EXISTENCE OF POSITIVE SOLUTION FOR A SEMI POSITONE RADIAL p-LAPLACIAN SYSTEM

EDER MARINHO MARTINS

Abstract

In this paper, we prove, for λ and μ large, the existence of a positive solution for the semi-positone elliptic system $$
\begin{cases}-\Delta_{p} u=\lambda \omega(x) f(v) & \text { in } \Omega \tag{P}\\ -\Delta_{q} v=\mu \rho(x) g(u) & \text { in } \Omega \\ (u, v)=(0,0) & \text { on } \partial \Omega\end{cases}
$$ where $\Omega=B_{1}(0)=\left\{x \in \mathbb{R}^{N}:|x| \leq 1\right\}$, and, for $m>1, \Delta_{m}$ denotes the m-Laplacian operator $p, q>1$. The weight functions $\omega, \rho: \bar{\Omega} \rightarrow \mathbb{R}$ are radial, continuous, nonnegative and not identically null, and the non-linearities $f, g:[0, \infty) \rightarrow \mathbb{R}$ are continuous functions such that $f(t)$, $g(t) \geq-\sigma$. The result presented extends, for the radial case, some results in the literature $[\mathbf{9}, \mathbf{1 0}]$. In particular, we do not impose any monotonic condition on f or g. The result is obtained as an application of the Schauder fixed point theorem and the maximum principle.

1. The system studied. Consider the boundary value problem

$$
\begin{cases}-\Delta_{p} u=\lambda \omega(x) f(v) & \text { in } \Omega \tag{P}\\ -\Delta_{q} v=\mu \rho(x) g(u) & \text { in } \Omega \\ (u, v)=(0,0) & \text { on } \partial \Omega\end{cases}
$$

where $\Omega=B_{1}(0)=\left\{x \in \mathbb{R}^{N}:|x|<1\right\}, \Delta_{m}, m>1$, denotes the m-Laplacian operator $p, q>1$. The weight functions $\omega, \rho: \bar{\Omega} \rightarrow \mathbb{R}$ are continuous, nonnegative and not identically nulls, and the nonlinearities $f, g:[0, \infty) \rightarrow \mathbb{R}$ are continuous functions such that
(H0) there exists a $\sigma>0$ such that $f(v), g(u) \geq-\sigma$;

[^0](H1) $\lim _{t \rightarrow \infty} f(t)=\lim _{t \rightarrow \infty} g(t)=\infty$;
(H2) $\lim _{t \rightarrow \infty} \frac{f^{1 /(p-1)}\left(C g(t)^{1 /(q-1)}\right)}{t}=0$ for every $C>0$.
An example of functions which satisfy (H0), (H1) and (H2) is given by $f(t)=t^{\alpha}-\sigma$ and $g(t)=t^{\beta}-\sigma$, where $\sigma>0$ and $\alpha \beta<(p-1)(q-1)$.

For a given non negative continuous function, and not identically null $h: \Omega \rightarrow \mathbb{R}$ and $m>1$, let $\phi_{m, h}$ be the only solution of

$$
\begin{cases}-\Delta_{m} u=h(x) & \text { in } \Omega \tag{1.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $m>1$. Observe that, by the maximum principle, $\phi_{m, h}(x)>0$ for all $x \in \Omega$.

With the above hypothesis, we establish, for λ and μ large, the following result.

Theorem 1.1. Suppose that
(i) $f, g:[0,+\infty) \rightarrow \mathbb{R}$ are continuous nonlinearities satisfying (H0), (H1) and (H2);
(ii) the weight functions $w, \rho: \bar{\Omega} \rightarrow \mathbb{R}$ are radial, continuous, nonnegative and not identically nulls in Ω.

Then, problem (P) has at least a nontrivial and positive solution $(u, v) \in$ $C^{1, \alpha}(\Omega) \times C^{1, \alpha}(\Omega), 0<\alpha<1$, for λ and μ large. In addition,

$$
\lambda^{1 /(p-1)} \frac{L^{1 /(p-1)}}{2}\left\|\phi_{p, \omega}\right\|_{\infty} \leq\|u\|_{\infty} \leq C_{\lambda}\left\|\phi_{p, \omega}\right\|_{\infty}
$$

and

$$
\mu^{1 /(q-1)} \frac{L^{1 /(q-1)}}{2} \phi_{q, \rho} \leq\|v\|_{\infty} \leq \mu^{1 /(q-1)} \widetilde{g}\left(C_{\lambda}\left\|\phi_{p, \omega}\right\|_{\infty}\right)^{1 /(q-1)} \phi_{q, \rho}
$$

where C_{λ} is a large constant which depends only upon λ, and L is a constant which depends upon p, q, ω, ρ and Ω.

We do not impose sign conditions in $f(0)$ or $g(0)$, and f and g are not necessarily monotonic. The semi-positone case is considered
to be a very challenging problem for partial differential equations (for more details regarding semi-positone problems, see [2] and the references therein). The main result is obtained as an application of the Schauder fixed point theorem. For completeness, we present the following theorem [5, Proof].

Theorem 1.2 (Schauder fixed point theorem). Let $T: X \rightarrow X$ be a completely continuous operator, where X is a Banach space. If $K \subset X$ is a nonempty convex, bounded, closed set, and $T(K) \subset K$, then T has at least one fixed point in K.

The main motivation for this paper was the research of Dalmasso [4] and Hai and Shivaji [9]. In [4], problem (P) was considered, where Ω is a bounded and smooth domain, under the assumptions that $p=q=2$, $\omega=\rho \equiv 1$ and $\lambda=\mu$. The nonlinearities f and g are non negatives, at least continuous if $N=1$, and locally Holder continuous with exponent $\beta \in(0 ; 1]$ if $N \geq 2$, as well as non-decreasing functions. The main strategy used was a representation formula via the Green function and the Schauder fixed point theorem. Hai and Shivaji, where $p=q=2$ [9], extended the study of [4] to the semi positone case without assuming monotonic conditions on f and g. In [10], Hai and Shivaji considered system (P) when $p=q, \omega=\rho$ and $\lambda=\mu$, and f and g are also considered to be continuously differentiable and satisfy (H1) in addition to

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} \frac{f\left(M g(x)^{1 /(p-1)}\right)}{x^{p-1}}=0 \quad \text { for every } M>0 \tag{1.2}
\end{equation*}
$$

The authors have dealt with the semi positone case; however, f and g should be monotonic functions. Their approach was based on the sub and supersolution methods. In [6], Hai dealt with system (P) when $p, q>1, \omega=\rho=1$, and the nonlinearities f and g are positives, that is, the semi-positone case is not considered, continuous, and nondecreasing in $[0,+\infty), g(x)>0$ for $x>0$, and

$$
\begin{aligned}
& \limsup _{x \rightarrow 0^{+}} \frac{f^{1 /(p-1)}\left(c g^{1 /(q-1)}(x)\right)}{x}=\infty \\
& \liminf _{x \rightarrow \infty} \frac{f^{1 /(p-1)}\left(c g^{1 /(q-1)}(x)\right)}{x}=0 .
\end{aligned}
$$

Maximum principle and fixed point arguments were applied to guarantee the existence of the solution when the nonlinearities are possibly singular at 0 .

Chhetri, Hai and Shivaji [3] proved the existence of a radial solution when $p=q, \lambda=\mu$ large and Ω is an annulus. For a general bounded region Ω, a non-existence result was presented for the case where $f(0)<0, g(0)<0$ and small λ.

The case $\lambda=\mu=1, f$ and g non-negatives, was also considered by Martins and Ferreira [12] when f and g have local behavior. The result was obtained when there exist positive constants $0<\delta<M$ such that
(a) $0 \leq f(v) \leq k_{1} M^{p-1}, 0 \leq g(u) \leq k_{1} M^{q-1}$ if $0 \leq u, v \leq M$;
(b) $f(v) \geq k_{2} v^{p-1}$ if $0 \leq v \leq \delta$;
where constants k_{1} and k_{2} depend only upon ω, ρ and Ω. No conditions at ∞ were imposed, but the semi-positone case was not considered.

In this paper, besides considering the semi-positone case, we do not impose any monotonic conditions on f and g. Our strategy is to apply the Schauder fixed point theorem.
2. Existence result proof. In this section, we present the proof of Theorem 1.1 for the radial case:

$$
\Omega=B_{1}(0)=\left\{x \in \mathbb{R}^{N}:|x|<1\right\}
$$

where the weight functions are radials. In this manner, an existence result is proven for the system
$\left(\mathrm{P}_{B}\right) \quad \begin{cases}-\left(r^{N-1} \psi_{p}\left(u^{\prime}(r)\right)\right)^{\prime}=\lambda r^{N-1} \omega(r) f(v(r)) & \text { in } B_{1}(0), \\ -\left(r^{N-1} \psi_{q}(v(r))\right)^{\prime}=\mu r^{N-1} \rho(r) g(u(r)) & \text { in } B_{1}(0), \\ (u, v)=(0,0) & \text { on } \partial B_{1}(0),\end{cases}$
where $\psi_{m}(t)=|t|^{m-2} t$.
For $m>1$, let m^{\prime} be the conjugate of m, that is, $1 / m+1 / m^{\prime}=1$. It is easy to see that (u, v) is a pair of radial solutions of $\left(\mathrm{P}_{B}\right)$ if, and only if, (u, v) is a fixed point of

$$
T: C\left(B_{1}, \mathbb{R}\right) \longrightarrow C\left(B_{1}, \mathbb{R}\right)
$$

given by

$$
\begin{equation*}
T(u, v)=\left(T_{1}(u, v), T_{2}(u, v)\right) \tag{2.1}
\end{equation*}
$$

where

$$
T_{1}(u(r), v(r))=\lambda^{1 /(p-1)} \int_{r}^{1} \psi_{p^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} w(s) f(v(s)) d s\right) d \theta
$$

and

$$
T_{2}(u(r), v(r))=\mu^{1 /(q-1)} \int_{r}^{1} \psi_{q^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} \rho(s) g(u(s)) d s\right) d \theta
$$

It is well known that, in the radial case, the function that solves (1.1) is given by

$$
\phi_{m, h}(r)=\int_{r}^{1} \psi_{m^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} h(s) d s\right) d \theta
$$

Observe that $\phi_{m, h}$ is positive and decreasing for $r \in[0,1]$.
For $m>1$ and a continuous, non negative and radial function $h: B_{1}(0) \rightarrow \mathbb{R}$, let $\tau_{m, h} \in(0,1)$ be chosen such that

$$
\begin{equation*}
\int_{\tau_{m, h} / 2}^{\tau_{m, h}} \psi_{m^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} h(s) d s\right) d \theta>\phi_{m, h}\left(\tau_{m, h}\right)>0 \tag{2.2}
\end{equation*}
$$

We also define

$$
\begin{equation*}
L_{m, h}=\left(\frac{2 \psi_{m^{\prime}}(\sigma) \phi_{m, \omega}\left(\tau_{m, h}\right)}{\int_{\tau_{m, h} / 2}^{\tau_{m, h}} \psi_{m^{\prime}}\left(\int_{0}^{\theta}(s / \theta)^{N-1} h(s) d s\right) d \theta-\phi_{m, h}\left(\tau_{m, h}\right)}\right)^{m-1}>0 \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
L=\max \left\{L_{p, \omega}, L_{q, \rho}\right\} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
(\underline{u}(r), \underline{v}(r))=\left(\lambda^{1 /(p-1)} \frac{L^{1 /(p-1)}}{2} \phi_{p, \omega}(r), \mu^{1 /(q-1)} \frac{L^{1 /(q-1)}}{2} \phi_{q, \rho}(r)\right) . \tag{2.5}
\end{equation*}
$$

The next lemma is required for the proof of Theorem 1.1 in the radial case.

Lemma 2.1. Let G and H be such that

$$
\begin{aligned}
G(v)(r)= & \int_{r}^{1} \psi_{p^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} \omega(s) f(v(s)) d s\right) d \theta \\
& -\frac{L^{1 /(p-1)}}{2} \int_{r}^{1} \psi_{p^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} \omega(s) d s\right) d \theta
\end{aligned}
$$

and

$$
\begin{aligned}
H(u)(r)= & \int_{r}^{1} \psi_{q^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} \rho(s) g(u(s)) d s\right) d \theta \\
& -\frac{L^{1 /(q-1)}}{2} \int_{r}^{1} \psi_{q^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} \rho(s) d s\right) d \theta
\end{aligned}
$$

Then, there exists a pair $\left(\lambda^{*}, \mu^{*}\right)>(0,0)$ such that

$$
G(u, v)(r), H(u, v)(r) \geq 0
$$

for every $(u, v) \geq(\underline{u}, \underline{v})$ and $(\lambda, \mu) \geq\left(\lambda^{*}, \mu^{*}\right)$.

Proof. We present the proof for G, although the proof of H may be obtained using the same method. In order to simplify notation, we denote $\tau_{p, \omega}$ by τ, and divide the proof into two cases.

Case (i). $r \in[0, \tau / 2)$. In this case, we have

$$
\begin{align*}
G(v)(r)= & \int_{r}^{1} \psi_{p^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} w(s) f(v(s)) d s\right) d \theta \tag{2.6}\\
& -\frac{L^{1 /(p-1)}}{2} \int_{r}^{1} \psi_{p^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} w(s) d s\right) d \theta \\
= & \int_{r}^{\tau} \psi_{p^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} w(s) f(v(s)) d s\right) \\
& -\frac{L^{1 /(p-1)}}{2} \psi_{p^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} w(s) d s\right) d \theta \\
& +\int_{\tau}^{1} \psi_{p^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} w(s) f(v(s)) d s\right) \\
& -\frac{L^{1 /(p-1)}}{2} \psi_{p^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} w(s) d s\right) d \theta
\end{align*}
$$

Since $\phi_{m, h}$ is a positive and decreasing function, it follows that, for all $r \in[0, \tau / 2)$, we have

$$
\underline{v}(r)=\mu^{1 /(q-1)} \frac{L^{1 /(q-1)}}{2} \phi_{q, \rho}(r) \geq \mu^{1 /(q-1)} \frac{L^{1 /(q-1)}}{2} \phi_{q, \rho}\left(\frac{\tau}{2}\right)>0
$$

that is,

$$
v(r)>\underline{v}(r) \geq \mu^{1 /(q-1)} \frac{L^{1 /(q-1)}}{2} \phi_{q, \rho}(\tau / 2)>0
$$

By (H1), there exists a $\mu_{1}>0$ large enough such that $\mu>\mu_{1}$ implies that $f(v(s)) \geq L$ for all $s \in[0, \tau / 2)$. Then, in (2.6), we can write

$$
\begin{align*}
G(v)(r) \geq & \int_{r}^{\tau} L^{1 /(p-1)} \psi_{p^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} w(s) d s\right) \tag{2.7}\\
& -\frac{L^{1 /(p-1)}}{2} \psi_{p^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} w(s) d s\right) d \theta \\
& +\int_{\tau}^{1} \psi_{p^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} w(s) f(v(s)) d s\right) \\
& -\frac{L^{1 /(p-1)}}{2} \psi_{p^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} w(s) d s\right) d \theta
\end{align*}
$$

Thus,

$$
\begin{align*}
G(v)(r) \geq & \frac{L^{1 /(p-1)}}{2} \int_{r}^{\tau} \psi_{p^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} w(s) d s\right) d \theta \tag{2.8}\\
& +\int_{\tau}^{1} \psi_{p^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} w(s) f(v(s)) d s\right) d \theta \\
& -\frac{L^{1 /(p-1)}}{2} \phi_{p, \omega}(\tau) .
\end{align*}
$$

Since $r \in[0, \tau / 2)$, we can write

$$
\begin{align*}
& \frac{L^{1 /(p-1)}}{2} \int_{r}^{\tau} \psi_{p^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} w(s) d s\right) d \theta \tag{2.9}\\
& \quad \geq \frac{L^{1 /(p-1)}}{2} \int_{\tau / 2}^{\tau} \psi_{p^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} w(s) d s\right) d \theta
\end{align*}
$$

On the other hand, by (H0), it follows that

$$
\begin{align*}
& \int_{\tau}^{1} \psi_{p^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} w(s) f(v(s)) d s\right) d \theta \tag{2.10}\\
& \geq-\psi_{p^{\prime}}(\sigma) \int_{\tau}^{1} \psi_{p^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} w(s) d s\right) d \theta
\end{align*}
$$

Applying (2.9) and (2.10) to (2.8), we have

$$
\begin{aligned}
G(v)(r) \geq & \frac{L^{1 /(p-1)}}{2} \int_{\tau / 2}^{\tau} \psi_{p^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} w(s) d s\right) d \theta \\
& -\psi_{p^{\prime}}(\sigma) \int_{\tau}^{1} \psi_{p^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} w(s) d s\right) d \theta \\
& -\frac{L^{1 /(p-1)}}{2} \phi_{p, \omega}(\tau)
\end{aligned}
$$

this allows us to write

$$
\begin{aligned}
G(v)(r) \geq & \frac{L^{1 /(p-1)}}{2}\left(\int_{\tau / 2}^{\tau} \psi_{p^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} w(s) d s\right) d \theta-\phi_{p, \omega}(\tau)\right) \\
& -\psi_{p^{\prime}}(\sigma) \phi_{p, \omega}(\tau)=0
\end{aligned}
$$

Case (ii). $r \in[\tau / 2,1]$. Since

$$
\begin{aligned}
& \int_{r}^{1} \psi_{p^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} w(s) f(v(s)) d s\right) d \theta \\
& \quad=\int_{r}^{1} \theta^{(1-N) /(p-1)} \psi_{p^{\prime}}\left(\int_{0}^{\theta} s^{N-1} \omega(s) f(v(s)) d s\right) d \theta
\end{aligned}
$$

we can rewrite G as

$$
\begin{aligned}
G(v)(r)= & \int_{r}^{1} \theta^{(1-N) /(p-1)} \psi_{p^{\prime}}\left(\int_{0}^{\theta} s^{N-1} \omega(s) f(v(s)) d s\right) d \theta \\
& -\frac{L^{1 /(p-1)}}{2} \phi_{p, \omega}(r)
\end{aligned}
$$

or

$$
\begin{align*}
G(v)(r)= & \int_{r}^{1} \theta^{(1-N) /(p-1)} \psi_{p^{\prime}} \tag{2.11}\\
& \cdot\left(\left(\int_{0}^{\tau / 2} s^{N-1} \omega(s) f(v(s)) d s+\int_{\tau / 2}^{\theta} s^{N-1} \omega(s) f(v(s)) d s\right)\right) d \theta \\
& -\frac{L^{1 /(p-1)}}{2} \phi_{p, \omega}(r)
\end{align*}
$$

Define

$$
\begin{equation*}
C:=\frac{\sigma \int_{\tau / 2}^{1} s^{N-1} \omega(s) d s+\left(L / 2^{p-1}\right) \int_{0}^{1} s^{N-1} \omega(s) d s}{\int_{0}^{\tau / 2} s^{N-1} \omega(s) d s}>0 \tag{2.12}
\end{equation*}
$$

As in Case (i), by (H1), there exists a $\mu_{2}>0$ such that $f(v(s)) \geq C$ for every $\mu>\mu_{2}$ and $s \in[0, \tau / 2]$. Then,

$$
\begin{equation*}
\int_{0}^{\tau / 2} s^{N-1} \omega(s) f(v(s)) d s \geq C \int_{0}^{\tau / 2} s^{N-1} \omega(s) d s \tag{2.13}
\end{equation*}
$$

By (H0), (2.11) and (2.13), we have

$$
\begin{align*}
G(v)(r) \geq & \int_{r}^{1}\left(\theta^{(1-N) /(p-1)} \psi_{p^{\prime}}\right. \tag{2.14}\\
& \left.\cdot\left(\int_{0}^{\tau / 2} s^{N-1} \omega(s) C d s-\sigma \int_{\tau / 2}^{\theta} s^{N-1} \omega(s) d s\right)\right) d \theta \\
& -\frac{L^{1 /(p-1)}}{2} \phi_{p, \omega}(r)
\end{align*}
$$

On the other hand, since

$$
\int_{\tau / 2}^{\theta} s^{N-1} \omega(s) d s \leq \int_{\tau / 2}^{1} s^{N-1} \omega(s) d s
$$

and
$\phi_{p, \omega}(r)=\int_{r}^{1} \theta^{(1-N) /(p-1)} \psi_{p^{\prime}}\left(\int_{0}^{\tau / 2} s^{N-1} \omega(s) d s+\int_{\tau / 2}^{\theta} s^{N-1} \omega(s) d s\right) d \theta$,
we have

$$
\begin{equation*}
\phi_{p, \omega}(r) \leq \int_{r}^{1} \theta^{(1-N) /(p-1)} \psi_{p^{\prime}}\left(\int_{0}^{1} s^{N-1} \omega(s) d s\right) d \theta \tag{2.15}
\end{equation*}
$$

Then, using (2.11), (2.15) and (H0), it follows that

$$
\begin{aligned}
G(v)(r) \geq & \int_{r}^{1} \theta^{(1-N) /(p-1)} \psi_{p^{\prime}}\left(\left(\int_{0}^{\tau / 2} s^{N-1} \omega(s) C d s-\sigma \int_{\tau / 2}^{1} s^{N-1} \omega(s) d s\right)\right) d \theta \\
& -\frac{L^{1 /(p-1)}}{2} \int_{r}^{1} \theta^{(1-N) /(p-1)} \psi_{p^{\prime}}\left(\int_{0}^{1} s^{N-1} \omega(s) d s\right) d \theta
\end{aligned}
$$

Then, from (2.12), we have $G(v)(r) \geq 0$ for all $r \in[\tau / 2,1]$.

Proof of Theorem 1.2. According to Lemma 2.1, it follows that

$$
\left(T_{1}(u, v)(r), T_{2}(u, v)(r)\right) \geq(\underline{u}(r), \underline{v}(r))
$$

for every $r \in[0,1]$ and $(\lambda, \mu) \geq\left(\lambda^{*}, \mu^{*}\right)$. Define $\widetilde{g}(s)=\sup _{t \leq s} g(t)$, and let $(\bar{u}, \bar{v}) \geq(\underline{u}, \underline{v})$ be

$$
\begin{equation*}
(\bar{u}, \bar{v})(r)=\left(C_{\lambda} \phi_{p, \omega}(r), \mu^{1 /(q-1)} \widetilde{g}\left(C_{\lambda}\left\|\phi_{p, \omega}\right\|_{\infty}\right)^{1 /(q-1)} \phi_{q, \rho}(r)\right) \tag{2.16}
\end{equation*}
$$

where C_{λ} is a constant to be chosen.
We claim that, if $(u, v) \leq(\bar{u}, \bar{v})$, then $T(u, v) \leq(\bar{u}, \bar{v})$. In fact, since \widetilde{g} is an increasing function and $u \leq \bar{u}$, we have $\widetilde{g}(u) \leq \widetilde{g}(\bar{u})=\widetilde{g}\left(C_{\lambda} \phi_{p, \omega}\right)$. Thus,

$$
\begin{aligned}
T_{2}(u, v)(r) & =\mu^{1 /(q-1)} \int_{r}^{1} \psi_{q^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} \rho(s) g(u(s)) d s\right) d \theta \\
& \leq \mu^{1 /(q-1)} \int_{r}^{1} \psi_{q^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} \rho(s) \widetilde{g}(u(s)) d s\right) d \theta \\
& \leq \mu^{1 /(q-1)} \int_{r}^{1} \psi_{q^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} \rho(s) \widetilde{g}\left(C_{\lambda} \phi_{p, \omega}\right) d s\right) d \theta \\
& \leq \mu^{1 /(q-1)} \widetilde{g}\left(C_{\lambda}\left\|\phi_{p, \omega}\right\|_{\infty}\right)^{1 /(q-1)} \int_{r}^{1} \psi_{q^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} \rho(s) d s\right) d \theta \\
& =\mu^{1 /(q-1)} \widetilde{g}\left(C_{\lambda}\left\|\phi_{p, \omega}\right\|_{\infty}\right)^{1 /(q-1)} \phi_{q, \rho}(r)=\bar{v}(r)
\end{aligned}
$$

On the other hand, $v(s) \leq \bar{v}(s)=\mu^{1 /(q-1)} \widetilde{g}\left(C_{\lambda}\left\|\phi_{p, \omega}\right\|_{\infty} /\right)^{1 /(q-1)} \phi_{q, \rho}(r)$ implies that

$$
\widetilde{f}(v(s)) \leq \widetilde{f}\left(\mu^{1 /(q-1)} \widetilde{g}\left(C_{\lambda}\left\|\phi_{p, \omega}\right\|_{\infty}\right)^{1 /(q-1)} \phi_{q, \rho}(r)\right)
$$

Thus,

$$
\begin{aligned}
& T_{1}(u, v)(r) \\
& =\lambda^{1 /(p-1)} \int_{r}^{1} \psi_{p^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} w(s) f(v(s)) d s\right) d \theta \\
& \leq \lambda^{1 /(p-1)} \int_{r}^{1} \psi_{p^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} w(s) \widetilde{f}(v(s)) d s\right) d \theta \\
& \leq \lambda^{1 /(p-1)} \int_{r}^{1} \psi_{p^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} w(s)\right. \\
& \left.\cdot \tilde{f}\left(\mu^{1 /(q-1)} \widetilde{g}\left(C_{\lambda}\left\|\phi_{p, \omega}\right\|_{\infty}\right)^{1 /(q-1)} \phi_{q, \rho}\right) d s\right) d \theta \\
& \leq \lambda^{1 /(p-1)} \widetilde{f}^{1 /(p-1)}\left(\mu^{1 /(q-1)}\left\|\phi_{q, \rho}\right\|_{\infty} \widetilde{g}\left(C_{\lambda}\left\|\phi_{p, \omega}\right\|_{\infty}\right)^{1 /(q-1)}\right) \\
& \cdot \int_{r}^{1} \psi_{p^{\prime}}\left(\int_{0}^{\theta}\left(\frac{s}{\theta}\right)^{N-1} w(s) d s\right) d \theta \\
& \leq \lambda^{1 /(p-1)} \widetilde{f}^{1 /(p-1)}\left(\mu^{1 /(q-1)}\left\|\phi_{q, \rho}\right\|_{\infty} \widetilde{g}\left(C_{\lambda}\left\|\phi_{p, \omega}\right\|_{\infty}\right)^{1 /(q-1)}\right) \phi_{p, \omega}(r) .
\end{aligned}
$$

According to (H2), if C_{λ} is large enough, it is possible to obtain $T_{1}(u, v) \leq C_{\lambda} \phi_{p, \omega}(r)$. Then, $[(\underline{u}, \underline{v}) ;(\bar{u}, \bar{v})]$ is invariant by T. Since this set is bounded, closed, convex, and T is completely continuous, it follows that T has a fixed point which is a solution of (P).

Acknowledgments. The author would like to express sincere thanks to the Universidade Federal de Ouro Preto.

REFERENCES

1. H. Bueno, G. Ercole, W. Ferreira and A. Zumpano, Existence and multiplicity of positive solutions for the p-laplacian with nonlocal coefficient, J. Math. Anal. Appl. 343 (2008), 151-158.
2. A. Castro, C. Maya and R. Shivaji, Nonlinear eigenvalue problems with semipositone structure, Electr. J. Diff. Eqs. 5 (2000), 33-49.
3. M. Chhetri, D.D. Hai and R. Shivaji, On positive solutions for classes of p-Laplacian semipositone systems, Discr. Cont. Dynam. Syst. 9 (2003), 1063-1071.
4. R. Dalmasso, Existence and uniqueness of positive solutions of semilinear elliptic systems, Nonlin. Anal. 39 (2000), 559-568.
5. K. Deimling, Nonlinear functional analysis, Springer, Berlin, 1985.
6. D.D. Hai, Existence and uniqueness of solutions for quasilinear elliptic systems, Proc. Amer. Math. Soc. 133 (2004), 223-228.
7. \qquad , Positive solutions for non-cooperative singular p-Laplacian systems, Tokyo J. Math. 35 (2012).
8. \qquad , Singular boundary value problems for the p-Laplacian, Nonlin. Anal. 73 (2010), 2876-2881.
9. D.D. Hai and R. Shivaji, An existence result on positive solutions for a class of semilinear elliptic systems, Proc. Roy. Soc. Edinburgh 134 (2004), 137-141.
10. \qquad , An existence result on positive solutions for a class of p-Laplacian systems, Nonlin. Anal. 56 (2003), 1007-1010.
11. G.M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlin. Anal. 12 (1988), 1203-1219.
12. E.M. Martins and W.M. Ferreira, Positive solution for a class of coupled (p, q)-Laplacian systems, Bound. Val. Prob. 21 (2014), 1-13.
13. P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Diff. Eqs. 51 (1984), 126-150.

Universidade Federal de Ouro Preto, Dept. de Matemática, Ouro Preto, Minas Gerais, 35.400-000, Brazil
Email address: eder@ufop.edu.br

[^0]: 2010 AMS Mathematics subject classification. Primary 35J47, 35J57, 58J20.
 Keywords and phrases. p-Laplacian radial systems, maximum principle, semipositone problems.

 The author was partially supported by FAPEMIG.
 Received by the editors on November 1, 2017, and in revised form on May 24, 2018.

