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PERIODIC POINTS IN TOWERS OF FINITE FIELDS
FOR POLYNOMIALS ASSOCIATED

TO ALGEBRAIC GROUPS

MICHELLE MANES AND BIANCA THOMPSON

ABSTRACT. We find the limiting proportion of peri-
odic points in towers of finite fields for polynomial maps
associated to algebraic groups, namely, pure power maps
ϕ(z) = zd and Chebyshev polynomials.

1. Introduction. Let K be a field. We fix the following notation:
ϕ(z) is a polynomial in K[z], ϕn(z) is the nth iterate of ϕ under
composition; we take ϕ0(z) = z. Oϕ(α) is the (forward) orbit of
a point α under ϕ, i.e., {ϕn(z) | n ≥ 0}; and Per(ϕ,K) is the set
of periodic points for ϕ in the field K, i.e., {α ∈ K | ϕn(α) =
α for some n > 0}.

When iterating a polynomial function ϕ over a finite field, the orbit
of any point α ∈ Fpn is a finite set, that is, all points are preperiodic,
meaning the orbit eventually enters a cycle. However, many natural
questions about the structure of orbits over finite fields remain:

(1) Fix a finite field Fpn and look over all polynomials of fixed degree
d: on average, are there “many” periodic points with relatively small
tails leading into the cycles? Or, do we expect few periodic points
with long tails? (See Figures 1 and 2.)

(2) Fix a polynomial defined over Q: what is the proportion of
periodic points for the reduced map over Fp as p→ ∞?

(3) Again, fix a polynomial: how does the proportion of periodic
points in Fpn vary as n→ ∞?
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Figure 1. Few periodic points: ϕ(z) = z11 on F35 has 3 fixed points and
240 strictly preperiodic points.

Work by Flynn and Garton [2] addresses the first question. Using
combinatorial arguments, they bound the average number of periodic
points over all polynomials of degree d. For d large, that is, d ≥

√
pn,

their bound of (5/6)
√
pn agrees with earlier heuristic arguments.

In her thesis [5], Madhu tackles the second question for polynomials
ϕ(z) = zm + c over Fp, using Galois-theoretic methods. With some
restrictions on c, she shows that, for primes congruent to 1 modulo m,
the proportion of points in Fp that are periodic points for ϕ goes to
0 as p → ∞. Her work was later generalized for rational functions by
Juul, et al. [4]. There, they show that, for many rational functions,
the proportion of periodic points should be small. In [6, Section 3],
Hu and Sha fix an n and look at power maps over Fpn . Exploiting the
underlying group structure of such functions allows them to find the
number of periodic points for such functions over Fpn and to compute
the asymptotic mean number of periodic points as p→ ∞.

In the current work, we focus on the third question in the special
case that the polynomial map ϕ(z) can be viewed as an endomorphism
of an underlying algebraic group. This restriction makes the structure
of the periodic points particularly simple and is, therefore, a natural
place to begin a more complete investigation of the question.

In this paper, we consider the limiting proportions of strictly peri-
odic points and quickly see that, in fact, the näıve limit

lim
n→∞

#Per (ϕ,Fpn)

pn
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Figure 2. Many periodic points: ϕ(z) = z3 on F54 has 209 periodic points
and 416 strictly preperiodic points.
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does not exist in general, since the map ϕ acts as a permutation
polynomial whenever n is relatively prime to the multiplicative order
of p modulo the degree of ϕ.

However, we are able to find limiting proportions along towers of
finite fields Fpn with suitable divisibility conditions on n. For example,
we have the following two results for q an odd prime. Similar results
hold in the case q = 2 and for maps of composite degree. This work
includes a proof of the composite degree case and prime p ≥ 3 case.

Theorem 1.1 (Theorems 4.7 and 5.7). Fix a prime p, and let q be
a different odd prime. Define δ to be the multiplicative order of p
modulo q and µ = vq (pδ − 1) ≥ 1. Let ϕ(z) = zq, and let Tq(z) be the
qth Chebyshev polynomial. Then, we have the following :

lim
n→∞
δ|n

vq(n)=ν

#Per(ϕ,Fpn)

pn
=

1

qµ+ν
,

and

lim
n→∞
δ|2n

vq(n)=ν

#Per(Tq,Fpn)

pn
=
qµ+ν + 1

2qµ+ν
.

This first result is related to, but different from, the results in [6,
Section 4], in which Hu and Sha examine the asymptotic mean number
of fixed points for a power map ϕ over Fpn as n → ∞. They find
that, under strict conditions on m, the asymptotic mean number of
fixed points for ϕ(x) = xm does not exist, and they provide heuristic
arguments that, in general, these mean numbers will be difficult to
compute.

Next is the outline of the paper and a survey of the techniques used.
Section 2 is a brief overview of the two families of polynomials consid-
ered here: pure power maps and Chebyshev polynomials. Section 3
provides useful lemmas concerning q-adic valuations. Sections 4 and 5
give our main results for pure power maps and Chebyshev polynomials,
respectively.
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2. Polynomials associated to endomorphisms of algebraic
groups. We first consider the multiplicative group Gm where, for a
field K, the K-valued points are Gm(K) = K∗. The endomorphism
ring of Gm is Z:

Z −→ End(Gm)

d 7−→ zd.

Hence, these pure power maps can be viewed as endomorphisms of an
underlying group. Iteration of pure power maps is particularly easy
to understand, as

ϕ(z) = zd

means
ϕn(z) = zd

n

.

Similarly, we consider the additive group Ga, whose underlying
scheme is the affine line A1, which may be viewed as a quotient of
Gm:

Gm/{z = z−1} −→ A1

z 7−→ z + z−1.

Since the automorphism z 7→ z−1 commutes with the power map
ϕ(z) = zd, the polynomial ϕ descends to an endomorphism of A1,
which we denote Td, the dth Chebyshev polynomial.

Gm
z 7→zd

−−−−→ Gmy y
Gm/z ∼ z−1 z 7→zd

−−−−→ Gm/z ∼ z−1yz 7→z+z−1

yz 7→z+z−1

A1 ω 7→Td(ω)−−−−−−→ A1.

Taking as a definition the fact that Td(w) ∈ Z[w] satisfies

(2.1) Td(z + z−1) = zd + z−d,



176 MICHELLE MANES AND BIANCA THOMPSON

we may prove existence and uniqueness of the Chebyshev polynomials
along with a simple recursion

(2.2) Td(w) =


2 d = 0

w d = 1

wTd−1(w)− Td−2(w) d ≥ 2.

A pleasant rule for composition of Chebyshev polynomials arises
directly from the definition in (2.1):

Td ◦ Te(w) = Tde(w) = Te ◦ Td(w),

which, in turn, gives a simple form of iteration

(2.3) Tn
d (w) = Tdn(w).

We refer the interested reader to [7, Chapter 6] for more on the
dynamics of pure power maps, Chebyshev polynomials and other
rational maps arising from algebraic groups, including proofs of some
of the statements above.

3. Preliminaries. This section contains a few facts regarding valu-
ations and periodic points over finite fields which will be useful in the
sequel. Throughout this section, p and q represent distinct primes,
n is a positive integer, and we use the following, additional, notation:
vq(n) is the q-adic valuation, i.e., if n = qνd with q - d, then vq(n) = ν.
δ is the multiplicative order of p modulo q, i.e., the smallest positive
integer such that q | (pδ − 1).

Since our goal is ultimately to classify periodic points in finite fields,
we need to be able to recognize which points are periodic as opposed
to strictly preperiodic. Our first result states that any finite set which
is forward invariant under ϕ contains only periodic points.

Lemma 3.1. Let ϕ(z) ∈ K[z] be a polynomial, and let S ⊆ K be
finite. If

ϕ(S) = S,

then S ⊆ Per(ϕ,K).
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Proof. Fix α ∈ S. For every n > 0, we have ϕn(S) = S. Hence, for
every n, we can find βn ∈ S such that ϕn(βn) = α.

Since S is finite, for some n > m > 0, we must have βn = βm.
However, this means we have β ∈ S such that

ϕm(β) = α and ϕn(β) = α, so ϕn−m(α) = α,

and α is periodic. �

The next three lemmas give us the tools to calculate the q-adic
valuation of pnd − 1 based on the valuations of pd − 1 and n. These
will be used to create the towers of finite fields for which we can
calculate limiting proportions of periodic points. The results are
different enough for q = 2 compared to odd primes that the cases
are broken up along those lines.

Lemma 3.2. Let p and q be distinct primes. Suppose that vq(p
d−1) =

µ ≥ 1 and vq(n) = 0. Then, vq(p
nd − 1) = µ.

Proof.

vq(p
nd − 1) = vq(p

d − 1) + vq(p
(n−1)d + p(n−2)d + · · ·+ pd + 1︸ ︷︷ ︸

n terms, all 1 mod q

)

= µ+ 0 = µ. �

Lemma 3.3. Let p be an odd prime with max{v2(p−1), v2(p+1)} = µ.
Let v2(n) = ν ≥ 1. Then, v2(p

n − 1) = µ+ ν.

Proof. We proceed by induction on v2(n). For every odd d, exactly
one of pd − 1, pd +1 is divisible by 4. (In particular, µ ≥ 2.) Similarly
to the proof of Lemma 3.2, we have

v2(p
2d − 1) = v2(p

d − 1) + v2(p
d + 1)

= v2(p− 1) + v2 (odd number)

+ v2(p+ 1) + v2 (odd number)

= µ+ 1.
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Assume, for all n with v2(n) = ν > 1, that we have v2(p
n − 1) =

µ + ν > 1, in which case v2(p
n + 1) = 1. Consider some n with

v2(n) = ν + 1, and choose d odd such that n = 2ν+1d.

v2(p
n − 1) = v2(p

2ν+1d − 1)

= v2(p
2νd − 1) + v2(p

2νd + 1)

= µ+ ν + 1. �

Lemma 3.4. Let q be an odd prime. Suppose that vq(p
d − 1) = µ ≥ 1

and vq(n) = ν. Then, vq(p
nd − 1) = µ+ ν.

Proof. The result for ν = 0 is exactly Lemma 3.2. Choose k so that
pd = 1 + kqµ (in particular, q - k). Since q ≥ 3 and µ ≥ 1, we have
qµ ≥ µ+ 2. Hence,

pqd = (1 + kqµ)q ≡ 1 + kqµ+1 (mod qµ+2).

The result then follows by straightforward induction. �

Our main results in Sections 4 and 5 will be stated for maps of prime
degree q. The following lemma shows that, in fact, the proportion of
periodic points is identical for the maps of degree q and degree qe. We
focus on the prime degree case for ease of exposition.

Lemma 3.5. Let ϕ(z) = zq and ψ(z) = zq
e

. Then:

Per(ϕ,Fpn) = Per(ψ,Fpn) for every n.

Similarly, Per(Tq,Fpn) = Per(Tqe ,Fpn).

Proof. Note that ϕm(z) = zq
m

and ψm(z) = zq
em

. Thus, if ϕm(α)
= α, then, likewise, ψm(α) = α. On the other hand, if ψm(α) = α,
then ϕem(α) = α. Applying the iteration for Chebyshev polynomials
in (2.3) gives the result in that case as well. �

4. Power maps. Throughout this section, we fix the polynomial

ϕ(z) = zq,

for q prime. We also take p to be any prime different from q. Our
interest is in understanding the proportion of periodic points in Fpn

as n grows. In particular, we consider the following limits.
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Definition 4.1. We define the following proportions for integers
ν ≥ 0. Recall that δ is the multiplicative order of p modulo q.

Pν(ϕ) = lim
n→∞
δ|n

vq(n)=ν

#Per (ϕ,Fpn)

pn
.

Since δ is the multiplicative order of p modulo q, we know that
δ < q. Thus, if n satisfies

δ | n and vq(n) = ν,

then there is an n′ such that

n = δn′ and vq(n
′) = ν.

We will implicitly use this fact later when applying Lemma 3.4.

We begin by explicitly classifying the periodic points of ϕ in Fpn .

Lemma 4.2. Let pn − 1 = qed with q - d. Then:

Per(ϕ,Fpn) = {0} ∪ {α ∈ Fpn : αd = 1}.

Proof. This was more generally proven in [1, Theorem 1]; we
include a proof using our own notation for the convenience of the
reader. The defining equation for Fpn is

(4.1) zp
n

− z = z(zd − 1)Q(z),

for some monic Q(z) ∈ Z[z]. Clearly, 0 is fixed by ϕ. Since q - d, the
roots of zd − 1 form a group of order prime to q. Hence, ϕ(z) = zq

is a permutation of the group elements, and these roots are forward
invariant under ϕ. Hence, we have

{0} ∪ {α ∈ Fpn : αd = 1} ⊆ Per(ϕ,Fpn).

Now, let α be a root of Q(z); thus, in particular, αqed = 1, but αd ̸= 1.

Hence, for some 1 ≤ i ≤ e and some d′ | d, we have αqid′
= 1. In other

words, αqi has order dividing d and is, therefore, a root of zd − 1.
Since roots of zd − 1 are forward invariant under ϕ, α is not periodic
for ϕ. �
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Remark 4.3. We applied Lemma 4.2 to create the examples in
Figures 1 and 2. Finding a value of pn − 1 where, in the notation of
the lemma, qe is much smaller than d, gives “many periodic points.”
Similarly, an example where qe is relatively large compared with d
gives few periodic points.

Remark 4.4. Let q be prime, and define dn by pn − 1 = qedn where
q - dn. It follows from Lemma 4.2 that the periodic points of zq

are 0 and roots of zdn − 1; thus, #Per(zq,Fpn) = dn + 1, see [6,
Propostion 2.9].

The following proposition justifies our choice of limit in Defini-
tion 4.1 since the only interesting proportions of periodic points are
those where δ | n.

Proposition 4.5. If δ - n, all points of Fpn are periodic under ϕ.

Proof. Since δ - n, q - pn − 1. The result follows immediately from
Lemma 4.2. �

We now prove our main results for pure power maps. The statement
is slightly different, depending upon whether q = 2 or q is an odd
prime. The difference exactly parallels the difference between the
valuation calculations in Lemmas 3.3 and 3.4.

Theorem 4.6. Let v2(p− 1) = λ and max{v2(p− 1), v2(p+ 1)} = µ.
Then, for ϕ(z) = z2, we have

P0(ϕ) =
1

2λ
,

and

Pν(ϕ) =
1

2µ+ν
for ν ≥ 1.

Proof. First, consider n odd. By Lemma 3.2, we may choose dn
odd so that pn − 1 = 2λdn. By Remark 4.4, there are dn +1 points in
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Per(ϕ,Fpn). Then,

P0(ϕ) = lim
n→∞
n odd

#Per(ϕ,Fpn)

pn
= lim

dn→∞

dn + 1

2λdn + 1

= lim
dn→∞
dn odd

dn + 1

2λdn + 1
=

1

2λ
.

Now, let v2(n) = ν ≥ 1. By Lemma 3.3, pn − 1 = 2µ+νdn with
dn odd. Again, the number of periodic points for ϕ in Fpn is dn + 1.
Hence,

Pν(ϕ) = lim
n→∞

v2(n)=ν

#Per(ϕ,Fpn)

pn
= lim

dn→∞
dn odd

dn + 1

2µ+νdn + 1
=

1

2µ+ν
. �

In Tables 1 and 2, we illustrate Theorem 4.6. The data were
calculated using Sage [8].

Table 1. #Per(z2,Fpn)/p
n with n odd.

p 3 5 41 17
λ = v2(p− 1) 1 2 3 4

#Per(z2,Fp)

p
0.666666667 0.400000000 0.146341463 0.117647059

#Per(z2,Fp3)

p3
0.518518518 0.256000000 0.125012696 0.0626908203

#Per(z2,Fp5)

p5
0.502057613 0.250240000 0.125000008 0.0625006603

#Per(z2,Fp7)

p7
0.500228624 0.250009600 0.125000000 0.0625000023

1

2λ
0.5 0.25 0.125 0.0625
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Table 2. #Per(z2,Fpn)/p
n with v2(n) = 1.

p 3 7 17
µ = max{v2(p− 1), v2(p+ 1)} 2 3 4

#Per(z2,Fp2)

p2
0.222222222 0.0816326530 0.0346020761

#Per(z2,Fp6)

p6
0.126200274 0.0625079686 0.0312500401

#Per(z2,Fp10)

p10
0.125014818 0.0625000033 0.0312500000

#Per(z2,Fp14)

p14
0.125000183 0.0625000000 0.0312500000

1

2µ+1
0.125 0.0625 0.03125

Theorem 4.7. Let q be an odd prime. We continue with the earlier
notation: δ is the multiplicative order of p modulo q and vq(p

δ − 1) =
µ ≥ 1. For ϕ(z) = zq, we have

Pν(ϕ) =
1

qµ+ν
.

Proof. Recall that the limit for Pν(ϕ) is taken over n such that δ | n
and vq(n) = ν. By Lemma 3.4, for such n, we have pn − 1 = qµ+νdn
with q - dn, and, by Remark 4.4, there are dn+1 points in Per(ϕ,Fpn).
Thus,

Pν(ϕ) = lim
n→∞
δ|n

vq(n)=ν

#Per(ϕ,Fpn)

pn
= lim

n→∞
δ|n

vq(n)=ν

dn + 1

qµ+νdn + 1

= lim
dn→∞
q-dn

dn + 1

qµ+νdn + 1
=

1

qµ+ν
. �
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Tables 3 and 4 illustrate Theorem 4.7 for the map ϕ(z) = z3. Again,
the data were calculated using Sage [8].

Table 3. #Per(z3,Fpn)/p
n with v3(n) = 0.

p 5 19 53
δ 2 1 2

µ = v3(p
δ − 1) 1 2 3

#Per(z3,Fpδ)

pδ
0.360000000 0.157894737 0.0373798505

#Per(z3,Fp2δ)

p2δ
0.334400000 0.113573407 0.0370371591

#Per(z3,Fp4δ)

p4δ
0.333335040 0.111117932 0.0370370371

1

3µ
0.333333333 0.111111111 0.0370370370

Table 4. #Per(z3,Fpn)/p
n with v3(n) = 1.

p 5 19 53
δ 2 1 2

µ = v3(p
δ − 1) 1 2 3

#Per(z3,Fp3δ)

p3δ
0.111168000 0.0371774311 0.0123456791

#Per(z3,Fp6δ)

p6δ
0.111111115 0.0370370575 0.0123456790

#Per(z3,Fp12δ)

p12δ
0.111111111 0.0370370370 0.0123456790

1

3µ+1
0.111111111 0.0370370370 0.0123456790
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We wish to extend our results to polynomials with composite degree.
Lemma 3.5 takes care of the prime power degree; thus, we are left to

consider the case ϕ(z) = zt for t = qf11 q
f2
2 · · · qfrr and r ≥ 2. For each

1 ≤ i ≤ r, let

δi be the multiplicative order of p modulo qi

and
µi = vqi(p

δi − 1).

We also define
∆ = lcm{δi}1≤i≤r.

An argument identical to the argument in Proposition 4.5 shows that,
if gcd(∆, n) = 1, then all points of Fpn will be periodic. Unlike the
case of the prime degree, however, we need not require ∆ | n to have
a nontrivial ratio of periodic points.

In order to define the appropriate towers of fields, we need a bit
more notation. For each nonempty subset I ⊆ {1, 2, . . . , r}, let

δI = lcm{δi}i∈I .

If δI = δI′ , then δI∪I′ = δI as well. Hence, to a fixed value of δ, we
will associate the maximal subset J ⊆ {1, 2, . . . , r} such that δJ | δ.
Finally, given an integer n, we define an r-tuple of valuations

v(n) = ⟨vqi(n)⟩1≤i≤r.

We now have the tools to define limiting proportions of periodic
points along appropriate towers of finite fields. Define

Pδ,ν(ϕ) = lim
n→∞

gcd(∆,n)=δ
v(n)=⟨νi⟩

#Per(ϕ,Fpn)

pn
.

Proposition 4.8. Let ϕ(z) = zt where t = qf11 q
f2
2 . . . qfrr , with qi

distinct odd primes for 1 ≤ i ≤ r. Then, for J ⊆ {1, 2, . . . , r} maximal
with δJ | δ,

Pδ,ν(ϕ) =
∏
j∈J

1

q
µj+νj

j

.
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Remark 4.9. If no δi | δ, then the maximal set J is empty, and we
recover the fact that all points in Fpn are periodic in this case. This
theorem also recovers our result in Theorem 4.7 when applied to the
case t = q for q an odd prime.

Proof of Proposition 4.8. Since J is maximal such that δJ | gcd(∆, n),
we have

pn − 1 = dn
∏
j∈J

q
ej
j with gcd(t, dn) = 1.

Lemma 3.4 shows that ej = vqj (p
n − 1) = µj + νj for each j ∈ J .

The proof of Lemma 4.2 extends easily to this case, and we have

Per (ϕ,Fpn) = {0} ∪ {α ∈ Fpn : αdn = 1}.

Hence,

Pδ,ν(ϕ) = lim
n→∞

gcd(∆,n)=δ
v(n)=⟨νi⟩

#Per (ϕ,Fpn)

pn
.

= lim
dn→∞

gcd(t,dn)=1

dn + 1

dn
∏

j∈J q
µj+νj

j + 1

=
∏
j∈J

1

q
µj+νj

j

. �

In Tables 5 and 6, we use data from Sage [8] to illustrate Proposi-
tion 4.8 for the map ϕ(z) = z15 over fields F2n . In the notation of the
theorem, we have the following:

q1 = 3 q2 = 5 p = 2

δ1 = 2 δ2 = 4 ∆ = 4

µ1 = v3(2
2 − 1) = 1 µ2 = v5(2

4 − 1) = 1.

The table contains values of n with gcd(4, n) = δ.

Remark 4.10. A statement similar to Proposition 4.8 holds when
t is even, although the bookkeeping is somewhat messier. One must
apply the results in Lemma 3.3, with the exponent for 2 depending
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Table 5. #Per(z15,F2n)/2
n with ν = (v3(n), v5(n)) = (0, 0).

δ 1 2 4

#Per(z15,F2δ )

2δ
1.00000000 0.500000000 0.125000000

#Per(z15,F27δ )

27δ
1.00000000 0.333374023 0.0666666701

#Per(z15,F211δ )

211δ
1.00000000 0.333333492 0.0666666667

{qj : j ∈ J} ∅ {3} {3, 5}

∏
j∈J

1

q
µj

j

1 0.333333333 0.0666666666

Table 6. #Per(z15,F2n)/2
n with ν = (v3(n), v5(n)) = (1, 0).

δ 1 2 4

#Per(z15,F23δ )

23δ
1.00000000 0.125000000 0.0224609375

#Per(z15,F221δ )

221δ
1.00000000 0.111111111 0.0222222222

#Per(z15,F233δ )

233δ
1.00000000 0.111111111 0.0222222222

{qj : j ∈ J} ∅ {3} {3, 5}

∏
j∈J

1

q
µj+νj
j

1 0.111111111 0.0222222222



PERIODIC POINTS IN TOWERS OF FINITE FIELDS 187

on max{v2(p − 1), v2(p + 1)} and v2(n). We leave the details to the
interested reader.

5. Chebyshev polynomials. Throughout this section, we con-
sider Tq(z), the Chebyshev polynomial of prime degree q. We take
p to be any prime different from q. The proportions of interest in this
case run over slightly different towers of finite fields than in the power
map case.

Definition 5.1. We define the following proportions for integers
ν ≥ 0. Recall that δ is the multiplicative order of p modulo q.

Rν(Tq) = lim
n→∞
δ|2n

vq(n)=ν

#Per(Tq,Fpn)

pn
.

We begin with an explicit classification of the periodic points of Tq
in Fp. For any ω ∈ Fp, we may solve a quadratic to find a nonzero

ζ ∈ Fp such that ω = ζ + ζ−1.

Lemma 5.2. Consider some nonzero ζ ∈ Fp and an integer d ≥ 0.
Then:

ζ + ζ−1 = ζd + ζ−d

if and only if
ζ = ζd or ζ = ζ−d.

Proof.
ζ + ζ−1 = ζd + ζ−d

ζ2d − ζd+1 − ζd−1 + 1 = 0

(ζd−1 − 1)(ζd+1 − 1) = 0.

Since ζ ̸= 0, the first factor vanishes if and only if ζd = ζ, and the
second vanishes if and only if ζd = 1/ζ. �

Lemma 5.3. Let ω ∈ Fp. Then, ω ∈ Per(Tq,Fp) if and only if
ω = ζ + ζ−1, where ζd = 1 for some d relatively prime to q.
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Proof. Suppose that ω ∈ Fp is periodic for Tq, and choose ζ so that
ω = ζ + ζ−1. Then,

Tn
q (ω) = ω,

that is,
Tqn(ζ + ζ−1) = ζq

n

+ ζ−qn = ζ + ζ−1.

Thus, by Lemma 5.2, ζq
n−1 = 1 or ζq

n+1 = 1.

Conversely, suppose that there is a d prime to q such that ζd = 1,
and let φ be the Euler totient function. Since d | (qφ(d) − 1),

ζq
φ(d)−1 = 1,

that is,

ζq
φ(d)

= ζ.

Hence, ω = ζ + ζ−1 is fixed by T
φ(d)
q . �

We see that counting the periodic points for Tq(z) in Fpn is reduced
to counting ζ ∈ Fpn such that ζ + ζ−1 ∈ Fpn and ζd = 1 for some d
prime to q.

Lemma 5.4. Let ζ ∈ Fp. Then, ζ + ζ−1 ∈ Fpn if and only if

0 ̸= ζ ∈ Fpn or ζp
n+1 = 1.

Proof. We have ζ + ζ−1 ∈ Fpn if and only if it satisfies

(ζ + ζ−1)p
n

= ζ + ζ−1

ζp
n

+ ζ−pn

= ζ + ζ−1.

Thus, by Lemma 5.2, either ζ = ζp
n

, i.e., ζ ∈ Fpn , or 1/ζ = ζp
n

. �

Once again, the classification of periodic points explains our choice
of the limit in Definition 5.1.

Proposition 5.5. If δ - 2n, then all points of Fpn are periodic under
Tq.

Proof. Given that
q - p2n − 1,
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we conclude that

q - pn + 1 and q - pn − 1.

By Lemma 5.4, every ω ∈ Fpn can be written as ζ + ζ−1 for some ζ

with either ζp
n−1 = 1 or ζp

n+1 = 1. Since pn − 1 and pn + 1 are both
prime to q, the result follows from Lemma 5.3. �

We now prove our main results for the Chebyshev polynomials. As
in the case of pure power maps, the statements are slightly different
in the case q = 2 versus q odd.

Theorem 5.6. Let µ = max{v2(p− 1), v2(p+ 1)}. Then:

Rν(T2) =
2µ+ν−1 + 1

2µ+ν+1
.

Proof. Assume that ω ∈ Fpn is periodic for T2. Then, by
Lemma 5.3, ω = ζ + ζ−1, where ζd = 1 for some odd d. Since
ζ + ζ−1 ∈ Fpn , we apply Lemma 5.4 to conclude that ζp

n+1 = 1

or ζp
n−1 = 1.

First, suppose v2(n) = 0; thus, by Lemma 3.2, v2(p−1) = v2(p
n−1).

Then,

pn − 1 = 2µd1, pn + 1 = 2d2;(5.1)

or

pn − 1 = 2d2, pn + 1 = 2µd1,

where d1 and d2 are odd. Note that d1 and d2 are relatively prime
since d1 | (pn + 1) and d2 | (pn − 1) or vice versa, with both odd.

Similarly, if v2(n) = ν ≥ 1, Lemma 3.3 shows that v2(p
n−1) = µ+ν;

thus, we have

pn − 1 = 2µ+νd1 and pn + 1 = 2d2,

where d1 and d2 are odd and relatively prime.

In either case, ζ + ζ−1 is periodic if and only if ζd1 = 1 or ζd2 = 1.
Each such pair (ζ, ζ−1), including the pair (1, 1), corresponds to a
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periodic point for T2. Therefore, we have (d1 + d2)/2 periodic points
for T2 in Fpn .

Asymptotically, pn + 1 ∼ pn − 1, that is,

2µ+νd1 ∼ 2d2,

thus,
2µ+ν−1d1 ∼ d2.

Hence,

Rν(T2) = lim
n→∞

v2(n)=ν

#Per(T2,Fpn)

pn

= lim
d1→∞
d1 odd

(d1 + 2µ+ν−1d1)/2

2µd1 + 1
=

2µ+ν−1 + 1

2(2µ+ν)
. �

Theorem 5.7. Let q be an odd prime. Let vq(p
δ − 1) = µ ≥ 1. Then:

Rν(Tq) =
qµ+ν + 1

2qµ+ν
.

In Tables 7 and 8, we illustrate Theorem 5.6 using data from
Sage [8].

Proof. Assume ω ∈ Fpn is periodic for Tq. Then, by Lemma 5.3,
ω = ζ+ ζ−1, where ζd = 1 for some d prime to q. Since ζ+ ζ−1 ∈ Fpn ,

we apply Lemma 5.4 to conclude that ζp
n+1 = 1 or ζp

n−1 = 1.

Since vq(p
δ−1) = µ ≥ 1 and vq(n) = ν, by Lemma 3.4, vq(p

2n−1) =
µ+ ν ≥ 1. Thus, q | p2n − 1, which means that

q | pn − 1 or q | pn + 1

but not both. Therefore,

(5.2) pn − 1 = qµ+νd1, pn + 1 = d2;
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Table 7. #Per(T2,Fpn)/p
n with n odd.

p 3 7 17
µ = max{v2(p− 1), v2(p+ 1)} 2 3 4

#Per(T2,Fp)

p
0.333333333 0.285714286 0.294117647

#Per(T2,Fp3)

p3
0.370370370 0.311953353 0.281294525

#Per(T2,Fp5)

p5
0.374485597 0.312488844 0.281250154

#Per(T2,Fp7)

p7
0.374942844 0.312499772 0.281250001

2µ−1 + 1

2µ+1
0.375 0.3125 0.28125

Table 8. #Per(T2,Fpn)/p
n with v2(n) = 1.

p 3 7 17
µ = max{v2(p− 1), v2(p+ 1)} 2 3 4

#Per(T2,Fp2)

p2
0.333333333 0.285714286 0.266435986

#Per(T2,Fp6)

p6
0.312757202 0.281251859 0.265625010

#Per(T2,Fp10)

p10
0.312503175 0.281250001 0.265625000

#Per(T2,Fp14)

p14
0.312500039 0.281250000 0.265625000

2µ + 1

2µ+2
0.3125 0.28125 0.265625
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or
pn − 1 = d2, pn + 1 = qµ+νd1,

where q - d1d2.
Now, ζ + ζ−1 is periodic if and only if ζd1 = 1 or ζd2 = 1. Each

such pair (ζ, ζ−1), including the pairs (1, 1) and (−1,−1) for p odd,
corresponds to a periodic point for Tq. Thus, we have (d1 + d2)/2
periodic points for Tq in Fpn .

Again, pn + 1 ∼ pn − 1, meaning

qµ+νd1 ∼ d2.

Hence,

Rν(Tq) = lim
n→∞
δ|2n

vq(n)=ν

#Per (Tq,Fpn)

pn

= lim
d1→∞
q-d1

(d1 + qµ+νd1)/2

qµ+νd1 + 1
=
qµ+ν + 1

2qµ+ν
. �

Remark 5.8. Theorem 5.6 states that the proportion of periodic
points in the appropriate towers for T2 is something slightly more
than 1/4, where the difference depends upon the tower. Similarly,
Theorem 5.7 states that, for q an odd prime, the proportion is
slightly greater than 1/2. We can understand these results a bit more
intuitively in the following way.

Consider roots of the polynomials zp
n+1− 1 and zp

n−1− 1 over the
field Fp. Equation (5.2) shows that, for one of the two equations,
all roots ζ yield a periodic point ζ + ζ−1 for Tq. Thus, we are
guaranteed something close to pn/2 periodic points from roots of one
of the polynomials, and we pick up a few more from roots of the
other polynomial. A similar explanation for T2 can be derived from
equation (5.1).

In Table 9, we illustrate Theorem 5.7 for T3(z) over various finite
fields. Note that, for the choices of primes in the table, δ | 2n for all
integers n.
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Table 9. #Per(T3,Fpn)/p
n with v3(n) = 0.

p 5 19 53
δ 2 1 2

µ = v3(p
δ − 1) 1 2 3

#Per(T3,Fp)

p
0.600000000 0.578947368 0.509433962

#Per(T3,Fp2)

p2
0.680000000 0.556786704 0.518689925

#Per(T3,Fp4)

p4
0.667200000 0.555558966 0.518518579

3µ + 1

2 · 3µ 0.666666667 0.555555556 0.518518519

Once again, we wish to extend our results to polynomials with
composite degree. Lemma 3.5 takes care of prime power degree; thus,
we are left to consider the case of the tth Chebyshev polynomial Tt(z)

for t = qf11 q
f2
2 · · · qfrr and r ≥ 2. We continue with the notation intro-

duced at the end of Section 4: for each 1 ≤ i ≤ r, let δi be the
multiplicative order of p modulo qi and µi = vqi(p

δi − 1). We also
define

∆ = lcm{δi}1≤i≤r.

The argument in Proposition 5.5 can be modified to show that, if
gcd(∆, 2n) = 1, then all points of Fpn will be periodic. However, as
in Section 4, we need not require ∆ | 2n to have a nontrivial ratio of
periodic points.

As before, for each n ∈ Z, we define an r-tuple of valuations

v(n) = ⟨vqi(n)⟩1≤i≤r.

We then define the ratios of interest:

Rδ,ν(Tt) = lim
n→∞

gcd(∆,n)=δ
v(n)=⟨νi⟩

#Per(Tt,Fpn)

pn
.
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Theorem 5.9. Let t = qf11 q
f2
2 . . . qfrr , with qi distinct odd primes for

1 ≤ i ≤ r. Then, there are disjoint subsets I, J ⊆ {1, 2, . . . , r} such
that

Rδ,ν(Tt) =
QI +QJ

2QIQJ
,

where
QI =

∏
i∈I

qµi+νi

i and QJ =
∏
j∈J

q
µj+νj

j .

Proof. Take J maximal with δJ | δ; then, we know that qj | pδ − 1
if and only if j ∈ J . Now, define

I = {1 ≤ i ≤ r : qi | pδ + 1}.

Since the primes dividing t are distinct odd primes, no qi divides both
pδ − 1 and pδ + 1. Hence, I ∩ J = ∅.

Now, consider any n with gcd(∆, n) = δ. Clearly, qj | pn − 1 if and
only if j ∈ J . For any i ∈ I, we have

qi | pδ + 1 =⇒ qi | p2δ − 1 =⇒ qi | p2n − 1.

Since i /∈ J , qi - pn − 1. Therefore, qi | pn + 1. Furthermore, since
gcd(∆, 2n) | 2δ, we have

qi | p2n − 1 ⇐⇒ qi | p2δ − 1 ⇐⇒ i ∈ I ∪ J,

that is, qi | pn + 1 if and only if i ∈ I. Therefore,

pn − 1 = d1
∏
j∈J

q
ej
j , pn + 1 = d2

∏
i∈I

qeii ,

with gcd(t, d1) = gcd(t, d2) = 1. Lemma 3.4, applied to n and 2n,
respectively, shows that ej = µj + νj for j ∈ J and ei = µi + νi for
i ∈ I.

Lemma 5.3 easily extends to the case of composite degree, and we
conclude that ω ∈ Fpn is periodic for Tt if and only if ω = ζ+ζ−1 with
ζd1 = 1 or ζd2 = 1. As before, we have (d1 + d2)/2 periodic points for
Tt in Fpn .
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Since pn + 1 ∼ pn − 1, we have

d1
∏
j∈J

q
µj+νj

j ∼ d2
∏
i∈I

qµi+νi

i ,

meaning

d2 ∼ d1
QJ

QI
.

We can now calculate the limit:

Rδ,ν(Tt) = lim
n→∞

gcd(∆,n)=δ
v(n)=⟨νi⟩

#Per (Tt,Fpn)

pn

= lim
d→∞

gcd(t,d)=1

(d1 + d1(QJ/QI))/2

QJd1 + 1

=
QI +QJ

2QIQJ
. �

Table 10. #Per(T15,F2n)/2
n with ν = (v3(n), v5(n)) = (0, 0).

δ 1 2 4

2δ − 1 1 3 3 · 5
2δ + 1 3 5 17

#Per(T15,F2δ )

2δ
0.500000000 0.266662598 0.562500000

#Per(T15,F27δ )

27δ
0.656250000 0.266666651 0.506667137

#Per(T15,F211δ )

211δ
0.664062500 0.266666667 0.533333335

{qi : i ∈ I} {3} {5} ∅

{qj : j ∈ J} ∅ {3} {3, 5}

QI +QJ

2QIQJ
0.666666667 0.266666667 0.533333333
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In Table 10, we use data from Sage [8] to illustrate Theorem 5.9 for
the fifteenth Chebyshev polynomial over fields F2n . In the notation of
the theorem, we have:

q1 = 3 q2 = 5 p = 2

δ1 = 2 δ2 = 4 ∆ = 4

µ1 = v3(2
2 − 1) = 1 µ2 = v5(2

4 − 1) = 1.

Note that, in the table, we restrict to values of n with gcd(4, n) = δ.
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