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GALOIS WAVELET TRANSFORMS
OVER FINITE FIELDS

ARASH GHAANI FARASHAHI

ABSTRACT. In this article, we introduce the abstract
notion of Galois wavelet groups over finite fields as the finite
group of Galois dilations, and translations. We then present
a unified theoretical linear algebra approach to the theory of
Galois wavelet transforms over finite fields. It is shown that
each vector defined over a finite field can be represented as a
finite coherent sum of Galois wavelet coefficients as well.

1. Introduction. The mathematical theory of finite fields has sig-
nificant roles and applications in computer science,information theory,
communication engineering, coding theory, cryptography, finite quan-
tum systems and number theory [17, 19, 25]. Discrete exponentiation
can be quickly computed using techniques of fast exponentiation such
as binary exponentiation within a finite field operations. In addition,
in coding theory, many codes are constructed as subspaces of vector
spaces over finite fields, see [18, 21] and the references therein.

Finite-dimensional data analysis and signal processing are the ba-
sis of digital signal processing, information theory and large scale data
analysis. In data processing, time-frequency (respectively, time-scale)
analysis comprises those techniques that analyze a vector in both time
and frequency (respectively, time and scale) domains simultaneously,
called time-frequency (respectively, time-scale) methods or represen-
tations, see [4] and the references therein. Commonly used coher-
ent (structured) methods and techniques in such analyses are time-
frequency analysis, which is sometimes called Gabor analysis [5], time-
scale analysis, which is called wavelet analysis [8, 14] and scale-time-
frequency analysis which, is mostly called wave packet methods, see
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[9, 12, 13] and the references therein. The theory of Gabor analysis is
based on the modulations and translations of a given window vector,
and the phase space has a unified group structure, see [2, 3, 20] and the
references therein. Wavelet theory is based on the affine group as the
group of dilations and translation, see [1] and the references therein.
Wave packet analysis is a shrewd coherent state analysis which is an
extension of the two most important and prominent coherent state
methods, namely, wavelet and Gabor analysis [6, 10, 11, 16].

In this article, we introduce the notion of Galois wavelet groups
associated to the finite field F as the group of Galois dilations and
translations. We then present the abstract theory of Galois wavelet
transform over F. If y ∈ CF is a window vector, we define the
Galois wavelet transform Wy as the voice transform defined on CF

with complex values which are indexed in the finite Galois wavelet
group. These techniques imply a unified group theoretical based Galois
dilation, translation representations for vectors in CF. It is shown that
the Galois wavelet transform Wy as a windowed transform satisfies the
isometric property and the inversion formula as well.

2. Preliminaries and notation. Let H be a finite-dimensional
complex Hilbert space and dimH = N . A finite system (sequence)
A = {yj : 0 ≤ j ≤ M − 1} ⊂ H is called a frame (or finite frame) for
H, if there exist positive constants 0 < A ≤ B < ∞ such that

(2.1) A∥x∥2 ≤
M−1∑
j=0

|⟨x,yj⟩|2 ≤ B∥x∥2 for all x ∈ H.

If A = {yj : 0 ≤ j ≤ M − 1} is a frame for H, the synthesis operator

F : CM → H is F{cj}M−1
j=0 =

∑M−1
j=0 cjyj for all {cj}M−1

j=0 ∈ CM . The

adjoint (analysis) operator F ∗ : H → CM is F ∗x = {⟨x,yj⟩}M−1
j=0 for

all x ∈ H. By composing F and F ∗, we get the positive and invertible
frame operator S : H → H, given by

(2.2) x 7−→ Sx = FF ∗x =

M−1∑
j=0

⟨x,yj⟩yj for all x ∈ H,

In terms of the analysis operator we have A∥x∥22 ≤ ∥F ∗x∥22 ≤ B∥x∥22
for x ∈ H. If A is a finite frame for H, the set A spans the complex
Hilbert space H, which implies M ≥ N , where M = |A|. It should be
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mentioned that each finite spanning set in H is a finite frame for H.
The ratio between M and N is called a redundancy of the finite frame
A (i.e., redA = M/N), where M = |A|. If A = {yj : 0 ≤ j ≤ M − 1} is
a finite frame for H, each x ∈ H satisfies the following reconstruction
formulae:

(2.3) x =
M−1∑
j=0

⟨x, S−1yj⟩yj =
M−1∑
j=0

⟨x,yj⟩S−1yj .

In this case, the complex numbers ⟨x, S−1yj⟩ are called frame coeffi-
cients, and the finite sequence A• := {S−1yj : 0 ≤ j ≤ M − 1}, which
is a frame for H as well, is called the canonical dual frame of A. A finite
frame A = {yj : 0 ≤ j ≤ M − 1} for H is called tight if we have A = B.
If A = {yj : 0 ≤ j ≤ M−1} is a tight frame for H with frame bound A,
then the canonical dual frame A• is exactly {A−1yj : 0 ≤ j ≤ M − 1}
and, for x ∈ H, we have

(2.4) x =
1

A

M−1∑
j=0

⟨x,yj⟩yj .

For a finite group G, the finite-dimensional complex vector space
CG = {x : G → C} is a |G|-dimensional Hilbert space with complex
vector entries indexed by elements in the finite group G.1 The inner
product of two vectors x,y ∈ CG is ⟨x,y⟩ =

∑
g∈G x(g)y(g), and the

induced norm is the ∥·∥2-norm of x, that is, ∥x∥2 =
√

⟨x,x⟩. For CZN ,
where ZN denotes the cyclic group of N elements {0, . . . , N − 1}, we
simply write CN at times.

Time-scale analysis and time-frequency analysis on the finite Abelian
group G as modern computational harmonic analysis tools are based on
three basic operations on CG: the translation operator Tk : CG → CG,
given by Tkx(g) = x(g − k) with g, k ∈ G; the modulation operator

Mℓ : CG → CG, given by Mℓx(g) = ℓ(g)x(g) with g ∈ G; and

ℓ ∈ Ĝ, where Ĝ is the character/dual group of G. As the fundamental
theorem of finite Abelian groups provides a factorization ofG into cyclic
groups, that is, G ∼= ZN1 × ZN2 × . . . × ZNd

as groups, which implies

Ĝ ∼= G, we can assume that the action of ℓ = (ℓ1, . . . , ℓd) ∈ Ĝ on
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g = (g1, . . . , gd) ∈ G is given by

ℓ(g) = ((ℓ1, ℓ2, . . . , ℓd), (g1, . . . , gd)) =
d∏

j=1

eℓj (gj),

where eℓj (gj) = e2πiℓjgj/Nj for all 1 ≤ j ≤ d. Thus,

ℓ(g) = ((ℓ1, ℓ2, . . . , ℓd), (g1, . . . , gd)) = e2πi(ℓ1g1/N1+ℓ2g2/N2+...+ℓdgd/Nd).

The character/dual group Ĝ of any finite Abelian group G is isomorphic
with G via the canonical group isomorphism ℓ 7→ eℓ, where the
character eℓ : G → T is given by eℓ(g) = ℓ(g) for all g ∈ G. The
third fundamental operator is the discrete Fourier transform (DFT)

FG : CG → CĜ = CG which allows us to pass from time representations

to frequency representations. It is defined as a function on Ĝ by

FG(x)(ℓ) = x̂(ℓ) =
1√
|G|

∑
g∈G

x(g)ℓ(g)(2.5)

for all ℓ ∈ Ĝ and x ∈ CG, that is, equivalently,

FG(x)(ℓ) = x̂(ℓ)

=
1√
|G|

N1−1∑
g1=0

· · ·
Nd−1∑
gd=0

x(g1, . . . , gd)((ℓ1, . . . , ℓd), (g1, . . . , gd)),

for all ℓ = (ℓ1, . . . , ℓd) ∈ Ĝ and x ∈ CG. Translation, modulation

and the Fourier transform on the Hilbert space CG = CĜ are unitary

operators with respect to the ∥ · ∥2-norm. For ℓ, k ∈ G ∼= Ĝ, we have
(Tk)

∗ = (Tk)
−1 = T−k and (Mℓ)

∗ = (Mℓ)
−1 = M−ℓ. The circular

convolution of x,y ∈ CG is defined by

x ∗ y(k) = 1√
|G|

∑
g∈G

x(g)y(k − g), for k ∈ G.

In terms of the translation operators we have x ∗ y(k) = 1/
√
|G|∑

g∈G x(g)Tgy(k) for k ∈ G. The circular involution or circular adjoint

of x ∈ CG is given by x∗(k) = x(−k). The complex linear space CG,
equipped with the ∥·∥1-norm, that is, ∥x∥1 =

∑
g∈G |x(g)|, the circular

convolution, and involution is a Banach ∗-algebra, which means that,
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for all x,y ∈ CG, we have

∥x ∗ y∥1 ≤ 1√
|G|

∥x∥1∥y∥1 and ∥x∗∥1 = ∥x∥1.

The unitary DFT (2.5) satisfies

T̂kx = Mkx̂, M̂ℓx = T−ℓx̂, x̂∗ = x̂, x̂ ∗ y = x̂ · ŷ,

for x,y ∈ CG, k ∈ G and ℓ ∈ Ĝ. See standard references of harmonic
analysis, such as [7, 23], and the references therein.

3. Harmonic analysis over finite fields. Throughout this sec-
tion, we present a summary of basic and classical results concerning
harmonic analysis over finite fields. For proofs, the reader is referred
to [15, 19, 22, 24, 25], and the references therein.

Let F = Fq be a finite field of order q. Then, there is a prime
number p and an integer number d ≥ 1 in which q = pd. Every finite
field of order q = pd is isomorphic as a field to every other field of
order q. From now on, when it is necessary, we denote any finite field
of order q = pd by Fq; otherwise, we merely denote it by F. The prime
number p is called the characteristic of F, which means that

p · τ =

p∑
k=1

τ = 0 for all τ ∈ F.

The absolute trace map t : F → Zp is given by τ 7→ t(τ), where

t(τ) =

d−1∑
k=0

τp
k

for all τ ∈ F.

The absolute trace map t is a Zp-linear transform from F onto Zp. It
should be mentioned that, in the case of prime fields, the trace map is
readily the identity map.

There exists an irreducible polynomial P ∈ Zp[t] of degree d and a
root θ ∈ F of P such that the set

Bθ := {θj : j = 0, . . . , d− 1} = {1, θ, θ2, . . . , θd−2, θd−1},

is a linear basis of F over Zp. Then, Bθ is called a polynomial basis
of F over Zp and θ is called a defining element of F over Zp. Let
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H = Hθ ∈ Zd×d
p be the d× d matrix with entries in the field Zp given

by Hjk := t(θj+k) for all 0 ≤ j, k ≤ d− 1, which is invertible with the
inverse S ∈ Zd×d

p . Then, the dual polynomial basis

(3.1) B̃θ := {Θk : k = 0, . . . , d− 1},

given by

(3.2) Θk =

d−1∑
j=0

Skjθ
j ,

satisfies the following orthogonality relation

(3.3) t(θkΘj) = δk,j ,

for all j, k = 0, . . . , d− 1.

Proposition 3.1. Let F be a finite field of order q = pd with trace map
t : F → Zp. Then:

(i) for τ ∈ F we have the following decompositions

τ =

d−1∑
k=0

τ(k)θ
k =

d−1∑
k=0

τ[k]Θk,

where for all k = 0, . . . , d− 1 we have

τ(k) := t(τΘk), τ[k] := t(τθk);

(ii) for τ ∈ F the coefficients (components) {τ(k) : k = 0, . . . , d − 1}
and {τ[k] : k = 0, . . . , d− 1} satisfy

τ(k) =

d−1∑
j=0

Skjτ[j], τ[k] =

d−1∑
j=0

Hkjτ(j),

for all k = 0, . . . , d− 1.

Let θ ∈ F be a defining element of F over Zp. Then, θ defines a
Zp-linear isomorphism Jθ : F → Zd

p by

(3.4) γ 7−→ Jθ(τ) := τθ = (τ(k))
d
k=1, for all τ ∈ F.
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Then, the additive group of the finite field F, F+, is isomorphic with
the finite elementary group Zd

p via Jθ. Thus, using classical dual theory

on the ring Zd
p, we get

eτθ (τ
′
θ) = e1,p (τθ · τ ′θ) = e1,p

( d∑
k=1

τ(k)τ
′
(k)

)
, for all τ, τ ′ ∈ F.

Remark 3.2. The dual (character) group of the finite elementary

group Zd
p, that is, Ẑd

p, is precisely{
eℓ : ℓ = (ℓ1, . . . , ℓd) ∈ Zd

p

}
,

where the additive character eℓ : Zd
p → T is given by

eℓ(g) = e1,p(ℓ · g) = exp

(
2πi ℓ · g

p

)
=

d∏
k=1

eℓk,p(gk)

for all
g = (g1, . . . , gd) ∈ Zd

p,

with ℓ · g =
∑d

k=1 ℓkgk.

Let χ : F → T be given by

χ(τ) := exp

(
2πit(τ)

p

)
= e1,p(t(τ)), for all τ ∈ F.

Since the trace map is Zp-linear, we deduce that χ is a character on

the additive group of F (i.e., χ ∈ F̂+).

Proposition 3.3. Let F be a finite field of order q = pd with trace map
t : F → Zp. Then:
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(i) for τ, τ ′ ∈ F, we have

t(ττ ′) =
d−1∑
j=0

d−1∑
k=0

Hjkτ(j)τ
′
(k)

=

d−1∑
j=0

d−1∑
k=0

Sjkτ[j]τ
′
[k]

=
d−1∑
k=0

τ(k)τ
′
[k] =

d−1∑
k=0

τ[k]τ
′
(k);

(ii) for τ, τ ′ ∈ F, we have

χ(ττ ′) = e1,p

( d∑
k=1

τ(k)τ
′
[k]

)
= e1,p

( d∑
k=1

τ[k]τ
′
(k)

)
.

For γ ∈ F, let χγ : F → T be given by

χγ(τ) := χ(γτ)

= exp

(
2πit(γτ)

p

)
= e1,p(t(γτ)), for all τ ∈ F.

Then, χγ is a character on the additive group of F (i.e., χγ ∈ F̂+). For
γ = 1, we get χ = χ1.

If α ∈ F∗, the character χα is called a non-principal character.
The interesting property of non-principal characters is that any non-
principal character can parametrize the full character group of the
additive group of F. Specifically, if α ∈ F∗, then we have

F̂+ = {χαγ : γ ∈ F} .

Thus, the mapping γ 7→ χαγ is a group isomorphism of F onto F̂+.
Then, for α = 1, we obtain

(3.5) F̂+ = {χγ : γ ∈ F} .

Remark 3.4. The characterization (3.5) for the character group of
finite fields is a consequence of applying the trace map in duality theory
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over finite fields. This characterization plays a significant role in the
structure of dual action and hence wave packet groups over finite fields,
see Section 4.

Then, the Fourier transform of a vector x ∈ CF at γ ≍ χγ ∈ F̂+ is

x̂(χγ) =
1√
pd

∑
τ∈F

x(τ)χγ(τ)

=
1√
pd

∑
τ∈F

x(τ)F(γ, τ),

where the matrix F : F× F → C is given by

F(γ, τ) := χ(γτ) = exp

(
2πit(γτ)

p

)
, for all γ, τ ∈ F.

Remark 3.5.

(i) For β ∈ F, the translation operator Tβ : CF → CF is

Tβx(τ) := x(τ − β) for all τ ∈ F

and
x ∈ CF.

(ii) For γ ≍ χγ ∈ F̂+, the modulation operator Mγ : CF → CF is

Mγx(τ) := χγ(τ)x(τ) for all τ ∈ F

and
x ∈ CF.

4. Galois wavelet groups over finite fields. Throughout this
section, we shall present the abstract structure of Galois wavelet groups
over finite fields.

Let F = Fq be a finite field of order q = pd. A bijective map
σ : F → F is called a Galois automorphism of F over Zp, if

σ(τ + τ ′) = σ(τ) + σ(τ ′)

and
σ(ττ ′) = σ(τ)σ(τ ′),
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for all τ, τ ′ ∈ F, and also,
σ(k) = k,

for all k ∈ Zp.

Then, it can be shown that the distinct Galois automorphisms of
F over Zp are precisely the mappings {σj : 0 ≤ j ≤ d − 1}, where
σj : F → F is defined by

σj(τ) = τp
j

,

for all τ ∈ F and 0 ≤ j ≤ d− 1.

The set of all Galois automorphisms of F over Zp form a group under
the composition of mappings, called the Galois group of F over Zp and
denoted by Gal(F/Zp), or merely, Gal(F). The Galois group Gal(F) is
a cyclic group of order d, generated by σ1.

For σ ∈ Gal(F), define the Galois dilation operator Eσ : CF → CF

by
Eσx(τ) := x(σ−1τ),

for all τ ∈ F and x ∈ CF.

The following proposition states some properties of Galois dilation
operators.

Proposition 4.1. Let F be a finite field. Then:

(i) for (σ, β) ∈ Gal(F)× F, we have EσTβ = TσβEσ;
(ii) for σ, σ′ ∈ Gal(F), we have Eσσ′ = EσEσ′ ;
(iii) for (σ, β), (σ′, β′) ∈ Gal(F) × F, we have Tβ+σβ′Eσσ′ =

TβEσTβ′Eσ′ .

Proof. Let F be a finite field and x ∈ CF. Then:

(i) for (σ, β) ∈ Gal(F)× F and τ ∈ F, we can write

EσTβx(τ) = Tβx(σ
−1τ) = x(σ−1τ − β)

= x(σ−1τ − σ−1σβ) = x(σ−1(τ − σβ))

= Eσx(τ − σβ) = TσβEσx(τ).

(ii) For σ, σ′ ∈ Gal(F) and τ ∈ F, we can write

Eσσ′x(τ) = x((σσ′)−1τ) = x(σ′−1σ−1τ)
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= Eσ′x(σ−1τ) = EσEσ′x(τ).

(iii) It is straightforward from (i) and (ii). �

Next, we summarize analytic properties of Galois dilation operators.

Proposition 4.2. Let F be a finite field and σ ∈ Gal(F). Then:

(i) Eσ : CF → CF is a ∗-isometric isomorphism of the Banach
∗-algebra CF;

(ii) Eσ : CF → CF is unitary in ∥.∥2-norm and satisfies (Eσ)
∗ =

(Eσ)
−1 = Eσ−1 .

Proof.

(i) Let x,y ∈ CF and τ ∈ F. Then, we have

Eσ(x ∗ y)(τ) = x ∗ y(σ−1τ)

=
1
√
q

∑
τ ′∈F

x(τ ′)y(σ−1τ − τ ′).

Replacing τ ′ with σ−1τ ′, we get

1
√
q

∑
τ ′∈F

x(τ ′)y(σ−1τ − τ ′) =
1
√
q

∑
τ ′∈F

x(σ−1τ ′)y(σ−1τ − σ−1τ ′)

=
1
√
q

∑
τ ′∈F

x(σ−1τ ′)y(σ−1(τ − τ ′))

=
1
√
q

∑
τ ′∈F

Eσx(τ
′)Eσy(τ − τ ′)

= (Eσx) ∗ (Eσy)(τ),

which implies that Eσ(x ∗ y) = (Eσx) ∗ (Eσy). We can also write

(Eσx)
∗(τ) = Eσx(−τ)

= x(−σ−1τ))

= x∗(σ−1τ) = Eσx
∗(τ),

which implies (Eσx)
∗ = Eσx

∗.
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(ii) Let x ∈ CF. Then, we can write

∥Eσx∥22 =
∑
τ∈F

|Eσx(τ)|2

=
∑
τ∈F

|x(σ−1τ)|2

=
∑
τ∈F

|x(τ)|2 = ∥x∥22,

which implies that Eσ : CF → CF is unitary in ∥ · ∥2-norm and also
satisfies

(Eσ)
∗ = (Eσ)

−1 = Eσ−1 . �

In the remainder of this article, we use the explicit characterization
of the character group given by (3.5). Using (3.5), which can be
considered as a consequence of analytic and algebraic properties of the

trace map, the finite field F parametrizes the full character group F̂+.
This parametrization implies a unified labeling on the character group

F̂+ with F.
Then, we can present the following proposition.

Proposition 4.3. Let F be a finite field and γ ≍ χγ ∈ F̂+. Then:

(i) Mγ : CF → CF is a unitary operator in ∥·∥2-norm and satisfies
(Mγ)

∗ = (Mγ)
−1 = M−γ ;

(ii) for σ ∈ Gal(F), we have EσMγ = Mσ−1γEσ.

Proof.

(i) It is straightforward, invoking the definition of modulation oper-
ators.

(ii) Let σ ∈ Gal(F). Let x ∈ CF and τ ∈ F. Then, we can write

EσMγx(τ) = Mγx(σ
−1τ) = χγ(σ−1τ)x(σ−1τ)

= χ(γσ−1τ)x(σ−1τ) = χ(σ−1γτ)x(σ−1τ)

= χσ−1γ(τ)x(σ
−1τ) = χσ−1γ(τ)Eσx(τ)

= Mσ−1γEσx(τ),

which implies that EσMγ = Mσ−1γEσ. �
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For σ ∈ Gal(F), let Êσ : CF̂+ → CF̂+
be given by

Êσx(χγ) := x(χσ−1γ),

for all γ ≍ χγ ∈ F̂+, and x ∈ CF̂. Since F and F̂+ are isomorphic as

finite Abelian groups, we may use Eσ instead of Êσ at times.

Then, we can present some analytic aspects of Galois dilation oper-
ators on the frequency domain as follows.

Proposition 4.4. Let F be a finite field of order q and σ ∈ Gal(F).
Then:

(i) Eσ : CF̂+ → CF̂+
is a ∗-isometric isomorphism of the Banach

∗-algebra CF̂+
;

(ii) Eσ : CF̂+ → CF̂+
is unitary in the ∥ · ∥2-norm and satisfies

(Eσ)
∗ = (Eσ)

−1 = Eσ−1 .

(iii) FFEσ = Êσ−1FF.

Proof. (i) and (ii) are straightforward.

(iii) Let x ∈ CF and γ ≍ χγ ∈ F̂+. Then, we have

FF(Eσx)(γ) =
1
√
q

∑
τ∈F

Eσx(τ)χγ(τ)

=
1
√
q

∑
τ∈F

x(σ−1τ)χγ(τ).

Replacing τ with στ , we achieve

1
√
q

∑
τ∈F

x(σ−1τ)χγ(τ) =
1
√
q

∑
τ∈F

x(τ)χγ(στ)

=
1
√
q

∑
τ∈F

x(τ)χσγ(τ)

= FF(x)(σγ),

which implies FF(Eσx) = Êσ−1(FFx). �
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The underlying set Gal(F)×F, equipped with group operations given
by

(4.1) (σ, β)o (σ′, β′) := (σσ′, β + σ(β′))

(4.2) (σ, β)−1 := (σ−1, σ−1(−β))

for all (σ, β), (σ′, β′) ∈ Gal(F)×F, is a finite non-Abelian group of order
d·q = d·pd, which is denoted by GF = Gal(F)oF. The group Gal(F)oF
is called a Galois wavelet group over the finite field F. Since any two
fields of order q = pd are isomorphic as finite fields, we deduce that the
notion of Gal(F) o F depends only on q. Specifically, if F and K are
two finite field of order q, then the groups Gal(F)oF and Gal(K)oK
are isomorphic as finite non-Abelian groups of order d · q.

The next theorem shows that the group structure of the Galois
wavelet group Gal(F)oF canonically determines a group representation.

Theorem 4.5. Let F be a finite field of order q > 2. Then:

(i) Gal(F) o F is a non-Abelian group of order d · q which contains
F as a normal Abelian subgroup and Gal(F) as a non-normal cyclic
subgroup.

(ii) The map ρ : Gal(F)o F → U(CF) ∼= Uq×q(C), defined by

(4.3) (σ, β) 7−→ ρ(σ, β) := TβEσ

for
(σ, β) ∈ Gal(F)o F,

is a group representation of the finite Galois wavelet group Gal(F)o F
on the finite-dimensional Hilbert space CF.

Proof. Let F be a finite field of order q > 2. Then:

(i) It is straightforward from the group structure given in (4.1) that
F is a normal Abelian subgroup and Gal(F) is a non-normal Abelian
subgroup of Gal(F)o F.

(ii) It is easy to check that ρ(1, 0) = I, and ρ(σ, β) : CF → CF is a
unitary operator for all (σ, β) ∈ Gal(F) o F. Now, let (σ, β), (σ′, β′) ∈
Gal(F)o F. Then, using Proposition 4.1, we can write

Tβ+σ(β′)Dσσ′ = TβTσ(β′)DσDσ′ = TβDσTβ′Dσ′ .
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Thus, we get

ρ ((σ, β)o (σ′, β′)) = ρ(σσ′, β + σ(β′))

= Tβ+σ(β′)Dσσ′ = TβDσTβ′Dσ′

= ρ(σ, β)ρ(σ′, β′),

which implies that ρ is a group representation of the finite wavelet
group Gal(F)o F on the finite-dimensional Hilbert space CF. �

Remark 4.6. In terms of abstract wavelet transforms over locally
compact groups, the representation ρ mentioned in Theorem 4.5 is
precisely the quasi-regular representation generated by the action of the
multiplicative group H = Gal(F) on the finite additive group K = F
on the Hilbert space CF, see [1, 8] and the references therein.

5. Galois wavelet transforms over finite fields. In this section,
we present an abstract theory of classical wavelet transforms over finite
fields, and we study analytic properties of this transform. Throughout
this section, it is still assumed that F is a finite field of order q = pd.

Let y ∈ CF be a window vector/signal and x ∈ CF. The wavelet
transform of x with respect to y is Wyx : Gal(F)o F → C, given by

(5.1) Wyx(σ, β) :=
∑
τ∈F

x(τ)y(σ−1(τ − β)),

for all (σ, β) ∈ F∗ o F. Then, Wy : CF → CF∗oF given by x 7→ Wyx is
a linear transformation.

By definition (5.1) and using inner product terms, we can write

Wyx(σ, β) =
∑
τ∈F

x(τ)y(α−1(τ − β)) =
∑
τ∈F

x(τ)Eσy(τ − β)

=
∑
τ∈F

x(τ)TβEσy(τ) = ⟨x, TβEσy⟩

= ⟨x, ρ(σ, β)y⟩.

Also, invoking properties of the dilation and translation operators,
we get

⟨x, ρ(σ, β)y⟩ = ⟨x, TβEσy⟩ = ⟨T−βx, Eσy⟩,(5.2)
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for
(σ, β) ∈ Gal(F)o F.

The next proposition gives us a Fourier (respectively, convolution)
representation for the wavelet matrix.

Proposition 5.1. Let F be a finite field of order q. Let x,y ∈ CF and
(σ, β) ∈ Gal(F)o F. Then:

(i) Wyx(σ, β) =
√
qFq(x̂ · Êσy)(−β).

(ii) Wyx(σ, β) = x ∗ Eσy
∗(β).

Proof. Let x,y ∈ CF and (σ, β) ∈ F∗ o F.

(i) Using the Plancherel formula, we have

Wyx(σ, β) = ⟨x, ρ(σ, β)y⟩ = ⟨x, TβEσy⟩ = ⟨x̂, T̂βEσy⟩

=
∑
γ∈F̂+

x̂(γ)T̂βEσy(γ) =
∑
γ∈F̂+

x̂(γ)MβÊσy(γ)

=
∑
γ∈F̂+

x̂(γ)Êσy(γ)χβ(γ) =
∑
γ∈F̂+

(
x̂ · Êσy

)
(γ)χγ(−β)

=
√
qFq(x̂ · Êσy)(−β).

(ii) Similarly, using the Plancherel formula, we can write

Wyx(σ, β) = ⟨x, ρ(σ, β)y⟩ =
∑
γ∈F̂+

x̂(γ)Êσy(γ)χβ(γ)

=
∑
γ∈F̂+

x̂(γ) ̂(Eσy)∗(γ)χβ(γ) =
∑
γ∈F̂+

x̂(γ) ̂(Eσy∗)(γ)χβ(γ)

=
∑
γ∈F̂+

̂x ∗ Eσy∗(γ)χβ(γ) = x ∗ Eσy
∗(β). �

The following theorem presents a concrete formulation for the ∥ · ∥2-
norm of the Galois wavelet transform Wyx.
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Theorem 5.2. Let F be a finite field of order q. Let y ∈ CF be a
window vector and x ∈ CF. Then

(5.3) ∥Wyx∥22 = q
∑
γ∈F

|x̂(χγ)|2 ·
( ∑

σ∈Gal(F)

|Êσy(χγ)|2
)
.

Proof. Let y ∈ CF be a window function, x ∈ CF and σ ∈ Gal(F).
Using Proposition 5.1, we have∑
β∈F

|⟨x, ρ(σ, β)y⟩|2= q
∑
β∈F

∣∣∣Fq(x̂ · Êσy)(−β)
∣∣∣2= q

∑
β∈F

∣∣∣Fq(x̂ · Êσy)(β)
∣∣∣2

= q
∑
γ∈F

∣∣∣(x̂ · Êσy)(χγ)
∣∣∣2= q

∑
γ∈F

∣∣∣x̂(χγ) · Êσy(χγ)
∣∣∣2 .

Therefore, we can write∑
σ∈Gal(F)

∑
β∈F

|⟨x, ρ(σ, β)y⟩|2

= q
∑

σ∈Gal(F)

∑
γ∈F

∣∣∣x̂(χγ) · Êσy(χγ)
∣∣∣2

= q
∑

σ∈Gal(F)

∑
γ∈F

∣∣∣x̂(χγ)|2 · |Êσy(χγ)
∣∣∣2

= q
∑
γ∈F

∑
σ∈Gal(F)

∣∣∣x̂(χγ)|2 · |Êσy(χγ)
∣∣∣2

= q
∑
γ∈F

|x̂(χγ)|2 ·
( ∑

σ∈Gal(F)

|Êσy(χγ)|2
)

= q
∑
γ∈F

|x̂(χγ)|2 ·
( ∑

σ∈Gal(F)

|Êσy(χγ)|2
)
.

Then, we deduce that

∥Wyx∥22 = q
∑
γ∈F

|x̂(χγ)|2 ·
( ∑

σ∈Gal(F)

|Êσy(χγ)|2
)
. �

Let F be a finite field of order q = pd. A nonzero window vec-
tor/signal y ∈ CF is called Galois admissible if and only if
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(5.4) |ŷ(k)|2 = d−1 ·
∑

σ∈Gal(F)

|ŷ(χσ(γ))|2,

for all γ ∈ F− Zp and k ∈ Zp.

Then, equivalently, y ∈ CF is Galois admissible if and only if

(5.5) |ŷ(k)|2 = d−1 ·
d−1∑
j=0

|ŷ(χγpj )|2,

for all γ ∈ F− Zp and k ∈ Zp.

In this case,

cy := d · |ŷ(k)|2 =
d−1∑
j=0

|ŷ(γpj

)|2,

is called a Galois wavelet constant of y.

Theorem 5.3. Let F be a finite field of order q = pd. Let y ∈ CF be a
Galois admissible window vector. Then, for x ∈ CF, we have

∥Wyx∥22 = q · cy · ∥x∥22.

Proof. Let y ∈ CF be a Galois admissible window vector with the
Galois wavelet constant cy. Also, let x ∈ CF. Then, using (5.3), we
have

∥Wyx∥22 = q ·
∑
γ∈F

|x̂(χγ)|2 ·
( ∑

σ∈Gal(F)

|Êσy(χγ)|2
)

= q ·
( ∑

k∈Zp

|x̂(χk)|2 ·
( ∑

σ∈Gal(F)

|Êσy(χk)|2
)

+
∑

γ∈F−Zp

|x̂(χγ)|2 ·
( ∑

σ∈Gal(F)

|Êσy(χγ)|2
))

= q ·
( ∑

k∈Zp

|x̂(χk)|2 ·
( ∑

σ∈Gal(F)

|ŷ(χσ−1(k))|2
)
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+
∑

γ∈F−Zp

|x̂(χγ)|2 ·
( ∑

σ∈Gal(F)

|Êσy(χγ)|2
))

= q ·
( ∑

k∈Zp

|x̂(χk)|2 ·
( ∑

σ∈Gal(F)

|ŷ(χk)|2
)

+
∑

γ∈F−Zp

|x̂(χγ)|2 ·
( ∑

σ∈Gal(F)

|Êσy(χγ)|2
))

= q ·
(
d ·

∑
k∈Zp

|x̂(χk)|2|ŷ(χk)|2

+
∑

γ∈F−Zp

|x̂(χγ)|2 ·
( ∑

σ∈Gal(F)

|Êσy(χγ)|2
))

= q · cy ·
(∑

γ∈F

|x̂(χγ)|2
)

= q · cy · ∥x̂∥22 = q · cy · ∥x∥22. �

We then conclude with the following inversion formula.

Corollary 5.4. Let F be a finite field of order q = pd. Let y ∈ CF

be a Galois admissible window vector. Then, each x ∈ CF satisfies the
following reconstruction formula:

x(τ) = d−1 · c−1
y ·

∑
σ∈Gal(F)

∑
β∈F

Wyx(σ, β)TβEσy(τ),

for all τ ∈ F.

The following theorem summarizes our recent results in terms of
frame theory.

Theorem 5.5. Let F be a finite field of order q = pd. Let y ∈ CF be a
Galois admissible window vector. Then

{TβEσy : (σ, β) ∈ Gal(F)o F} ,

constitutes a tight frame for CF.
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ENDNOTES

1. |G| denotes the order of the group G, or, more generally, the
cardinality of a set G.
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