T is convex-cyclic.

For simplicity, we only prove our results in (b), (c) and (d) for the
case d = 2; for other ds, the proof is similar. We also assume that x is
a convex-cyclic vector for T .

(b) Assume to the contrary that λ = (λ1, λ2) ∈ σp(T
∗) ∩ (D2 ∪R2).

Then, there exists a non-zero vector y ∈ H such that (T ∗
i − λi)y = 0

for i = 1, 2. Hence, for every convex polynomial p,

⟨y, p(T1, T2)x⟩ = ⟨p(T1, T2)∗y, x⟩ = ⟨p(T ∗
1 , T

∗
2 )y, x⟩

= ⟨p(λ1, λ2)y, x⟩ = p(λ1, λ2)⟨y, x⟩.

Since ⟨y, ·⟩ : H → C is continuous and onto, it maps the dense set
co(Orb(T, x)) onto a dense subset of C. However, for any convex
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polynomial p, p(R2) ⊆ R and p(D2
) ⊆ D. It follows that

{p(λ1, λ2)⟨y, x⟩ : p is a convex polynomial}

is not dense in C, and this is a contradiction.

(c) Assume, to the contrary, that λ,γ ∈ σp(T
∗) and λi = γi for

i = 1, 2. Let (β1, β2) = β = λ = γ. Then, β,β ∈ σp(T
∗). Thus, there

are y and z in H such that T ∗
i y = βiy and T ∗

i z = βiz for i = 1, 2.

However, by part (b), β /∈ R2. Thus, β ̸= β. Hence, y and z are
linearly independent vectors. Now, for every convex polynomial p, we
have

⟨p(T1, T2)x, y⟩ = ⟨x, p(T ∗
1 , T

∗
2 )y⟩ = ⟨x, p(β1, β2)y⟩ = p(β1, β2)⟨x, y⟩.

Also,

⟨p(T1, T2)x, z⟩ = ⟨x, p(T ∗
1 , T

∗
2 )z⟩ = ⟨x, p(β1, β2)z⟩ = p(β1, β2)⟨x, z⟩.

On the other hand, by Lemma 2.2 the linear map Λ : H → C2 defined
by Λ(h) = (⟨h, y⟩, ⟨h, z⟩) is continuous and onto, so it maps the dense
set {p(T1, T2)x : p is a convex polynomial} onto a dense subset of C2.
It follows that{(

p(β1, β2)⟨x, y⟩, p(β1, β2)⟨x, z⟩
)
: p is a convex polynomial

}
must be dense in C2, and thus, ⟨x, y⟩ and ⟨x, z⟩ are non-zero. Hence,
for every z1 and z2 in C, there exists a convex polynomial pn such that

pn(β1, β2) −→
z1

⟨x, y⟩
and pn(β1, β2) −→

z2
⟨x, z⟩

.

Put z1 = z2 ∈ R. Therefore, ⟨x, z⟩ = ⟨x, y⟩, and consequently, z2 = z1
for all z1 and z2 in C, a contradiction. Hence, (c) holds.

(d) Assume that T is a self-adjoint 2-tuple. We have

⟨x, p(T1, T2)x⟩ = ⟨p(T1, T2)∗x, x⟩ = ⟨p(T ∗
1 , T

∗
2 )x, x⟩

= ⟨p(T1, T2)x, x⟩ = ⟨x, p(T1, T2)x⟩

for every convex polynomial p. This implies that {⟨x, p(T1, T2)x⟩ :
p is a convex polynomial} is not dense in C, a contradiction. Therefore,
(d) holds. �
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Remark 2.4. In part (a) of the above theorem, σ(T ) can be replaced
by the Taylor spectrum or the joint approximate point spectrum of T
since the convex hull of all of these spectra coincide [25].

We say that T = (T1, . . . , Td) is convex-transitive if, for all non-
empty open subsets U and V of H, there exists a d-variable convex
polynomial p such that p(T1, . . . , Td)(U)∩V ̸= ∅. Moreover, T satisfies
the convex-cyclicity criterion if there exist two dense subsets Y and Z
in H, a sequence {pk} of d-variable convex polynomials, and a sequence
of maps sk : Z → H such that

(a) pk(T1, . . . , Td)y → 0 for every y ∈ Y ;
(b) skz → 0 for every z ∈ Z;
(c) pk(T1, . . . , Td)skz → z for every z ∈ Z.

In the next theorem, we will consider the relationship between
convex-transitivity and convex-cyclicity criterion with convex-cyclicity.

Theorem 2.5. Suppose that T = (T1, . . . , Td) is a commuting d-tuple
of operators on H. Then, the following hold.

(a) If T satisfies the convex-cyclicity criterion, then T is convex-
transitive.

(b) If T is convex-transitive, then T is convex-cyclic.
(c) If T is convex-cyclic and σp(T

∗
i ) = ∅ for i = 1, . . . , d, then T is

convex-transitive.

Proof.

(a) Let U and V be two non-empty open subsets in H, and let Y ,
Z, pk and sk be those obtained by the property of the convex-cyclicity
criterion for T . Pick y ∈ Y ∩ U and z ∈ Z ∩ V . Then,

yk := y + sk(z) −→ y ∈ U

and
pk(T1, . . . , Td)yk −→ z as k → ∞.

Therefore, pk(T1, . . . , Td)(U)∩V ̸= ∅, if k is large enough. This implies
that T is convex-transitive.

(b) Let (Vj)j∈N be a countable basis for the topology of H. Each
x ∈ H is a convex-cyclic vector for T if {p(T1, . . . , Td)x : p ∈ P} is dense
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in H, where P is a collection of convex polynomials in d-variables, that
is,

x ∈
∩
j∈N

∪
p∈P

p(T1, . . . , Td)
−1(Vj).

The convex-transitivity of T implies that, for every non-empty open set
U , there exists a convex polynomial p ∈ P such that p(T1, . . . , Td)

−1(Vj)
∩ U ̸= ∅, for any j ∈ N. It follows that, for each j ∈ N,∪

p∈P
p(T1, . . . , Tn)

−1(Vj)

is a dense open subset in H. Now, by the Baire category theorem,∩
j∈N

∪
p∈P

p(T1, . . . , Td)
−1(Vj)

is dense in H, which implies that T is convex-cyclic.

(c) Let T be convex-cyclic with convex-cyclic vector x. Since
σp(T

∗
i ) = ∅ for i = 1, . . . , d, p(T1, . . . , Td) has a dense range, and

p(T1, . . . , Td)x is a convex-cyclic vector for every convex polynomial
p. It follows that T has a dense subset of convex-cyclic vectors in
H. Now, let U and V be two non-empty open subsets of H. Choose
a convex-cyclic vector x ∈ U such that p(T1, . . . , Td)x ∈ V for some
convex polynomial p. Hence, p(T1, . . . , Td)U ∩ V ̸= ∅, and thus, T is
convex-transitive. �

Corollary 2.6. If T = (T1, . . . , Td) satisfies the convex-cyclicity criter-
ion, then S = (T1 ⊕ T1, . . . , Td ⊕ Td) also satisfies the convex-cylicity
criterion. Hence, S is convex-cyclic.

Remark 2.7. Let a and b be relatively prime integers, both greater
than 1, and T = (T1, T2, T3) = (aI1, 1/bI1, e

iθI1), where I1 is the
identity operator on C and θ is an irrational multiple of π. Then,
T is convex-transitive on C, but T does not satisfy the convex-cyclicity
criterion. Indeed, let U and V be two non-empty open sets in C. Let
z0 be a non-zero vector in U . Since{

an

bk
eimθz0 : n, k,m ∈ N

}
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is dense in C, there are n0, k0,m0 ∈ N such that

an0

bk0
eim0θz0 ∈ V.

Put p(z1, z2, z3) = zn0
1 zk02 zm0

3 . Then, p is a convex polynomial and
p(T )(U) ∩ V ̸= ∅. It follows that T is convex-transitive. However,
T does not satisfy the convex-cyclicity criterion since (T1 ⊕ T1, T2 ⊕
T2, T3⊕T3) = (aI2, 1/bI2, e

iθI2) is not convex-cyclic on C2, where I2 is
the identity operator on C2.

Corollary 2.8. Suppose that A and B are convex-cyclic operators and
C is an operator that commutes with B and σp(C

∗) = ∅. If T1 = A⊕C
and T2 = I ⊕B, then the pair (T1, T2) is convex-cyclic.

Proof. Let x be a convex-cyclic vector for A and y a convex-cyclic
vector for B. We show that x⊕ y is a convex-cyclic vector for the pair
(T1, T2). Let U and V be two non-empty open sets. There is a convex
polynomial p0 such that p0(A)x ∈ U . Moreover, p0(C) has dense range.
Indeed, we can factor p0(C) as p0(C) = a(C − µ1) · · · (C − µd), where
a ̸= 0 and µ1, . . . , µd ∈ C. Since σp(C

∗) = ∅, each C − µi has dense
range, and hence, p0(C) has dense range as well. Thus, p0(C)

−1(V ) is
a non-empty open set, so there exists a convex-polynomial p1 such that
p1(B)(y) ∈ p0(C)

−1(V ). Hence,

p0(T1)p1(T2)(x⊕ y) = p0(A)x⊕ p0(C)p1(B)y ∈ U × V.

This implies that (T1, T2) is convex-cyclic. �

Remark 2.9. The authors showed in [14] that there is a convex-cyclic
operator S such that σp(S

∗) = ∅, but S2 is not convex-cyclic. Let
A = B = S and C = S2 in the above corollary. Thus, we obtain a
convex-cyclic pair (T1, T2) such that T1 and T2 are not convex-cyclic. As
another example, let C =M∗

φ, whereMφ is the multiplication operator

by φ on the Hardy spaceH2(D) with φ(z) = z. Moreover, A = B =M∗
ψ

is convex-cyclic where ψ(z) = 2z. Indeed, M∗
ψ is hypercyclic [34,

Theorem 4.5]. Hence, T1 and T2 are not convex-cyclic, but the pair
(T1, T2) is convex-cyclic.

The following result is a generalization of [14, Proposition 2.4].
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Proposition 2.10. If T = (T1, . . . , Td) is a convex-cyclic d-tuple
of commuting operators on H and ci > 1 for i = 1, . . . , d, then
S = (c1T1, . . . , cdTd) is also convex-cyclic.

Proof. Let x be a convex-cyclic vector for T and y any non-zero
vector in H. Since, ci > 1 we have

sup{Re⟨Ax, y⟩ : A ∈ FS} ≥ sup{Re⟨Ax, y⟩ : A ∈ FT }.

Now, the Riesz representation theorem coupled with [14, Proposi-
tion 2.1] completes the proof. �

The next theorem states that spherical m-isometries are not convex-
cyclic.

Theorem 2.11. Let T = (T1, . . . , Td) be a d-tuple of commuting
operators on H. If T is a spherical m-isometry, then T is not convex-
cyclic.

Proof. We proceed by induction onm. Ifm = 1, then T is a spherical
isometry, and so, co(Orb(T, x)) lies in ball(0, ∥x∥), and hence, is not
dense in H. Therefore, T cannot be convex-cyclic. Let m ≥ 2 and
T = (T1, . . . , Td) be a spherical m-isometry. We consider the semi-
inner product

⟨⟨x, y⟩⟩ = ⟨Pm−1(T )x, y⟩, x, y ∈ H,

with semi-norm |∥·∥|. Note that ∆T,m = (−1)m−1Pm−1(T ) is a positive
operator [33, Proposition 2.3] , and let

N = {x ∈ H : ⟨⟨x, x⟩⟩ = 0} = kerPm−1(T ).

Moreover, define the inner product ⟨·, ·⟩′ on H/N by

⟨x+N, y +N⟩′ = ⟨⟨x, y⟩⟩.

In order to see that ⟨·, ·⟩′ is well defined, suppose that x1+N = x2+N
and y1 +N = y2 +N . Hence,

⟨Pm−1(T )x1, y1⟩ = ⟨Pm−1(T )x1 − Pm−1(T )x2 + Pm−1(T )x2, y1⟩
= ⟨x2, Pm−1(T )y1⟩ = ⟨x2, Pm−1(T )y2⟩
= ⟨Pm−1(T )x2, y2⟩.
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Then, H/N equipped with ⟨·, ·⟩′ is a Hilbert space (we can consider its

completion, if needed). Now, if T̃ = (T̃1, . . . , T̃d) is the tuple induced
by T on H/N , then, by [33, Proposition 2.4], Ti(kerPm−1(T )) ⊆
kerPm−1(T ) for each Ti, and thus, T̃ is well defined. Furthermore,

T̃ is a spherical isometry on H/N equipped with the norm | · |′. In fact,
since

Pm(T ) = Pm−1(T )−QT (Pm−1(T )),

we have

d∑
j=1

|T̃j(x+N)|′2 =

d∑
j=1

⟨Pm−1(T )Tjx, Tjx⟩

=
d∑
j=1

⟨T ∗
j Pm−1(T )Tjx, x⟩

= ⟨QT (Pm−1(T ))x, x⟩
= ⟨(Pm−1(T )− Pm(T ))x, x⟩
= ⟨Pm−1(T )x, x⟩ = |x+N |′2

On the contrary, suppose that x ∈ H is a convex-cyclic vector for T .
Now, if p is a convex-cyclic polynomial and y ∈ H, then

|ỹ − p(T̃ )x̃|′ = |y − p(T )x+N |′ = |||y − p(T )x|||

≤ ∥Pm−1(T )∥1/2∥y − p(T )x∥.

This implies that x̃ = x+N is a convex-cyclic vector for T̃ , a contra-
diction. �

Note that, since the weak closure and norm closure of a convex set
coincide, we have the following result.

Corollary 2.12. No spherical m-isometry is weakly hypercyclic.

3. Supercyclicity. The norm of every convex-cyclic operator is
greater than one [42, Proposition 3.2]. Thus, if an operator T ∈ B(H)
is supercyclic, then the operator T/1 + ∥T∥ is supercyclic but not
convex-cyclic. On the other hand, Bermúdez, et al. [14] have shown
that certain diagonalizable normal operators are convex-cyclic while
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they are never supercyclic [37]. It was proven in Theorem 2.11
that spherical m-isometries are not convex-cyclic. Thus, they are
not hypercyclic. It is natural to seek their supercyclicity. In the
following, we prove that toral and spherical m-isometric operators
are not supercyclic. Note that, for S ∈ B(H), we define βℓ(S) =
(1/ℓ!)(yx− 1)ℓ(S) for ℓ ≥ 0. Using the notion βℓ(S), if S ∈ B(H) is an
m-isometry,

∥Skx∥2 =

m−1∑
ℓ=0

k(ℓ)⟨βℓ(S)x, x⟩,

where k(ℓ) = k · (k− 1) · · · (k− ℓ+1) for ℓ ≥ 1, k ≥ 0 and k(0) = 1 (see
[3, equation (1.3)]).

Theorem 3.1. Let T = (T1, . . . , Td) be a d-tuple of commuting opera-
tors on H. If

(a) T is a toral m-isometry,

or

(b) T is a spherical m-isometry,

then T is not supercyclic.

Proof.

(a) If T is a toral m-isometry, then each Ti, i = 1, . . . , d, is an m-
isometry. Note that we can assume that the Tis are also invertible since
if, for example, T1 is not invertible, then (T1, . . . , Td) and (T2, . . . , Td)
are either both supercyclic or are non-supercyclic. Indeed, every m-
isometric operator is injective and has closed range [3]; consequently,
ranT1 = ranT1 ̸= H. Suppose that x0 is a supercyclic vector for T , and
let

A = {λT k11 T k22 · · ·T kdd x0 : λ ∈ C, k1 > 0, ki ≥ 0, i = 2, 3, . . . d}

and
B = {λT k22 · · ·T kdd x0 : λ ∈ C, ki ≥ 0, i = 2, 3, . . . d}.

Hence, H = A ∪B and int(A) = ∅; thus, H = B.

To simplify notation, assume that d = 2. On the contrary, suppose
that T = (T1, T2) is supercyclic with supercyclic vector x. Therefore,
for y ∈ H, there are two sequences of non-negative integers (ki)i and
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(si)i and one sequence of scalars (λi)i such that λiT
ki
1 T si2 x→ y. Since

∥T ki1 x∥2 =
∑m−1
ℓ=0 k

(ℓ)
i ⟨βℓ(T1)x, x⟩, we have

∥T ki1 T si2 x∥2 =
m−1∑
ℓ=0

k
(ℓ)
i

1

ℓ!

ℓ∑
j=0

(−1)ℓ−j
(
ℓ

j

)
⟨(T j1 )∗T

j
1T

si
2 x, T

si
2 x⟩

=
m−1∑
ℓ=0

ℓ∑
j=0

k
(ℓ)
i

1

ℓ!
(−1)ℓ−j

(
ℓ

j

)
∥T si2 T

j
1x∥2(3.1)

=

m−1∑
ℓ=0

ℓ∑
j=0

m−1∑
ℓ′=0

k
(ℓ)
i

1

l!
(−1)ℓ−j

(
ℓ

j

)
s
(ℓ′)
i ⟨βℓ′(T2)T j1x, T

j
1x⟩

=
m−1∑
ℓ=0

ℓ∑
j=0

m−1∑
ℓ′=0

ℓ′∑
n=0

k
(ℓ)
i s

(ℓ′)
i

1

ℓ!

1

ℓ′!

· (−1)ℓ−j(−1)ℓ
′−n

(
ℓ

j

)(
ℓ′

n

)
∥Tn2 T

j
1x∥2.

This shows that ∥T ki1 T si2 x∥2 is a polynomial of two variables, ki and
si, with leading coefficient

m−1∑
j=0

m−1∑
n=0

(−1)n+j

((m− 1)!)2

(
m− 1

j

)(
m− 1

n

)
∥Tn2 T

j
1x∥2.

Therefore,

0≤ lim
i→∞

∥T ki1 T si2 x∥2

k
(m−1)
i s

(m−1)
i

=

m−1∑
j=0

m−1∑
n=0

(−1)n+j

((m−1)!)2

(
m−1

j

)(
m−1

n

)
∥Tn2 T

j
1x∥2.

On the other hand, (3.1) implies that

∥T ki+1
1 T si2 x∥2 − ∥T ki1 T si2 x∥2

=
m−1∑
ℓ=0

ℓ∑
j=0

m−1∑
ℓ′=0

[(ki + 1)(ℓ) − k
(ℓ)
i ]

1

ℓ!
(−1)ℓ−j

(
ℓ

j

)
s
(ℓ′)
i ⟨βℓ′(T2)T j1x, T

j
1x⟩

=
m−1∑
ℓ=0

ℓ∑
j=0

m−2∑
ℓ′=0

[(ki + 1)(ℓ) − k
(ℓ)
i ]

1

ℓ!
(−1)ℓ−j

(
ℓ

j

)
s
(ℓ′)
i ⟨βℓ′(T2)T j1x, T

j
1x⟩
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+
m−2∑
ℓ=0

ℓ∑
j=0

[(ki + 1)(ℓ) − k
(ℓ)
i ]

1

ℓ!

· (−1)ℓ−j
(
ℓ

j

)
s
(m−1)
i ⟨βm−1(T2)T

j
1x, T

j
1x⟩

+
m−1∑
j=0

[(ki + 1)(m−1) − k
(m−1)
i ]

1

(m− 1)!

· (−1)m−1−j
(
m− 1

j

)
s
(m−1)
i ⟨βm−1(T2)T

j
1x, T

j
1x⟩.

Thus,

lim
i→∞

∥T ki+1
1 T si2 x∥2 − ∥T ki1 T si2 x∥2

s
(m−1)
i [(ki + 1)(m−1) − k

(m−1)
i ]

=

m−1∑
j=0

1

(m− 1)!
(−1)m−1−j

(
m− 1

j

)
⟨βm−1(T2)T

j
1x, T

j
1x⟩

=
m−1∑
j=0

m−1∑
n=0

(−1)n+j

((m− 1)!)2

(
m− 1

j

)(
m− 1

n

)
∥Tn2 T

j
1x∥2

≥ 0.

Set

ai =
∥T ki+1

1 T si2 x∥2 − ∥T ki1 T si2 x∥2

s
(m−1)
i [(ki + 1)(m−1) − k

(m−1)
i ]

;

therefore, (ai)i has a subsequence (aij )j such that the entire sequence
(aij )j is negative or non-negative. Without loss of generality, we denote
this subsequence by (ai)i. Now, if all ais are negative, then

∥y∥ = lim
i→∞

|λi|∥T ki1 T si2 x∥ ≥ lim
i→∞

|λi|∥T ki+1
1 T si2 x∥ = ∥T1y∥.

This shows that T1 is a contraction, and thus, T1 is an isometry (see
[28, Corollary 1]). On the other hand, if all ais are non-negative, then

∥y∥ = lim
i→∞

|λi|∥T ki1 T si2 x∥ ≤ lim
i→∞

|λi|∥T ki+1
1 T si2 x∥ = ∥T1y∥.

Since the inverse of every m-isometric operator is an m-isometry, the
above relation shows that T−1

1 is a contraction m-isometry, which,
in turn, implies that T1 is an isometry. A similar argument shows
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that T2 is also an isometry, which is a contradiction (see [9] or [10,
Proposition 1]).

(b) If T is a spherical m-isometry, then, by (1.6),
√
dT is a toral

m-isometry. The proof follows immediately from part (a). �

Since the unilateral weighted backward shift operators are super-
cyclic, the following corollary is a consequence of Theorem 3.1.

Corollary 3.2. Let B be a weighted backward shift on H and T =
(B, T1, . . . , Td). Then, T is neither spherical m-isometry nor toral m-
isometry.

Remark 3.3. Suppose that the d-tuple T = (T1, . . . , Td) is convex-
cyclic and each Ti is an m-isometry. Similar to the proof for su-
percyclicity in Theorem 3.1 (a), we can assume that each Ti is in-
vertible. Suppose that each Ti, i = 1, . . . , d, is a 2-isometry; thus,
∥T 2

i x∥2 − 2∥Tix∥2 + ∥x∥2 = 0 for all x ∈ H. By replacing x by T−1
i x,

we conclude that T−1
i is also a 2-isometry. Hence, ∥Tix∥ ≥ ∥x∥ and

∥T−1
i x∥ ≥ ∥x∥ for all x ∈ H (see [3] or [43, Lemma 1]) which, in turn,

imply that each Ti is an isometry. This contradicts the convex-cyclicity
of T . A question remains: if each Ti, i = 1, . . . , d, is an m-isometry for
some m > 2, is the d-tuple T = (T1, . . . , Td) convex-cyclic?
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