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WEIGHTED PERSISTENT HOMOLOGY

SHIQUAN REN, CHENGYUAN WU AND JIE WU

ABSTRACT. In this paper, we develop the theory of
weighted persistent homology. In 1990, Dawson [9] was the
first to study in depth the homology of weighted simpli-
cial complexes. We generalize the definitions of weighted
simplicial complex and the homology of weighted simplicial
complex to allow weights in an integral domain R. Then,
we study the resulting weighted persistent homology. We
show that weighted persistent homology can distinguish be-
tween filtrations that ordinary persistent homology does not
distinguish. For example, if there is a point considered as
special, weighted persistent homology can tell when a cycle
containing the point is formed or has disappeared.

1. Introduction. In topological data analysis, point cloud data
refers to a finite set X of points in the Euclidean space Rn, and
the computation of persistent homology usually begins with the point
cloud data X. In the classical approach of the persistent homology
of X, each point in X plays an equally important role, or, in other
words, each point has the same weight, cf., [25]. Then, X is converted
into a simplicial complex, for example, the Čech complex and the
Vietoris-Rips complex, cf., [11, Chapter 3].
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In this paper, we consider the situation where different points in X
may have varying importance. Our point cloud data X is weighted,
that is, each point in X has a weight. Some practical examples where
it is useful to consider weighted point cloud data are described in
subsection 2.1.

Our approach is to weight the boundary map. This is different from
existing techniques of introducing weights to persistent homology. For
instance, in [23] by Petri, et al., weights are introduced via the weight
rank clique filtration with a thresholding of weights, where, at each
step t, the thresholded graph with links of weight are larger than a
threshold ϵt. In [13], the weight of edges is also used to construct
a filtration. The theory of weighted simplicial complexes we use is
additionally significantly different from the theory of weighted alpha
shapes [10], which are polytopes uniquely determined by points, their
weights, and a parameter α ∈ R that controls the level of detail.

In his thesis [7], Curry utilizes the barcode descriptor from per-
sistent homology to interpret cellular cosheaf homology in terms of
Borel-Moore homology of the barcode. In [7, page 244], it is briefly
mentioned that, for applications, cosheaves should allow us to weight
different models of the real world. In a subsequent work by Curry,
Ghrist and Nanda [8], it was shown how sheaves and sheaf cohomol-
ogy are powerful tools in computational topology, greatly generalizing
persistent homology. An algorithm for simplifying the computation
of cellular sheaf cohomology via (discrete) Morse-theoretic techniques
is included in [8]. In the recent paper [18], Kashiwara and Schapira
show that many results in persistent homology can be interpreted in
the language of microlocal sheaf theory. We note that, in [18, page
8], a notion of weight is used, where the closed ball B(s; t) is replaced
by B(s; ρ(s)t), where ρ(s) ∈ R≥0 is the weight. This notion of weight
is more geometrical, which differs from our more algebraic approach
of weighting the boundary operator.

In the seminal paper by Carlsson and Zomorodian [3], the theory of
multidimensional persistence of multidimensional filtrations is devel-
oped. In a subsequent work by Carlsson, Singh and Zomorodian [2],
a polynomial time algorithm for computing multidimensional persis-
tence is presented. In [5], the authors showed that Betti numbers in
multidimensional persistent homology are stable functions, in the sense
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that small changes of the vector-valued filtering functions imply only
small changes of persistent Betti number functions. In [24], Xia and
Wei introduced two families of multidimensional persistence, namely,
pseudomultidimensional persistence and multiscale multidimensional
persistence, and applied them to analyze biomolecular data. The util-
ity and robustness of the proposed topological methods are effectively
demonstrated via protein folding, protein flexibility analysis and vari-
ous other applications. In [24, page 1509], a particle type-dependent
weight function wj is introduced in the definition of the atomic rigid-
ity index µi. The atomic rigidity index µi can be generalized to a
position (r)-dependent rigidity density µ(r). Subsequently [24, page
1512], filtration is performed over the density µ(r).

The main aim of our paper is to construct weighted persistent
homology to study the topology of weighted point cloud data. A
weighted simplicial complex is a simplicial complex where each simplex
is assigned with a weight. We convert a weighted point cloud data X
into a weighted simplicial complex. In [9], Dawson was the first to
study in depth the homology of weighted simplicial complexes. We use
an adaptation of [9] to compute the homology of weighted simplicial
complexes. In [9], the weights take values in the set of non-negative
integers {0, 1, 2, . . .}. We generalize [9] such that the weights can
take values in any integral domain R with multiplicative identity 1R.
Finally, we study and analyze the weighted persistent homology of
filtered weighted simplicial complexes.

2. Background. In this section, we review some background know-
ledge and give some preliminary definitions. We provide some exam-
ples of weighted cloud data in subsection 2.1. We review the definitions
of simplicial complexes in subsection 2.2 and some properties of rings
and integral domains in subsection 2.3. We give the formal defini-
tions of weighted point cloud data and weighted simplicial complex in
subsection 2.4.

2.1. Examples of weighted cloud data. As the motivation of
this paper, we describe some practical problems with weight function
on data. We look at typical applications of persistent homology
and consider the situation where data points may not be equally
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important. When some data points may be more important than
others, mathematically, a weight function is required to give the
difference between points.

In the field of computer vision, Carlsson, et al., [1] developed a
framework for using persistent homology to analyze natural images
such as digital photographs. The natural image may be viewed as
a vector in a very high-dimensional space P. In the paper, the
dimension of P is the number of pixels in the format used by the
camera, and the image is associated to the vector whose coordinates
are grey scale values of the pixels. In certain scenarios, such as
color detection in computer vision [6, 20, 22], each pixel may play
different roles depending on its color. In this case, each pixel can then
be given a different weight depending on its color. More generally,
pixels in images can be weighted depending on their wavelength in
the electromagnetic spectrum, which includes infrared and ultraviolet
light.

In [4], persistent homology was used to study collaboration net-
works, which measures how scientists collaborate on papers. In the
collaboration network, there is a connection between two scientists if
they are coauthors on at least one paper. Depending upon the purpose
for the research, weights can be used to differentiate different groups of
scientists, for example, Ph.D. students, postdoctoral researchers and
professors, or researchers in different fields.

Lee, et al., [19] proposed a new framework for modeling brain con-
nectivity using persistent homology. The connectivity of the human
brain, also known as human connectome, is usually represented as a
graph consisting of nodes and edges connecting the nodes. In this
scenario, different weights could be assigned to different neurons in
different parts of the brain, for example, left/right brain, frontal lobe
or temporal lobe.

There are many different ways in which to define the theory of
weighted persistent homology, cf., [9, 16, 23], and our definition is not
unique. We will show that our definition satisfies some nice properties,
including some properties related to category theory [21], which is an
important part of modern mathematics.
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In this section, we review the mathematical background necessary
for our work. We assume all rings have the multiplicative identity 1.
First, we define the concept of weighted point cloud data (WPCD).
Then, similar to the unweighted case, we can convert the WPCD to a
simplicial complex, using either the Čech complex or the Vietoris-Rips
complex. Then, we define a weight function for the simplices so as to
compute the weighted simplicial homology.

2.2. Simplicial complexes. The following definition of simplicial
complexes can be found in [15, page 107]. An (abstract) simplicial
complex is a collection K of nonempty finite sets, called (abstract)
simplices such that, if σ ∈ K, then every nonempty subset of σ is
in K. Let K be a simplicial complex, and let σ ∈ K. An element v
of σ is called a vertex, and any nonempty subset of σ is called a face.
For convenience, we do not distinguish between a vertex v and the
corresponding face {v}.

The definition of orientations of simplices is given in [15, page 105].
Let σ = {v0, v1, . . . , vn} be a simplex of a simplicial complex K. An
orientation of σ is given by an ordering of its vertices v0, v1, . . . , vn,
with the rule that two orderings define the same orientation if and
only if they differ by an even permutation. An oriented simplex σ is
written as [v0, v1, . . . , vn].

Let {xα} be a set of points in the Euclidean space Rn. Let
ϵ > 0. The Čech complex, denoted as Cϵ, is the abstract simplicial
complex where k + 1 vertices span a k-simplex if and only if the
k+1 corresponding closed ϵ/2-ball neighborhoods of the vertices have
nonempty intersection, cf., [11, page 72]. The Vietoris-Rips complex,
denoted as Rϵ, is the abstract simplicial complex where k+1 vertices
span a k-simplex if and only if the distance between any pair of the
k + 1 vertices is at most ϵ, cf., [11, page 74].

2.3. Rings. Throughout this section, we let R be a commutative ring
with multiplicative identity. A nonzero element a ∈ R is said to divide
an element b ∈ R (denoted a | b) if there exists an x ∈ R such that
ax = b. A nonzero element a in a ring R is called a zero divisor if
there exists a nonzero x ∈ R such that ax = 0. A commutative ring R
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with 1R ̸= 0 and no zero divisors is called an integral domain, cf., [17,
page 116].

Let R be an integral domain. Let S be the set of all nonzero
elements in R. Then, we can construct the quotient field S−1R, cf.,
[17, page 142].

Proposition 2.1 ([17, page 144]). The map φs : R → S−1R, given
by r 7→ rs/s (for any s ∈ S) is a monomorphism. Hence, the integral
domain R can be embedded in its quotient field.

Remark 2.2. Due to Proposition 2.1, we may identify rs/s ∈ S−1R
with r ∈ R. We denote this as φ−1

s (rs/s) = r, or simply rs/s = r, if
there is no danger of confusion.

2.4. Weighted simplicial complexes. In the following definitions,
we generalize Dawson’s work [9] and define weighted point cloud data
and weighted simplicial complexes, with weights in rings.

Definition 2.3 (Weighted point cloud data). Let n be a positive
integer. The point cloud data X in Rn is a finite subset of Rn. Given
some point cloud data X, a weight on X is a function w0 : X → R,
where R is a commutative ring. The pair (X,w0) is called weighted
point cloud data, or WPCD for short.

Next, in Definition 2.4, we generalize the definition of weighted sim-
plicial complex in [9, page 229] to allow for weights in a commutative
ring.

Definition 2.4 (cf., [9, page 229]). A weighted simplicial complex
(or WSC ) is a pair (K,w) consisting of a simplicial complex K and a
function

w : K −→ R,

where R is a commutative ring such that, for any σ1, σ2 ∈ K with
σ1 ⊆ σ2, we have w(σ1) | w(σ2).
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Given any weighted point cloud data (X,w0), we allow for flex-
ible definitions of extending the weight function w0 to all higher-
dimensional simplices, where the only condition to be satisfied is the
divisibility condition in Definition 2.4. One such definition is what we
call the product weighting.

Definition 2.5 (Product weighting). Let (X,w0) be a weighted point
cloud data, with weight function

w0 : X −→ R

(where R is a commutative ring). LetK be a simplicial complex whose
set of vertices is X. We define a weight function w : K → R by

w(σ) =

k∏
i=0

w0(vi),(2.1)

where σ = [v0, v1, . . . , vk] is a k-simplex of K. We call w, defined as
such, the product weighting.

Proposition 2.6. Let (X,w0) be a weighted point cloud data. Let w
be the product weighting defined in Definition 2.5. Then, the following
hold :

(i) the restriction of w to the vertices of K is w0;
(ii) for any σ1, σ2 ∈ K, if σ1 ⊆ σ2, then w(σ1) | w(σ2).

Proof. Firstly, if σ = [v0] is a vertex of K (0-simplex), then
w(σ) = w0(v0) by (2.1). For the second assertion, suppose that
σ1 ⊆ σ2, where σ1 = [v0, . . . , vk] and σ2 = [v0, . . . , vk, . . . , vl]. Then,

w(σ2) = w(σ1) ·
l∏

i=k+1

w0(vi). �

For commutative rings such that every two elements have an LCM
(for instance, UFDs), we can use the economical weighting in [9, page
231] instead, where the weight of any simplex is the LCM of the weights
of its faces.
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3. Properties of weighted simplicial complexes. In this sec-
tion, we prove some properties of weighted simplicial complexes. We
consider the case where R is a commutative ring with 1. We now con-
sider subcomplexes given by the preimage of the weight function with
values in ideals. This may have the meaning to take out partial data
according to the values of the weight function.

Lemma 3.1. Let I be an ideal of a commutative ring R. Let (K,w)
be a WSC, where

w : K −→ R

is a weight function. Let w−1(I) denote the preimage of I under w.
If σ ∈ w−1(I), then, for all simplices τ containing σ, we have
τ ∈ w−1(I).

Proof. Let σ ∈ w−1(I), i.e., w(σ) ∈ I. By Definition 2.4, for σ ⊆ τ ,
we have w(σ) | w(τ). Hence, w(τ) = w(σ)x for some x ∈ R. Since I
is an ideal, thus, w(τ) ∈ I. �

Theorem 3.2. Let I be an ideal of a commutative ring R. Let (K,w)
be a WSC, where w : K → R is a weight function. Then, K \ w−1(I)
is a simplicial subcomplex of K.

Proof. If K \ w−1(I) = ∅, then it is the empty subcomplex of K.
Otherwise, let τ ∈ K \ w−1(I). Let σ be a nonempty subset of τ .
Suppose, to the contrary, that σ ∈ w−1(I). Then, by Lemma 3.1, we
have τ ∈ w−1(I), which is a contradiction. Hence, σ ∈ K \ w−1(I);
thus, we have proved that K \ w−1(I) is a simplicial complex. �

Proposition 3.3. Let I and J be ideals of a commutative ring R. Let
(K,w) be a WSC. Then:

(3.1) K \ w−1(I ∩ J) = (K \ w−1(I)) ∪ (K \ w−1(J))

is a simplicial subcomplex of K.

Proof. We have that

σ ∈ K \ w−1(I ∩ J) ⇐⇒ w(σ) /∈ I ∩ J
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⇐⇒ w(σ) /∈ I or w(σ) /∈ J

⇐⇒ σ ∈ (K \ w−1(I)) ∪ (K \ w−1(J)).

Hence, equation (3.1) holds. Since I, J are ideals, by Theorem 3.2,
both K \ w−1(I) and K \ w−1(J) are simplicial subcomplexes of K
and so is their union. Alternatively, we can apply Theorem 3.2 to the
ideal I ∩J to conclude that K \w−1(I ∩J) is a simplicial subcomplex
of K. �

3.1. Categorical properties of WSC. Let K and L be simplicial
complexes. A map f : K → L is called a simplicial map if it sends
each simplex of K to a simplex of L by a linear map taking vertices
to vertices, that is, if the vertices v0, . . . , vn of K span a simplex of K,
the points f(v0), . . . , f(vn) (not necessarily distinct) span a simplex
of L.

Next, we will use some terminology from category theory. For an in-
troduction to the subject, the book by Mac Lane [21] is recommended.
The categorical properties of WSCs have been studied in [9]. Here,
we mainly show that it easily generalizes to the case where weights lie
in a ring, and we write it in greater detail.

Definition 3.4 ([21, page 13]). Let C and B be categories. A functor
T : C → B with domain C and codomain B consists of two suitably
related functions: the object function T , which assigns to each object c
of C an object Tc of B, and the arrow function (also written as T )
which assigns to each arrow f : c→ c′ of C an arrow

Tf : Tc→ Tc′ of B,

such that
T (1c) = 1Tc, T (g ◦ f) = Tg ◦ Tf,

where the latter holds whenever the composite g ◦ f is defined in C.

In [9, page 229], morphisms of weighted simplicial complexes with
integral weights have been studied. In the following definition, we
generalize [9] and define morphisms of weighted simplicial complexes
with weights in general commutative rings.
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Definition 3.5 (cf., [9, page 229]). Let (K,wK) and (L,wL) be
WSCs. A morphism of WSCs is a simplicial map f : K → L such
that

wL(f(σ)) | wK(σ) for all σ ∈ K.

These form the morphisms of a category WSC. We may omit the
subscripts in wK and wL, for instance, writing w(f(σ)) | w(σ), if
there is no danger of confusion.

The next example generalizes [9, page 229].

Example 3.6 (cf., [9, page 229]). For any simplicial complex K
and every a ∈ R, there is a WSC (K, a) in which every simplex (in
particular, every vertex) has weight a. We call this construction a
constant weighting.

Let SC denote the category of simplicial complexes.

Proposition 3.7 (cf., [9, page 229]). Constant weightings are func-
torial : let

T : SC −→ WSC

be defined by TK = (K, a) for each simplicial complex K ∈ SC and
Tf = f for each simplicial map f ∈ SC. Then, T is a functor.

Proof. Straightforward verification. Note that the condition w(f(σ)) |
w(σ) in Definition 3.5 is trivially satisfied since a | a for all a ∈ R. �

Definition 3.8 ([21, page 80]). Let A and X be categories. An
adjunction from X to A is a triple ⟨F,G, φ⟩, where

F : X −→ A and G : A −→ X

are functors, and φ is a function which assigns to each pair of objects
x ∈ X, a ∈ A a bijection of sets

φ = φx,a : A(Fx, a) ∼= X(x,Ga),

which is natural in x and a. An adjunction may also be directly
described in terms of arrows. It is a bijection which assigns to each
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arrow f : Fx→ a an arrow

φf = rad f : x −→ Ga,

the right adjunct of f , such that

φ(k ◦ f) = Gk ◦ φf, φ(f ◦ Fh) = φf ◦ h

hold for all f and all arrows h : x′ → x and k : a→ a′. Given such an
adjunction, the functor F is said to be a left adjoint for G, while G is
called a right adjoint for F .

One reason for generalizing the weights to take values in rings with 1
is to keep the following, nice proposition true.

Proposition 3.9 (cf., [9, page 229]). The constant weighting functors
T1 := (−, 1R) and T0 := (−, 0R) are, respectively, right and left adjoint
to the forgetful functor U from WSC to the category SC of simplicial
complexes.

Proof. Let φ be a bijection that assigns to each arrow

f : U(K,w) −→ L

an arrow
φf : (K,w) −→ (L, 1),

where φf(σ) = f(σ). The key point is that the condition for WSC
morphism (Definition 3.5), namely, 1 | w(σ), always holds for all
σ ∈ (K,w). Then, for all arrows

h : (K,w) −→ (K ′, w′) and k : L −→ L′,

we have φ(k ◦ f) = k ◦ f = Uk ◦φf and φ(f ◦Uh) = f ◦Uh = φf ◦ h.
Thus, T1 is the right adjoint for U .

Let ψ be a bijection that assigns to each arrow

f ′ : (K, 0) −→ (L,w′)

an arrow
ψf ′ : K −→ U(L,w′),
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where ψf ′(σ) = f ′(σ). The key point is that w′(f ′(σ)) | 0 always
holds for all σ ∈ (K, 0). Similarly, we can conclude that T0 is the left
adjoint for U . �

4. Homology of weighted simplicial complexes. In this sec-
tion, we let R be an integral domain, in order to form the field of
fractions (also known as quotient field) which is necessary for our pur-
poses.

4.1. Chain complex. A chain complex (C•, ∂•) is a sequence of
abelian groups or modules

. . . , C2, C1, C0, C−1, C−2, . . .

connected by homomorphisms (called boundary homomorphisms)

∂n : Cn −→ Cn−1,

such that ∂n ◦∂n+1 = 0 for each n. A chain complex is usually written
out as:

· · · −→ Cn+1
∂n+1−−−→ Cn

∂n−→ Cn−1 −→ · · ·

−→ C1
∂1−→ C0

∂0−→ C−1
∂−1−−→ C−2 −→ · · · .

A chain map f between two chain complexes (A•, ∂A,•) and (B•, ∂B,•)
is a sequence f• of module homomorphisms

fn : An −→ Bn

for each n that commutes with the boundary homomorphisms on the
two chain complexes:

∂B,n ◦ fn = fn−1 ◦ ∂A,n.

· · · An+1 An An−1 · · ·

· · · Bn+1 Bn Bn−1 · · · .

fn+1

∂A,n+1

fn

∂A,n

fn−1

∂B,n+1 ∂B,n
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4.2. Homology groups. For a topological spaceX and a chain com-
plex C(X), the nth homology group ofX isHn(X) := ker(∂n)/Im(∂n+1).
Elements of Bn(X) := Im(∂n+1) are called boundaries, and elements
of Zn(X) := ker(∂n) are called cycles.

Proposition 4.1. A chain map f• between chain complexes (A•, ∂A,•)
and (B•, ∂B,•) induces homomorphisms between the homology groups
of the two complexes.

Proof. The relation ∂f = f∂ implies that f takes cycles to cycles
since ∂α = 0 implies ∂(fα) = f(∂α) = 0. In addition, f takes
boundaries to boundaries since f(∂β) = ∂(fβ).

For β ∈ Im ∂A,n+1, we have πB,nfn(β) = Im ∂B,n+1. Therefore,

Im ∂A,n+1 ⊆ ker(πB,n ◦ fn).

By the universal property of quotient groups, there exists a unique
homomorphism (fn)∗ such that the following diagram commutes.

ker ∂A,n ker ∂B,n Hn(B•)=ker ∂B,n/Im ∂B,n+1

Hn(A•)=ker ∂A,n/Im ∂A,n+1

fn

πA,n

πB,n

(fn)∗

Hence, f• induces a homomorphism

(f•)∗ : H•(A•) −→ H•(B•). �

Definition 4.2. Let Cn(K,w) (or simply Cn(K), where unambigu-
ous) be the free R-module with basis the n-simplices ofK with nonzero
weight. Elements of Cn(K), called n-chains, are finite formal sums∑

α nασα with coefficients nα ∈ R and σα ∈ K.

Definition 4.3. Given a simplicial map f : K → L, the induced
homomorphism

f♯ : Cn(K) −→ Cn(L)



2674 SHIQUAN REN, CHENGYUAN WU AND JIE WU

is defined on the generators of Cn(K) (and extended linearly) as
follows. For σ = [v0, v1, . . . , vn] ∈ Cn(K), we define

(4.1) f♯(σ) =

{
w(σ)

w(f(σ))f(σ) if f(v0), . . . , f(vn) are distinct,

0 otherwise,

where w(σ)/w(f(σ)) ∈ S−1R is identified with the corresponding
element in R, as described in Remark 2.2.

Note that this is well defined since, if w(σ) ̸= 0, then w(f(σ)) | w(σ)
in Definition 3.5 implies w(f(σ)) ̸= 0. Thus, w(σ)/w(f(σ)) ∈ S−1R.
Furthermore,

w(σ)

w(f(σ))
=
xw(f(σ))

w(f(σ))

for some x ∈ R, so that w(σ)/w(f(σ)) = x ∈ R.

Definition 4.4 (cf., [9, page 234]). The weighted boundary map
∂n : Cn(K) → Cn−1(K) is the map:

∂n(σ) =

n∑
i=0

w(σ)

w(di(σ))
(−1)idi(σ),

where the face maps di are defined as:

di(σ) = [v0, . . . , v̂i, . . . , vn] (deleting the vertex vi)

for any n-simplex σ = [v0, . . . , vn].

Again, if w(σ) ̸= 0, then w(di(σ)) ̸= 0 so ∂n is well defined.
Similarly, we identify w(σ)/w(di(σ)) ∈ S−1R with the corresponding
element in R, as described in Remark 2.2.

Next, we show that, after generalization to weights in an integral
domain, the relation ∂2 = 0 [9, page 234] of the weighted boundary
map remains true.

Proposition 4.5 (cf., [9, page 234]). ∂2 = 0. To be precise, the
composition

Cn(K)
∂n−→ Cn−1(K)

∂n−1−−−→ Cn−2(K)

is the zero map.
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Proof. Let σ = [v0, . . . , vn] be an n-simplex. We have

∂n(σ) =
n∑

i=0

w(σ)

w([v0, . . . , v̂i, . . . , vn])
(−1)i[v0, . . . , v̂i, . . . , vn].

Hence,

∂n−1∂n(σ)

=
∑
j<i

w(σ)

w(di(σ))
(−1)i

w(di(σ))

w([v0, . . . , v̂j , . . . , v̂i, . . . , vn])

· (−1)j [v0, . . . , v̂j , . . . , v̂i, . . . , vn]

+
∑
j>i

w(σ)

w(di(σ))
(−1)i

w(di(σ))

w([v0, . . . , v̂i, . . . , v̂j , . . . , vn])

· (−1)j−1[v0, . . . , v̂i, . . . , v̂j , . . . , vn]

=
∑
j<i

w(σ)

w([v0, . . . , v̂j , . . . , v̂i, . . . , vn])
(−1)i+j [v0, . . . , v̂j , . . . , v̂i, . . . , vn]

+
∑
j>i

w(σ)

w([v0, . . . , v̂i, . . . , v̂j , . . . , vn])

· (−1)i+j−1[v0, . . . , v̂i, . . . , v̂j , . . . , vn]

= 0.

The latter two summations cancel since, after switching i and j in the
second sum, it becomes the additive inverse of the first. �

Lemma 4.6. Let f : K → L be a simplicial map and di the ith face
map. Then

(4.2) di(f(σ)) = f(di(σ))

for all σ = [v0, v1, . . . , vn] ∈ K with f(v0), . . . , f(vn) are distinct.

Proof. Let σ = [v0, . . . , vn]. Then, we have

di(f(σ)) = di[f(v0), . . . , f(vn)]

= [f(v0), . . . , f̂(vi), . . . , f(vn)]
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= f([v0, . . . , v̂i, . . . , vn])

= f(di(σ)). �

Proposition 4.7. Let f : K → L be a simplicial map. Then, f♯∂
= ∂f♯.

Proof. Let σ = [v0, . . . , vn] ∈ Cn(K). Let τ be the simplex of L
spanned by f(v0), . . . , f(vn). We consider three cases.

Case 1. dim τ = n. In this case, the vertices f(v0), . . . , f(vn) are
distinct. We have:

f♯∂(σ) = f♯

( n∑
i=0

w(σ)

w(di(σ))
(−1)idi(σ)

)

=
n∑

i=0

w(σ)

w(di(σ))
(−1)if♯(di(σ))

=
n∑

i=0

w(σ)

w(di(σ))
(−1)i

w(di(σ))

w(f(di(σ)))
f(di(σ))

=
n∑

i=0

w(σ)

w(f(di(σ)))
(−1)if(di(σ)).

On the other hand, we have

∂f♯(σ) = ∂

(
w(σ)

w(f(σ))
f(σ)

)
=

n∑
i=0

w(σ)

w(f(σ))
· w(f(σ))

w(di(f(σ)))
(−1)idi(f(σ))

=
n∑

i=0

w(σ)

w(di(f(σ)))
(−1)idi(f(σ))

= f♯∂(σ)

since di(f(σ)) = f(di(σ)) by Lemma 4.6.

Case 2. dim τ ≤ n − 2. In this case, f♯(di(σ)) = 0 for all i, since
at least two of the points f(v0), . . . , f(vi−1), f(vi+1), . . . , f(vn) are the
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same. Thus, f♯∂(σ) vanishes. Note that ∂f♯(σ) also vanishes since
f♯(σ) = 0, due to the fact that f(v0), . . . , f(vn) are not distinct.

Case 3. dim τ = n − 1. Without loss of generality, we may
assume that the vertices are ordered such that f(v0) = f(v1), and
f(v1), . . . , f(vn) are distinct. Then, ∂f♯(σ) vanishes. Now,

f♯∂(σ) =

n∑
i=0

w(σ)

w(di(σ))
(−1)if♯(di(σ))

has only two nonzero terms, which sum up to

w(σ)

w(d0(σ))
· w(d0(σ))

w(f(d0(σ)))
f(d0(σ))

− w(σ)

w(d1(σ))
· w(d1(σ))

w(f(d1(σ)))
f(d1(σ))

=
w(σ)

w(f(d0(σ)))
f(d0(σ))−

w(σ)

w(f(d1(σ)))
f(d1(σ)).

Since f(v0) = f(v1), we have f(d0(σ)) = f(d1(σ)), and hence, the two
terms cancel each other, as desired. �

Definition 4.8. We define the weighted homology group

(4.3) Hn(K,w) := ker(∂n)/ Im(∂n+1),

where ∂n is the weighted boundary map, defined in Definition 4.4.

Since the maps

f♯ : Cn(K,wK) −→ Cn(L,wL)

satisfy f♯∂ = ∂f♯, the f♯’s define a chain map from the chain complex
of (K,wK) to that of (L,wL). By Proposition 4.1, f♯ induces a
homomorphism

f∗ : Hn(K,wK) −→ Hn(L,wL).

We may then view the map

(K,wK) 7−→ Hn(K,wK)
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as a functor
Hn : WSC −→ R-Mod

from the category of weighted simplicial complexes (WSC) to the
category of R-modules (R-Mod).

4.3. Calculation of homology groups in WSC. The homology
functor we define is different from the standard simplicial homology
functor. For instance, it is possible for H0 of a weighted simplicial
complex to have torsion when the coefficient ring is Z, as shown in [9,
page 237]. We illustrate this more generally in the following example.

x

y

z

Figure 1. Simplicial complex with three vertices x, y and z.

Example 4.9 (cf., [9, page 237]). Let R = Z. Consider (K,w), where
w is the product weighting, to be the WSC shown in Figure 1, with

w(x) = 1, w(y) = n and w(z) = 1,

where n ∈ Z, n ≥ 2. Then,

∂1([x, y]) =
w([x, y])

w(y)
y − w([x, y])

w(x)
x =

n

n
y − n

1
x = y − nx.

Similarly, ∂1([y, z]) = nz − y. Thus,

H0(K,w) = ker ∂0/ Im ∂1
∼= ⟨x, y, z | nx = y, y = nz⟩
∼= ⟨x, z | nx = nz⟩
∼= Z⊕ Zn.
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Proposition 4.10 (cf., [9, page 239]). For the constant weighting
(K, a), a ∈ R \ {0}, the weighted homology functor is the same as the
standard simplicial homology functor.

Proof. If every simplex has weight a ∈ R \ {0}, note that the chain
maps in Definition 4.3 and the weighted boundary maps in Defini-
tion 4.4 reduce to the usual ones in standard simplicial homology.
Hence, the resulting weighted homology functor reduces to the stan-
dard one. �

5. Weighted persistent homology. After defining weighted ho-
mology, we proceed to define weighted persistent homology, following
the example of the seminal paper by Zomorodian and Carlsson [25].
First, we provide a review of persistence [14, 25], with generalizations
to the weighted case.

5.1. Persistence.

Definition 5.1. A weighted filtered complex is an increasing sequence
of weighted simplicial complexes (K, w) = {(Ki, w)}i≥0, such that
Ki ⊆ Ki+1 for all integers i ≥ 0. (The weighting on Ki is a restriction
of that on Kj for i < j.)

Given a weighted filtered complex, for the ith complexKi, we define
the associated weighted boundary maps ∂ik and groups Ci

k, Z
i
k, B

i
k and

Hi
k for all integers i, k ≥ 0, following our development in Section 4.

Definition 5.2. The weighted boundary map ∂ik : Ck(K
i) → Ck−1(K

i)
is the map

∂k : Ck(K
i) −→ Ck−1(K

i)

as defined in Definition 4.4. The weighted chain group Ci
k is the group

Ck(K
i, w) in Definition 4.2. The weighted cycle group Zi

k is the group
ker(∂ik), while the weighted boundary group Bi

k is the group Im(∂ik+1).

The weighted homology group Hi
k is the quotient group Zi

k/B
i
k. (If the

context is clear, we may omit the adjective “weighted”.)
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Definition 5.3 (cf., [25, page 6]). The weighted p-persistent kth
homology group of (K, w) = {(Ki, w)}i≥0 is defined as

(5.1) Hi,p
k (K, w) := Zi

k/(B
i+p
k ∩ Zi

k).

If the coefficient ring R is a PID and all the Kis are finite simplicial
complexes, then Hi,p

k is a finitely generated module over a PID. We
can then define the p-persistent kth Betti number of (Ki, w), denoted

by βi,p
k , to be the rank of the free submodule of Hi,p

k . This is well
defined by the structure theorem for finitely generated modules over
a PID.

Consider the homomorphism

ηi,pk : Hi
k −→ Hi+p

k

that maps a homology class into the one that contains it. To be precise,

(5.2) ni,pk (α+Bi
k) = α+Bi+p

k .

The homomorphism ηi,pk is well defined since, if α1 + Bi
k = α2 + Bi

k,

then α1 − α2 ∈ Bi
k ⊆ Bi+p

k . We prove that, similar to the unweighted

case (cf., [12, 25, 26]), we have Im ηi,pk
∼= Hi,p

k .

Proposition 5.4 (cf., [25, page 6]). Im ηi,pk
∼= Hi,p

k .

Proof. By the first isomorphism theorem, we have

Im ηi,pk
∼= Hi

k/ ker η
i,p
k .

Note that

α+Bi
k ∈ ker ηi,pk

⇐⇒ α+Bi+p
k = Bi+p

k and α ∈ Zi
k

⇐⇒ α ∈ Bi+p
k ∩ Zi

k

⇐⇒ α+Bi
k ∈ (Bi+p

k ∩ Zi
k)/B

i
k.

(5.3)

Hence,
ker ηi,pk = (Bi+p

k ∩ Zi
k)/B

i
k.
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Hence, we have

Im ηi,pk
∼= Hi

k/ ker η
i,p
k

=
Zi
k/B

i
k

(Bi+p
k ∩ Zi

k)/B
i
k

∼= Zi
k/(B

i+p
k ∩ Zi

k)

by the third isomorphism theorem

= Hi,p
k . �

6. Applications. Weighted persistent homology can distinguish
filtrations that ordinary persistent homology does not distinguish. For
instance, if there is a special point, weighted persistent homology can
tell when a cycle containing the point is formed or has disappeared.
This is a generalization of the main feature of persistent homology,
which is to detect the “birth” and “death” of cycles. This is illustrated
in the following example.

v0

v1

v3

v2

(a) K0.

v0

v1

v3

v2

(b) K1.

v0

v1

v3

v2

(c) K2.

v0

v1

v3

v2

(d) K3.

Figure 2. The filtration K = {K0,K1,K2,K3}, where the shaded region
denotes the 2-simplex [v0, v1, v3].

v0

v1

v3

v2

(a) L0.

v0

v1

v3

v2

(b) L1.

v0

v1

v3

v2

(c) L2.

v0

v1

v3

v2

(d) L3.

Figure 3. The filtration L = {L0, L1, L2, L3}, where the shaded region
denotes the 2-simplex [v0, v2, v3].
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Example 6.1. Consider the two filtrations as shown in Figures 2 and
3. By symmetry, it is clear that the (unweighted) persistent homology
groups of the two filtrations will be the same.

Suppose that we consider v2 as a special point and wish to tell
through weighted persistent homology whether a 1-cycle containing
v2 is formed or has disappeared. We can achieve it by the following
weight function (choosing R = Z). Let w be the weight function such
that all two-dimensional (and higher) simplices containing v2 have
weight 2, while all other simplices have weight 1. In our example, this
means that w([v0, v2, v3]) = 2, while w(σ) = 1 for all σ ̸= [v0, v2, v3].

Then, for the filtration K = {K0,K1,K2,K3}, we have

Z1
1 = ker(∂11) = ⟨[v0, v1]− [v0, v3] + [v1, v3]⟩

∂32([v0, v1, v3]) = [v1, v3]− [v0, v3] + [v0, v1]

∂12 = ∂22 = 0.

Hence, we have

H1,p
1 (K, w) =

{
Z for p = 0, 1

0 for p = 2.

However, for the filtration L = {L0, L1, L2, L3}, we have

Z1
1 = ker(∂11) = ⟨[v2, v3]− [v0, v3] + [v0, v2]⟩

∂32([v0, v2, v3]) = 2[v2, v3]− 2[v0, v3] + 2[v0, v2]

∂12 = ∂22 = 0

so that

(6.1) H1,p
1 (L, w) =

{
Z for p = 0, 1

Z2 for p = 2.

Referring to equation (6.1), we can interpret the presence of torsion

in H1,2
1 (L, w) to mean that a 1-cycle containing v2 is formed in L1,

persists in L2, and disappears in L3.
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Remark 6.2. Let R = Z. Generalizing Example 6.1, if there is
a special point v, we can tell if a k-cycle containing v is formed or
has disappeared by setting all k + 1-dimensional and higher simplices
containing v to have weight m ≥ 2, and all other simplices to have
weight 1.

6.1. Algorithm for PIDs. For coefficients in a PID, we show that
the weighted persistent homology groups are computable. In the
seminal paper [25] by Zomorodian and Carlsson, the authors gave an
algorithm for persistent homology over a PID. We present an algorithm
in this section, which is a weighted modification of the algorithm in
[25] based on the reduction algorithm. We use Figure 3 as a running
example to illustrate the algorithm.

Let R be a PID. We represent the weighted boundary operator
∂n : Cn(K,w) → Cn−1(K,w) relative to the standard bases (the
standard basis for Cn(K,w) is the set of n-simplices of K with nonzero
weight, see Definition 4.2) of the respective weighted chain groups as
a matrix Mn with entries in R. The matrix Mn is called the standard
matrix representation of ∂n. It hasmn columns andmn−1 rows, where
mn and mn−1 are the number of n- and (n−1)-simplices with nonzero
weights, respectively.

In general, due to the weights, the matrix Mn for the weighted
boundary map is different from that of the unweighted case. For in-
stance, for the unweighted case, the matrix representation is restricted
to having entries in {−1R, 0R, 1R}, while the weighted matrix repre-
sentation can have entries taking arbitrary values in the ringR. In
particular, when performing the reduction algorithm, we need to make
the modification to allow the following elementary row operations on
Mk:

(1) exchange row i and row j;
(2) multiply row i by a unit u ∈ R \ {0};
(3) replace row i by (row i)+q(row j), where q ∈ R\{0} and j ̸= i.

Note that, for the unweighted case [25, page 5], the second elementary
row operation was “multiply row i by −1.” A similar modification is
also needed for the elementary column operations.
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The subsequent steps are similar to those of the unweighted case,
cf., [25, pages 5, 12]. We summarize the algorithm (Algorithm 1) and
refer the reader to [25, page 5] for more information on the reduction
algorithm and the Smith normal form.

Given a weighted filtered complex {(Ki, w)}i≥0, we write M i
k to

denote the standard matrix representation of ∂ik. We perform Algo-
rithm 1 to obtain the weighted homology groups.

Algorithm 1 Weighted persistent homology algorithm for PIDs, cf.,
[25, page 12].

Input: Weighted filtered complex (K, w) = {(Ki, w)}i≥0

Output: Weighted p-persistent kth homology group Hi,p
k (K, w)

(1) Reduce the matrix M i
k to its Smith normal form and obtain a

basis {zj} for Zi
k.

(2) Reduce the matrix M i+p
k+1 to its Smith normal form and obtain a

basis {bl} for Bi+p
k .

(3) Let A = [{bl} {zj}] = [B Z], i.e., the columns of matrix A
consist of the basis elements computed in the previous steps, with
respect to the standard basis of Ck(K

i+p, w). We reduce A to its
Smith normal form to find a basis {aq} for its nullspace.

(4) Each aq = [αq βq], where αq, βq are column vectors of coeffi-
cients of {bl}, {zj}, respectively. Since Auq = Bαq + Zβq = 0, the
element βαq = −Zβq belongs to the span of both bases {zj} and

{bl}. Hence, both {Bαq} and {Zβq} are bases for Bi,p
k = Bi+p

k ∩Zi
k.

Using either, we form the matrixM i,p
k+1 using the basis. The number

of columns of M i,p
k+1 is the cardinality of the basis for Bi,p

k , while
the number of rows is the cardinality of the standard basis for
Ck(K

i+p, w).

(5) We reduce M i,p
k+1 to Smith normal form to read off the torsion

coefficients of Hi,p
k (K, w) and the rank of Bi,p

k .

(6) The rank of the free submodule of Hi,p
k (K, w) is the rank of Zi

k

minus the rank of Bi,p
k .

We illustrate the algorithm using Example 6.3.
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Example 6.3. Consider the filtration L = {L0, L1, L2, L3} in Fig-
ure 3. We have

M1
1 =


[v0, v3] [v0, v2] [v2, v3]

v0 −1 −1 0
v1 0 0 0
v2 0 1 −1
v3 1 0 1



reduce−−−−→


[v0, v3] [v0, v2] [v2, v3]− [v0, v3] + [v0, v2]

v3 − v0 1 0 0
v2 − v0 0 1 0
v1 0 0 0
v2 0 0 0

.

(6.2)

Hence, a basis for Z1
1 is {[v2, v3]− [v0, v3] + [v0, v2]}.

M3
2 =


[v0, v2, v3]

[v0, v1] 0
[v0, v2] 2
[v0, v3] −2
[v2, v3] 2



reduce−−−−→


[v0, v2, v3]

[v0, v2]− [v0, v3] + [v2, v3] 2
[v0, v3] 0
[v2, v3] 0
[v0, v1] 0


(6.3)

Hence, a basis for B3
1 is {2[v0, v2] − 2[v0, v3] + 2[v2, v3]}. Let b =

2[v0, v2]− 2[v0, v3] + 2[v2, v3] and z = [v0, v2]− [v0, v3] + [v2, v3].
(6.4)

A = [B Z] =


b z

[v0, v1] 0 0
[v0, v2] 2 1
[v0, v3] −2 −1
[v2, v3] 2 1

 reduce−−−−→


z b− 2z

z 1 0
[v0, v3] 0 0
[v2, v3] 0 0
[v0, v1] 0 0


Hence, a basis for the nullspace of A is {b − 2z}. In this context, a
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basis for B1,2
1 is {Bαq} = {b}. Hence, we form a matrix

(6.5) M1,2
2 =


b

[v0, v1] 0
[v0, v2] 2
[v0, v3] −2
[v2, v3] 2

 reduce−−−−→


b

z 2
[v0, v1] 0
[v0, v3] 0
[v2, v3] 0

.

Since both Z1
1 and B1,2

1 have rank 1, the rank of the free part of

H1,2
1 (L, w) is 1−1 = 0. We read off (6.5), and conclude thatH1,2

1 (L, w)
= Z2, which agrees with our previous computation in Example 6.1.
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