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REMARKS ON REGULARITY CRITERIA FOR THE
2D GENERALIZED MHD SYSTEM IN BESOV SPACES

ZUJIN ZHANG

ABSTRACT. This paper concerns regularity criteria for
the 2D generalized MHD system and shows that, if we can
control the Besov norm of the vorticity and/or the current
density, then the solution is, in fact, smooth. This improves
the recent result [5].

1. Introduction. In this paper, we consider the following two-
dimensional (2D) generalized MHD system:

(1.1)


∂tu+ (u · ∇)u− (b · ∇)b+ Λ2αu+∇Π = 0,

∂tb+ (u · ∇)b− (b · ∇)u+ Λ2βb = 0,

∇ · u = ∇ · ∇b = 0,

(u,b)|t=0 = (u0,b0),

where u = (u1, u2), b = (b1, b2) and Π are the fluid velocity field, the
magnetic field and the scalar pressure, respectively; and u0 and b0 are
the prescribed initial data satisfying the compatibility condition

∇ · u0 = ∇ · b0 = 0,

Λα and Λβ with α, β ≥ 0 the fractional diffusion operators, defined
through the Fourier transform as

F (Λγf)(ξ) = |ξ|γF (f)(ξ), γ = α or β.

The global regularity for system (1.1) has attracted the attention of
many authors, and much interesting and important progress has been
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made in the past decade. In 2003, Wu [13] showed that system (1.1)
admits a global classical solution if

(1.2) α ≥ 1, β ≥ 1,

which was extended in [14] as

(1.3) α ≥ 1, β > 0, α+ β ≥ 2,

with a logarithmic improvement (also, see [12, 16] for the margin case
β = 0). Tran, Yu and Zhai [11] then considered the following three
cases:
(1.4)

α ≥ 1, β ≥ 1; 0 ≤ α <
1

2
, 2α+ β > 2; α ≥ 2, β = 0.

The above second case was improved by Jiu and Zhao [7] as

(1.5) 0 ≤ α <
1

2
, β ≥ 1, 3α+ 2β > 3,

with the limiting case α = 0, β > 3/2 independently proven by
Yamazaki [15] and Yuan and Bai [20]. Improvement to α = 0, β > 1,
was done by Cao, Wu and Yuan [2] and Jiu and Zhao [8]. Finally, we
would like to mention that Ji [4] covered the case 1/2 < α ≤ 1, β = 1
(with improvement α > 1/3, β = 1, by Yamazaki [17], and further
improvement α ≥ 1/4, β = 1, by Ye and Xu [19]), Fan, et al. [3]
considered the case 0 < α < 1/2, β = 1.

For the cases not mentioned above, the global regularity of system
(1.1) has not been solved. Thus, it is natural to derive regularity
criteria, by which we mean a condition on the solution guaranteeing
its global smoothness. For system (1.1) with α = 1, β = 0, we have the
following regularity conditions:

(1) by Jiu and Niu [6],
(1.6)

b ∈ Lp(0, T ;W 2,q(R2)),
2

p
+

1

q
≤ 2, 1 ≤ p ≤ 4

3
, 2 < q ≤ ∞;

(2) by Fan and Ozawa [10],

(1.7) ∇u ∈ L1(0, T ;L∞(R3));
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(3) by Lei, Masmoudi and Zhou [9],

(1.8) b⊗ b ∈ L1(0, T ;BMO(R2));

(4) by Zhou and Fan [23],

(1.9) ∇b ∈ L1(0, T ;BMO(R2)).

Then, Jiang, Wang and Zhou [5] showed regularity criteria involving
the vorticity

ω = ∇× u
def
= ∂1u2 − ∂2u1

and/or the current density

j = ∇× b
def
= ∂1b2 − ∂2b1.

Among them are:

(1.10) ω ∈ Lpβ/(pβ−1)(0, T ;Lp(R2)) if p >
1

β
, α, β ≥ 1

2
;

ω, j ∈ Lmax{(pα/pα−1),(pβ/pβ−1)}(0, T ;Lp(R2))(1.11)

if p > max

{
1

α
,
1

β

}
, α, β > 0.

Meanwhile, Ye [18] showed the regularity condition

(1.12) j ∈ L1(0, T ; Ḃ0
∞,∞(R2)) if α >

1

2
, β >

1

2
,

and

(1.13) ω ∈ L1(0, T ; Ḃ0
∞,∞(R2)) if α+ β > 1, β >

1

2
.

Here, and in what follows, Ḃs
p,q(R2) with s ∈ R, {p, q} ⊂ [1,∞]

represent the homogeneous Besov spaces, see [1] for the definition, fine
properties and applications to fluid dynamical systems.

Our main results are the following two theorems. The first concerns
large α and β.
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Theorem 1.1. Let α, β ≥ 1/2. Assume that (u0,b0) ∈ H2(R2) and
(u,b) is the local smooth solution of (1.1). If

(1.14) ω ∈ L2β/(2β−r)(0, T ; Ḃ−r
∞,∞(R2)) for some 0 < r < β

or

(1.15) j ∈ L2β/(2β−r)(0, T ; Ḃ−r
∞,∞(R2)) for some 0 < r < β,

then the solution can be smoothly extended beyond T .

Remark 1.2. Due to the Sobolev imbedding Lp(R2) ⊂ Ḃ0
p,∞(R2) ⊂

Ḃ
−2/p
∞,∞(R2), see [1, Propositions 2.20 and 2.39], we see our result (1.14)

implies the following regularity criterion

(1.16) ω ∈ Lpβ/(pβ−1)(0, T ;Lp(R2)), p > 2/β,

which greatly improves (1.10).

Our second aim is to improve (1.11) from Lebesgue spaces to Besov
spaces of negative regular indices. Precisely, we have the following.

Theorem 1.3. Let α, β > 0. Assume that (u0,b0) ∈ H2(R2) and
(u,b) is the local smooth solution of (1.1). If

ω, j ∈ Lmax{(2α/(2α−r)),(2β/(2β−r))}(0, T ; Ḃ−r
∞,∞(R2))(1.17)

for some 0 < r < min{α, β},

then the solution can be smoothly extended beyond T .

Remark 1.4. As in Remark 1.2, our result (1.17) greatly extends
(1.11).

2. Proof of Theorem 1.1. In this section, we shall prove Theo-
rem 1.1. Since the H2 estimate of the solution can be performed as in
[5], once the H1 estimate is accomplished, what we must do is merely
obtain the global H1 estimate under assumption (1.14) or (1.15).



REMARKS ON REGULARITY CRITERIA 2789

First, multiplying (1.1)1,2 by u and b, respectively, we easily deduce
the following energy estimate:

(2.1) ∥(u,b)(t)∥2L2 + 2

∫ t

0

∥(Λαu, Λβb)(τ)∥L2 dτ = ∥(u0,b0)∥2L2 .

Taking the curl operator of (1.1)1,2, we obtain the governing equations
of ω and j as

(2.2)

{
∂tω + (u · ∇)ω + Λ2αω − (b · ∇)j = 0,

∂tj + (u · ∇)j + Λ2βj − (b · ∇)ω = T (∇u,∇b),

where

(2.3) T (∇u,∇b)
def
= 2∂1b1(∂1u2 + ∂2u1) + 2∂2u2(∂1b2 + ∂2b1).

Taking the inner product of (2.2)1,2 with ω and j in L2(R3), respec-
tively, we get

(2.4)
1

2

d

dt
∥(ω, j)∥2L2 + ∥(Λαω,Λβj)∥2L2 =

∫
R2

T (∇u,∇b) · j dx ≡ I.

Case I. (1.14) holds. In this circumstance, we shall use the following
lemma to dominate I, which is a variant of that in [21].

Lemma 2.1. For any ε > 0,

f ∈ Ḃ−r
∞,∞(Rn), g, h ∈ Hβ(Rn),

we have

(2.5)

∫
Rn

fgh dx ≤ C∥f∥2β/(2β−r)

Ḃ−r
∞,∞

∥(g, h)∥2L2 + ε∥Λβ(g, h)∥2L2 .

We provide the proof for the convenience of the reader.

Proof.∫
Rn

f · (gh) dx ≤ C∥f∥Ḃ−r
∞,∞

∥gh∥Ḃr
1,1

(by [1, Proposition 2.29])

≤ C∥f∥Ḃ−r
∞,∞

∥(g, h)∥L2∥(g, h)∥Ḃr
2,1
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(by Lemma A.1 in the appendix)

≤ C∥f∥Ḃ−r
∞,∞

∥(g, h)∥L2 · ∥(g, h)∥1−r/β

Ḃ0
2,∞

∥(g, h)∥r/β
Ḃβ

2,∞

(by [1, Proposition 2.22])

≤ C∥f∥Ḃ−r
∞,∞

∥(g, h)∥(2β−r)/β
L2 ∥Λβ(g, h)∥r/βL2

(by [1, Proposition 2.39])

≤ C∥f∥2β/(2β−r)

Ḃ−r
∞,∞

∥(g, h)∥2L2 + ε∥Λβ(g, h)∥2L2 . �

Invoking Lemma 2.1 with f = ∇u, g = ∇b and h = j, we find

(2.6)
I ≤ C∥∇u∥2β/(2β−r)

Ḃ−r
∞,∞

∥(∇b, j)∥2L2 + ε∥Λβ(∇b, j)∥2L2

≤ C∥ω∥2β/(2β−r)

Ḃ−r
∞,∞

∥j∥2L2 + Cε∥Λβj∥2L2 .

Choosing ε = 1/(2C), and plugging (2.6) into (2.4), we may apply the
Gronwall inequality to deduce the global H1 estimate of the solution
as desired.

Case II. (1.15) holds. In this case, we shall use the following,
specific case of [1, Theorem 2.42]

(2.7) ∥f∥L4 ≤ C∥f∥1/2
Ḃ−r

∞,∞
∥f∥1/2

Ḣr
if r > 0.

With (2.7) in hand, I can be bounded as

(2.8)

I ≤ C∥ω∥L2∥j∥2L4

≤ C∥ω∥L2∥j∥Ḃ−r
∞,∞

∥j∥Ḣr

≤ C∥ω∥L2∥j∥Ḃ−r
∞,∞

∥j∥1−r/β
L2 ∥Λβj∥r/βL2

≤ C∥j∥2β/(2β−r)

Ḃ−r
∞,∞

∥(ω, j)∥2L2 +
1

2
∥Λβj∥2L2 .

Substituting (2.8) into (2.4), we obtain the desired H1 estimate of the
solution by invoking the Gronwall inequality. The proof of Theorem 1.1
is complete. �

3. Proof of Theorem 1.3. In this section, we shall provide the
proof of Theorem 1.3.
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Just as was done in Section 2, we have the global H1 estimate. In
order to derive the global H2 estimate, we multiply (2.2)1,2 by −△ω
and −△j, respectively, and integrate by parts to derive:
(3.1)

1

2

d

dt
∥∇(ω, j)∥2L2 + ∥∇(Λαω,Λβj)∥2L2

= −
2∑

i=1

∫
R2

[(∂iu · ∇)ω] · ∂iω dx+
2∑

i=1

∫
R2

[(∂ib · ∇)j] · ∂iω dx

−
2∑

i=1

∫
R2

[(∂iu · ∇)j] · ∂ij dx+
2∑

i=1

∫
R2

[(∂ib · ∇)ω] · ∂ij dx

+
2∑

i=1

∫
R2

∂iT (∇u,∇b) · ∂ij dx

≡ J.

We can first simplify J as

J ≤
∫
R2

|∇u| · |∇ω|2 dx+

∫
R2

|∇b| · |∇j| · |∇ω| dx(3.2)

+

∫
R2

|∇u| · |∇j|2 dx+

∫
R2

|∇b| · |∇ω| · |∇j| dx

+

∫
R2

|∇2u| · |∇b| · |∇j|dx+

∫
R2

|∇u| · |∇2b| · |∇j| dx

≤ C

∫
R2

|∇(u,b)| ·
(
|∇2u|2 + |∇2u| · |∇2b|+ |∇2b|2

)
dx

≤ C

∫
R2

|∇(u,b)| ·
(
|∇2u|2 + |∇2b|2

)
dx.

Then, invoking Lemma 2.1 yields

J ≤ C∥∇(u,b)∥2α/(2α−r)

Ḃ−r
∞,∞

∥∇2u∥2L2 + ε∥Λα∇2u∥2L2(3.3)

+ C∥∇(u,b)∥2β/(2β−r)

Ḃ−r
∞,∞

∥∇2b∥2L2 + ε∥Λα∇2b∥2L2

≤ C
[
1 + ∥(ω, j)∥max{(2α/(2α−r)),(2β/(2β−r))}

Ḃ−r
∞,∞

]
∥∇(ω, j)∥2L2

+ Cε∥∇(Λαω,Λβj)∥2L2 .

Placing (3.3) into (3.1) and choosing ε = 1/(2C), we may apply the
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Gronwall inequality to deduce the desired H2 bound of the solution.
From the Sobolev embedding theorems,

ω, j ∈ L2(0, T ;H1(R2)) ⊂ L2(0, T ;BMO(R2)) ⊂ L2(0, T ; Ḃ0
∞,∞(R2)).

By [22], the proof of Theorem 1.3 is accomplished. �

APPENDIX

A. In this appendix, we provide a bilinear estimate in Besov spaces,
which is utilized in the proof of Lemma 2.1.

Lemma A.1. Let (s, p, q, p1, p2, p3, p4) ∈ (0,∞)× [1,∞]6. Then, there
exists a constant C, depending upon s and the dimension n, such that

(A.1) ∥uv∥Ḃs
p,q

≤ C
(
∥u∥Lp1 ∥v∥Ḃs

p2,q
+ ∥u∥Ḃs

p3,q
∥v∥Lp4

)
with

1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
.

Proof. The proof of this lemma is similar to [1, Corollary 2.54] and
is trivial for experts; however, the proof is provided in full detail for the
convenience of the reader. The notation and tools are borrowed from
[1]. We shall abbreviate ∥u∥Lp(Rn) as ∥u∥Lp for simplicity.

By [1, Equation (2.29)], we have the following Bony decomposition

uv = Ṫuv + Ṫvu+ Ṙ(u, v),

and what we need to do is to estimate these three terms.

A.1. The estimation of Ṫuv and Ṫvu. By [1, equation (2.9)],

△̇j(Ṫuv) =
∑

|j′−j|≤4

△j(Ṡj′−1u△̇j′v),

and thus,

∥Ṫuv∥Ḃs
p,q

= ∥{2js∥△j(Ṫuv)∥Lp}∥ℓq(A.2)

=

∥∥∥∥{2js∥∥∥∥ ∑
|j′−j|≤4

△j(Ṡj′−1u△̇j′v)

∥∥∥∥
Lp

}∥∥∥∥
ℓq
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≤ C∥{2js∥△j(Ṡj−1u△̇jv)∥Lp}∥ℓq

≤ C∥{2js∥Ṡj−1u△̇jv∥Lp}∥ℓq

≤ C∥{2js∥Ṡj−1u∥Lp1∥△̇jv∥Lp2}∥ℓq

≤ C∥u∥Lp1 ∥{2js∥△̇jv∥Lp2 }∥ℓq
= C∥u∥Lp1 ∥v∥Ḃs

p2,q
.

Similarly,

(A.3) ∥Ṫvu∥Ḃs
p,q

≤ C∥v∥Lp3∥u∥Ḃs
p4,q

.

A.2. The estimation of Ṙ(u, v). By the analysis of the support, we
deduce, as in [1, Proof of Theorem 2.52], that there exists an integer N
such that

△̇j′Ṙ(u, v) = △̇j′

∑
j

∑
|ν|≤1

△̇j−νu△̇jv

=
∑

j≥j′−N

△̇j′

∑
|ν|≤1

△̇j−νu△̇jv

=
∑

j≥j′−N
|ν|≤1

△̇j′
(
△̇j−νu△̇jv

)
.

Consequently,

2j
′s∥△j′Ṙ(u, v)∥Lp ≤ 2j

′s
∑

j≥j′−N
|ν|≤1

∥△̇j′
(
△̇j−νu△̇jv

)
∥Lp

≤ C2j
′s

∑
j≥j′−N
|ν|≤1

∥△̇j−νu△̇jv∥Lp

≤ C2j
′s

∑
j≥j′−N
|ν|≤1

∥△̇j−νu∥Lp1 ∥△̇jv∥Lp2

≤ C∥u∥Lp1

∑
j≥j′−N

2(j
′−j)s · 2js∥△̇jv∥Lp2

= C∥u∥Lp1

∑
i≤N

2is · 2(j
′−i)s∥△̇j′−iv∥Lp2 (j′−j= i)

= C∥u∥Lp1

(
{ai} ∗ {2is∥△̇iv∥Lp2}

)
j′
,
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where

ai =

{
2is i ≤ N,

0 i > N,

and ({ai} ∗ {bj})j′ denotes the j′th term of the convolution of these
two sequences, namely,

∑
i aibj′−i.

Invoking the Young inequality for a series, we find

∥Ṙ(u, v)∥Ḃs
p,q

= ∥{2j
′s∥△j′Ṙ(u, v)∥Lp}∥ℓq(A.4)

≤ C∥u∥Lp1∥{ai} ∗ {2is∥△̇iv∥Lp2}∥ℓq

≤ C∥u∥Lp1∥{ai}ℓ1∥{2is∥△̇iv∥Lp2 }∥ℓq
≤ C∥u∥Lp1∥v∥Ḃs

p2,q

(since s > 0). Combining (A.2)–(A.4), the proof of Lemma A.1 is
concluded. �
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