
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 49, Number 1, 2019

MULTIPLICITY OF POSITIVE SOLUTIONS FOR
KIRCHHOFF TYPE PROBLEMS WITH
NONLINEAR BOUNDARY CONDITION

CHUN-YU LEI AND GAO-SHENG LIU

ABSTRACT. In this paper, we study the existence of
multiple positive solutions to problem

(
a+ b

∫
Ω
(|∇u|2 + |u|2) dx

)
(−∆u+ u) = |u|4u in Ω,

∂u

∂ν
= λ|u|q−2u on ∂Ω,

where Ω ⊂ R3 is a smooth bounded domain, a, b > 0, λ > 0
and 1 < q < 2. Based on the Nehari manifold and variational
methods, we prove that the problem has at least two positive
solutions, and one of the solutions is a positive ground state
solution.

1. Introduction and main result. In this paper, we are mainly in-
terested in the existence of positive solutions of the following Kirchhoff-
type equation

(1.1)


(
a+ b

∫
Ω

(|∇u|2 + |u|2) dx
)
(−∆u+ u) = |u|4u in Ω,

∂u

∂ν
= λ|u|q−2u on ∂Ω,

where Ω is a smooth bounded domain in R3, a, b > 0, 1 < q < 2,
∂/∂ν denotes the derivative along the outer normal and λ > 0 is a real
parameter.
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It is well known that the Kirchhoff-type problem is related to the
stationary analogue of the equation

ρ
∂2u

∂t2
−
(
P0

h
+

E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2dx)∂2u∂x2

= 0,

proposed by Kirchhoff, see [4] and the references therein. There
has been much research regarding the existence and multiplicity of
positive solutions for Kirchhoff-type problems with a critical term on
a bounded domain Ω ⊂ R3, and interesting results may be found in
[7, 9, 10, 16, 17, 21, 24, 25, 27, 28] and the references therein. For
references to several existence results that have been obtained on the
entire space R3, some representatives may be found in [18, 19, 20, 26].
Note that the main difficulty of such a type of problem is the lack of
compactness of the Sobolev embedding.

In addition, many papers have been concerned with the Kirchhoff-
type problem on a bounded domain Ω ⊂ R3 involving concave and
convex nonlinearities
(1.2)−

(
a+ b

∫
Ω

|∇u|2dx
)
∆u = g(x)|u|p−2u+ λf(x)|u|q−2u in Ω,

u = 0 on ∂Ω,

and there are some results on the multiplicity of solutions, see [6, 5, 10,
15]. For example, in the case where 1 < q < 2, 4 < p < 6, the weight
functions f, g ∈ C(Ω) with f+ = max{f, 0} ̸= 0, g+ = max{g, 0} ̸= 0,
based on the Nehari manifold, Chen, et al., [6] obtained two positive
solutions for (1.2) when λ > 0 is small enough.

In [14], Zhang discussed the following nonlinear boundary equation
(
a+b

∫
Ω

(|∇u|2+|u|2) dx
)
(−∆u+u) = λ|u|q−2u+ f(x, u) +Q(x)u5

in Ω,
∂u

∂ν
= 0 on ∂Ω,

and studied the critical Neumann problem of Kirchhoff-type. By using
the variational method and the concentration compactness argument,
he obtained the existence and multiplicity of nontrivial solutions. Other
Neumann problems were considered by Garcia-Azorero, et al., [11] and
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Humberto, et al., [13]. In [13], Humberto considered the problem with
a sublinear Neumann boundary condition−∆u = a(x)|u|p−2u in Ω,

∂u

∂ν
= λ|u|q−2u on ∂Ω,

where 1 < q < 2 < p < ∞, a ∈ Cα(Ω) with α ∈ (0, 1). Then,
he established a global multiplicity result for positive solutions in the
spirit of Ambrosetti, Brezis and Cerami [2] and analyzed the case where
the nonlinearity is concave using a bifurcation analysis, a comparison
principle and variational techniques.

It is well known that Ambrosetti, et al., [2] obtained two positive
solutions of (1.2) in the case of a = 1, b = 0, f(x) = g(x) = 1 and
p = 6. When b > 0, f(x) = g(x) = 1 and p = 6 in (1.2), it reduces
to a class of nonlocal Kirchhoff-type problems with concave-convex
nonlinearities. To the best of our knowledge, there are no results for
the multiplicity of positive solutions in this case. The reason is that,
by virtue of b > 0, the nonlocal Kirchhoff-type problem becomes more
complicated to study than the case b = 0, i.e., it is difficult to estimate
the critical value level. Thus, mainly motivated by [2, 13, 14], we
propose an interesting question for the Kirchhoff-type problem (1.1)
with a nonlinear boundary condition. Based upon [3], we provide some
multiplicity results for (1.1).

Now, our main result can be described as follows.

Theorem 1.1. Assume that a, b > 0 and 1 < q < 2. Then, there exists
a λ∗ > 0 such that, for any λ ∈ (0, λ∗), problem (1.1) has at least two
positive solutions, and one of the solutions is a positive ground state
solution.

This work is organized as follows. In Section 2, we present some
preliminary results. In Section 3, we give the proof of Theorem 1.1.

2. Some preliminary results. Problem (1.1) is posed in the
framework of the Sobolev space H1(Ω) with the standard norm ∥u∥2 =∫
Ω
(|∇u|2+ |u|2) dx. In addition, we define |u|pp =

∫
Ω
|u|p dx as the norm

of the Sobolev space Lp(Ω). Let S be the best Sobolev constant, i.e.,



132 CHUN-YU LEI AND GAO-SHENG LIU

(2.1) S = inf

{
∥u∥2

|u|26
, u ∈ H1(Ω), u ̸= 0

}
.

The energy functional corresponding to problem (1.1) is given by

Iλ(u) =
a

2
∥u∥2 + b

4
∥u∥4 − 1

6

∫
Ω

|u|6dx− λ

q

∫
∂Ω

|u|qdσ,

where dσ is the measure on the boundary.

Since Iλ is not bounded below onH1(Ω), we shall work on the Nehari
manifold

Nλ = {u ∈ H1(Ω) \ {0} : ⟨I ′λ(u), u⟩ = 0}.

Note that Nλ contains all nonzero solutions of (1.1), and u ∈ Nλ if and
only if

a∥u∥2 + b∥u∥4 −
∫
Ω

|u|6dx− λ

∫
∂Ω

|u|qdσ = 0.

We split Nλ into three parts:

N+
λ =

{
u ∈ Nλ : (2− q)a∥u∥2 + (4− q)b∥u∥4 − (6− q)

∫
Ω

|u|6dx > 0

}
,

N 0
λ =

{
u ∈ Nλ : (2− q)a∥u∥2 + (4− q)b∥u∥4 − (6− q)

∫
Ω

|u|6dx = 0

}
,

N−
λ =

{
u ∈ Nλ : (2− q)a∥u∥2 + (4− q)b∥u∥4 − (6− q)

∫
Ω

|u|6dx < 0

}
.

Lemma 2.1. Suppose that λ ∈ (0, T1), where

T1 =
2a

4− q

(
a(2− q)S3

6− q

)(2−q)/4

C−q
q .

Then:

(i) N±
λ ̸= ∅;

(ii) N 0
λ = ∅.
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Proof.

(i) Let u ∈ H1(Ω) \ {0}, define Φ,Φ1 ∈ C(R+,R) by

Φ(t) = at−4∥u∥2 + bt−2∥u∥4 − λtq−6

∫
∂Ω

|u|qdσ,

and

Φ1(t) = at−4∥u∥2 − λtq−6

∫
∂Ω

|u|qdσ.

Then,

Φ′
1(t) = −4at−5∥u∥2 − λ(q − 6)tq−7

∫
∂Ω

|u|qdσ,

and letting Φ′
1(t) = 0, the following holds:

tmax =

[
λ(6− q)

∫
∂Ω

|u|qdσ
4a∥u∥2

]1/(2−q)

.

Simple computation shows that Φ′
1(t) > 0 for all 0 < t < tmax and

Φ′
1(t) < 0 for all t > tmax, and Φ1(t) attains its maximum at tmax, that

is,

Φ1(tmax) =
2− q

4

[
4a

6− q

](6−q)/(2−q) ∥u∥(2(6−q))/(2−q)(
λ
∫
∂Ω

|u|qdσ
)4/(2−q)

.

By the Sobolev embedding theorem, the following holds∫
∂Ω

|u|qdσ ≤ Cq
q∥u∥q,

where Cq
q is a constant. Then, from (2.1), we obtain

Φ(tmax)−
∫
Ω

|u|6dx

≥ Φ1(tmax)−
∫
Ω

|u|6dx

>
2− q

4

[
4a

6− q

](6−q)/(2−q) ∥u∥(2(6−q))/(2−q)

(λ
∫
∂Ω

|u|qdσ)4/(2−q)
−
∫
Ω

|u|6dx

=

{
2− q

4

[
4a

6− q

](6−q)/(2−q)(
1

λCq
q

)4/(2−q)(∥u∥2

|u|26

)3

− 1

}
|u|66
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≥
{
2− q

4

[
4a

6− q

](6−q)/(2−q)(
1

λCq
q

)4/(2−q)

S3 − 1

}
|u|66

> 0.

The last inequality holds, provided 0 < λ < T1. It follows that there
exist two positive numbers denoted by t± such that 0 < t+ = t+(u) <
tmax < t− = t−(u), t+u ∈ N+

λ and t−u ∈ N−
λ .

(ii) We prove that N 0
λ = ∅ for all λ ∈ (0, T1). To the contrary,

suppose that there exists a u0 ̸= 0 such that u0 ∈ N 0
λ , and the following

hold:

(2.2) a∥u0∥2 + b∥u0∥4 =

∫
Ω

|u0|6dx+ λ

∫
∂Ω

|u0|qdσ,

and

(2.3) 4a∥u0∥2 + 2b∥u0∥4 = λ(6− q)

∫
∂Ω

|u0|qdσ.

Equations (2.2) and (2.3) imply that

λ

∫
∂Ω

|u0|qdσ =
2a

4− q
∥u0∥2 +

2

4− q

∫
Ω

|u0|6dx(2.4)

>
2a

4− q
∥u0∥2.

On one hand, the strict inequality ∥u0∥2 > S|u|26 holds for u0 ∈
N 0

λ \ {0}. Here, it is convenient to use a parameter Θ, i.e., let

Θ = C(4q)/(2−q)
q

∥u0∥(2(6−q))/(2−q)

(
∫
∂Ω

|u0|qdσ)4/(2−q)
− ∥u0∥6

> C(4q)/(2−q)
q

∥u0∥(2(6−q))/(2−q)

C
(4q)/(2−q)
q ∥u0∥(4q)/(2−q)

− ∥u0∥6

= ∥u0∥6 − ∥u0∥6

= 0.

On the other hand, by (2.4), the following holds:

Θ = C4q/(2−q)
q λ4/(2−q) ∥u0∥(2(6−q))/(2−q)(

λ
∫
∂Ω

|u0|qdσ
)4/(2−q)

− ∥u0∥6
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< C4q/(2−q)
q λ4/(2−q) ∥u0∥(2(6−q))/(2−q)(

λ
∫
∂Ω

|u0|qdσ
)4/(2−q)

− S3|u0|66

≤ C4q/(2−q)
q λ4/(2−q) ∥u0∥(2(6−q))/(2−q)

(2a/4− q)4/(2−q)∥u0∥8/(2−q)

− a(2− q)S3

6− q
∥u0∥2 −

b(4− q)S3

6− q
∥u0∥4

< C4q/(2−q)
q λ4/(2−q)

(
4− q

2a

)4/(2−q)

∥u0∥2 −
a(2− q)S3

6− q
∥u0∥2

≤ a(2−q)S3

6−q
∥u0∥2

[
C4q/(2−q)

q λ4/(2−q)

(
4−q
2a

)4/(2−q)
6−q

a(2−q)S3
−1

]
< 0,

a contradiction, where the last inequality holds when λ < T1. This
completes the proof of Lemma 2.1. �

Lemma 2.2. Iλ is coercive and bounded below on Nλ.

Proof. Suppose u ∈ Nλ. Then, by (2.1), we obtain

Iλ(u) =
a

2
∥u∥2 + b

4
∥u∥4 − 1

6

∫
Ω

|u|6dx− λ

q

∫
∂Ω

|u|qdσ

=
a

3
∥u∥2 + b

12
∥u∥4 − λ

(
1

q
− 1

6

)∫
∂Ω

|u|qdσ

≥ a

3
∥u∥2 + b

12
∥u∥4 − λ

(
1

q
− 1

6

)
Cq

q∥u∥q

since 1 < q < 2, and it follows that Iλ is coercive and bounded below
on Nλ. �

We remark that, by Lemma 2.1, we have Nλ = N+
λ ∪ N−

λ for all

λ ∈ (0, T1). Due to N+
λ ,N

−
λ ̸= ∅ and Lemma 2.2, we may define

αλ = inf
u∈Nλ

Iλ(u), α+
λ = inf

u∈N+
λ

Iλ(u), α−
λ = inf

u∈N−
λ

Iλ(u).

Lemma 2.3. αλ ≤ α+
λ < 0.
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Proof. Suppose that u ∈ N+
λ . The following holds:∫

Ω

|u|6dx < 2− q

6− q
a∥u∥2 + 4− q

6− q
b∥u∥4,

and thus,

Iλ(u) =
a

2
∥u∥2 + b

4
∥u∥4 − 1

6

∫
Ω

|u|6dx− λ

q

∫
∂Ω

|u|qdσ

=

(
1

2
− 1

q

)
a∥u∥2 +

(
1

4
− 1

q

)
b∥u∥4 +

(
1

q
− 1

6

)∫
Ω

|u|6dx

<

(
a

2
− 1

q

)
a∥u∥2 +

(
1

4
− 1

q

)
b∥u∥4

+

(
1

q
− 1

6

)(
2− q

6− q
a∥u∥2 + 4− q

6− q
b∥u∥4

)
=

1

3

(
1− 2

q

)
a∥u∥2 + 1

3
≤

(
1

4
− 1

q

)
b∥u∥4

< 0.

Hence, from the definitions of αλ and α+
λ , we can deduce that αλ ≤

α+
λ < 0. �

Lemma 2.4. For every u ∈ Nλ, there exist an ε > 0 and a continuously
differentiable function f = f(w) > 0, w ∈ H1(Ω), ∥w∥ < ε, satisfying

f(0) = 1, f(w)(u+ w) ∈ Nλ for all w ∈ H1(Ω), ∥w∥ < ε.

Proof. For u ∈ Nλ, define F : R×H1(Ω) → R by

F (t, w) = t2−qa

∫
Ω

(|∇(u+ w)|2 + |u+ w|2) dx− t6−q

∫
Ω

|u+ w|6dx

+ t4−qb

(∫
Ω

(|∇(u+ w)|2 + |u+ w|2) dx
)2

− λ

∫
∂Ω

|u|qdσ.

Since u ∈ Nλ, F (1, 0) = 0 and

Ft(1, 0) = (2− q)a∥u∥2 + (4− q)b∥u∥4 − (6− q)

∫
Ω

|u|6dx

are easily obtained. As u ̸= 0, by Lemma 2.1, we know that Ft(1, 0) ̸=
0. Thus, we apply the implicit function theorem at the point (0, 1) and
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obtain ε > 0 and a continuously differentiable function f : B(0, ε) ⊂
H1(Ω) → R+, satisfying that

f(0) = 1, f(w) > 0, f(w)(u+ w) ∈ Nλ,

for all w ∈ H1(Ω) with ∥w∥ < ε. This completes the proof of Lem-
ma 2.4. �

Lemma 2.5. For every u ∈ N−
λ , there exist an ε > 0 and a con-

tinuously differentiable function f̃ = f̃(v) > 0, v ∈ H1(Ω), ∥v∥ < ε,
satisfying that

f̃(0) = 1, f̃(v)(u+ v) ∈ N−
λ

for all v ∈ H1(Ω), ∥v∥ < ε.

Proof. The proof is similar to the argument in Lemma 2.4. For

u ∈ N−
λ , define F̃ : R×H1

0 (Ω) → R by

F̃ (t, v) = t2−qa

∫
Ω

(|∇(u+ v)|2 + |u+ v|2) dx− t6−q

∫
Ω

|u+ v|6dx

+ t4−qb

(∫
Ω

(|∇(u+ v)|2 + |u+ v|2) dx
)2

− λ

∫
∂Ω

|u|qdσ.

Since u ∈ N−
λ , we obtain that F̃ (1, 0) = 0 and F̃t(1, 0) < 0. Therefore,

we can apply the implicit function theorem at the point (0, 1) and
obtain the result. This completes the proof of Lemma 2.5. �

Lemma 2.6. If {un} ⊂ Nλ is a minimizing sequence of Iλ for any
φ ∈ H1(Ω), then

(2.5) −|f ′n(0)|∥un∥+ ∥φ∥
n

≤ ⟨I ′λ(un), φ⟩ ≤
|f ′n(0)|∥un∥+ ∥φ∥

n
.

Proof. By Lemma 2.2, let {un} ∈ Nλ be a minimizing sequence for
Iλ. Clearly, |un| ∈ Nλ and Iλ(|un|) = Iλ(un). For this reason, we
immediately assume that un ≥ 0 almost everywhere in Ω for all n.
Then, applying Ekeland’s variational principle [8], the following holds:
(2.6)

Iλ(un) < αλ +
1

n
, Iλ(v)− Iλ(un) ≥ − 1

n
∥v − un∥ for all v ∈ Nλ.
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Obviously, Lemma 2.2 suggests that {un} is bounded in H1(Ω). Thus,
there exist a subsequence, still denoted {un}, and u∗ in H1(Ω) such
that 

un ⇀ u∗ weakly in H1(Ω),

un → u∗ strongly in Lp(Ω),

un(x) → u∗(x) almost everywhere in Ω.

1 ≤ p < 6,

Let t > 0 be small enough, let φ ∈ H1(Ω), and set u = un, w =
tφ ∈ H1(Ω) in Lemma 2.4. Hence, we get fn(t) = fn(tφ) satisfying
fn(0) = 1 and fn(t)(un + tφ) ∈ Nλ. Note that

(2.7) a∥un∥2 + b∥un∥4 −
∫
Ω

u6n dx− λ

∫
∂Ω

uqn dσ = 0.

Then, (2.6) implies that

1

n
[|fn(t)− 1| · ∥un∥+ tfn(t)∥φ∥] ≥

1

n
∥fn(t)(un + tφ)− un∥(2.8)

≥ Iλ(un)− Iλ[fn(t)(un + tφ)],

and

Iλ(un)− Iλ[fn(t)(un + tφ)]

=
1− f2n(t)

2
a∥un∥2 +

1− f4n(t)

4
b∥un∥4

+
f6n(t)− 1

6

∫
Ω

(un + tφ)6dx+ λ
fqn(t)− 1

q

∫
∂Ω

(un + tφ)qdσ

+
f2n(t)

2

(
a+

f2n(t)

2
b(∥un∥2 + ∥un + tφ∥2)

)
(∥un∥2 − ∥un + tφ∥2)

+
1

6

∫
Ω

((un + tφ)6 − u6n) dx+
λ

q

∫
∂Ω

((un + tφ)q − uqn) dσ.

Combining this with (2.7) and (2.8), dividing by t and letting t → 0,
we obtain

|f ′n(0)|∥un∥+ ∥φ∥
n

≥ −f ′n(0)a∥un∥2 + f ′n(0)b∥un∥4 + f ′n(0)

∫
Ω

u6n dx

+ λf ′n(0)

∫
∂Ω

uqn dσ − (a+ b∥un∥2)

·
∫
Ω

(∇un · ∇φ+unφ) dx+
∫
Ω

u5nφdx+λ

∫
∂Ω

uq−1
n φdσ
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= −f ′n(0)
(
a∥un∥2+b∥un∥4−

∫
Ω

u6n dx−λ
∫
∂Ω

uqn dσ

)
− (a+ b∥un∥2)

∫
Ω

(∇un · ∇φ+ unφ) dx

+

∫
Ω

u5nφdx+ λ

∫
∂Ω

uq−1
n φdσ;

consequently,

(2.9)

−|f ′n(0)|∥un∥+ ∥φ∥
n

≤ (a+ b∥un∥2)
∫
Ω

(∇un · ∇φ+ unφ) dx

−
∫
Ω

u5nφdx− λ

∫
∂Ω

uq−1
n φdσ,

for any φ ∈ H1
0 (Ω). Since (2.9) also holds for −φ, we obtain

|f ′n(0)|∥un∥+ ∥φ∥
n

≥ (a+ b∥un∥2)
∫
Ω

(∇un · ∇φ+ unφ) dx

−
∫
Ω

u5nφdx− λ

∫
∂Ω

uq−1
n φdσ.

Then,

−|f ′n(0)|∥un∥+ ∥φ∥
n

≤ ⟨I ′λ(un), φ⟩ ≤
|f ′n(0)|∥un∥+ ∥φ∥

n
,

for every φ ∈ H1(Ω). Thus, (2.5) holds. Moreover, Lemma 2.4 suggests
that there exists a constant C > 0 such that |f ′n(0)| ≤ C for all n ∈ N .
Therefore, passing to the limit as n→ ∞ in (2.5), we get
(2.10)(
a+b lim

n→∞
∥un∥2

)∫
Ω

(∇u∗·∇φ+u∗φ) dx−
∫
Ω

u5∗φdx−λ
∫
∂Ω

uq−1
∗ φdσ = 0

for all φ ∈ H1(Ω). This completes the proof of Lemma 2.6. �

Let Ssob be the best Sobolev constant for the embedding H1
0 (Ω) ↩→

L6(Ω), namely,

Ssob = inf
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2dx

(
∫
Ω
|u|6dx)1/3

.

The proof of the following concentration-compactness lemma is
standard, see [22, 23] for details.
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Lemma 2.7. Let {un} be a sequence in H1(Ω), such that

un ⇀ u weakly in H1(Ω),

un → u strongly in Lp(Ω),

|∇un|22 ⇀ dµ ≥ |∇u|22 +
∑
j∈J

µjδxj ,

|un|66 → dη = |u|66 +
∑
j∈J

ηjδxj ,

1 ≤ p < 6,

where J is an at most countable index set, δxj is the Dirac mass at xj,
and xj ∈ Ω supports µ, η. Then

µj ≥ Ssobη
1/3
j .

Define

Λ =
abS3

sob

4
+
b3S6

sob

24
+

(b2S4
sob + 4aSsob)

3/2

24
.

Lemma 2.8. Assume that 1 < q < 2, and let {un} ⊂ N−
λ be a mini-

mizing sequence of Iλ with

α−
λ < Λ−Dλ2/(2−q) where D =

(
(4− q)

4q
Cq

q

)2/(2−q)(
2q

a

)q/(2−q)

.

Then, there exists a u ∈ H1(Ω) such that un → u in L6(Ω).

Proof. Let {un} ⊂ N−
λ be a minimizing sequence of Iλ. Then

(2.11) Iλ(un) −→ α−
λ as n→ ∞.

By Lemma 2.2, it is easily obtained that {un} is bounded in H1(Ω).
Passing to a subsequence, if necessary, there exists a u ∈ H1(Ω) such
that 

un ⇀ u weakly in H1(Ω),

un → u strongly in Lp(Ω),

un(x) → u(x) almost everywhere in Ω.

1 ≤ p < 6,
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Furthermore, by the concentration compactness principle, there exists
a subsequence, still denoted by {un}, such that

|∇un|22 ⇀ dµ ≥ |∇u|22 +
∑
j∈J

µjδxj ,

|un|66 −→ dη = |u|66 +
∑
j∈J

ηjδxj ,

and

(2.12) µj , ηj ≥ 0, µj ≥ Ssobη
1/3
j .

For any ε > 0 small, let ψε,j(x) be a smooth cut-off function centered
at xj such that 0 ≤ ψε,j(x) ≤ 1,

ψε,j(x) = 1 in B

(
xj ,

ε

2

)
,

ψε,j(x) = 0 in B(xj , ε),

|∇ψε,j(x)| ≤
4

ε
.

From Hölder’s inequality, we have∫
Ω

|∇(ψε,jun)|2dx =

∫
Ω

|un∇ψε,j + ψε,j∇un|2dx

≤ c1
ε2

∫
B(xj ,ε)

|un|2dx+
c2
ε

∫
B(xj ,ε)

un|∇un| dx+∥un∥2

≤ c3
ε2

∥un∥2ε2 + ∥un∥2 +
c4
ε
∥un∥3ε

= (c3 + 1)∥un∥2 + c4∥un∥3,

where ci, i = 1, 2, 3, 4, are positive constants. Since {f ′n(0)} and {un}
are bounded in H1

0 (Ω), we obtain

lim
n→∞

|f ′n(0)|∥un∥+ ∥ψε,jun∥
n

= 0,

so that

lim
ε→0

lim
n→∞

|f ′n(0)|∥un∥+ ∥ψε,jun∥
n

= 0.
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Setting φ = ψε,jun in (2.5) and taking ε→ 0, the following holds:

0 = lim
ε→0

lim
n→∞

⟨I ′λ(un), ψε,jun⟩

= lim
ε→0

lim
n→∞

{
(a+ b∥un∥2)

∫
Ω

(∇un · ∇(ψε,jun) + ψε,ju
2
n) dx

−
∫
Ω

u5nψε,jun dx− λ

∫
∂Ω

uq−1
n ψε,j(x)un dσ

}
≥

(
a+ b

∫
Ω

dµ

)∫
Ω

ψε,j dµ−
∫
Ω

ψε,j dη,

so that
ηj ≥ (a+ bµj)µj .

By (2.12), we deduce that

(2.13) η
2/3
j ≥ aSsob + bS2

sobη
1/3
j , or ηj = µj = 0.

Let X = η
1/3
j . It follows from (2.13) that

X2 ≥ aSsob + bS2
sobX,

which means

X ≥
bS2

sob +
√
b2S4

sob + 4aSsob

2
,

so that

µj ≥ SsobX ≥
bS3

sob +
√
b2S6

sob + 4aS3
sob

2
, K.

Next, we show that

µj ≥
bS3

sob +
√
b2S6

sob + 4aS3
sob

2

is impossible. Therefore, the set J is empty. Assume to the contrary
that there exists some j0 ∈ J such that

µj0 ≥
bS3

sob +
√
b2S6

sob + 4aS3
sob

2
.
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From (2.1), (2.11) and Young’s inequality, we obtain

α−
λ = lim

n→∞
Iλ(un)

(2.14)

= lim
n→∞

{
Iλ(un)−

1

4

(
a∥un∥2 + b∥un∥4

−
∫
Ω

|un|6dx− λ

∫
∂Ω

|un|qdσ
)}

≥ lim
n→∞

{(
1

2
− 1

4

)
a∥un∥2 + b

(
1

4
− 1

4

)
∥un∥4

+

(
1

4
− 1

6

)∫
Ω

u6ndx− λ

(
1

q
− 1

4

)∫
∂Ω

|un|qdσ
}

≥
{(

1

2
− 1

4

)
a

(
∥u∥2 +

∑
j∈J

µj

)
+ b

(
1

4
− 1

4

)(
∥u∥2 +

∑
j∈J

µj

)2

+

(
1

4
− 1

6

)(∫
Ω

u6dx+
∑
j∈J

νj

)
− λ

(
1

q
− 1

4

)∫
∂Ω

|u|qdσ
}

≥
(
1

2
− 1

4

)
aµj0 +

(
1

4
− 1

4

)
bµ2

j0 +

(
1

4
− 1

6

)
νj0

+
a

4
∥u∥2 − λ

(
1

q
− 1

4

)
Cq

q∥u∥q

≥
(
1

2
− 1

4

)
aK +

(
1

4
− 1

4

)
bK2 +

(
1

4
− 1

6

)
K3

S3
sob

−Dλ2/(2−q)

≥ a

2
K +

b

4
K2 − K3

6S3
sob

− 1

4

(
aK + bK2 − K3

S3
sob

)
−Dλ2/(2−q),

where

D =

(
4− q

4q
Cq

q

)2/(2−q)(
2q

a

)q/(2−q)

.

In the following, we claim that

a

2
K +

b

4
K2 − K3

6S3
sob

= Λ.
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Indeed,

aK

2
+
b

4
K2 − K3

6S3
sob

= K

(
a

2
+
bK

4
− K2

6S3
sob

)
= K

[
a

2
+
b

4
·
bS3

sob +
√
b2S6

sob + 4aS3
sob

2

−
2b2S6

sob + 4aS3
sob + 2bS3

sob

√
b2S6

sob + 4aS3
sob

24S3
sob

]
= K

[
a

2
+
b2S3

sob + b
√
b2S6

sob + 4aS3
sob

8

−
b2S3

sob + 2 + b
√
b2S6

sob + 4aS3
sob

12

]
= K

[
8a+ b2S3

sob + b
√
b2S6

sob + 4aS3
sob

24

]
=
bS3

sob +
√
b2S6

sob + 4aS3
sob

2
·
8a+ b2S3

sob + b
√
b2S6

sob + 4aS3
sob

24

=
12abS3

sob + 2b3S6
sob + (2b2S3

sob + 8a)
√
b2S6

sob + 4aS3
sob

48

=
abS3

sob

4
+
b3S6

sob

24
+

(b2S3
sob + 4a)

√
b2S6

sob + 4aS3
sob

24

=
abS3

sob

4
+
b3S6

sob

24
+

(b2S4
sob + 4aSsob)

√
b2S4

sob + 4aSsob

24
= Λ.

With simple computation, we obtain

aK + bK2 − K3

S3
sob

= 0.

Therefore, by (2.14), we obtain Λ−Dλ2/(2−q) ≤ α−
λ < Λ−Dλ2/(2−q).

This is a contradiction. Consequently, J is empty; thus,∫
Ω

u6n dx −→
∫
Ω

u6dx as n→ ∞.

This completes the proof of Lemma 2.8. �
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We recall the following lemma, which plays an important role in
proving Lemma 2.10 below.

Lemma 2.9 ([3]). There exists a positive function vS ∈ H1(Ω) such
that

S =

∫
Ω
(|∇vS |2 + |vS |2) dx
(
∫
Ω
|vS |2∗)2/2∗

.

By Lemma 3.4, we normalize vS , imposing
∫
Ω
|vS |2

∗
dx = 1. Then,

(2.15) S =

∫
Ω

(|∇vS |2 + |vS |2) dx.

Lemma 2.10. Assume that 1 < q < 2. Then there exists a vS ∈ H1(Ω)
such that

sup
t≥0

Iλ(tvS) < Λ−Dλ2/(2−q),

where D is given in Lemma 2.7. In particular,

α−
λ < Λ−Dλ2/(2−q).

Proof. Since limt→+∞ Iλ(tvS) = −∞, there exists a tλ > 0 such that

(2.16) Iλ(tλvS) = sup
t≥0

Iλ(tλvS) and
dIλ(tλvS)

dt

∣∣∣∣
t=tλ

= 0.

It follows from (2.16) that

(2.17) a∥vS∥2 + t2λb∥vS∥4 − t4λ − λtq−2
λ

∫
∂Ω

vqS dσ = 0,

and

(2.18) a∥vS∥2 + 3t2λb∥vS∥4 − 5t4λ − λ(q − 1)tq−2
λ

∫
∂Ω

vqS dσ < 0.

Hence, the combination of (2.17) and (2.18) implies that

(6− q)t4λ > (2− q)a∥vS∥2 + (4− q)t2εb∥vS∥4

> (2− q)aS.
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Consequently,

(2.19) tλ >

(
2− q

6− q
aS

)1/4

.

On the other hand, from (2.17) and (2.19), the following holds:

t2λ =
a∥vS∥2

t2λ
+ b∥vS∥4 −

λ

t4−q
λ

∫
∂Ω

vqS dσ

≤ a∥vS∥2

t2λ
+ b∥vS∥4

≤ aS

(
6− q

aS(2− q)

)1/2

+ bS2.

Then, we deduce that

(2.20)

(
2− q

6− q
aS

)1/4

< tλ <

(
aS

(
6− q

aS(2− q)

)1/2

+ bS2

)1/2

.

Set

A(tλvS) =
a

2
t2λ∥vS∥2 +

b

4
t4λ∥vS∥4 −

t6λ
6
.

Firstly, we claim that A(tεuε) ≤ Λ. If we define

h(t) =
a

2
t2∥vS∥2 +

b

4
t4∥vS∥4 −

t6

6
,

we see that limt→∞ h(t) = −∞, h(0) = 0, and limt→0+ h(t) > 0. It
follows that supt≥0 h(t) is attained at T > 0, that is,

h′(t)|T = aT∥vS∥2 + bT 3∥vS∥4 − T 5 = 0.

Observe that
T 4 − a∥vS∥2 − bT 2∥vS∥4 = 0,

so that

T =

(
b∥vS∥4 +

√
b2∥vS∥8 + 4a∥vS∥2

2

)1/2

.
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Note that h(t) is increasing in the interval [0, T ]. Then, from (2.15),
the following holds:

h(tλvS) ≤ h(T )

=
a

2
T 2∥vS∥2 +

b

4
T 4∥vS∥4 −

T 6

6

= T 2

(
a

3
∥vS∥2 +

b

12
T 2∥vS∥4

)
= T 2

(
a

3
∥vS∥2 +

b2∥vS∥8 + b∥vS∥4
√
b2∥vS∥8 + 4a∥vS∥2

24

)
=
ab∥vS∥6

4
+
b3∥vS∥12

24
+
a∥vS∥2

√
b2∥vS∥8 + 4a∥vS∥2

6

+
b2∥vS∥8

√
b2∥vS∥8 + 4a∥vS∥2

24

=
abS3

sob

4
+
b3S6

sob

24
+

(b2S4
sob + 4aSsob)

3/2

24
= Λ.

Now, we present a well-known result [1], that is, there exists a θ > 0
dependent upon Ω such that

S <
Ssob

22/N
− θ.

As a result, we infer that
S < Ssob.

In addition, due to a result by Azorero, et al., [3], there exists a constant
C > 0 such that ∫

∂Ω

|vS |qdσ ≥ C.

Consequently, using (2.20), the following holds:

sup
t≥0

Iλ(tvS) < Λ−
λtqλ
q

∫
∂Ω

|vS |qdσ

≤ Λ− Cλ

q

(
2− q

6− q
aS

)q/4

.
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For λ > 0, set A
.
= C/q((2− q)/(6− q)aS)q/4. Let −Aλ ≤

−Dλ2/(2−q), i.e.,

−Aλ ≤ −Dλ2/(2−q) ⇐⇒ Aλ ≥ Dλ2/(2−q)

⇐⇒ λq/(2−q) ≤ A

D

⇐⇒ λ ≤
(
A

D

)(2−q)/q

.

Therefore, let 0 < λ < λ0 = (A/D)(2−q)/q, we obtain that supt≥0 Iλ(tvS)

< Λ−Dλ2/(2−q) holds for every λ ∈ (0, λ0). The proof is complete. �

3. Proof of the main theorem.

Proof of Theorem 1.1. There exists a constant δ > 0 such that Λ−
Dλ2/(2−q) > 0 when λ < δ. Set λ∗ = min{T1, δ, λ0}. Then Lemmas
2.1–2.10 hold for all 0 < λ < λ∗. By Lemma 2.6, there exists a
minimizing sequence {un} ⊂ Nλ of Iλ. Obviously, {un} is bounded
in H1(Ω), going if necessary to a subsequence, still denoted by {un}.
There exists a uλ ∈ H1(Ω) such that

un ⇀ uλ weakly in H1(Ω),

un → uλ strongly in Ls(Ω),

un(x) → uλ(x) almost everywhere in Ω,

1 ≤ s < 6,

as n→ ∞.

Now, we shall prove that uλ is a positive ground state solution of
(1.1). Indeed, by Lemma 2.6, for all φ ∈ H1(Ω), we know that(
a+b lim

n→∞
∥un∥2

)∫
Ω

(∇uλ·∇φ+uλφ) dx−
∫
Ω

u5λφdx−λ
∫
∂Ω

uq−1
λ φdσ = 0.

Set limn→∞ ∥un∥ = l. Then, we have

(3.1) (a+bl2)

∫
Ω

(∇uλ·∇φ+uλφ) dx−
∫
Ω

u5λφdx−λ
∫
∂Ω

uq−1
λ φdσ = 0.

Taking the test function φ = uλ in (3.1) implies that

(3.2) (a+ bl2)∥uλ∥2 −
∫
Ω

u6λ dx− λ

∫
∂Ω

uqλ dσ = 0.
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The fact that un ∈ Nλ implies

(a+ b∥un∥2)∥un∥2 −
∫
Ω

u6n dx− λ

∫
∂Ω

uqn dσ = 0.

Since αλ < 0 < Λ−Dλ2/(2−q), by Lemma 2.8, we have

(3.3) (a+ bl2)l2 −
∫
Ω

u6λ dx− λ

∫
∂Ω

uqλ dσ = 0.

It follows from (3.2) and (3.3) that ∥uλ∥ = l. This implies that un → uλ
inH1(Ω), and uλ is a solution of (1.1). Furthermore, note that uλ ∈ Nλ

and αλ < 0 (by Lemma 2.3). Then, the following holds:(
1

q
− 1

6

)
λ

∫
∂Ω

uqλ dσ =
a

3
∥uλ∥2 +

b

12
∥uλ∥4 − Iλ(uλ)

≥ a

3
∥uλ∥2 +

b

12
∥uλ∥4 − αλ

> 0,

which implies that uλ ̸≡ 0. Therefore, by the strong maximum
principle, uλ > 0 in Ω. Moreover, Lemma 2.8 suggests that

(3.4) αλ = lim
n→∞

Iλ(un) = Iλ(uλ).

Next, we show that uλ ∈ N+
λ and Iλ(uλ) = α+

λ . We claim that uλ ∈
N+

λ . On the contrary, assume that uλ ∈ N−
λ (N 0

λ = ∅ for λ ∈ (0, T1)).
By Lemma 2.1, there exist positive numbers t+ < tmax < t− = 1 such
that t+u ∈ N+

λ , t−u ∈ N−
λ and

αλ < Iλ(t
+uλ) < Iλ(t

−uλ) = Iλ(uλ) = αλ,

a contradiction. Thus, uλ ∈ N+
λ . From the definition of α+

λ , we obtain

α+
λ ≤ Iλ(uλ); thus, from Lemma 2.3 and (3.4), the following holds:

Iλ(uλ) = α+
λ = αλ < 0.

Consequently, uλ is a positive ground state solution of (1.1).

In what follows, we shall verify that problem (1.1) has a second
solution vλ, and vλ ∈ N−

λ . Since Iλ is also coercive on N−
λ , applying

Ekeland’s variational principle to the minimization problem α−
λ =

infv∈N−
λ
Iλ(v) yields a minimizing sequence {vn} ⊂ N−

λ of Iλ, with

the following properties:
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(i) Iλ(vn) < α−
λ + 1/n;

(ii) Iλ(u) ≥ Iλ(vn)− ∥u− vn∥/n, for all u ∈ N−
λ .

Since {vn} is bounded in H1(Ω), passing to a subsequence, if necessary,
there exists a vλ ∈ H1(Ω) such that

vn ⇀ vλ weakly in H1(Ω),

vn → vλ strongly in Ls(Ω),

vn(x) → vλ(x) almost everywhere in Ω,

1 ≤ s < 6,

since n → ∞. Similarly, we can prove vn → vλ in H1(Ω), and vλ is a
nonnegative solution of (1.1).

Based on vn ∈ N−
λ , the following holds:

a(2− q)∥vn∥2 ≤ (6− q)

∫
Ω

v6n dx− b(4− q)∥vn∥4

≤ (6− q)

∫
Ω

|vn|6dx

< (6− q)S−3∥vn∥6

such that

(3.5) ∥vn∥ >
(
a(2− q)S3

(6− q)

)1/4

for all vn ∈ N−
λ .

Note that vn → vλ in H1(Ω), along with (3.5), implies that vλ ̸≡ 0.
Therefore, from the strong maximum principle, vλ > 0 in Ω.

Next, we concentrate on proving that vλ ∈ N−
λ . It suffices to prove

that N−
λ is closed. Indeed, by Lemmas 2.8 and 2.10, for {vn} ⊂ N−

λ ,
we have

lim
n→∞

∫
Ω

v6n dx =

∫
Ω

v6λ dx.

From the definition of N−
λ , the following holds:

(2− q)a∥vn∥2 + (4− q)b∥vn∥4 − (6− q)

∫
Ω

v6n dx < 0;

thus,

(2− q)a∥vλ∥2 + (4− q)b∥vλ∥4 − (6− q)

∫
Ω

v6λ dx ≤ 0,
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which implies that vλ ∈ N 0
λ ∪ N−

λ . If N−
λ is not closed, then we have

vλ ∈ N 0
λ and, by Lemma 2.1, it follows that vλ = 0. This contradicts

vλ > 0. Consequently, vλ ∈ N−
λ . Note that N+

λ ∩N−
λ = ∅, i.e., uλ and

vλ are different positive solutions of (1.1). �
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2. A. Ambrosetti, H. Brézis and G. Cerami, Combined effects of concave and
convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519–

543.

3. J.G. Azorero, I. Peral and J.D. Rossi, A convex-concave problem with a non-

linear boundary condition, J. Diff. Eqs. 198 (2004), 91–128.

4. H.M. Berger, A new approach to the analysis of large deflections of plates, J.
Appl. Mech. 22 (1955), 465–472.

5. B.T. Chen, X. Wu and J. Liu, Multiple solutions for a class of Kirchhoff-type
problems with concave nonlinearity, Nonlin. Diff. Eqs. Appl. 19 (2012), 521–537.

6. C. Chen, Y. Kuo and T. Wu, The Nehari manifold for a Kirchhoff-type
problem involving sign-changing weight functions, J. Diff. Eqs. 250 (2011), 1876–
1908.

7. Y. Duan, X. Sun and J.F. Liao, Multiplicity of positive solutions for a class of
critical Sobolev exponent problems involving Kirchhoff-type nonlocal term, Comp.
Math. Appl. 75 (2018), 4427–4437.

8. I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc. 1
(1979), 443–474.

9. G.M. Figueiredo, Existence of a positive for a Kirchhoff problem type with

critical growth via truncation argument, J. Math. Anal. Appl. 401 (2013), 706–713.

10. G.M. Figueiredo and J.R.S. Junior, Multiplicity of solutions for a Kirchhoff
equation with subcritical or critical growth, Diff. Int. Eqs. 25 (2012), 853–868.

11. J. Garcia-Azorero, I. Peral and J.D. Rossi, A convex-concave problem with
a nonlinear boundary condition, J. Diff. Eqs. 198 (2004), 91–128.

12. Y. Huang, Z. Liu and Y. Wu, On Kirchhoff-type equations with critical
Sobolev exponent, J. Math. Anal. Appl. 462 (2018), 483–504.

13. R.Q. Humberto and U. Kenichiro, On a concave-convex elliptic problem with
a nonlinear boundary condition, Annal. Mat. 195 (2016), 1833–1863.

14. Z. Jian, The critical Neumann problem of Kirchhoff-type, Appl. Math.

Comp. 274 (2016), 519–530.

15. C.Y. Lei, C.M. Chu, H.M. Suo and C.L. Tang, On Kirchhoff-type problems
involving critical and singular nonlinearities, Ann. Polon. Math. 114 (2015), 269–

291.



152 CHUN-YU LEI AND GAO-SHENG LIU

16. C.Y. Lei, J.F. Liao and C.L. Tang, Multiple positive solutions for Kirchhoff-
type of problems with singularity and critical exponents, J. Math. Anal. Appl. 421
(2015), 521–538.

17. H.Y. Li and J.F. Liao, Existence and multiplicity of solutions for a super-
linear Kirchhoff-type equations with critical Sobolev exponent in RN , Comp. Math.

Appl. 72 (2016), 2900–2907.

18. Y.H. Li, F.Y. Li and J.P. Shi, Existence of positive solutions to Kirchhoff-
type problems with zero mass, J. Math. Anal. Appl. 410 (2014), 361–374.

19. S.H. Liang and S.Y. Shi, Soliton solutions to Kirchhoff-type problems in-
volving the critical growth in RN , Nonlin. Anal. 81 (2013), 31–41.

20. S.H. Liang and J.H. Zhang, Existence of solutions for Kirchhoff-type prob-
lems with critical nonlinearity in R3, Nonlin. Anal. 17 (2014), 126–136.

21. J.F. Liao, H.Y. Li and P. Zhang, Existence and multiplicity of solutions for

a nonlocal problem with critical Sobolev exponent, Comp. Math. Appl. 75 (2018),
787–797.

22. P.L. Lions, The concentration-compactness principle in the calculus of

variations, The limit case, Part 1, Rev. Mat. Iber. 1 (1985), 145–201.

23. , The concentration-compactness principle in the calculus of varia-
tions, The limit case, Part 2, Rev. Mat. Iber. 1 (1985), 45–121.

24. D. Naimen, The critical problem of Kirchhoff-type elliptic equations in
dimension four, J. Diff. Eqs. 257 (2014), 1168–1193.

25. A. Ourraoui, On a p-Kirchhoff problem involving a critical nonlinearity,
C.R. Acad. Sci. 352 (2014), 295-298.

26. J. Wang, L.X. Tian, J.X. Xu and F.B. Zhang, Multiplicity and concentration
of positive solutions for a Kirchhoff-type problem with critical growth, J. Diff. Eqs.
253 (2012), 2314–2351.

27. Q.L. Xie, X.P. Wu and C.L. Tang, Existence and multiplicity of solutions for
Kirchhoff-type problem with critical exponent, Comm. Pure Appl. Anal. 12 (2013),
2773–2786.

28. L. Yang, Z.S. Liu and Z.G. Ouyang, Multiplicity results for the Kirchhoff-
type equations with critical growth, Appl. Math. Lett. 63 (2017), 118–123.

29. J. Zhang and W. Zou, Multiplicity and concentration behavior of solutions

to the critical Kirchhoff-type problem, Z. Angew. Math. Phys. 68 (2017), 57.

GuiZhou Minzu University, School of Data Science and Information Engi-
neering, Guiyang 550025, China
Email address: leichygzu@sina.cn

Shanghai University of Finance and Economics, School of Statistics and
Management, Shanghai 200433, China
Email address: 772936104@qq.com, gaosheng@163.sufe.edu.cn


