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SOLITARY WAVE, BREATHER WAVE AND ROGUE
WAVE SOLUTIONS OF AN INHOMOGENEOUS
FIFTH-ORDER NONLINEAR SCHRÖDINGER

EQUATION FROM HEISENBERG FERROMAGNETISM

LIAN-LI FENG, SHOU-FU TIAN AND TIAN-TIAN ZHANG

ABSTRACT. In this paper, we consider an inhomo-
geneous fifth-order nonlinear Schrödinger equation from
Heisenberg ferromagnetism, which describes the dynamics of
a site-dependent Hisenberg ferromagnetic spin chain. Based
on its Lax pair, we study the determinant representation
of the n-fold Darboux transformation (DT). Furthermore,
by using the n-fold DT, we obtain the higher-order soli-
tary wave, breather wave and rogue wave solutions of the
equation, respectively. Finally, the dynamic characteristics of
these exact solutions are discussed.

1. Introduction. In [9], Fokas proposed an integrable generaliza-
tion of the nonlinear Schrödinger (NLS) equation

(1.1) iut − νutx + γuxx + σ|u|2(u+ iνux) = 0, σ ± 1,

by using bi-Hamiltonian methods, where γ and ν are nonzero real
parameters and u(x, t) is a complex-valued function. When ν = 0,
(1.1) reduces to the NLS equation. Equation (1.1) arises as a model
for nonlinear pulse propagation in monomode optical fibers and is the
first negative member of the integrable hierarchy associated with the
derivative NLS equation [16]. In [18], Lenells and Fokas applied the bi-
Hamiltonian structure to write the first few conservation laws of (1.1)

2010 AMS Mathematics subject classification. Primary 35Q15, 35Q51, 41A60.
Keywords and phrases. Fifth-order nonlinear Schrödinger equation, Darboux

transformation, breather waves, rogue waves, solitary waves.
This work was supported by the Jiangsu Province Natural Science Foundation

of China, grant No. BK20181351, the Research and Practice of Educational Re-
form for Graduate students in China University of Mining and Technology, grant
No. YJSJG 2018 036, the Fundamental Research Fund for the Central Universi-
ties, grant No. 2017XKQY101, the Qinglan Engineering project of Jiangsu Uni-
versities, the National Natural Science Foundation of China, grant No. 11301527,
and the General Financial Grant from the China Postdoctoral Science Foundation,
Nos. 2015M570498 and 2017T100413.

Received by the editors on February 16, 2018, and in revised form on May 26,
2018.
DOI:10.1216/RMJ-2019-49-1-29 Copyright c⃝2019 Rocky Mountain Mathematics Consortium

29



30 L.-L. FENG, S.-F. TIAN AND T.-T. ZHANG

and derive their Lax pair, by which they solve the initial value problem
and analyze solitons. In [39], Tian and his collaborators obtained the
quasi-periodic waves and rogue waves to a (4+1)-dimensional nonlinear
Fokas equation.

Recently, rogue waves (RW), a special type of solitary wave, also
known as monster waves, killer waves, extreme waves, and giant waves,
have attracted much attention in the physical branch of mathematics.
Rogue waves have been observed in many fields, such as oceanics
[2, 3, 14, 24, 26], finance [52] and nonlinear optics [15, 28, 54],
and there are several techniques, which can be used to investigate
rogue waves, such as the dressing method, the Bäcklund transformation
method, Darboux transformation (DT) method, bilinear method, etc.,
[1, 8, 10, 11, 13, 17, 19–23, 25, 29, 30, 36–38, 47, 51, 53,
55–57]. Recently, we have studied the breather wave, rogue wave and
solitary wave solutions of some nonlinear differential equations by using
the Hirota bilinear method [5–7, 27, 31–35, 40–46, 48–50].

In this paper, we mainly study the following inhomogeneous fifth-
order nonlinear Schrödinger (NLS) equation [4]

(1.2)
iqt − iεqxxxxx − 10iε|q|2qxxx − 20iεqxq

∗qxx − 30iε|q|4qx
− 10iε(|qx|2q)x + qxx + 2q|q|2 − iqx = 0,

where q = q(x, t) is a complex function, x and t denote the spatial
coordinate and scaled time respectively, ε is a perturbation parameter,
and the asterisk represents the complex conjugate.

As far as we know, the breather wave and rogue wave of eq. (1.2) have
not previously been discovered. The primary purpose of the present
paper is to employ the DT method to construct higher-order solitary
wave, breather wave and rogue wave solutions of eq. (1.2), respectively.

The outline of this paper is as follows. In Section 2, we present a
simple method to obtain the determinant representation of the n-fold
DT. In Section 3, Based on the DT, we obtain the one- and two-soliton
solutions, first-breather solution, first-rogue and second-rogue waves,
respectively. Finally, some conclusions are discussed in the last section.

2. Darboux transformation. The Lax pairs corresponding to in-
homogeneous fifth-order NLS equation (1.2) can be given by the two
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matrix spectral problems [4]

(2.1)
ψx = Uψ,

ψt = V ψ,

where ψ = (ϕ1, ϕ2)
′, and

(2.2) U =

(
−iλ q
−q∗ iλ

)
, V =

(
V11 V12
−V ∗

12 −V11

)
,

where

(2.3)

V11 = −16iλ5ε+ 8iλ3ε|q|2 + 4λ2ε(qq∗x − qxq
∗)− 2iλ2

− 2iλε(qq∗xx + qxxq
∗ − |qx|2 + 3|q|4)

− iλ+ i|q|2 + ε(qxxxq
∗ − qq∗xxx + qxq

∗
xx − qxxq

∗
x

+ 6|q|2q∗qx − 6|q|2q∗xq),

(2.4)
V12 = 16λ4εq + 8iλ3εqx − 4λ2ε(qxx + 2|q|2q)

− 2iλε(qxxx + 6|q|2qx) + 2λq + iqx + q

+ ε(qxxxx + 8|q|2qxx + 2q2q∗xx + 4|qx|2q + 6q2xq
∗ + 6|q|4q).

Here, λ is a constant spectral parameter, ψ is called the eigenfunction
associated with λ of eq. (1.2). In addition, eq. (1.2) is equivalent to the
compatibility condition Ut − Vx + [U, V ] = 0.

2.1. One-fold Darboux transformation. Now, we will introduce a
simple gauge transformation

(2.5) ψ[1] = T [1]ψ.

After this gauge transformation, we can transform linear problems (2.5)
into a new one possessing the same matrix form, namely,

(2.6) ψ[1]
x = U [1]ψ[1], U [1]T [1] = T [1]

x + T [1]U,

(2.7) ψ
[1]
t = V [1]ψ[1], V [1]T [1] = T

[1]
t + T [1]V.

By cross differentiating (2.6) and (2.7), we obtain

(2.8) U
[1]
t − V [1]

x + [U [1], V [1]] = T [1] (Ut − Vx + [U, V ]) (T [1])−1.
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This means that, in order to make eq. (1.2) invariant under the
transformation (2.5), it is necessary to search a matrix T [1] so that
U [1] and V [1] have the same forms as U and V . At the same time, the
old potential (or seed solution) (q, q∗) in spectral matrices U and V are
mapped into new potentials (or new solution) (q[1], q[1]∗) in transformed
spectral matrices U [1], V [1].

Next, we assume that the Darboux matrix T [1] in (2.5) is of the
following form:

(2.9) T [1] = T [1](λ) =

(
1 0
0 1

)
λ+

(
a0 b0
c0 d0

)
,

where a0, b0, c0 and d0 are the functions of x and t, which will be
expressed by the eigenfunctions associated with λ and seed solutions
(q, q∗) in the Lax pair. Firstly, setting two eigenfunctions ψj as

(2.10)
ψj =

(
ϕj1
ϕj2

)
, j = 1, 2, . . . , 2n,

ϕj1 = ϕj1(x, t, λj), ϕj2 = ϕj2(x, t, λj).

Note that ϕ1(x, t, λ) and ϕ2(x, t, λ) are two components of eigenfunction
ψ associated with λ in eq. (2.1). It should be pointed out that, since
the eigenfunction

(2.11) ψj =

(
ϕj1
ϕj2

)

is the solution of the eigenvalue equations (2.1) corresponding to λj ,
and the eigenfunction

(2.12) ψ′
j =

(
−ϕ∗j2
ϕ∗j1

)

is also the solution of eq. (2.1) corresponding to λ∗j , where ∗ denotes
the complex conjugate.
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From now on, we assume that even number eigenfunctions and
eigenvalues are given by odd ones, as in the following rule:

(2.13)

λ2j = λ∗2j−1,

ϕ2j,1 = −ϕ∗2j−1,2(λ2j−1),

ϕ2j,2 = ϕ∗2j−1,1(λ2j−1),

j = 1, 2, . . . , n.

For convenience and simple mathematical operation, we derive the
following theorem.

Theorem 2.1. The elements of a one-fold Darboux matrix are pre-
sented with the eigenfunction ψ1 corresponding to the eigenvalue λ1, as
follows:
(2.14)

a0 = − 1

∆2

∣∣∣∣λ1ϕ11 ϕ12
λ2ϕ21 ϕ22

∣∣∣∣ , b0 =
1

∆2

∣∣∣∣λ1ϕ11 ϕ11
λ2ϕ21 ϕ21

∣∣∣∣ ,
c0 =

1

∆2

∣∣∣∣ϕ12 λ1ϕ12
ϕ22 λ2ϕ22

∣∣∣∣ , d0 = − 1

∆2

∣∣∣∣ϕ11 λ1ϕ12
ϕ21 λ2ϕ22

∣∣∣∣ ,
⇐⇒ T [1](λ;λ1) =

λ− 1
∆2

∣∣∣∣λ1ϕ11 ϕ12
λ2ϕ21 ϕ22

∣∣∣∣ 1
∆2

∣∣∣∣λ1ϕ11 ϕ11
λ2ϕ21 ϕ21

∣∣∣∣
1
∆2

∣∣∣∣ϕ12 λ1ϕ12
ϕ22 λ2ϕ22

∣∣∣∣ λ− 1
∆2

∣∣∣∣ϕ11 λ1ϕ12
ϕ21 λ2ϕ22

∣∣∣∣
 ,

with

(2.15) ∆2 =

∣∣∣∣ϕ11 ϕ12
ϕ21 ϕ22

∣∣∣∣ ,
and then the new solution q[1] is given by

(2.16) q[1] = q + 2i
1

∆2

∣∣∣∣λ1ϕ11 ϕ11
λ2ϕ21 ϕ21

∣∣∣∣ ,
and the new eigenfunction ψ

[1]
j corresponding to λj is

(2.17) ψ
[1]
j = T [1](λ;λ1)|λ=λjψj .

2.2. n-fold Darboux transformation. By n-times iteration of the
one-fold DT T [1], we obtain the n-fold DT T [n] of eq. (1.2) with the
special choice on λ2j and ψ2j in (2.13). In order to save space, we
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omit the tedious calculations of T [n] and its determinant representation.
Then, we give q[n] in the following theorem.

Theorem 2.2. Under the choice of eq. (2.13), the n-fold DT T [n]

generates a new solution of eq. (1.2) from a seed solution q, as:

(2.18) q[n] = q − 2i
N2n

D2n
,

where
(2.19)

N2n =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ11 ϕ12 λ1ϕ11 λ1ϕ12 · · · λn−1
1 ϕ11 λn1ϕ11

ϕ21 ϕ22 λ2ϕ21 λ2ϕ22 · · · λn−1
2 ϕ21 λn2ϕ21

ϕ31 ϕ32 λ3ϕ31 λ3ϕ32 · · · λn−1
3 ϕ31 λn3ϕ31

ϕ41 ϕ42 λ4ϕ41 λ4ϕ42 · · · λn−1
4 ϕ41 λn4ϕ41

...
...

...
...

...
...

...
ϕ2n1 ϕ2n2 λ2nϕ2n1 λ2nϕ2n2 · · · λn−1

2n ϕ2n1 λn2nϕ2n1

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(2.20)

D2n =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ11 ϕ12 λ1ϕ11 λ1ϕ12 · · · λn−1
1 ϕ11 λn−1

1 ϕ12
ϕ21 ϕ22 λ2ϕ21 λ2ϕ22 · · · λn−1

2 ϕ21 λn−1
2 ϕ22

ϕ31 ϕ32 λ3ϕ31 λ3ϕ32 · · · λn−1
3 ϕ31 λn−1

3 ϕ32
ϕ41 ϕ42 λ4ϕ41 λ4ϕ42 · · · λn−1

4 ϕ41 λn−1
4 ϕ42

...
...

...
...

...
...

...
ϕ2n1 ϕ2n2 λ2nϕ2n1 λ2nϕ2n2 · · · λn−1

2n ϕ2n1 λn2n−1ϕ2n2

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

3. The explicit solutions. In this section, we will use Theorem 2.2
to construct the explicit solutions of eq. (1.2), including the solitary
wave, breather wave and rogue wave solutions.

3.1. Solitary wave solutions.

(i) Let the seed q = 0 and λ1 = α+ iβ. Then,

(3.1)
ϕ11 = e−i(λ1x+(16ελ5

1+2λ2
1+λ1)t),

ϕ12 = ei(λ1x+(16ελ5
1+2λ2

2+λ1)t),

where ϕ11 = ϕ∗22, ϕ12 = −ϕ∗21.
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Taking ϕ11 and ϕ12 given by eq. (3.1) into (2.16), we obtain one
soliton solution

(3.2) q[1] =
2βe−2if2

cosh(2f1)
,

with

(3.3)
f1 = −16β5εt+ 160α2β3εt− 80α4βεt− 4αβt− βt− βx,

f2 = 80αβ4εt− 160α3β2εt+ 16α5εt− 2β2t+ 2α2t+ αt+ αx.

(ii) Let the seed q = 0 and λ1 = α + iβ, λ3 = ξ + iη. By solving
linear problems (2.1), the eigenfunctions can be obtained as following:

(3.4)

ϕ11 = e−i(λ1x+(16ελ5
1+2λ2

1+λ1)t),

ϕ12 = ei(λ1x+(16ελ5
1+2λ2

1+λ1)t),

ϕ31 = e−i(λ3x+(16ελ5
3+2λ2

3+λ3)t),

ϕ32 = ei(λ3x+(16ελ5
3+2λ2

3+λ3)t),

where ϕ11 = ϕ∗22, ϕ12 = −ϕ∗21, ϕ31 = ϕ∗42 and ϕ32 = −ϕ∗41.
Choose n = 2 in eq. (2.18). Then, we have

(3.5) q[2] = −2i
N4

D4
,

where

(3.6)

N4 =

∣∣∣∣∣∣∣∣
ϕ11 ϕ12 λ1ϕ11 λ21ϕ11
ϕ21 ϕ22 λ2ϕ21 λ22ϕ21
ϕ31 ϕ32 λ3ϕ31 λ23ϕ31
ϕ41 ϕ42 λ4ϕ41 λ24ϕ41

∣∣∣∣∣∣∣∣ ,

D4 =

∣∣∣∣∣∣∣∣
ϕ11 ϕ12 λ1ϕ11 λ1ϕ12
ϕ21 ϕ22 λ2ϕ21 λ2ϕ22
ϕ31 ϕ32 λ3ϕ31 λ3ϕ32
ϕ41 ϕ42 λ4ϕ41 λ4ϕ42

∣∣∣∣∣∣∣∣ .
Based on this, we can obtain the two-soliton solution of eq. (1.2). In
addition, through iterations of the DT, we can directly obtain the n-
soliton solution of eq. (1.2) from a trivial solution.



36 L.-L. FENG, S.-F. TIAN AND T.-T. ZHANG

–2

–10

0

10

20

x

–20
–10

0
10

20

t

0

0.5

1

–20

–10

0

10

20

t

–20 –10 0 10 20
x

t=–10
t=0
t=10

 

0

0.2

0.4

0.6

0.8

1

u

–20 –10 10 20x

(a) (b) (c)

Figure 1. (Color online). One-soliton wave (3.2) for eq. (1.2) by choosing

suitable parameters: α = 0.5, β = 0.5, ε = 0.5. (a) Perspective view of the

real part of the wave. (b) Overhead view of the wave. (c) Wave propagation

pattern of the x axis.
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Figure 2. (Color online). Two-soliton wave (3.5) for eq. (1.2) by choosing

suitable parameters: α = 0.5, β = 0.5, ξ = 1/3, η = 1/3, ε = 1/2.

(a) Perspective view of the real part of the wave. (b) Overhead view of

the wave. (c) Wave propagation pattern of the x axis.

Figures 1 and 2 describe the one- and two- soliton solutions, respec-
tively. Figure 1 describes the one-soliton solution. By choosing suitable
parameters, we can observe the amplitude of the one-soliton |q[1]|2 of
eq. (1.2). Figure 2 describes the two-soliton solution. Applying all of
these effects for |q[2]|2, we obtain something similar to Figure 1.

3.2. The first-order breather wave solution. In this section, we
first solve the eigenfunctions associated with a periodic seed q and use it
to obtain a first-order breather by using the determinant representation
of one-fold DT in (2.16).

Starting with a non-zero seed

(3.7) q = ceiρ,
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with ρ = ax+bt, b = 2c2+a−a2+ε(a5−20a3c2+30ac4), a, b, c ∈ R. By
using the principle of superposition of the linear differential equations,
then the new eigenfunctions corresponding to λj can be provided by

(3.8) ψj =

(
d1ce

i(ρ/2+d) + d2i(a/2 + c1 + λj)e
i(ρ/2−d)

d2ce
−i(ρ/2+d) + d1i(a/2 + c1 + λj)e

−i(ρ/2−d)

)
,

with

(3.9)

c1 =

√
c2 +

(
λj +

a

2

)2

= hR + ihI , d = (x+ c2t)c1,

d1 = eic1(s0+s1δ+···+sn−1δ
n−1),

d2 = e−ic1(s0+s1δ+···+sn−1δ
n−1),

c2 = a4ε− 2a3ελj − 12a2c2ε+ 4a2ελ2j + 12ac2ελj

− 8aελ3j + 6c4ε− 8c2ελ2j + 16ελ4j − a+ 2λj + 1

= dR + idI .

Here, si ∈ C, i = 0, 1, 2, . . . , n− 1, δ is an infinitesimal parameter.

For convenience, let a = −2α. Using the one-fold DT and λ1 = α+iβ
(j = 1), then we obtain the following first-order breather:
(3.10)

q
[1]
br =

(
c+

2β{[ω1 cos(2G)−ω2 cosh(2F )]−i[(ω1−2c2) sin(2G)−ω3 sinh(2F )]}
ω1 cosh(2F )−ω2 cos(2G)

)
eiρ,

with

(3.11)

ω1 = c2 + (hI + β)
2
+

(
α+ hR +

a

2

)2

,

ω2 = 2c(hI + η), ω3 = 2c

(
α+ hR +

a

2

)
,

F = xhI + (dRhI + dIhR) t,

G = xhR + (dRhR − dIhI) t.

This is a periodic traveling wave. The coefficient ε can affect the period
of the breather wave through G.

It is not difficult to find that

(3.12) |q[1]br |
2 = (c+ 2β)

2
,
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which is the height of peaks of this breather wave. From eq. (3.12), we
can easily find that height has nothing to do with a, α and ε, but this
does not mean that ε cannot affect the properties of the breather. As
a matter of fact, it is not hard to see from eq. (3.10) that ε actually
controls the period of the breather wave. This observation can clearly
be seen in Figure 3.
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Figure 3. (Color online). Dynamical evolution of |q[1]br |
2 of eq. (3.10) with

specific parameter α = 0.2, β = 0.4, c = 0.7, s0 = 0. Perspective view of the

real part of the wave: (a) ε = 1. (b) ε = 1.5. (c) ε = 2. Overhead view of

the wave: (d) ε = 1. (e) ε = 1.5. (f) ε = 2.

3.3. Higher-order rogue wave solutions. In this section, we shall
construct higher-order rogue waves of eq. (1.2). We mainly use (3.8)
to study the higher-order rogue waves. Generally, it is difficult to
derive higher-order rogue waves from multi-breather solutions, since
the explicit expression of the nth order breather is very challenging to
calculate when n ≥ 2. We can overcome this problem by using the
coefficient of the Taylor expansion in the determinant representation of
a higher-order breather q[n] [12].

When n = 1, the first-order rogue wave of eq. (1.2) follows from

(3.13) q[1]rw = −
(
T − 16ic2t+ 160ic2a3tε− 480ic4atε− 3

T + 1

)
ceiρ,
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with

T = 100a8c2t2ε2−800a6c4t2ε2+6000a4c6t2ε2+3600c10t2ε2−80a5c2t2ε

(3.14)

+ 640a3c4t2ε+ 480ac6t2ε+ 40a4c2s0tε+ 40a4c2t2ε+ 40a4c2txε

− 480a2c4s0tε− 480a2c4t2ε− 480a2c4txε+ 240c6s0tε+ 240c6t2ε

+ 240c6txε+ 16a2c2t2 + 16c4t2 − 16ac2s0t− 16ac2t2 − 16ac2tx

+ 4c2s20 + 8c2s0t+ 8c2s0x+ 4c2t2 + 8c2tx+ 4c2x2.

It is trivial to find that |q[1]rw|2 = c2 when x → ∞ and t → ∞. This

also means that the asymptotic plane of |q[1]rw|2 has the height c2. In
Figure 4, for larger values of ε, it is clear that the compressions in the
t direction are quite high.
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Figure 4. (Color online). Dynamical evolution of the first-order rogue wave

|q[1]rw|2 of eq. (3.13) with specific parameters c = 0.8, a = 0.5, s0 = 0.

Perspective view of the real part of the wave: (a) ε = 1. (b) ε = 2. (c) ε = 3.

Overhead view of the wave: (d) ε = 1. (e) ε = 2. (f) ε = 3.

When n = 2, we construct the analytical formulas for the second-
order rogue wave. However, due to their long expressions in describing
the solution, we do not present them here. The second-order rogue wave



40 L.-L. FENG, S.-F. TIAN AND T.-T. ZHANG

consists of two patterns. The first part is the fundamental pattern; it
has a highest peak surrounded by four small equal peaks in two sides.
Its evolution is presented in Figure 5 with the condition s0 = s1 = 0.
From Figure 5, we can see that ε can affect high compression in the t
direction. The second part is a triangular pattern, which consists of
three equal peaks. As is shown in Figure 6, when taking d1 ̸= 1,
and d2 ̸= 1, the large peak of the second-order rational solution
is completely separated and forms a set of three first-order rational
solution for sufficiently large s1, while s0 = 0, and actually forms an
equilateral triangle. From Figure 6, we can see that, as the value of ε
increases, the rogue wave compression increases.
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Figure 5. (Color online). Dynamical evolution of the second-order rogue

wave |q[2]rw|2 with specific parameters c = 0.6, a = 0.5, s1 = 0. Perspective

view of the real part of the wave: (a) ε = 1. (b) ε = 1.5. (c) ε = 2. Overhead

view of the wave: (d) ε = 1. (e) ε = 1.5. (f) ε = 2.

4. Conclusion and discussions. In this work, we have investi-
gated an inhomogeneous fifth-order nonlinear Schrödinger equation
from Heisenberg ferromagnetism. From its Lax pair, we obtained the
n-fold Darboux matrix of eq. (1.2). On the basis of the Darboux trans-
formation and some periodic seed solutions, we obtained the first-order
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Figure 6. (Color online). Dynamical evolution of the second-order rogue

wave |q[2]rw|2 with specific parameters c = 0.6, a = 0.5, s1 = 100. Perspective

view of the real part of the wave: (a) ε = 1. (b) ε = 1.5. (c) ε = 2. Overhead

view of the wave: (d) ε = 1. (e) ε = 1.5. (f) ε = 2.

breather wave solution. In addition, by the Taylor expansion, we
constructed the first- and second-order rogue wave solutions. All of
these solutions have parameter ε denoting the contribution of higher-
order nonlinear terms. The compressed effects of these solutions were
discussed through numerical plots by increasing the value of ε in Figures
3–6. We hope that the results obtained in this paper will help to better
study breather and rogue waves in Heisenberg ferromagnetism.
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