
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 49, Number 1, 2019

EXISTENCE OF POSITIVE SOLUTION FOR A SEMI
POSITONE RADIAL p-LAPLACIAN SYSTEM

EDER MARINHO MARTINS

ABSTRACT. In this paper, we prove, for λ and µ large,
the existence of a positive solution for the semi-positone
elliptic system

(P)


−∆pu = λω(x)f(v) in Ω,

−∆qv = µρ(x)g(u) in Ω,

(u, v) = (0, 0) on ∂Ω,

where Ω = B1(0) = {x ∈ RN : |x| ≤ 1}, and, for
m > 1, ∆m denotes the m-Laplacian operator p, q > 1.
The weight functions ω, ρ : Ω → R are radial, continuous,
nonnegative and not identically null, and the non-linearities
f, g : [0,∞) → R are continuous functions such that f(t),
g(t) ≥ −σ. The result presented extends, for the radial case,
some results in the literature [9, 10]. In particular, we do
not impose any monotonic condition on f or g. The result
is obtained as an application of the Schauder fixed point
theorem and the maximum principle.

1. The system studied. Consider the boundary value problem

(P)


−∆pu = λω(x)f(v) in Ω,

−∆qv = µρ(x)g(u) in Ω,

(u, v) = (0, 0) on ∂Ω,

where Ω = B1(0) = {x ∈ RN : |x| < 1}, ∆m, m > 1, denotes the
m-Laplacian operator p, q > 1. The weight functions ω, ρ : Ω → R
are continuous, nonnegative and not identically nulls, and the non-
linearities f, g : [0,∞) → R are continuous functions such that

(H0) there exists a σ > 0 such that f(v), g(u) ≥ −σ;
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(H1) limt→∞ f(t) = limt→∞ g(t) = ∞;

(H2) lim
t→∞

f1/(p−1)(Cg(t)1/(q−1))

t
= 0 for every C > 0.

An example of functions which satisfy (H0), (H1) and (H2) is given
by f(t) = tα−σ and g(t) = tβ−σ, where σ > 0 and αβ < (p−1)(q−1).

For a given non negative continuous function, and not identically
null h : Ω → R and m > 1, let ϕm,h be the only solution of

(1.1)

{
−∆mu = h(x) in Ω,

u = 0 on ∂Ω,

where m > 1. Observe that, by the maximum principle, ϕm,h(x) > 0
for all x ∈ Ω.

With the above hypothesis, we establish, for λ and µ large, the
following result.

Theorem 1.1. Suppose that

(i) f, g : [0,+∞) → R are continuous nonlinearities satisfying
(H0), (H1) and (H2);

(ii) the weight functions w, ρ : Ω → R are radial, continuous,
nonnegative and not identically nulls in Ω.

Then, problem (P) has at least a nontrivial and positive solution (u, v) ∈
C1,α(Ω)× C1,α(Ω), 0 < α < 1, for λ and µ large. In addition,

λ1/(p−1)L
1/(p−1)

2
∥ϕp,ω∥∞ ≤ ∥u∥∞ ≤ Cλ∥ϕp,ω∥∞

and

µ1/(q−1)L
1/(q−1)

2
ϕq,ρ ≤ ∥v∥∞ ≤ µ1/(q−1)g̃(Cλ∥ϕp,ω∥∞)1/(q−1)ϕq,ρ,

where Cλ is a large constant which depends only upon λ, and L is a
constant which depends upon p, q, ω, ρ and Ω.

We do not impose sign conditions in f(0) or g(0), and f and g
are not necessarily monotonic. The semi-positone case is considered
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to be a very challenging problem for partial differential equations
(for more details regarding semi-positone problems, see [2] and the
references therein). The main result is obtained as an application of
the Schauder fixed point theorem. For completeness, we present the
following theorem [5, Proof].

Theorem 1.2 (Schauder fixed point theorem). Let T : X → X be a
completely continuous operator, where X is a Banach space. If K ⊂ X
is a nonempty convex, bounded, closed set, and T (K) ⊂ K, then T has
at least one fixed point in K.

The main motivation for this paper was the research of Dalmasso [4]
and Hai and Shivaji [9]. In [4], problem (P) was considered, where Ω is
a bounded and smooth domain, under the assumptions that p = q = 2,
ω = ρ ≡ 1 and λ = µ. The nonlinearities f and g are non negatives, at
least continuous if N = 1, and locally Holder continuous with exponent
β ∈ (0; 1] if N ≥ 2, as well as non-decreasing functions. The main
strategy used was a representation formula via the Green function and
the Schauder fixed point theorem. Hai and Shivaji, where p = q = 2 [9],
extended the study of [4] to the semi positone case without assuming
monotonic conditions on f and g. In [10], Hai and Shivaji considered
system (P) when p = q, ω = ρ and λ = µ, and f and g are also
considered to be continuously differentiable and satisfy (H1) in addition
to

(1.2) lim
x→+∞

f(Mg(x)1/(p−1))

xp−1
= 0 for every M > 0.

The authors have dealt with the semi positone case; however, f and g
should be monotonic functions. Their approach was based on the sub
and supersolution methods. In [6], Hai dealt with system (P) when
p, q > 1, ω = ρ = 1, and the nonlinearities f and g are positives, that is,
the semi-positone case is not considered, continuous, and nondecreasing
in [0,+∞), g(x) > 0 for x > 0, and

lim sup
x→0+

f1/(p−1)(cg1/(q−1)(x))

x
= ∞

lim inf
x→∞

f1/(p−1)(cg1/(q−1)(x))

x
= 0.
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Maximum principle and fixed point arguments were applied to guar-
antee the existence of the solution when the nonlinearities are possibly
singular at 0.

Chhetri, Hai and Shivaji [3] proved the existence of a radial solution
when p = q, λ = µ large and Ω is an annulus. For a general bounded
region Ω, a non-existence result was presented for the case where
f(0) < 0, g(0) < 0 and small λ.

The case λ = µ = 1, f and g non-negatives, was also considered by
Martins and Ferreira [12] when f and g have local behavior. The result
was obtained when there exist positive constants 0 < δ < M such that

(a) 0 ≤ f(v) ≤ k1M
p−1, 0 ≤ g(u) ≤ k1M

q−1 if 0 ≤ u, v ≤M ;
(b) f(v) ≥ k2v

p−1 if 0 ≤ v ≤ δ;

where constants k1 and k2 depend only upon ω, ρ and Ω. No conditions
at ∞ were imposed, but the semi-positone case was not considered.

In this paper, besides considering the semi-positone case, we do not
impose any monotonic conditions on f and g. Our strategy is to apply
the Schauder fixed point theorem.

2. Existence result proof. In this section, we present the proof of
Theorem 1.1 for the radial case:

Ω = B1(0) = {x ∈ RN : |x| < 1},

where the weight functions are radials. In this manner, an existence
result is proven for the system

(PB)


−(rN−1ψp(u

′(r)))′ = λrN−1ω(r)f(v(r)) in B1(0),

−(rN−1ψq(v(r)))
′ = µrN−1ρ(r)g(u(r)) in B1(0),

(u, v) = (0, 0) on ∂B1(0),

where ψm(t) = |t|m−2t.

For m > 1, let m′ be the conjugate of m, that is, 1/m + 1/m′ = 1.
It is easy to see that (u, v) is a pair of radial solutions of (PB) if, and
only if, (u, v) is a fixed point of

T : C(B1,R) −→ C(B1,R),
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given by

(2.1) T (u, v) = (T1(u, v), T2(u, v)),

where

T1(u(r), v(r)) = λ1/(p−1)

∫ 1

r

ψp′

(∫ θ

0

(
s

θ

)N−1

w(s)f(v(s)) ds

)
dθ,

and

T2
(
u(r), v(r)

)
= µ1/(q−1)

∫ 1

r

ψq′

(∫ θ

0

(
s

θ

)N−1

ρ(s)g(u(s)) ds

)
dθ.

It is well known that, in the radial case, the function that solves
(1.1) is given by

ϕm,h(r) =

∫ 1

r

ψm′

(∫ θ

0

(
s

θ

)N−1

h(s) ds

)
dθ.

Observe that ϕm,h is positive and decreasing for r ∈ [0, 1].

For m > 1 and a continuous, non negative and radial function
h : B1(0) → R, let τm,h ∈ (0, 1) be chosen such that

(2.2)

∫ τm,h

τm,h/2

ψm′

(∫ θ

0

(
s

θ

)N−1

h(s) ds

)
dθ > ϕm,h(τm,h) > 0.

We also define
(2.3)

Lm,h=

(
2ψm′(σ)ϕm,ω(τm,h)∫ τm,h

τm,h/2
ψm′(

∫ θ

0
(s/θ)N−1h(s) ds) dθ − ϕm,h(τm,h)

)m−1

> 0,

(2.4) L = max{Lp,ω, Lq,ρ}

and
(2.5)

(u(r), v(r)) =

(
λ1/(p−1)L

1/(p−1)

2
ϕp,ω(r), µ

1/(q−1)L
1/(q−1)

2
ϕq,ρ(r)

)
.

The next lemma is required for the proof of Theorem 1.1 in the radial
case.
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Lemma 2.1. Let G and H be such that

G(v)(r) =

∫ 1

r

ψp′

(∫ θ

0

(
s

θ

)N−1

ω(s)f(v(s)) ds

)
dθ

− L1/(p−1)

2

∫ 1

r

ψp′

(∫ θ

0

(
s

θ

)N−1

ω(s) ds

)
dθ

and

H(u)(r) =

∫ 1

r

ψq′

(∫ θ

0

(
s

θ

)N−1

ρ(s)g(u(s)) ds

)
dθ

− L1/(q−1)

2

∫ 1

r

ψq′

(∫ θ

0

(
s

θ

)N−1

ρ(s) ds

)
dθ.

Then, there exists a pair (λ∗, µ∗) > (0, 0) such that

G(u, v)(r),H(u, v)(r) ≥ 0,

for every (u, v) ≥ (u, v) and (λ, µ) ≥ (λ∗, µ∗).

Proof. We present the proof for G, although the proof of H may
be obtained using the same method. In order to simplify notation, we
denote τp,ω by τ , and divide the proof into two cases.

Case (i). r ∈ [0, τ/2). In this case, we have

G(v)(r) =

∫ 1

r

ψp′

(∫ θ

0

(
s

θ

)N−1

w(s)f(v(s)) ds

)
dθ(2.6)

− L1/(p−1)

2

∫ 1

r

ψp′

(∫ θ

0

(
s

θ

)N−1

w(s) ds

)
dθ

=

∫ τ

r

ψp′

(∫ θ

0

(
s

θ

)N−1

w(s)f(v(s)) ds

)
− L1/(p−1)

2
ψp′

(∫ θ

0

(
s

θ

)N−1

w(s) ds

)
dθ

+

∫ 1

τ

ψp′

(∫ θ

0

(
s

θ

)N−1

w(s)f(v(s)) ds

)
− L1/(p−1)

2
ψp′

(∫ θ

0

(
s

θ

)N−1

w(s) ds

)
dθ.
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Since ϕm,h is a positive and decreasing function, it follows that, for
all r ∈ [0, τ/2), we have

v(r) = µ1/(q−1)L
1/(q−1)

2
ϕq,ρ(r) ≥ µ1/(q−1)L

1/(q−1)

2
ϕq,ρ

(
τ

2

)
> 0,

that is,

v(r) > v(r) ≥ µ1/(q−1)L
1/(q−1)

2
ϕq,ρ(τ/2) > 0.

By (H1), there exists a µ1 > 0 large enough such that µ > µ1 implies
that f(v(s)) ≥ L for all s ∈ [0, τ/2). Then, in (2.6), we can write

G(v)(r) ≥
∫ τ

r

L1/(p−1)ψp′

(∫ θ

0

(
s

θ

)N−1

w(s) ds

)
(2.7)

− L1/(p−1)

2
ψp′

(∫ θ

0

(
s

θ

)N−1

w(s) ds

)
dθ

+

∫ 1

τ

ψp′

(∫ θ

0

(
s

θ

)N−1

w(s)f(v(s)) ds

)
− L1/(p−1)

2
ψp′

(∫ θ

0

(
s

θ

)N−1

w(s) ds

)
dθ.

Thus,

G(v)(r) ≥ L1/(p−1)

2

∫ τ

r

ψp′

(∫ θ

0

(
s

θ

)N−1

w(s) ds

)
dθ(2.8)

+

∫ 1

τ

ψp′

(∫ θ

0

(
s

θ

)N−1

w(s)f(v(s)) ds

)
dθ

− L1/(p−1)

2
ϕp,ω(τ).

Since r ∈ [0, τ/2), we can write

(2.9)
L1/(p−1)

2

∫ τ

r

ψp′

(∫ θ

0

(
s

θ

)N−1

w(s) ds

)
dθ

≥ L1/(p−1)

2

∫ τ

τ/2

ψp′

(∫ θ

0

(
s

θ

)N−1

w(s) ds

)
dθ.

On the other hand, by (H0), it follows that
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(2.10)

∫ 1

τ

ψp′

(∫ θ

0

(
s

θ

)N−1

w(s)f(v(s)) ds

)
dθ

≥ −ψp′(σ)

∫ 1

τ

ψp′

(∫ θ

0

(
s

θ

)N−1

w(s) ds

)
dθ.

Applying (2.9) and (2.10) to (2.8), we have

G(v)(r) ≥ L1/(p−1)

2

∫ τ

τ/2

ψp′

(∫ θ

0

(
s

θ

)N−1

w(s) ds

)
dθ

− ψp′(σ)

∫ 1

τ

ψp′

(∫ θ

0

(
s

θ

)N−1

w(s) ds

)
dθ

− L1/(p−1)

2
ϕp,ω(τ);

this allows us to write

G(v)(r) ≥ L1/(p−1)

2

(∫ τ

τ/2

ψp′

(∫ θ

0

(
s

θ

)N−1

w(s) ds

)
dθ − ϕp,ω(τ)

)
− ψp′(σ)ϕp,ω(τ) = 0.

Case (ii). r ∈ [τ/2, 1]. Since∫ 1

r

ψp′

(∫ θ

0

(
s

θ

)N−1

w(s)f(v(s)) ds

)
dθ

=

∫ 1

r

θ(1−N)/(p−1)ψp′

(∫ θ

0

sN−1ω(s)f(v(s)) ds

)
dθ,

we can rewrite G as

G(v)(r) =

∫ 1

r

θ(1−N)/(p−1)ψp′

(∫ θ

0

sN−1ω(s)f(v(s)) ds

)
dθ

− L1/(p−1)

2
ϕp,ω(r)
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or

G(v)(r) =

∫ 1

r

θ(1−N)/(p−1)ψp′

(2.11)

·
((∫ τ/2

0

sN−1ω(s)f(v(s)) ds+

∫ θ

τ/2

sN−1ω(s)f(v(s)) ds

))
dθ

− L1/(p−1)

2
ϕp,ω(r).

Define

(2.12) C :=

σ

∫ 1

τ/2

sN−1ω(s) ds+ (L/2p−1)

∫ 1

0

sN−1ω(s) ds∫ τ/2

0

sN−1ω(s) ds

> 0.

As in Case (i), by (H1), there exists a µ2 > 0 such that f(v(s)) ≥ C
for every µ > µ2 and s ∈ [0, τ/2]. Then,

(2.13)

∫ τ/2

0

sN−1ω(s)f(v(s)) ds ≥ C

∫ τ/2

0

sN−1ω(s) ds.

By (H0), (2.11) and (2.13), we have

G(v)(r) ≥
∫ 1

r

(
θ(1−N)/(p−1)ψp′(2.14)

·
(∫ τ/2

0

sN−1ω(s)C ds− σ

∫ θ

τ/2

sN−1ω(s) ds

))
dθ

− L1/(p−1)

2
ϕp,ω(r)

On the other hand, since∫ θ

τ/2

sN−1ω(s) ds ≤
∫ 1

τ/2

sN−1ω(s) ds

and

ϕp,ω(r)=

∫ 1

r

θ(1−N)/(p−1)ψp′

(∫ τ/2

0

sN−1ω(s) ds+

∫ θ

τ/2

sN−1ω(s) ds

)
dθ,
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we have

(2.15) ϕp,ω(r) ≤
∫ 1

r

θ(1−N)/(p−1)ψp′

(∫ 1

0

sN−1ω(s) ds

)
dθ

Then, using (2.11), (2.15) and (H0), it follows that

G(v)(r)≥
1∫

r

θ(1−N)/(p−1)ψp′

(( τ/2∫
0

sN−1ω(s)C ds−σ
1∫

τ/2

sN−1ω(s) ds

))
dθ

− L1/(p−1)

2

1∫
r

θ(1−N)/(p−1)ψp′

( 1∫
0

sN−1ω(s) ds

)
dθ.

Then, from (2.12), we have G(v)(r) ≥ 0 for all r ∈ [τ/2, 1]. �

Proof of Theorem 1.2. According to Lemma 2.1, it follows that

(T1(u, v)(r), T2(u, v)(r)) ≥ (u(r), v(r)),

for every r ∈ [0, 1] and (λ, µ) ≥ (λ∗, µ∗). Define g̃(s) = supt≤s g(t), and
let (u, v) ≥ (u, v) be

(2.16) (u, v)(r) = (Cλϕp,ω(r), µ
1/(q−1)g̃(Cλ∥ϕp,ω∥∞)1/(q−1)ϕq,ρ(r)),

where Cλ is a constant to be chosen.

We claim that, if (u, v) ≤ (u, v), then T (u, v) ≤ (u, v). In fact, since
g̃ is an increasing function and u ≤ u, we have g̃(u) ≤ g̃(u) = g̃(Cλϕp,ω).
Thus,

T2(u, v)(r) = µ1/(q−1)

∫ 1

r

ψq′

(∫ θ

0

(
s

θ

)N−1

ρ(s)g(u(s)) ds

)
dθ

≤ µ1/(q−1)

∫ 1

r

ψq′

(∫ θ

0

(
s

θ

)N−1

ρ(s)g̃(u(s)) ds

)
dθ

≤ µ1/(q−1)

∫ 1

r

ψq′

(∫ θ

0

(
s

θ

)N−1

ρ(s)g̃(Cλϕp,ω) ds

)
dθ

≤ µ1/(q−1)g̃(Cλ∥ϕp,ω∥∞)1/(q−1)

∫ 1

r

ψq′

(∫ θ

0

(
s

θ

)N−1

ρ(s) ds

)
dθ

= µ1/(q−1)g̃(Cλ∥ϕp,ω∥∞)1/(q−1)ϕq,ρ(r) = v(r).
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On the other hand, v(s) ≤ v(s) = µ1/(q−1)g̃(Cλ∥ϕp,ω∥∞/)1/(q−1)ϕq,ρ(r)
implies that

f̃(v(s)) ≤ f̃(µ1/(q−1)g̃(Cλ∥ϕp,ω∥∞)1/(q−1)ϕq,ρ(r)).

Thus,

T1(u, v)(r)

= λ1/(p−1)

∫ 1

r

ψp′

(∫ θ

0

(
s

θ

)N−1

w(s)f(v(s)) ds

)
dθ

≤ λ1/(p−1)

∫ 1

r

ψp′

(∫ θ

0

(
s

θ

)N−1

w(s)f̃(v(s)) ds

)
dθ

≤ λ1/(p−1)

∫ 1

r

ψp′

(∫ θ

0

(
s

θ

)N−1

w(s)

· f̃
(
µ1/(q−1)g̃

(
Cλ∥ϕp,ω∥∞

)1/(q−1)

ϕq,ρ

)
ds

)
dθ

≤ λ1/(p−1)f̃1/(p−1)(µ1/(q−1)∥ϕq,ρ∥∞g̃(Cλ∥ϕp,ω∥∞)1/(q−1))

·
∫ 1

r

ψp′

(∫ θ

0

(
s

θ

)N−1

w(s) ds

)
dθ

≤ λ1/(p−1)f̃ 1/(p−1)(µ1/(q−1)∥ϕq,ρ∥∞g̃(Cλ∥ϕp,ω∥∞)1/(q−1))ϕp,ω(r).

According to (H2), if Cλ is large enough, it is possible to obtain
T1(u, v) ≤ Cλϕp,ω(r). Then, [(u, v); (u, v)] is invariant by T . Since
this set is bounded, closed, convex, and T is completely continuous, it
follows that T has a fixed point which is a solution of (P). �
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