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REGULARITY OF EXTREMAL FUNCTIONS IN
WEIGHTED BERGMAN AND FOCK TYPE SPACES

TIMOTHY FERGUSON

ABSTRACT. We discuss the regularity of extremal func-
tions in certain weighted Bergman and Fock type spaces.
Given an appropriate analytic function k, the corresponding
extremal function is the function with unit norm maximizing

Re
∫
Ω f(z)k(z) ν(z) dA(z) over all functions f of unit norm,

where ν is the weight function and Ω is the domain of the
functions in the space. We consider the case where ν(z) is a
decreasing radial function satisfying some additional assump-
tions, and where Ω is either a disc centered at the origin or
the entire complex plane. We show that, if k grows slowly
in a certain sense, then f must grow slowly in a related
sense. We also discuss a relation between the integrability
and growth of certain log-convex functions and apply the
result to obtain information about the growth of integral
means of extremal functions in Fock type spaces.

This article deals with the regularity of solutions to extremal prob-
lems in certain weighted Bergman spaces in discs, as well as in Fock
spaces (which are also called Fischer Spaces or Segal-Bargmann spaces).
Our results also apply to other spaces of entire functions that are sim-
ilar to Fock spaces but that are defined using a measure other than

e−α|z|2dA. For information on Bergman spaces, see [9, 16]. For infor-
mation on Fock spaces, see, for example [30]. See also the important
papers [20, 21, 22] by Newman and Shapiro. (Newman and Shapiro
use the term Fischer spaces, presumably since Fischer used the (non-
closed) subspace of the multivariable Fischer/Fock space consisting of
polynomials to study a certain question, see [12, 13]. His work was
extended by Newman and Shapiro.)

For Hardy spaces, which have many similarities with Bergman spaces
but are often simpler to study, extremal problems have been extensively

2010 AMS Mathematics subject classification. Primary 30H20, Secondary
46E15.

Keywords and phrases. Extremal problem, regularity, Fock space, Bergman
space, density of polynomials.

Received by the editors on January 12, 2015, and in revised form on January 6,
2017.
DOI:10.1216/RMJ-2019-49-1-47 Copyright c⃝2019 Rocky Mountain Mathematics Consortium

47



48 TIMOTHY FERGUSON

investigated (see [5] for references). Extremal problems in Bergman
spaces are an area of active research. For example, see [1, 19, 28,
29]. One important application of extremal problems in Bergman
spaces is the study of canonical divisors, which appear as solutions to
certain extremal problems and play a role in Bergman spaces similar
to Blaschke products in Hardy spaces, see [6, 7, 8, 14, 15]. Extremal
functions in Fock spaces have been studied in [2].

Several results concerning regularity of solutions to extremal prob-
lems in Bergman spaces are known, although there are many open
questions. In [25], Ryabykh obtained an important result on the sub-
ject, see [10] for a simplified proof. The articles [11, 17, 18, 27] also
deal with the regularity of solutions to extremal problems in Bergman
spaces.

We now discuss the subject of this paper in more detail. Let 0 <
R ≤ ∞, and let DR be the open disc of radius R centered at the origin
(if R = ∞, then DR is the entire complex plane). Let ν be a non-
negative measurable function on DR that is different from zero on a set
of positive measure, and let Ap

R(ν) be the space of all analytic functions
in DR such that

∥f∥ =

{∫
DR

|f(z)|pν(z) dA(z)

}1/p

< ∞.

Throughout the paper, we make the assumption that 1 < p < ∞,
unless otherwise noted. For certain functions ν, the space Ap

R(ν) is a
Banach space with norm ∥ · ∥. When R < ∞, the space is known as
a weighted Bergman space, whereas, when R = ∞, the space will be
called a Fock type space. The standard Fock spaces correspond to the

case where R = ∞ and ν = e−α|z|2 , where α > 0.

Let ν be a function such that Ap
R(ν) is a Banach space, and suppose

that k ∈ Ap′

R (ν), where 1/p+ 1/p′ = 1. Then,

f 7−→
∫
DR

f(z)k(z) ν(z) dA(z)

defines a linear functional Φk on Ap
R(ν), with norm at most ∥k∥

Ap′
R (ν)

.

We let ∥k∥∗ denote the norm of Φk. Thus, ∥k∥∗ ≤ ∥k∥
Ap′

R (ν)
for all

functions k ∈ Ap′

R (ν).



EXTREMAL FUNCTIONS 49

We seek a function f ∈ Ap
R(ν) such that

(0.1) ∥f∥Ap
R(ν) = 1

and

ReΦk(f) = sup
∥g∥A

p
R

(ν)=1

Re

∫
DR

g(z)k(z) ν(z) dA(z).

We say that k is the integral kernel for the extremal problem and
that f is the corresponding extremal function. Since the space Lp(ν) is
uniformly convex, there always exists a unique solution to this extremal
problem, see [10, Theorem 1.4]. In the case where ν = 1 and R < ∞, it
is known that, if k has some suitable additional regularity beyond being

in the space Ap′

R (ν), then f will also have some additional regularity.
For example, see [10, 11, 18, 25].

For the case where ν is not constant, we note that the techniques
in [18] should be able to be easily extended to show that solutions of
weighted Bergman space extremal problems where k is analytic in the
closed unit disc, and the weight is real analytic in the closed unit disc
extend continuously to the closed unit disc. In fact, a similar extension
of the results in [3] should show that, if k is analytic in the closed unit
disc, and nonvanishing on the boundary of the unit disc, and the weight
is both real analytic in the closed unit disc and non-vanishing on the
unit circle, then there are numbers α and β depending on k and the
weight such that α < 2 < β and that, if α < p < β, then the extremal
function has only a finite number of zeros in the closed unit disc. In
[18], it is conjectured that this holds for all p strictly between 1 and
∞ (at least when k is a rational function and the weight is constant).

In what follows, we generalize the results of Ryabykh in [25] to
certain non-constant measures ν, and we obtain results for both the
cases R < ∞ and R = ∞.

The outline of this article is as follows. In Section 1, we discuss some
preliminary results. In Section 2, we discuss regularity for extremal
functions in weighted Bergman spaces, and, in Section 3, we discuss
regularity for weighted Fock type spaces. In Section 4, we give results
which throw further light on some of the quantities appearing in the
statement of the main theorem of Section 3. To do this, we find a
relation between the integrability and growth of certain log-convex
functions and apply the result to obtain information about the growth
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of the integral means of extremal functions in Fock type spaces. In
Section 5, we discuss the density of polynomials in various weighted
Bergman and Fock type spaces and present various auxiliary results,
which are needed for the main results of the paper.

1. Some preliminary results. Let 0 < R ≤ ∞, and let DR denote
the open disc centered at the origin with radius R (where D∞ = C).
Let dA represent the area measure.

For ν(z) a non-negative measurable function defined on DR that is
not identically zero (in the ‘almost everywhere’ sense), we let Ap

R(ν)
be the space of all functions analytic in DR that are also in Lp(ν dA).
We take the norm of Ap

R(ν) to be the same as the norm of Lp(ν dA).
Note that, while Ap

R(ν) is a subspace of Lp(ν dA), it is not necessarily
a closed subspace. However, for all of the measures with which we deal,
Ap

R(ν) will be a closed subspace of Lp(ν dA).

Many of our results focus on the case where ν(z) = ω(|z|2), where ω
is a positive, decreasing and non-constant function on [0, R2) that is an-
alytic in some complex neighborhood of [0, R2). The space Ap

R(ω(|z|2))
has norm defined by

∥f∥Ap
R(ω(|z|2)) =

(∫
DR

|f(z)|pω(|z|2) dA(z)

)1/p

,

where dA represents the area measure. We note that the space in
question is indeed a Banach space, by Proposition 5.1.

Next, we recall the Cauchy-Green theorem, which we state for
convenience since it will be used several times.

Theorem A. Let Ω be a C1 domain in C, and let f ∈ C1(Ω). Then:

1

2i

∫
∂Ω

f(z) dz =

∫
Ω

∂

∂z
f(z) dA,

and

i

2

∫
∂Ω

f(z) dz =

∫
Ω

∂

∂z
f(z) dA.
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We will also need the following theorem, which gives a characteriza-
tion of extremal functions. It can be found in [26, page 55].

Theorem B. Let σ be a measure, let 1 < p < ∞, let X be a closed
subspace of Lp(σ), and let ϕ ∈ X∗ be the dual space of X. Assume that
ϕ is not identically 0. A function F ∈ X with ∥F∥ = 1 satisfies

Reϕ(F ) = sup
g∈X,∥g∥=1

Reϕ(g) = ∥ϕ∥X∗

if and only if ϕ(F ) > 0, and∫
h|F |p−1sgnF dσ = 0

for all h ∈ X with ϕ(h) = 0. If F satisfies the above conditions, then∫
h|F |p−1sgnF dσ =

ϕ(h)

∥ϕ∥X∗

for all h ∈ X.

Lastly, we note that Lp spaces are uniformly convex for 1 < p < ∞
(see [4] for a definition of uniform convexity and a proof of this result),
and thus, the Ap

R spaces under consideration are uniformly convex since
any closed subspace of a uniformly convex space is uniformly convex.
Using [10, Theorem 3.1] and the fact that ∥k∥∗ ≤ ∥k∥

Ap′
R (ν)

for all

functions k ∈ Ap′

R (ν), we have the following theorem.

Theorem C. Suppose that Ap
R(ν) is a Banach space and that k is a

non-zero function in Ap′

R (ν). Then, there is a unique solution to the
extremal problem (0.1) with integral kernel k. Let kn be a sequence of

functions approaching k in the Ap′

R (ν) norm, let fn be the extremal
functions corresponding to kn, and let f be the extremal function
corresponding to k. Then, fn → f in the Ap

R(ν) norm.

By [10, Theorem 4.1], we have the following result. When we apply
it, we will let Xn be the space of polynomials of degree at most n.

Theorem D. Suppose that Ap
R(ν) is a Banach space, that f is the

solution to the extremal problem (0.1) with integral kernel k, and that
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X1 ⊂ X2 ⊂ · · · are closed subspaces of Ap
R(ν) such that ∪∞

n=1Xn =
Ap

R(ν). Let fn be the solution to the extremal problem (0.1) posed
over the space Xn instead of the space Ap

R(ν). Then, fn exists and
is unique, and fn → f in the Ap

R(ν) norm as n → ∞. In addition,
∥Φk|Xn∥ → ∥Φk∥ as n → ∞.

2. Regularity of extremal functions in weighted Bergman
spaces. Let R < ∞. We suppose that ω is analytic in a neighborhood
of [0, R2) and that ω is positive and decreasing on [0, R2). This
implies that ω has a limit from the left at R2; thus, we may assume,
without loss of generality, that it is continuous from the left at R2.
By Proposition 5.3, the polynomials are dense in Ap

R(ω(|z|2)). Now,

suppose that f is analytic in the disk DR and is in C1(DR). Consider
the integral

R2

2

∫ 2π

0

|f(Reiθ)|p ω(R2) dθ.

We let z = Reiθ and change variables in the above integral by substi-
tuting R2 dθ = iz dz. Next, we apply the Cauchy-Green theorem to
the resulting integral. After rearrangement, we see that

(2.1)
R2

2

∫ 2π

0

|f(Reiθ)|pω(R2) dθ −
∫
DR

|z|2|f(z)|pw′(|z|2) dA

=

∫
DR

(
p

2
zf ′(z) + f(z)

)
|f(z)|p−1(sgn f(z))ω(|z|2) dA.

Note that the left-hand side of equation (2.1) is non-negative since the
first integral in the expression is non-negative and the second integral
in the expression is non-positive. This is due to the assumption that ω
is decreasing.

Now, consider the right hand side of equation (2.1). Let k be
a fixed function analytic in DR and in C1(D). Let fn be the
solution to the extremal problem of maximizing the real part of∫
DR

g(z)k(z)ω(|z|2) dA(z) over all polynomials g of degree at most n

such that ∥g∥Ap
R(ω(|z|2)) = 1. Call the maximum ∥k∥∗n. By Theorem B

applied to the space of polynomials of degree n considered as a subspace
of Ap

R(ω(|z|2)), we have
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∫
DR

(
p

2
zf ′

n(z) + fn(z)

)
|fn(z)|p−1(sgn fn(z))ω(|z|2) dA

=
1

∥k∥∗n

∫
DR

(
p

2
zf ′

n(z) + fn(z)

)
k(z)ω(|z|2) dA

since zf ′
n(z) is also a polynomial of degree n.

If we take equation (2.1) with fn in place of f , and use the above
equation along with the fact that

zf ′
n(z)ω(|z|2) = ∂z[zfn(z)ω(|z|2)]− zfn(z)ω

′(|z|2)z − fn(z)ω(|z|2),

we see that

R2

2

∫ 2π

0

|fn(Reiθ)|pω(R2) dθ −
∫
DR

|z|2|fn(z)|pω′(|z|2) dA

=
p

2∥k∥∗n

[ ∫
DR

∂z[zfn(z)ω(|z|2)k(z) dA−
∫
DR

|z|2fn(z)k(z)ω′(|z|2) dA
]

+
1

∥k∥∗n

(
1− p

2

)∫
DR

fn(z)k(z)ω(|z|2) dA.

This equals

1

∥k∥∗n

{
p

2

∫
DR

∂z[zfn(z)ω(|z|2)k(z)] dA− p

2

∫
DR

|z|2fn(z)k(z)ω′(|z|2) dA

+
2− p

2

[ ∫
DR

∂z[fn(z)zK(z)ω(|z|2)] dA

−
∫
DR

|z|2fnKω′(|z|2) dA
]}

,

where K(z) = (1/z)
∫ z

0
k(ζ) dζ. Applying the Cauchy-Green theorem

again and changing the variable of integration to θ in the integrals over
the boundary of the disc shows that

R2

2

∫ 2π

0

|fn(Reiθ)|pω(R2) dθ −
∫
DR

|z|2|fn(z)|pω′(|z|2) dA

(2.2)

=
p

2∥k∥∗n
R2

2

∫ 2π

0

fn(Re
iθ)k(Reiθ)ω(R2) dθ

− p

2∥k∥∗n

∫
DR

|z|2fn(z)k(z)ω′(|z|2) dA
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+
2− p

2∥k∥∗n

{
R2

2

∫ 2π

0

fn(z)K(z)ω(R2) dθ −
∫
DR

|z|2fnKω′(|z|2) dA
}
.

Now, define the pth integral mean of an analytic function f at radius
r < R by

Mp(r, f) =

{∫ 2π

0

|f(reiθ)|pdθ
}1/p

,

and define Mp(R, f) = limr→R− Mp(r, f). Note that this differs by a

factor of (2π)−1/p from the usual definition. For 0 < r ≤ R, let

(2.3) Dp(r, f ;ω) =

{
−
∫
Dr

|z|2|f(z)|pω′(|z|2) dA
}1/p

.

We write Dp(r, f) for Dp(r, f ;ω) when it is clear what the function
ω is. It is clear that Dp(r, f) is non-decreasing with r, and it is well
known that the same is true for Mp(r, f), see [5, page 9]. We note
in passing that, in at least one case, Dp(r, f) can be given a physical
interpretation. A function f in the Fock space for p = 2 can represent
the state of a quantum harmonic oscillator, in which case D2(∞, f)
represents a quantity related to the expected energy of the oscillator.

Let q be the conjugate exponent to p so that 1/p + 1/q = 1. Also,
note that

Mq(r, zK) =

{∫ 2π

0

| reiθ K(reiθ)|qdθ
}1/q

=

{∫ 2π

0

∣∣∣∣ ∫ r

0

k(ρeiθ)eiθdρ

∣∣∣∣qdθ}1/q

≤
∫ r

0

{∫ 2π

0

|k(ρeiθ)|qdθ
}1/q

dρ

=

∫ r

0

Mq(ρ, k) dρ ≤ rMq(r, k).

Thus, Mq(r,K) ≤ Mq(r, k), which also implies that Dq(r,K) ≤
Dq(r, k) since the measure |z|2ω′(|z|2) is a radial measure.
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Let p̂ = max(p−1, 1). Returning to equation (2.2) and using Hölder’s
inequality, we see that

R2

2
ω(R2)Mp

p (R, fn) +Dp
p(R, fn)

≤ 1

∥k∥∗n

{
p

2

R2

2
ω(R2)Mp(R, fn)Mq(R, k) +

p

2
Dp(R, fn)Dq(R, k)

+

∣∣∣∣1− p

2

∣∣∣∣[R2

2
ω(R2)Mp(R, fn)Mq(R,K)

+Dp(R, fn)Dq(R,K)

]}
≤ 1

∥k∥∗n

{
p̂
R2

2
ω(R2)Mp(R, fn)Mq(R, k) + p̂Dp(R, fn)Dq(R, k)

}
.

For ease of notation, define Np(r, g) = (r2/2)1/pω(r2)1/pMp(r, g) for
any analytic function g. Then, the right side of the last displayed
inequality is at most

p̂

∥k∥∗n

[(
R2

2
ω(R2)

)1/p

Mp(R, fn) +Dp(R, fn)

]
×
[(

R2

2
ω(R2)

)1/q

Mq(R, k) +Dq(R, k)

]
=

p̂

∥k∥∗n
[Np(R, fn) +Dp(R, fn)][Nq(R, kn) +Dq(R, k)]

≤ 21/qp̂

∥k∥∗n
[Np

p (R, fn) +Dp
p(R, fn)]

1/p[Nq(R, k) +Dq(R, k)].

And, thus, we have

(Np
p (R, fn) +Dp

p(R, fn))
1/q ≤ 21/qp̂

∥k∥∗n
[Nq(R, k) +Dq(R, k)].

If r < R, this implies that

(2.4) Np
p (r, fn) +Dp

p(r, fn) ≤
21/qp̂

∥k∥∗n
[Nq(R, k) +Dq(R, k)]q.

Now, let f denote the solution of our extremal problem over the full
space. Observe that, as n → ∞, we have fn → f in Ap

R(ω(|z|2)) and
∥k∥∗n → ∥k∥∗ by Theorem D. Thus, fn → f uniformly on compact
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subsets of DR by Proposition 5.1. Hence, Mp(r, fn) → Mp(r, f) and
Dp(r, fn) → Dp(r, f) as n → ∞. Also, recall thatMp(r, f) andDp(r, f)
are increasing with r. Thus, in inequality (2.4), if we first let n → ∞
and then r → ∞, we have

(2.5) Np
p (R, f) +Dp

p(R, f) ≤ 21/qp̂

∥k∥∗
[Nq(R, k) +Dq(R, k)]q.

Now, suppose that k is not in C1(D) but that Mq(R, k) < ∞. It
is well known that there is a sequence of polynomials kn such that
Mq(R, k − kn) → 0 as n → ∞ (this follows from [5, Theorem 2.6].
Now, since Mq(r, g) increases with r for any analytic function g, and
since

Dq
q(R, k − kn) = −

∫ R

0

r2Mq
q (r, k − kn)ω

′(r)r dr

≤
(
−
∫ R

0

ω′(r2)r dr

)
Mq

q (R, k − kn)R
2

=
1

2
(ω(0)− ω(R2))Mq

q (R, k − kn)R
2,

we have that Dq(R, k − kn) → 0 as n → ∞. Thus, by Minkowski’s
inequality, we have thatMq(R, k)−Mq(R, kn) andDq(R, k)−Dq(R, kn)
both approach 0 as n → ∞. Now, for r < R, we have

Np
p (r, fn) +Dp

p(r, fn) ≤
21/q p̂

∥k∥∗
[Nq(R, kn) +Dq(R, kn)]

q.

By Theorem C, as n → ∞ we have fn → f in the Ap
R(ω(|z|2)) norm,

and thus fn → f uniformly in {|z| ≤ r} by Proposition 5.1. Therefore,
Dp(fn, r) → Dp(f, r) and Mp(fn, r) → Mp(f, r). Thus, we have that

Np
p (r, f) +Dp

p(r, f) ≤
21/qp̂

∥k∥∗
[Nq(R, k) +Dq(R, k)]q.

Letting r → R shows that inequality (2.5) still holds. We summarize
our results in a theorem.

Theorem 2.1. Let 1 < p < ∞, and let 0 < R < ∞. Let the function
ω be analytic in a neighborhood of [0, R2), and let ω be positive, non-
increasing and non-constant on [0, R2). Suppose that f is the extremal
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function in Ap
R(ω(|z|2)) for the integral kernel k. Then:

R2

2
ω(R2)Mp

p (R, f) +Dp
p(R, f)

≤ 21/qp̂

∥k∥∗

[(
R2

2
ω(R2)

)1/q

Mq(R, k) +Dq(R, k)

]q
.

3. Regularity of extremal functions in Fock type spaces. In
this section, we consider the regularity of extremal functions in the
Fock type spaces Ap

∞(ν). The measures we consider are those which
satisfy our previous assumptions, for which limr→∞ rnω(r2) = 0 and
limr→∞ rnω′(r2) = 0 for all integers n, and for which the polynomials
are dense in Ap

∞(ω(|z|2)) and Aq
∞(ω(|z|2) − |z|2ω′(|z|2)), where q is

the conjugate exponent to p. In Section 5, we give some sufficient
conditions for polynomials to be dense in these spaces. For example,
for 1 < p < ∞, the polynomials are dense in the Fock space (for which
ω(z) = e−αz).

Recall that equation (2.1) shows, for f in C1(DR) and analytic in
DR, and for 0 < R < ∞, that

R2

2

∫ 2π

0

|f(Reiθ)|pω(R2) dθ −
∫
DR

|z|2|f(z)|pw′(|z|2) dA

=

∫
DR

(
p

2
zf ′(z) + f(z)

)
|f(z)|p−1(sgn f(z))ω(|z|2) dA.

Suppose that f is a polynomial. Then, letting R → ∞ in equation (2.1)
gives

−
∫
C
|z|2|f(z)|pw′(|z|2) dA

=

∫
C

(
p

2
zf ′(z) + f(z)

)
|f(z)|p−1(sgn f(z))ω(|z|2) dA.

Consider the extremal problem for the space Ap
∞(ω(|z|2)) with kernel

k, where k is a polynomial. Denote the solution to the extremal problem
(0.1) over polynomials of degree at most n by fn.
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As before, the right hand side of equation (2.1) equals

1

∥k∥∗n

∫
C

(
p

2
zf ′

n(z) + fn(z)

)
k(z)ω(|z|2) dA,

and the same computation as before gives

−
∫
C
|z|2|fn(z)|pω′(|z|2) dA

= lim
R→∞

(
1

∥k∥∗n

{
p

2

∫
DR

∂z[zfn(z)ω(|z|2)k(z)] dA

− p

2

∫
DR

|z|2fn(z)k(z)ω′(|z|2) dA
}

+
2− p

2∥k∥∗n

[ ∫
DR

∂z[fn(z)zK(z)ω(|z|2)] dA

−
∫
DR

|z|2fnKω′(|z|2) dA
])

,

where K(z) = (1/z)
∫ z

0
k(ζ) dζ, as before. We now use the Cauchy-

Green theorem to see that the above displayed expressions equal

lim
R→∞

(
1

∥k∥∗n

{
p

2

i

2

∫
∂DR

zfn(z)k(z)ω(|z|2) dz

− p

2

∫
DR

|z|2fn(z)k(z)ω′(|z|2) dA
}

+
2− p

2∥k∥∗n

[
1

2i

∫
DR

fn(z)K(z)ω(|z|2)z dz −
∫
DR

|z|2fnKω′(|z|2) dA(z)

])
.

Since fn and k are polynomials, our assumptions on ω imply that

−
∫
C
|z|2|fn(z)|pω′(|z|2) dA = − p

2∥k∥∗n

∫
C
|z|2fn(z)k(z)ω′(|z|2) dA

−
(
1− p

2

)∫
DR

|z|2fnKω′(|z|2) dA(z).

Applying Hölder’s inequality, we see that
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Dp
p(∞, fn) ≤

p

2∥k∥∗n
Dp(∞, fn)Dq(∞, k)

+
1

∥k∥∗n

∣∣∣∣1− p

2

∣∣∣∣Dp(∞, fn)Dq(∞,K)

≤ p̂

∥k∥∗n
Dp(∞, fn)Dq(∞, k),

so that

Dp(∞, fn) ≤
[

p̂

∥k∥∗n
Dq(∞, k)

]1/(p−1)

.

Therefore,

Dp(R, fn) ≤
[

p̂

∥k∥∗n
Dq(∞, k)

]1/(p−1)

,

where R > 0 is arbitrary.

Let f denote the solution to the extremal problem over the full space.
Then, fn → f in Ap

∞(ω(|z|2)) and ∥k∥∗n → ∥k∥∗ by Theorem D. Also,
by Proposition 5.1, fn → f uniformly on |z| ≤ R. Letting n → ∞, and
then letting R → ∞ in the above displayed inequality, gives

Dp(∞, f) ≤
[

p̂

∥k∥∗
Dq(∞, k)

]1/(p−1)

.

Lastly, if k is not a polynomial, we let kn be a sequence of polyno-
mials approaching k in Aq

∞(ω(|z|2)), such that Dq(∞, kn) → Dq(∞, k)
as n → ∞. This can be done since polynomials are dense in the space
Aq

∞(ω(|z|2)−|z|2ω′(|z|2)). Let fn be the solution to the extremal prob-
lem with kernel kn. Then, we have, for fixed R > 0, that

Dp(R, fn) ≤
[

p̂

∥kn∥∗
Dq(∞, kn)

]1/(p−1)

.

Now, fn → f in Ap
∞(ω(|z|2)) by Theorem C, and thus, uniformly for

|z| ≤ R by Proposition 5.1. Also, ∥kn∥∗ → ∥k∥∗ as n → ∞, since
∥k − kn∥∗ is bounded above by ∥k − kn∥Aq

∞(ω(|z|2)), which approaches
zero. Therefore, we have that

Dp(R, f) ≤
[

p̂

∥k∥∗
Dq(∞, k)

]1/(p−1)

.
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Letting R → ∞ gives

Dp(∞, f) ≤
[

p̂

∥k∥∗
Dq(∞, k)

]1/(p−1)

.

Again, we state our results in a theorem.

Theorem 3.1. Let 1 < p < ∞. Let the function ω be analytic
in a neighborhood of [0,∞), and let ω be positive, non-increasing
and non-constant on [0,∞). Also, suppose that limr→∞ rnω(r2) =
limr→∞ rnω′(r2) = 0 for all integers n, and that the polynomials are
dense in Ap

∞(ω(|z|2)) and in Aq
∞(ω(|z|2)−|z|2ω′(|z|2)). Suppose that f

is the extremal function in Ap
R(ω(|z|2)) for the integral kernel k. Then:

Dp(∞, f) ≤
[

p̂

∥k∥∗
Dq(∞, k)

]1/(p−1)

.

It could be questioned whether the condition Dp(∞, f) < ∞ is im-
plied by the condition f ∈ Ap

∞(ω(|z|)2), in which case the above the-
orem would be less interesting. However, in general, f ∈ Ap

∞(ω(|z|)2)
does not imply Dp(∞, f) < ∞. For example, consider the Fock space

with measure e−α|z|2 . In this case, the statement that Dp(∞, f) < ∞
is equivalent to f being in the space Ap

∞(|z|2e−α|z|2). Now, the norm
of zn in the original Fock space is[

π

αnp/2
Γ

(
np

2
+ 1

)]1/p
,

while its norm in the second space is[
π

αnp/2+1
Γ

(
np

2
+ 2

)]1/p
.

The ratio of the second norm to the first is ((np + 2)/(2α))1/p, which
is unbounded in n. If every element in the Fock space were in

Ap
∞(|z|2e−α|z|2), then, by the closed graph theorem, the identity map

from the Fock space into Ap
∞(|z|2e−α|z|2) would be bounded, which

contradicts the above analysis of the norms of the monomials. Thus,

f ∈ Ap
∞(e−α|z|2) does not imply that f ∈ Ap

∞(|z|2e−α|z|2).



EXTREMAL FUNCTIONS 61

4. Growth of integral means and log-convex functions. Theo-
rem 3.1 does not bound the quantity limr→∞ r2ω(r2)Mp

p (r, f), although
a similar term was bounded in Theorem 2.1. Thus, by analogy with
Theorem 2.1, it is natural to ask whether ω(r2)Mp

p (r, f) is bounded as

r → ∞ if r2ω(r2)Mq
q (r, k) is bounded as r → ∞, and if Dq(∞, k) is

bounded. For certain measures, we show that this is the case. In fact,
if Dq(∞, k) is bounded, so is Dp(∞, f) by Theorem 3.1, and in this sec-
tion, we show that, for certain measures ω, the conditionDp(f,∞) < ∞
implies that r3ω(r2)Mp

p (r, f) → 0 as r → ∞ for any entire function f .

It will simplify matters if we introduce some notation. Let λ(x)
be a positive, increasing, smooth function defined for x ≥ R, where
R ≥ 0. Now, let X = log x and Y = log y. Define ν(X) = log(λ(x)) =
log(λ(eX)). Let g(x) be differentiable and a log-convex function of
log x, i.e., let log g(x) = log g(eX) be a convex function of X. Let
g̃(X) = g(eX) and ν̃(X) = ν(eX).

Now, suppose that, for some x1 > 0, we have g(x1) = λ(x1), but that
g(x) ≤ λ(x) for some x < x1. Then, for some x0 such that x < x0 ≤ x1,
we must have g(x0) = λ(x0) and g′(x0) ≥ λ′(x0), which implies that

d log g̃(X)

dX
(X0) ≥

dν̃

dX
(X0).

Now, let

Y = ν̃(X0) +

(
dν̃

dX
(X0)

)
· (X −X0).

For X ≥ X0, the function Y lies below the line tangent to the function
log g̃(X) at X0. Since log g̃(X) is a convex function of X, this means
that Y ≤ log g̃(X) for all X ≥ X0.

We compute that

dν̃

dX
=

d log λ(eX)

dX
=

eXλ′(eX)

λ(eX)
=

xλ′(x)

λ(x)
.

Let eY = y. Then, we have

y = λ(x0)

(
x

x0

)x0λ
′(x0)/λ(x0)

.
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Now, let

S(x0, λ) =

∫ ∞

x0

yλ(x)−1dx =

∫ ∞

x0

λ(x0)

λ(x)

(
x

x0

)x0λ
′(x0)/λ(x0)

dx.

Note that S(x0, αλ) = S(x0, λ) for α ̸= 0. From the above discussion,
we have the following lemma.

Lemma 4.1. Let g and λ be as above. Suppose that there is some
x1 such that g(x1) = λ(x1) and that there is some x2 such that
R ≤ x2 < x1 and such that g(x2) < λ(x2). Then, there is some x0

such that x2 < x0 ≤ x1 and g(x0) = λ(x0), and such that∫ ∞

x0

g(x)λ(x)−1dx ≥ S(x0, λ).

We now show that, if∫ ∞

0

g(x)λ(x)−1dx < ∞,

and, if lim infx→∞ S(x, λ) > 0, we have limx→∞ g(x)λ(x)−1 = 0.
Suppose, for the sake of contradiction, that lim supx→∞ g(x)λ(x)−1 =
2k > 0. From the fact that the above integral is finite, we must
have lim infx→∞ g(x)λ(x)−1 = 0. Thus, there must be some sequence
of points a1 < b1 < a2 < b2 · · · such that g(aj)λ(aj)

−1 < k and
g(bj)λ(bj)

−1 = k, and such that bn → ∞ and an → ∞ as n → ∞.
Thus, if we define λk = kλ, the previous lemma shows that there is
some sequence of points xn → ∞ such that∫ ∞

xn

g(x)λk(x)
−1dx ≥ S(xn, λk)

for all n. As n → ∞, the left hand side of the previous inequal-
ity must approach 0. Thus, if we can show for all k > 0 that
lim infx→∞ S(x, λk) > 0, we will obtain a contradiction, showing, in
fact, that k = 0. However, S(x, λk) = S(x, λ) for k ̸= 0. Thus, we have
obtained a contradiction between our assumptions and the supposition
that k ̸= 0. In summary, we have the next theorem.
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Theorem 4.2. Suppose that lim infx→∞ S(x, λ) > 0. Then, if g(x) is
a log-convex function of log x such that∫ ∞

0

g(x)λ(x)−1dx < ∞,

we have that limx→∞ g(x)λ−1(x) = 0.

To apply this theorem in our situation, we choose λ(x) = −1/ω′(x2).
Recall that, if f is an analytic function, then Mp(r, f) is a log convex
function of log r, see [5, page 9]. Now, let g(x) = x3Mp

p (x, f). Letting
X = log x, we have

log g(eX) = 3X + p logMp(e
X , f).

Since both X and logMp(e
X , f) are convex functions of X, so is g(x).

Suppose that

Dp
p(∞, f ;ω) =

∫
C
|z|2|f(z)|pλ(|z|)−1 < ∞,

which means that∫ ∞

0

x3Mp
p (x, f)λ(x)

−1 =

∫ ∞

0

g(x)λ(x)−1 < ∞.

If lim infx→∞ S(x, λ) > 0, then, limr→∞ r3Mp
p (r, f)ω

′(r2) = 0 by Theo-
rem 4.2. Thus, we have the following theorem.

Theorem 4.3. Suppose that lim infx→∞ S(x,−1/ω′(r2)) > 0 and that
there is some positive constant C such that −ω′(r) ≥ Cω(r) for all suffi-
ciently large r. If Dp(∞, f ;ω) < ∞, then limr→∞ r3Mp

p (r, f)ω(r
2) = 0.

Example 4.4. Suppose that ω(|z|2) = (1/α)e−α|z|2 so that we are
dealing with a Fock space. (The 1/α factor is there as a convenience so
an extra factor of α does not appear in the definition of λ.) Note that

S(x0, λ) =

∫ ∞

x0

eαx
2
0e−αx2

(
x

x0

)2αx2
0

dx

= eαx
2
0(αx2

0)
−αx2

0

∫ ∞

x0

e−αx2

(αx2)αx
2
0dx
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= (1/[2α1/2])eαx
2
0(αx2

0)
−αx2

0

∫ ∞

αx2
0

e−uuαx2
0−(1/2)du

= (1/[2α1/2])eαx
2
0(αx2

0)
−αx2

0Γ(αx2
0 + (1/2), αx2

0)

≥ (1/[2α1/2])eαx
2
0(αx2

0)
−αx2

0Γ(αx2
0 + (1/2), αx2

0 + (1/2)),

where Γ is the incomplete Gamma function, as defined in [23, for-
mula 8.2.2]. Now, for large x, we have [23, formula 8.11.12]

Γ(x, x) ∼ xxe−xx−1/2
√
π/2,

which implies, for large enough x, that

Γ(x+ (1/2), x+ (1/2)) ≥ C

(
x+

1

2

)x+(1/2)

e−x−(1/2)

(
x+

1

2

)−1/2

≥ Cxxe−x

e1/2

for some constant C > 0. Thus, we have that

S(x0, λ) ≥
C

2α1/2e1/2
eαx

2
0(αx2

0)
−αx2

0(αx2
0)

αx2
0e−αx2

0 =
C

2α1/2e1/2

for large enough x0. Hence, we have the following result, which we
state as a theorem.

Theorem 4.5. Let f be an entire function, and let 0 < p < ∞. If∫
C
|f(z)|p|z|2e−α|z|2dA(z) < ∞,

then
lim
r→∞

r3Mp
p (r, f)e

−αr2 = 0.

5. Density of polynomials in various spaces. In this section, we
discuss the density of polynomials in various weighted Bergman spaces.
Propositions 5.1, 5.2, 5.3 and 5.4 are well known, at least in certain
cases, and we follow the standard proofs. The proof of Proposition 5.5
is similar to the proof that the polynomials are dense in the Fock space
(see, e.g. [30]).
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We say a nonnegative function ν defined on [0, R) is a radial weight
function if the measure ν(|z|) dA is in Lp(DR), and it is not the case
that ν = 0 almost everywhere.

Proposition 5.1. Let 0 < R ≤ ∞. Suppose that ν is a radial weight
function, and that there is some R′ such that 0 ≤ R′ < R and, for
each y such that R′ < y < R, the quantity inf{ν(x) : R′ ≤ x < y} is
nonzero. Then, Ap

R(ν(|z|)) is a Banach space, and convergence in the
norm of Ap

R(ν(|z|)) implies uniform convergence on compact subsets of
DR. Also, the point evaluations of Ap

R(ν(|z|)) are bounded uniformly
on compact subsets of DR.

Proof. We first consider the case R < ∞.

Since the space in question is a subspace of Lp(ν(|z|)), to show that it
is a Banach space, we need only show that it is closed. To show this, we
will show that convergence in the norm implies uniform convergence on
compact subsets. Let f ∈ Ap

R(ν(|z|)). Since f is analytic, the function
|f(z)|p is subharmonic, and thus,

|f(z)|p ≤ 1

2π

∫ 2π

0

|f(z + reiθ)|pdθ

for any z ∈ DR with |z|+ r < R. Suppose first that |z| > (R′ + R)/2.
Now, let r′ = (R− |z|)/2, and define mz = inf{ν(|w|) : |z| − r′ < |w| <
|z| + r′}. By assumption, mz > 0. We multiply the last displayed
inequality by 2πmzr and integrate r from 0 to r′ to conclude that

mz|f(z)|pπr′2 ≤
∫
|z−w|<r′

|f(w)|pmz dA(w)

≤
∫
|z−w|<r′

|f(w)|pν(|w|) dA(w)

≤
∫
DR

|f(w)|pν(|w|) dA(w).

This shows that point evaluation is a bounded linear functional for R >
|z| > (R′+R)/2, and the bound depends only on |z|. By the maximum
principle, point evaluation is also bounded for |z| ≤ (R +R′)/2. Since
mzr

′2 is a decreasing positive function of |z|, the bound is uniform
on closed discs of radius less than R centered at the origin. Thus,
convergence in the norm implies convergence on compact subsets. This
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implies that a convergent sequence of analytic functions converges to
an analytic function, which shows the space is complete.

For the case R = ∞, we repeat the above proof, except that we first
consider z such that |z| > R′ + 1, and we let r′ = 1. �

We define the dilation of the analytic function f by fρ(z) = f(ρz)
for 0 < ρ < ∞.

Proposition 5.2. Let 0 < R ≤ ∞, and let ν be a radial weight func-
tion. If f is an analytic function in Ap

R(ν(|z|)), then fρ → f in
Ap

R(ν(|z|)) as ρ → 1−.

Proof. Since the integral means of an analytic function are increas-
ing, we have for ρ < 1 that fρ ∈ Ap

R(ν(|z|)), and that

Mp(r, f − fρ) ≤ Mp(r, f) +Mp(r, fρ) ≤ 2Mp(r, f).

The hypothesis that f ∈ Ap
R(ν(|z|)) implies that rMp(r, f) ∈ Lp(ν dr).

Thus, ∫ R

0

Mp
p (r, f − fρ)r ν(r) dr −→ 0

as ρ → 1−, by the Lebesgue dominated convergence theorem. �

Proposition 5.3. Let R < ∞, and let 0 < p < ∞. Assume that ν is a
radial weight function. Then, the polynomials are dense in Ap

R(ν(|z|)).

Proof. Let f ∈ Ap
R(ν(|z|)), and let ρ < 1. Since fρ is analytic

on DR/ρ, the Taylor series of fρ converges to fρ uniformly in DR,
and thus, each dilation is in the closure of the polynomials since
the integrability of ν(|z|) guarantees that uniform convergence on DR

implies convergence in Ap
R(ν(|z|)). By Proposition 5.2, f is in the

closure of the set of its dilations. Thus, f is in the closure of the
polynomials in Ap

R(ν(|z|)). �

The situation is more difficult for the case R = ∞. We first prove
the following proposition.
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Proposition 5.4. Let ν be a radial weight function on [0,∞) such that
every polynomial is in A2

∞(ν(|z|)). Then, the polynomials are dense in
A2

∞(ν(|z|)).

Proof. Suppose f is a function in A2
∞(ν(|z|)) such that ⟨f, zn⟩ = 0

for every n ≥ 0, and let
∑∞

n=0 anz
n be the Taylor series of f . We have,

by the dominated convergence theorem and Hölder’s inequality, that

0 = ⟨f, zm⟩ =
∫
C

( ∞∑
n=0

anz
n

)
zmν(|z|) dA(z)

= lim
r→∞

∫
Dr

( ∞∑
n=0

anz
n

)
zmν(|z|) dA(z),

for m ≥ 0. By the uniform convergence of the Taylor series on Dr and
the integrability of ν(|z|), the above expressions equal

lim
r→∞

∞∑
n=0

∫
Dr

anz
nzmν(|z|) dA(z)

= lim
r→∞

∫
Dr

am|z|2mν(|z|) dA(z)

= am

∫
C
|z|2mν(|z|) dA(z).

However, the above integral is positive, so am = 0 for each m ≥ 0, and
thus, f is identically 0. This shows that the polynomials are dense in
A2

∞(ν(|z|)). �

For a radial weight function ν with the property that Ap
∞ has

bounded point evaluations (and thus, is a Banach space), define
mp(z; ν) = sup∥f∥A

p
∞(ν)=1 |f(z)|.

Proposition 5.5. Let ν be a function on [0,∞) such that Ap
∞(ν(|z|))

contains every polynomial and has point evaluations uniformly bounded
on compact subsets of C. Suppose that, for any ρ such that 0 < ρ < 1,
there is some function µ such that A2

∞(µ(|z|)) has point evaluations
uniformly bounded on compact subsets of C and such that

(5.1)

∫
C
mp(ρz; ν)

2µ(|z|) dA(z) = C2
1 < ∞
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and

(5.2)

∫
C
m2(z;µ)

pν(|z|) dA(z) = Cp
2 < ∞.

Then, the polynomials are dense in Ap
∞(ν(|z|)).

Proof. Let 0 < ρ < 1. Note that

Mp(r, fρ) = Mp(rρ, f) ≤ Mp(r, f)

so that ∥fρ∥Ap
∞(ν(|z|)) ≤ ∥f∥Ap

∞(ν(|z|)). Thus,

|f(ρz)| ≤ mp(ρz, ν)∥f∥Ap
∞(ν(|z|)).

Therefore, the quantity ∥fρ∥A2
∞(µ(|z|)) is at most C1∥f∥Ap

∞(ν(|z|)) and

fρ ∈ A2
∞(µ(|z|)). Note that this implies that every polynomial is in

A2
∞(µ(|z|)), since, if p is a polynomial, then p1/ρ is also a polynomial

and is in Ap
∞(ν(|z|)), which implies that p is in A2

∞(µ(|z|)).
Now, by Proposition 5.4, there is a sequence of polynomials in

A2
∞(µ(|z|)) that approach fρ. But, for any function g ∈ A2

∞(µ(|z|)),
we have ∥g∥Ap

∞(ν(|z|)) ≤ C2∥g∥A2
∞(µ(|z|)). Thus, there is a sequence of

polynomials approaching fρ in Ap
∞(ν(|z|)). Since the functions fρ ap-

proach f in Ap
∞(ν(|z|)), there is a sequence of polynomials approaching

f in Ap
∞(ν(|z|)). �

Note that the quantities mp(z, ν) and m2(z, µ) can often be esti-
mated by the method used in the proof of Proposition 5.1.

The next corollary follows from Proposition 5.5.

Corollary 5.6. Suppose that ν is a nonzero decreasing function on
[0,∞) such that ν(|z|) ∈ L1(C) and such that every polynomial is in
Ap

∞(ν(|z|)). Also, assume that for each ρ such that 0 < ρ < 1, there is
a β such that 0 < β < 1 and such that∫

C
ν(ρ|z|+ 1)−2/pν(|z|)2β/pdA(z) < ∞

and ∫
C
ν(|z|+ 1)−βν(|z|) dA(z) < ∞.

Then, the polynomials are dense in Ap
∞(ν(|z|)).
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Proof. Let f be an entire function. By subharmonicity,

|f(z)|p ≤ 1

2π

∫ 2π

0

|f(z + reiθ)|pdθ

for any r > 0. If we multiply the previous displayed inequality by
2πrν(|z|+ 1) and integrate from r = 0 to r = 1, we find that

πν(|z|+ 1)|f(z)|p ≤
∫
|z−w|<1

|f(w)|pν(|z|+ 1) dA(w)

≤
∫
|z−w|<1

|f(w)|pν(|w|) dA(w)

≤
∫
C
|f(w)|pν(|w|) dA(w).

Thus, we have that

|f(z)| ≤ π1/pν(|z|+ 1)−1/p∥f∥Ap
∞(ν(|z|)).

And, similarly,

|f(z)| ≤ π1/2ν(|z|+ 1)−β/p∥f∥A2
∞(ν(|z|)2β/p)

for any function f ∈ A2
∞(ν(|z|)2β/p). So, if there is some β such that

0 < β < 1 and such that∫
C
ν(ρ|z|+ 1)−2/pν(|z|)2β/pdA(z) < ∞

and ∫
C
ν(|z|+ 1)−βν(|z|) dA(z) < ∞,

then the result will hold by Proposition 5.5. �

Note that, if ν is a bounded function that is eventually decreasing,
then Ap

∞(ν(|z|)) is equivalent in norm to Ap
∞(ν̃(|z|)), where ν̃ is de-

creasing and ν̃(x) = ν(x) for x sufficiently large. Thus, the previous
corollary can be applied in modified form to such functions ν.

The next corollary is needed to apply the results of Section 3 to the
Fock space. It follows from the above corollary by choosing β such that
ρ < β < 1.
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Corollary 5.7. Let α>0 and 0<p<∞. Then the space Ap
∞(|z|2e−α|z|2

+e−α|z|2) is a Banach space in which the polynomials are dense.

Acknowledgments. Thanks to the referee for his/her helpful com-
ments.
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