
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 48, Number 8, 2018

ON VERTEX DECOMPOSABLE AND
COHEN-MACAULAY REGULAR GRAPHS

J. LUVIANO AND E. REYES

ABSTRACT. We characterize the Cohen-Macaulay prop-
erty for generalized Petersen graphs and 3-regular graphs.
In particular, we prove that these graphs are vertex decom-
posable. Also, we characterize pure vertex decomposability
for 4-transitive graphs without 5-holes. Finally, we study
the small cycles of well-covered and Cohen-Macaulay regular
graphs.

1. Introduction. Let G be a simple graph (without loops and
multiple edges) whose vertex set is V (G) = {x1, . . . , xn} and edge set
E(G). A subset F of V (G) is a stable set or independent set if e * F for
each e ∈ E(G). The cardinality of the maximum stable set is denoted
by β(G). The graph G is called well-covered if every maximal stable set
has the same cardinality. The Stanley-Reisner complex of G, denoted
by ∆G, is the simplicial complex whose faces are the stables sets of G.
Recall that a simplicial complex ∆ is called pure if every facet (maximal
face) has the same number of elements. Thus, ∆G is pure if and only
if G is well-covered. The deletion of a vertex x in ∆ is the subcomplex
del∆({x}) = {F ∈ ∆ | x /∈ F}. Furthermore, for F ∈ ∆, the link of F
in ∆ is the subcomplex, link∆(F ) = {G ∈ ∆ | F ∩G = ∅, F ∪G ∈ ∆}.
A simplicial complex ∆ is vertex decomposable if either {x1, . . . , xn} is
the unique facet or there is a vertex x such that:

(1) both link∆({x}) and del∆({x}) are vertex decomposable; and
(2) no face of link∆({x}) is a facet of del∆({x}).

A vertex x which satisfies condition (2) is called a shedding vertex .
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On the other hand, ∆ is shellable if the facets of ∆ can be ordered
F1, . . . , Ft such that, for all 1 ≤ i < j ≤ t, there is some x ∈ Fj \Fi and
k ∈ {1, . . . , j−1} such that {x} = Fj \Fk. A graph G is called shellable
if ∆G is shellable. Let R = k[x1, . . . , xn] be a polynomial ring over a
field k, the edge ideal of G, denoted I(G), is the ideal of R generated
by all monomials xixj such that {xi, xj} ∈ E(G). We say that G is
Cohen-Macaulay if R/I(G) is a Cohen-Macaulay ring. In general, we
have the following implications [4, 16, 20]:

Pure vertex
decomposable

=⇒ Pure
shellable

=⇒ Cohen-Macaulay =⇒ Well-covered.

An n-cycle is a cycle with n vertices with or without chords, and an
n-hole is an n-cycle without chords. In [5], pure vertex decomposability
is characterized for graphs whose 5-cycles have at least 3-chords. In this
paper, we characterize the pure vertex decomposability for 4-transitive
graphs without 5-holes. The equivalence between Cohen-Macaulayness
and pure vertex decomposability has been studied for some families
of graphs: bipartite graphs (in [10, 17]); very well-covered graphs
(in [13]); theta-ring graphs (in [6]); graphs with girth at least 5 and
block-cactus (in [11]); graphs without 4-cycles and 5-cycles (in [1]);
and graphs without 3-cycles and 5-cycles (in [4]). In this paper, we
prove that equivalence for 3-regular graphs and generalized Petersen
graphs.

The paper is organized as follows. In Section 2, we study the
smaller cycles of well-covered and Cohen-Macaulay regular graphs.
We will use these results in the following sections. In Section 3, we
prove that the pure vertex decomposability and Cohen-Macaulayness
are equivalent for cubic graphs. Furthermore, we prove that the
connected components of these graphs are K4 or P (3, 1). In Section 4,
we characterize 4-transitive graphs without 5-holes whose simplicial
complexes are vertex decomposable. In Section 5, we prove that a
generalized Petersen graph G = P (n, r) is Cohen-Macaulay if and only
if (n, r) = (3, 1) if and only if ∆G is pure vertex decomposable.

2. Well-covered and Cohen-Macaulay regular graphs and
cycles. Let X be a subset of V (G); the subgraph induced by X in
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G is the graph with vertex set X, whose edge set is

{{x, y} ∈ E(G) | x, y ∈ X},

denoted by G[X]. Furthermore, G \ X denotes the induced subgraph
G[V (G)\X]. The girth of G is the length of the shortest cycle in G. A
matching of G is a set of pairwise non-adjacent edges. The matching
number ν(G) of a graph G is the cardinality of a maximum matching.
A perfect matching (1-factor) is a matching such that each vertex in G
is incident to exactly one edge of the matching. The neighbor of a
vertex v is

NG(v) = {w ∈ V (G) | {v, w} ∈ E(G)},

and its closed neighborhood is

NG[v] = NG(v) ∪ {v}.

The degree of v in G is degG(v) = |NG(v)|. Furthermore, if degG(v) = r
for every v ∈ V (G), then G is called r-regular. If H is not an induced
subgraph of G, then G is called an H-free graph.

Remark 2.1. Let G be a graph. We have del∆G(x) = ∆G\x and
link∆G(x) = ∆G\N [x]; hence, x is a shedding vertex if and only if each
stable set in G \NG[x] is not a maximal stable set in G \ x.

Definition 2.2. An end vertex is a vertex of degree 1. A pendant
edge is an edge incident with an end vertex. A 5-cycle C in G is called
basic if C does not contain two adjacent vertices of degree 3 or more
in G.

Let C(G) be the set of vertices contained in at least one basic 5-cycle
and P (G) the set of vertices contained in at least one pendant edge. We
say that G ∈ PC if {P (G), C(G)} is a partition of V (G) such that the
vertex sets of the basic 5-cycle is a partition of C(G), and the pendant
edge is a partition of P (G).

Definition 2.3. A vertex x is simplicial if G[NG[x]] is a complete
subgraph of G. The graph G is in the family F if there is a set
{x1, x2, . . . , xk} ⊆ V (G) such that xi is a simplicial vertex, |NG[xi]| ≤ 3
and {NG[x1], . . . , NG[xk]} is a partition of V (G).
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Figure 1. Special well-covered graphs.

Definition 2.4. A subset D ⊆ V (G) is a vertex cover of G if D∩e ̸= ∅
for each e ∈ E(G). The covering number of G, denoted τ(G), is the
cardinality of a minimum vertex cover of G.

Theorem 2.5 ([8, 9, 15]). Let G be a connected well-covered graph.

(i) If the girth of G is at least 5, then G ∈ PC or G is isomorphic to
one element in {K1, C7, P10, P13, Q13, P14}, see Figure 1.

(ii) If G contains neither C4 nor C5, then G ∈ F or G is isomorphic
to one element in {K1, C7, T10}, see Figure 1.

(iii) If G is {C3, C5, C7}-free, then G has a perfect matching
e1, . . . , es with s = τ(G) such that {a, b} ∈ E(G) when ei = {xi, yi}
and {xi, a}, {yi, b} ∈ E(G).

Theorem 2.6. Let G be a connected regular graph. If G is well-covered,
then G satisfies one of the following conditions:

(i) G is isomorphic to one element in {K1,K2, C3, C5, C7, P14,Kr,r}.
(ii) G has a 4-cycle. In addition, G has an induced 3-, 5- or 7-cycle.

(iii) G has a 3-cycle and a 5-hole.

Proof. Suppose that the girth of G is at least 5. If G ∈ PC, then
V (G) = P (G) ∪ C(G). If P (G) ̸= ∅, then there is an end vertex and
G ≃ K2, since G is regular. Now, if C(G) ̸= ∅, then there is a basic
5-cycle, which implies that G has a vertex of degree 2. Thus, G ≃ C5,
since G is regular. Now, if G /∈ PC, then, from Theorem 2.5 (i),
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G ∈ {K1, C7, P14} since P10, P13 and Q13 are not regular. Therefore,
G satisfies (i).

Now, we assume that G has a 3- or a 4-cycle. Suppose that G has
no 4-cycles. Hence, if G does not satisfy (iii), then G has no 5-holes.
Furthermore, if G has a 5-cycle, then G contains a 4-cycle. Thus, G has
no 5-cycles. Therefore, from Theorem 2.5, G ∈ F , or G is isomorphic
to either K1, C7 or T10. Hence, G = C3, since G is regular and it
has a 3-cycle. Therefore, G satisfies (i). Now, we can assume that G
has a 4-cycle. If G does not satisfy (ii), then G is {C3, C5, C7}-free.
Consequently, from Theorem 2.5, there exists a perfect matching

e1 = {x1, y1}, e2 = {x2, y2}, . . . , eg = {xg, yg}

with g = τ(G). We can suppose that {x1, . . . , xg} is a minimum vertex
cover. Then, {y1, . . . , yg} is a stable set. Furthermore, we assume
that NG(y1) = {x1, x2, . . . , xr}. If {xj , yi} ∈ E(G) with i ∈ {1, . . . , r}
and j > r, then, by Theorem 2.5, {xj , y1} ∈ E(G), a contradiction.
Thus, NG(yi) ⊆ NG(y1) for i ∈ {1, . . . , r}. Since G is regular,
NG(yi) = NG(y1). Hence, {y1, . . . , yr} ⊆ NG(xl) for l ∈ {1, . . . , r}.
Therefore, G = Kr,r, since G is a connected regular graph. �

Definition 2.7. Let (G, e) be a finite group, and let S be an inverse
closed subset of G \{e}. The Cayley graph Cay(G, S) on G with respect
to S is the graph whose vertex set is G and edge set is

E(Cay(G, S)) = {{x, y} | x, y ∈ G such that y = xs for some s ∈ S}.

Definition 2.8. A graph G is vertex-transitive if, for every pair of
vertices, there exists an automorphism mapping one to the other.
Furthermore, if G is r-regular, then G is called r-transitive.

Remark 2.9. If G = Cay(G, S) is a Cayley graph, then G is a vertex-
transitive graph, since G acts on Cay(G, S) by left multiplication, and
this action is transitive on V (G).

Lemma 2.10. The complete graphs and cycles are Cayley graphs.

Proof. Let G be a graph with |V (G)| = n. If G is complete, then
G ≃ Cay(Zn, S), where S = Zn \ {0}. Furthermore, if G is a cycle,
then G ≃ Cay(Zn, {1}). �
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Definition 2.11. For integers n ≥ 3 and 1 ≤ r < n/2, the generalized
Petersen graph P (n, r) is the graph with vertex set

V (P (n, r)) = {a0, a1, . . . , an−1, b0, b1, . . . , bn−1}

and edges aibi, aiai+1 and bibi+r, for i ∈ {0, 1, . . . , n − 1} with
arithmetic modulo n.

Remark 2.12 ([14]). With the exception of the dodecahedron P (10, 2),
the generalized Petersen graph P (n, r) is vertex-transitive, if and only
if r2 ≡ ±1 (mod n). Furthermore, P (n, r) is a Cayley graph if and
only if r2 ≡ 1 (mod n).

Corollary 2.13. If G is a connected well-covered Cayley graph with
girth at least 5, then G is isomorphic to one of the elements in
{K1,K2, C5, C7}.

Proof. From Theorem 2.6, G ∈ {K1,K2, C5, C7, P14}. Furthermore,
by Remark 2.12, G ̸= P14 ≃ P (7, 2). �

Remark 2.14. From Corollary 2.13, the connected Cohen-Macaulay
Cayley graphs with girth at least 5 are K1, K2 and C5, since C7 is not
Cohen-Macaulay.

Definition 2.15. A subgraph H of G is called a c-minor of G if there
exists a stable set S of G such that H = G \NG[S].

Remark 2.16 ([18, Theorems 7.4.4, 7.4.11]). The properties well-
covered, shellable, Cohen-Macaulay and vertex decomposable are closed
under c-minors.

Proposition 2.17 ([4, Corollary 33]). If G is a Cohen-Macaulay graph
without 3- and 5-cycles, then G has an end vertex or an isolated vertex.

Theorem 2.18. If G is a Cohen-Macaulay regular graph, then G
satisfies one of the following conditions:

(i) G is isomorphic to one element in {K1,K2, C3, C5}.
(ii) G has a 3-cycle. Furthermore, G contains a 4-cycle or a 5-hole.
(iii) G has a 4-hole and a 5-hole.
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Figure 2.

Proof. Suppose that G does not satisfy (ii) and (iii). First, we
assume that G is C3-free. If G has no 4-cycles, then, by Theorem 2.6,
G ∈ {K1,K2, C5, C7, P14}. However, C7 is a c-minor of P14 and C7

is not Cohen-Macaulay; thus, G satisfies (i). Now, if G has a 4-cycle,
then G has no 5-cycles, since G does not satisfy (iii), and it is C3-
free. Hence, by Proposition 2.17, G ∈ {K1,K2}. Now, we suppose
that G has a 3-cycle. Since G does not satisfy (ii), G has no 4-cycles
and 5-holes. Consequently, by Theorem 2.6, G = C3. Therefore, G
satisfies (i). �

3. Cohen-Macaulay cubic graph. In this section, we characterize
which cubic graphs are Cohen-Macaulay.

Definition 3.1. Let A, B and C be the graphs given in Figure 2. A
terminal pair is a pair of adjacent degree 2 vertices in A, B or C. A
graph G is in W if G is a collection of copies of A, B and C, where
every terminal pair of vertices is joined by edges to another terminal
pair (possibly the same subgraphs A, B or C) such that G is cubic.

Remark 3.2. LetG be a graph inW. G is denoted by (D1, D2, . . . , Dr)
if

V (G) =
r⊔

i=1

V (Di) with Di ∈ {A,B,C}

and a terminal pair of Di is joined by two edges to a terminal pair of
Di+1. Furthermore, D1 = Dr = C or a terminal pair of D1 is joined
by two edges to a terminal pair of Dr.

Theorem 3.3 ([3]). Let G be a connected cubic graph. Then, G is
well-covered if and only if one of the following conditions is true:

(i) G ∈ W; or
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C5 ×K2 = P (5, 1) Q∗∗ K∗
3,3

Figure 3. Special well-covered cubic graphs.

(ii) G is one of six exceptional graphs: K4, K3,3, K
∗
3,3, C5 ×K2,

Q∗∗ or P14.

Definition 3.4. Let ∆ be a simplicial complex with vertex set V . We
denote by fi the number of i-dimensional faces of ∆. We have f0 = |V |
and f−1 = 1 since ∅ ∈ ∆. If dim∆ = d, then the f -vector of ∆ is the
(d+ 2)-tuple f(∆) = (f−1, f0, f1, . . . , fd), and the h-vector of ∆ is the
(d+ 2)-tuple h(∆) = (h0, h1, . . . , hd+1), where

hk =

k∑
i=0

(−1)k−i

(
d+ 1− i
k − i

)
fi−1.

Proposition 3.5 ([7, Theorem 2.3]). Let ∆ be a simplicial complex.

(i) If ∆ is Cohen-Macaulay, then h(∆) has only non-negative
entries.

(ii) If dim∆ = 1, then ∆ is vertex decomposable/shellable/Cohen-
Macaulay if and only if ∆ is connected.

In [7, Theorem 7.5], Earl, Vander Meulen and Van Tuyl showed that
K4 and P (3, 1) are the only cubic circulant graphs that are Cohen-
Macaulay. In the following theorem, we show that there are no other
Cohen-Macaulay cubic graphs.

Theorem 3.6. If G is a cubic graph, then the following conditions are
equivalent :

(i) Each connected component of G is K4 or P (3, 1);
(ii) G is Cohen-Macaulay ;
(iii) ∆G is pure vertex decomposable.
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Proof.

(ii) ⇒ (i). We can suppose that G is connected. If G /∈ W, then, by
Theorem 3.3, G ≃ K4 since

h(K3,3) = (1, 3,−3, 1), h(K∗
3,3) = (1, 5, 3,−2),

h(C5 ×K2) = (1, 6, 6,−4, 1), h(Q∗∗) = (1, 8, 18, 10,−1)

and
h(P14) = (1, 9, 24, 18,−2,−1).

Now, we can assume that G ∈ W. Hence, G = (D1, D2, . . . , Dr) with
Di ∈ {A,B,C}. If r = 2, then

G = {(A,A), (A,B), (B,B), (C,C)}.

Consequently, one of the following graphs

is a c-minor of G, whose h-vectors are (1, 5, 5,−1), (1, 6, 8, 0,−1) and
(1, 5, 4,−2), respectively, a contradiction, by Proposition 3.5. Now, if
r ≥ 3, then there is a Dj ∈ {A,B} where 1 ≤ j ≤ r. If Di = B, then
the following graph

is a c-minor of G, whose h-vector is (1, 7, 12, 0,−5,−3). Furthermore,
if Dj = A, then the following graph is a c-minor of G:

whose h-vector is (1, 6, 8,−2,−1). Thus, r = 1. Therefore, G = (B)
or G = (A). However, the h-vector of (B) is (1, 5, 3,−1); hence,
G = (A) ≃ P (3, 1).

(i) ⇒ (iii). ∆K4 is zero-dimensional, ∆P (3,1) is one-dimensional, and
they are connected. Thus, by Proposition 3.5, K4 and P (3, 1) are pure
vertex decomposable. �
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a1 d1 a2 d2

b1 c1 b2 c2

as

cs

ds

bs

Figure 4. A K4-chain.

4. 4-transitive graphs without 5-holes.

Definition 4.1. Let H be a graph where H1, . . . , Hs is a partition of
V (H) such that H[Hi] ≃ K4. Then, H is a K4-chain if

E(H) =

( s∪
i=1

E(H[Hi])

)∪( s−1∪
i=1

{{di, ai+1}, {ci, bi+1}}
)
,

where Hi = {ai, bi, ci, di} for 1 ≤ i ≤ s, see Figure 4. Hence, if
x ∈ V (H) \ {a1, b1, cs, ds}, then degH(x) = 4. In this case, we write
H = (H1, . . . ,Hs). Furthermore, if G is a 4-regular graph with a K4-
chain H such that V (H) = V (G), then G is called K4-band.

Remark 4.2. Let A be a stable set of G. If x ∈ V (G) \A is such that
NG(x) ⊆ NG(A), then x is not a shedding vertex.

Proof. We take a maximal stable set B of G such that A ⊆ B. Thus,
NG(x) ⊆ NG(B). Furthermore, B∩NG(B) = ∅, since B is a stable set.
Hence, B ∩NG(x) = ∅. Since B is maximal, we have that x ∈ B and
B \ x ∈ link∆({x}), where ∆ = ∆G. Also, since x /∈ A, then A ⊆ B \ x
and

NG(x) ⊆ NG(A) ⊆ NG(B \ x).

If there is a y /∈ B, then y ∈ NG(B), since B is maximal. Hence,

y ∈ NG(B \ x) ∪NG(x) ⊆ NG(B \ x).

This implies that B \x is a maximal stable set in del∆({x}). Therefore,
x is not a shedding vertex. �

Remark 4.3. Let G be a K4-chain with x ∈ V (G). Then, G[NG(x)]
has two connected components, a 3-cycle and an isolated vertex.
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Lemma 4.4. Let G be a connected 4-transitive graph where each vertex
is shedding. If K4 ⊆ G, then G is a K4-band or G ≃ K5.

Proof. We can assume that G ̸≃ K5. Since K4 is a K4-chain, there
is a maximal K4-chain subgraph H = (H1, . . . ,Hs) of G. We assume
that V (Hi) = {ai, bi, ci, di} with {ci, ai+1}, {di, bi+1} ∈ E(G) for each
1 ≤ i ≤ s− 1.

We will prove that NG(a1) ⊆ V (H). By contradiction, suppose that
there is a y ∈ NG(a1) \ V (H). Hence, there is a K4 ≃ H ′

1 ⊆ G such
that y ∈ V (H ′

1), since G is vertex-transitive. Now, we consider two
cases:

Case 1. First, we assume that {a1, b1, cs, ds} ∩ V (H ′
1) ̸= ∅. Then,

V (H ′
1) ∩ {c1, d1, as, bs} ̸= ∅,

since degH(a1) = degH(b1) = degH(cs) = degH(ds) = 3. Thus,
NG(y) ∩ {c1, d1, as, ds} ̸= ∅. However, if s > 1, then degH(c1) =
degH(d1) = degH(as) = degH(bs) = 4. Hence, s = 1 implies
that |V (H ′

1) ∩ V (H1)| = 3. Thus, G[NG(a1)] is connected, since
|NG(y)∩ V (H1)| ≥ 3. Consequently, G[NG(y)] is connected, since G is
vertex-transitive. Then, NG(y) = V (H1). Therefore, G ≃ K5 since G
is connected and 4-regular, a contradiction.

Case 2. Now, we assume that {cs, ds, b1, a1} ∩ V (H ′
1) = ∅. Then,

V (H ′
1) ∩ V (H) = ∅. We set V (H ′

1) = {a′1, b′1, c′1, y}. Suppose that
s ≥ 2. Then (c1, d1, a2, b2, c1) is a 4-hole. In addition, G is vertex-
transitive; hence, there is a 4-hole C ′ such that a1 ∈ V (C ′). Since
C ′ does not have chords, |V (C ′) ∩ V (H1)| = 2 and y ∈ V (C ′). Thus,
|V (C ′) ∩ V (H ′

1)| = 2, since NG[y] = V (H ′
1) ∪ {a1}. Furthermore,

b1 ∈ V (C ′), since degG(c1) = degG(d1) = 4. Thus, C ′ = (y, a1, b1, u, y),
where u ∈ V (H ′

1) \ {y}. Hence, there is a K4-chain with vertex set
V (H) ∪ V (H ′

1), a contradiction, since H is maximal. This implies
s = 1 and H ≃ K4. By the maximality of H, we have that

NG(H) ∩ V (H ′
1) = {y}.

For ease of exposition, we take V (H) = {x1, x2, x3, x4}. Thus, by
symmetry, there are y1, y2, y3, y4 ∈ V (G) \ V (H) such that

NG[xi] = V (H) ∪ {yi} for 1 ≤ i ≤ 4.
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Furthermore, there are zi1, z
i
2, z

i
3 ∈ NG(yi) \ V (H), such that Gi =

G[{yi, zi1, zi2, zi3}] ≃ K4 and yj /∈ V (Gi) for j ̸= i. Consequently,
{y1, y2, y3, y4} is a stable set, since yj /∈ V (Gi) = NG[yi] \ {xi}. We
have

NG(x1) = {y1, x2, x3, x4} ⊆ NG({y2, y3, y4, z1j }).

Then, {y2, y3, y4, z1j } is not a stable set; if it were, Remark 4.2 would

then imply that x1
j is not a shedding vertex, contradicting the fact that

every vertex is a shedding vertex. Thus,

NG(z
1
j ) ∩ {y2, y3, y4} ̸= ∅ for j = 2, 3, 4.

In addition,
G[NG(z

1
j )] ≃ G[NG(x1)] ≃ K3 ⊔K1.

If yi ∈ NG(z
1
j ) ∩ NG(z

1
j′) with j ̸= j′, then G[NG(z

1
j )] is connected, a

contradiction. This implies that |NG(yi) ∩ {z11 , z12 , z13}| = 1. Hence, we
can assume that {yj , z1j−1} ∈ E(G) for j = 2, 3, 4. Thus,

NG[{x2, z
1
1}] ∩NG[y2] = {x2, y2, z

1
1}.

Furthermore, there is a K4 ≃ K ⊂ G, such that y2 ∈ V (K), since
H ≃ K4, and G is vertex-transitive. However, degG(y2) = 4; thus,
x2 ∈ V (K) or z11 ∈ V (K). Consequently,

V (K) ⊂ NG[{x2, z
1
1}] ∩NG[y2],

a contradiction, since |NG[{x2, z
1
1}]∩NG[y2]| = 3. Therefore, NG(a1) ⊆

V (H). Similarly, NG({b1, cs, ds}) ⊆ V (H) implies V (G) = V (H).
Therefore, G is a K4-band, since G is 4-regular. �

Proposition 4.5. Let G be a connected 4-transitive graph such that
every 5-cycle of G has at least two chords. If G is pure vertex decom-
posable, then G ≃ K5.

Proof. If x ∈ V (G), then x is shedding, since G is vertex-transitive.
Consequently, by [5, Lemma 3.7], there exists a y ∈ NG(x) such that
NG[y] ⊆ NG[x]. Thus, NG[y] = NG[x], since G is regular. Now, we
consider two cases:

Case 1. First, suppose that each 5-cycle has at least four chords.
Thus, G has a simplicial vertex by [5, Theorem 3.11]. Hence, G ≃ K5,
since G is vertex-transitive.
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Case 2. Now, we assume that there is a 5-cycle C = (x1, x2, x3, x4, x5)
with at most three chords. If C has two non disjoint chords, we can
suppose that {x1, x3}, {x1, x4} ∈ E(G). Then, there is a y ∈ NG(x1)
such that

NG[y] = NG[x1] = {x1, x2, x3, x4, x5}.

Since C has at most three chords, y ∈ {x3, x4}. Without loss of gener-
ality, we can assume that y = x4. This implies that

{x2, x4} ∈ E(G) and G[{x1, x2, x3, x4}] ≃ K4.

By Lemma 4.4, G is a K4-band, since C has at most three chords, a
contradiction by Remark 4.3, since G[NG(x1)] is connected. Hence,
the chords of C are disjoint. We can suppose that {x1, x4}, {x2, x5} ∈
E(G). Thus, there are y1 ̸= x5 and x ∈ NG(x5) \ V (C) such that

NG[y1] = NG[x5] = {x, x1, x2, x4, x5}.

Since the chords of C are disjoint, y1 ∈ {x, x1}. Thus, {x, x1} ∈ E(G).
Also, there is a y2 ̸= x2 such that

NG[y2] = NG[x2] ⊇ {x1, x2, x3, x5}.

Since the chords of C are disjoint, y2 /∈ {x1, x3, x5}. Furthermore,
y2 ∈ NG(x1) = {x, x2, x4, x5}. Then, y2 = x and {x2, x} ∈ E(G).
This implies that G[{x, x1, x2, x5}] ≃ K4. By Lemma 4.4, G is a K4-
band, since |V (G)| ≥ 6, which is a contradiction by Remark 4.3, since
G[NG(x1)] is connected. �
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Lemma 4.6. Let G be a 4-transitive vertex decomposable graph such
that every 5-cycle has exactly one chord. If C = (y1, y2, y3, y4, y5) is a 5-
cycle with chord {y2, y5} and x ∈ NG(y5) \V (C), then {x, y1} ∈ E(G).

Proof. By contradiction, suppose that {x, y1} /∈ E(G). Then, there
exist

{z1, z2} ⊆ NG(y1) \ (V (C) ∪ {x}),

since degG(x1) = 4 and each 5-cycle has exactly one chord, see Figure
5 (a).

Now, we will prove |{z1, z2}∩NG(y3)| ≤ 1. By contradiction, assume
that {z1, z2} ⊆ NG(y3). Then,

NG(y1) = {y5, y2, z1, z2} ⊆ NG(x, y3).

Since G is vertex-transitive, each vertex is a shedding vertex. Further-
more, {x, y3} /∈ E(G), since degG(y3) = 4, a contradiction, by Remark
4.2, since y1 is shedding. Therefore, |{z1, z2}∩NG(y3)| ≤ 1. Hence, we
can assume that z1 /∈ NG(y3).

IfNG(x)∩{y3, z1} ̸= ∅, thenNG(y5) = {y1, y2, y4, x} ⊆ NG({z1, y3}),
a contradiction by Remark 4.2, since y5 is shedding. This implies that
NG(x) ∩ {y3, z1} = ∅.

We will prove that y2 /∈ NG(x). By contradiction, suppose that
y2 ∈ NG(x). If y4 ∈ NG(x), then {y2, y5} and {x, y5} are chords of
C1 = (y1, y2, x, y4, y5, y1), see Figure 5 (b), a contradiction. Therefore,
y4 /∈ NG(x) and NG(x) ∩ V (C) = {y2, y5}. Consequently, (x, y2, y1) is
a path in G[NG(y5)]. Furthermore, NG({y2, y5}) ⊆ V (C)∪ {x}. Then,
{y2, y5} is a connected component of G[NG(x)], since NG(x)∩V (C) =
{y2, y5}. Thus, G[NG(x)] does not have a path with three vertices, a
contradiction, since G is vertex-transitive. Therefore, y2 /∈ NG(x).

Now, we will prove y4 /∈ NG(x). By contradiction, assume that
y4 ∈ NG(x). Then, NG(x) ∩ V (C) = {y4, y5}. Thus, G[NG(y5)] has
exactly two edges. Since G is vertex-transitive,

G[NG(y5)] ≃ G[NG(y1)] ≃ G[NG(y4)]

has exactly two edges. Then, {z1, z2} and {a1, y3} ∈ E(G) for some
a1 ∈ NG(y4) \ (V (C) ∪ {x}). Since G[NG(y3)] ≃ G[NG(y5)], {y2, a2} ∈
E(G) for some a2 ∈ NG(y3) \ (V (C) ∪ {x, a1}), see Figure 5 (c). Since
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G[NG(z)] ≃ G[NG(y5)] for each z ∈ V (G), we have {x, a1}, {a1, a2},
{a2, y1} /∈ E(G).

We will prove {y1, a1} /∈ E(G). By contradiction, suppose that
{y1, a1} ∈ E(G). Then, a1 = z2, since {z1, y3} /∈ E(G), see Figure
5 (d). Since C2 = (y2, y3, y4, y5, y2) is a 4-hole and G is vertex-
transitive, x is in a 4-hole C ′ such that |V (C ′) ∩ {y4, y5}| = 1.
Consequently, there exists a w ∈ NG(x) \ {y5, y4} such that

w ∈ NG(NG({y5, y4}) \ {x, y5, y4}) \ {x, y5, y4} = {y1, y2, y3, z1, z2, a2}.

Thus, w ∈ {z1, a2}, since the other vertices have degree 4. If z1 ∈
NG(x), then

NG(y5) = {x, y1, y2, y4} ⊆ NG({z1, y3}),

a contradiction, by Remark 4.2. Thus, z1 /∈ NG(x) and w = a2.
Since G[NG(x)] has exactly two edges, there is a w̃ ∈ V (G) \ (V (C) ∪
{x, z1, z2, a2} such that

w̃ ∈ NG(x) ∩NG(a2),

see Figure 5 (e). If {z1, w̃} is a stable set, then C2 is a connected
component of G \ NG({z1, w̃}), a contradiction, since a 4-hole is not
vertex decomposable. Hence, {z1, w̃} ∈ E(G). Furthermore,

C3 = (y5, y1, z2, y4, y5) and C4 = (y5, x, a2, y2, y5)

are two 4-holes with V (C3)∩V (C4) = {y5}. SinceG is vertex-transitive,
z1 is in two 4-holes. Thus, there is a 4-hole (z1, w̃, b1, b2, z1) where
b2 ∈ {y1, z2}. Hence,

b1 ∈ NG({y1, z2}) \ {y1, z1, z2} = {y2, y3, y4, y5},

a contradiction, since w̃ /∈ NG(C2). Therefore, {y1, a1} /∈ E(G). This
implies that {z1, z2} ∩ (V (C) ∪ {x, a1, a2}) = ∅.

Similarly, {x, a2} /∈ E(G) (by symmetry between x and y1). Thus,
NG(x) = {y4, y5, z̃1, z̃2} such that {z̃1, z̃2} ∈ E(G) and

{z̃1, z̃2} ∩ (V (C) ∪ {x, a1, a2}) = ∅,

see Figure 5 (f). If {zi, z̃j} is a stable set for some 1 ≤ i ≤ j ≤
2, then NG(y5) ⊆ NG({zi, z̃j , y3}), a contradiction, by Remark 4.2.
Consequently, {zi, z̃j} ∈ E(G) for each 1 ≤ i ≤ j ≤ 2. Thus, G[NG(z1)]
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is connected, a contradiction, since G[NG(z1)] ≃ G[NG(y5)]. Therefore,
y4 /∈ NG(x).

Hence, y2, y3, y4, z1 /∈ NG(y5), and G[NG(y5)] has exactly one edge.
We take a ∈ NG(x) \ {y5}. Then, NG(y5) ⊆ NG({a, z1, y3}). By
Remark 4.2, a ∈ NG({z1, y3}), since y5 is a shedding vertex and
{z1, y3} /∈ E(G). Thus,

NG(x) \ {y5} ⊆ NG({z1, y3}) \ (V (C) ∪ {z1}).

Furthermore, |NG(x) \ {y5}| = 3 and |NG(y3) \ V (C)| = 2; thus, there
is a

y ∈ (NG(x) \ {y5}) ∩NG(z1)

and C5 = (x, y5, y1, z1, y, x) is a 5-cycle. Since degG(y5) = 4, NG(y5)∩
V (C5) = {x, y1}. Furthermore {y, y1} /∈ E(G), since G[NG(y1)] ≃
G[NG(y5)] has exactly one edge. This implies that C5 is induced since
NG(x) ∩ (V (C) ∪ {z1}) = ∅. This is a contradiction, since each 5-cycle
has exactly one chord. Therefore, {x, y1} ∈ E(G). �

Lemma 4.7. Let G be a 4-transitive graph such that every 5-cycle has
exactly one chord. If G is vertex decomposable, then G contains K4.

Proof. By Proposition 4.5, if G does not have a 5-cycle, then G ≃
K5, which contradicts the fact that each 5-cycle has exactly one chord.
Thus, there is a 5-cycle C = (y1, y2, y3, y4, y5, y1) of G. We can assume
that {y2, y5} ∈ E(G). Since degG(y5) = degG(y2) = 4, there are

x ∈ NG(y5) \ V (C) and y ∈ NG(y2) \ V (C).

By Lemma 4.6, {x, y1}, {y, y1} ∈ E(G). If x = y, thenG[{x, y1, y2, y5}] ≃
K4. Now, if x ̸= y, then G[NG(y1)] is connected. Since G is vertex-
transitive, G[NG(y5)] is connected. Hence, {x, y4} ∈ E(G), since
degG(y1) = degG(y2) = 4. Similarly, {y, y3} ∈ E(G), since G[NG(y2)]
is connected. Thus, C ′ = (y1, y2, y3, y4, x, y1) is a 5-cycle. Since
degG(y1) = degG(y2) = 4, and since C ′ must have a chord, we are
forced to use {x, y3} as the chord of C ′. Hence, {y4, y5} and {x, y3} are
chords of (y2, y3, y4, x, y5, y2), a contradiction, since each 5-cycle has
exactly one chord. �
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Definition 4.8. The complement of a graph G, denoted Gc, is a graph
whose vertex set is V (G), and

E(Gc) = {{x, y} : x ̸= y ∈ V (G) and {x, y} /∈ E(G)}.
x1

x2x5

x3x4

w

(a) (K2 ⊔K2 ⊔K2)
c

x1

x2x5

x3x4

w

w′

(b) Cc
7

x1

x2x5

x3x4

u

u′

(c) Cc
7

x1

x2x5

x3x4

u

u′

u′′

(d) M(4)c

x1

x2
x5

x3x4

v′ v

(e) Cc
7

FIGURE 6.

x1

x2
x5

x3x4

v′ v

Proposition 4.9. Let G be a 4-transitive connected graph such that
G has a 5-cycle C with at least two chords and a 4-hole. Then, G is
isomorphic to (K2 ⊔K2 ⊔K2)

c or Cc
7 or M(4)c.

Proof. We set C = (x1, x2, x3, x4, x5, x1). First, we suppose that
C has two concurrent chords. Then, we assume that {x1, x3} and
{x1, x4} ∈ E(G). Since G has a 4-hole and is vertex-transitive, there
is a 4-hole C ′ with x1 ∈ V (C ′). Thus,

|{x2, x5} ∩ V (C ′)| ≥ 1,

since {x3, x4} ∈ E(G). Now we will study two cases:

Case 1. If |{x2, x5}∩V (C ′)| = 1, then, we can assume that x2 ∈ C ′.
Thus, C ′ = (x1, x2, w, x4, x1) with w ∈ V (G) \ V (C). Since G[NG(x1)]
is connected and G is vertex-transitive, we have

G[NG(x4)] = G[{x1, x3, x5, w}]

is connected. Hence, {x3, x5} ∩NG(w) ̸= ∅, since degG(x1) = 4.

We assume {x3, w} ∈ E(G). Thus, G[NG(x3)] has a 4-cycle. Since
G is vertex-transitive, G[NG(x1)] and G[NG(x4)] have a 4-cycle. This
implies that {x2, x5}, {w, x5} ∈ E(G), since

degG(x4) = degG(x3) = degG(x1) = 4.
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Therefore, G ≃ (K2 ⊔K2 ⊔K2)
c, since G is 4-regular, see Figure 6 (a).

Now, suppose that {x3, w} /∈ E(G). Then,

{x5, w} ∈ E(G) and G[NG(x4)]

have no 4-cycles. Consequently, G[NG(x1)] has no 4-cycles, and
{x2, x5} /∈ E(G). Since degG(x1) = 4 and {w, x3} /∈ E(G), there is
a w′ ∈ NG(w) \ V (C). Furthermore, G[NG(w)] ≃ G[NG(x1)] is con-
nected, degG(x4) = 4 and {x2, x5} /∈ E(G). Then, x2, x5 ∈ NG(w

′).
In addition, G[NG(x2)] ≃ G[NG(x1)] is connected and degG(w) =
degG(x1) = 4; thus, {x3, w

′} ∈ E(G). Therefore, G ≃ Cc
7, see Fig-

ure 6 (b).

Case 2. Now, we assume that x2, x5 ∈ V (C ′′), for each 4-hole
C ′′ with x1 ∈ V (C ′′). Thus, there is a u ∈ V (G) \ V (C) such that
C ′ = (x1, x5, u, x2, x1); hence, {x2, x5} /∈ E(G). Since degG(x2) = 4,
there is a

u′ ∈ NG(x2) \ {x1, x2, x3, x5, u}.

We shall prove u′ ̸= x4. By contradiction, we assume that u′ = x4. If
P4 is a path with four vertices, then P4 ⊆ G[NG(x1)]. Since G is vertex-
transitive, we have P4 ⊆ G[NG(x2)]. This implies that {x3, u} ∈ E(G),
since degG(x1) = degG(x4) = 4. Furthermore, there is a

v ∈ V (G) \ (V (C) ∪ {u})

such that {u, v} ∈ E(G), since G is 4-regular and degG(x1) =
degG(x4) = 4. Since G is vertex-transitive,

P4 ⊆ G[NG(u)] ≃ G[{x2, x3, x5, v}].

This is a contradiction, since degG(x2) = degG(x3) = 4. Therefore,
u′ ̸= x4. Hence, u′ /∈ (V (C) ∪ {u}). Also, P4 ⊆ G[NG(x1)] ≃
G[NG(x2)]. Consequently, {u, u′} ∈ E(G) and {u, u′} ∩ NG(x3) ̸= ∅,
since degG(x1) = 4. Thus, {x3, u} ∈ E(G) or {x3, u

′} ∈ E(G).

If {x3, u} ∈ E(G), then {x5, u
′} ∈ E(G), since P4 ⊆ G[NG(u)]

and degG(x2) = degG(x3) = 4. Similarly, {x4, u
′} ∈ E(G), since

P4 ⊆ G[NG(x5)] and degG(x1) = degG(u) = 4. Therefore, G ≃ Cc
7,

see Figure 6 (c). Now, if {x3, u
′} ∈ E(G), then P4 ≃ G[NG(x1)],

since degG(x2) = degG(x3) = 4. Since G is vertex-transitive, P4 ≃
G[NG(x3)], thus, {x4, u

′} /∈ E(G). Hence, there is a u′′ ∈ NG(u) ∩



REGULAR GRAPHS 2643

NG(u
′), since

G[NG(u
′)] ≃ P4, NG(x3) = {x1, x2, x4, u

′}

and {u′, x4} /∈ E(G). Furthermore, if u′′ ∈ V (C), then u′′ = x5. This
implies that {u, x4} ∈ E(G), since P4 ≃ G[NG(x5)] and degG(x1) =
degG(u

′) = 4, a contradiction, since C ′′′ = (x1, x4, u, x2, x1) is a 4-hole
with x1 ∈ V (C ′′′) and x5 /∈ V (C ′′′). Consequently, u′′ /∈ V (C). Hence,
{u′′, x5} ∈ E(G), since G[NG(u)] ≃ P4 and degG(x2) = 4. Thus,
{x4, u

′′} ∈ E(G), since

G[NG(x5)] ≃ P4 and degG(u) = degG(x1) = 4.

Therefore, G ≃ M(4)c, see Figure 6 (d).

Finally, suppose that C has no concurrent chords. Thus, C has
exactly two chords. We can assume that {x2, x4} and {x3, x5} ∈ E(G).
Then, {x2, x5} /∈ E(G), and there exist v, v′ ∈ NG(x1) \ V (C), since
degG(x1) = 4. Furthermore P3 ⊆ G[NG(x3)]; thus, P3 ⊆ G[NG(x1)],
since G is vertex-transitive. Consequently, there is an edge between
at least one vertex of {v, v′} and one vertex of {x2, x5}. Without loss
of generality, we can suppose that {x2, v} ∈ E(G). This implies that
K2 ⊔ K2 ⊆ G[NG(x2)] ≃ G[NG(x1)]. Hence, {x5, v

′} ∈ E(G), since
degG(x2) = 4. In addition, G[NG(x1)] ⊇ P3. Then, {v, v′} ∈ E(G),
since degG(x2) = degG(x5) = 4. Thus,

P4 ≃ G[NG(x1)] ≃ G[NG(x2)] ≃ G[NG(x5)].

Hence, NG(v) ∩ {x3, x4} ̸= ∅ and NG(v
′) ∩ {x3, x4} ̸= ∅, since

degG(x1) = 4. Since

degG(v) = degG(v
′) = degG(x3) = degG(x4) = 4,

we have two cases:

(i) {v, x3}, {v′, x4} ∈ E(G), or

(ii) {v, x4}, {v′, x3} ∈ E(G).

In both cases, G ≃ Cc
7, since G is 4 regular, see Figure 6 (e). �

Definition 4.10. Let G be a graph such that V (G) = V (F ) ∪ V (H),
where H = (H1, . . . ,Hs) is a K4-chain, V (Hi) = {ai, bi, ci, di}, and its
end vertices are a1, b1, cs, ds. G is an edge-K4-chain if F ≃ K2 with
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V (F ) = {x, y} and

E(G) = E(H) ∪ E(F ) ∪ {{x, a1}, {y, b1}}.

G is a triangle-K4-chain if F ≃ K3 with {x, y, z} and E(G) =
E(H) ∪ E(F ) ∪ {{x, a1}, {y, b1}}. In both cases, we denote G =
(F,H1,H2, . . . ,Hs).

Remark 4.11. If S is a stable set of G, where G = (F,H1, . . . , Hs) is
an (edge) triangle-K4-chain, or G = (H1, . . . , Hs) is a K4-chain, then
|S∩Hi| ≤ 1 and |S∩F | ≤ 1. Furthermore, {x, c1, . . . , cs} or {c1, . . . , cs}
is a stable set. Therefore, β(G) = s+ 1 or β(G) = s, respectively.

Lemma 4.12. If G is a K4-chain, triangle-K4-chain or edge-K4-chain,
then G is pure vertex decomposable.

Proof. We perform the proof by induction on |V (G)|. First, suppose
G = (H1, . . . , Hs) is a K4-chain. Then, β(G) = s, by Remark 4.11.
If s = 1, then G ≃ K4, and G is pure vertex decomposable. Now,
assume that s ≥ 2. Furthermore, G1 = G \ a1 is the triangle-K4-chain
(T1,H2, . . . ,Hs), where T1 = H1 \ a1. In addition,

G2 = G \NG[a1]

is the K4-chain (H2, . . . , Hs). By induction, G1 and G2 are pure
vertex decomposable. Furthermore, by Remark 4.11, β(G1) = s and
β(G2) = s − 1. Hence, each face of ∆G2 is not a facet of ∆G1 . This
implies, by Remark 2.1, that a1 is a shedding vertex. Therefore, G is
pure vertex decomposable.

Now, suppose that G = (F1,H1,H2, . . . ,Hs) is a triangle-K4-chain,
with

V (F1) = {x, y, z},

V (Hi) = {ai, bi, ci, di}

and
{x, a1}, {y, b1} ∈ E(G).

Also, G3 = G \ z is the edge-K4-chain (F ′
1,H1,H2, . . . , Hs), where

F ′
1 = F1 \ z ≃ K2. Furthermore, G4 = G \ NG[z] is the K4-chain

(H1,H2, . . . ,Hs). Thus, by induction, G3 and G4 are pure vertex
decomposable. From Remark 4.11, β(G3) = s + 1 and β(G4) = s.
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Then, by Remark 2.1, z is a shedding vertex. Therefore, G is pure
vertex decomposable.

Finally, if G = (F2, H1,H2, . . . , Hs) is an edge-K4-chain, V (F2) =
{x, y} and V (Hi) = {ai, bi, ci, di}, where {x, a1}, {y, b1} ∈ E(G).
Consequently,

G5 = G \NG[a1] = (H2, . . . , Hs) ∪ {y}

if s ≥ 2, or
G5 = G \NG[a1] = {y}

if s = 1. Thus, by induction, G5 is pure vertex decomposable and
β(G5) = s. Furthermore,

G6 = G \ a1 = (F ′
2,H2, . . . ,Hs) ∪ {{x, y}, {y, b1}},

where F ′
2 = G[{b1, c1, d1}] ≃ K3 and β(G6) = s + 1. Then, a1 is a

shedding vertex. Now, we take G7 = G6 \ {y} and G8 = G6 \NG[y]. If
s ≥ 2, then

G7 = (F ′
2,H2, . . . ,Hs) ∪ {x},

where (F ′
2, H2, . . .Hs) is a triangle-K4-chain, and G8 is the edge-K4-

chain (F ′′
2 ,H2, . . . ,Hs), where F ′′

2 = G[{c1, d1}] ≃ K2. Also, if s = 1,
then

G7 = F ′
2 ∪ {x} and G8 = G[{c1, d1}] ≃ K2.

Hence, by the induction hypothesis, G7 and G8 are pure vertex decom-
posable. Furthermore, by Remark 4.11, β(G7) = s+ 1 and β(G8) = s.
Thus, y is shedding. This implies that G6 is pure vertex decomposable.
Therefore, G is pure vertex decomposable. �

Lemma 4.13. If G is a K4-band, then G is pure vertex decomposable.

Proof. Since G is a K4-band, there is a K4-chain H = (H1, . . . , Hs)
such that V (G) = V (H), where V (Hi) = {ai, bi, ci, di} and Hi ≃ K4.
Furthermore, ifG is 4-regular, then {a1, cs} ∈ E(G) or {a1, ds} ∈ E(G).
We take G1 = G \ NG[a1]. Then, G1 is a triangle if s = 2, or G1 is
a triangle-K4-chain (H2, . . . , Hs−1, F1) if s ≥ 3. In the second case,
F1 is a triangle. Moreover, V (F1) = {as, bs, ds} if {a1, cs} ∈ E(G),
or V (F1) = {as, bs, cs} if {a1, ds} ∈ E(G). Thus, by Lemma 4.12 and
Remark 4.11, G1 is pure vertex decomposable and β(G1) = s− 1.



2646 J. LUVIANO AND E. REYES

Now, we take G2 = G \ a1. Hence, G2 \ b1 is the edge-K4-chain
(F2,H2, . . . , Hs), where F2 is the edge {c1, d1}. Consequently, by
Lemma 4.12 and Remark 4.11, G2 \ b1 is pure vertex decomposable
and β(G2 \ b1) = s. Now, we take G′ = G2 \ NG2

[b1]. Then, G′ is a
triangle if s = 2, or G′ is the triangle-K4-chain (H2, . . . ,Hs−1, F3) if
s ≥ 3. In the second case, F3 is a triangle, where V (F3) = {as, bs, cs}
if {a1, cs} ∈ E(G), or V (F3) = {as, bs, ds} if {a1, ds} ∈ E(G).
From Remark 4.11, β(G′) = s − 1. Hence, b1 is a shedding vertex
and β(G2) = s. Furthermore, by Lemma 4.12, G′ is pure vertex
decomposable. This implies that G2 is pure vertex decomposable, since
G2 \ b1 and G′ are pure vertex decomposable. Hence, a1 is a shedding
vertex, since β(G1) = s−1 and β(G2) = s. Therefore, G is pure vertex
decomposable, since G1 and G2 are pure vertex decomposable. �

Theorem 4.14. Let G be a 4-transitive graph without a 5-hole. Then,
the following conditions are equivalent :

(i) ∆G is pure vertex decomposable.
(ii) Each connected component of G is isomorphic to K5 or Cc

7 or
a K4-band.

Proof.

(i) ⇒ (ii). Let G′ be a connected component of G. By Proposi-
tion 4.5, we can assume that there is a 5-cycle C with exactly one
chord in G′. Thus, G′ has a 4-hole. We consider two cases:

(a) First, suppose each 5-cycle of G′ has exactly one chord. Then,
by Lemma 4.7, G′ contains a K4. Hence, by Lemma 4.4, G = K5 or G
is a K4-band.

(b) Now, we assume that G′ has a 5-cycle with at least two chords.
Thus, by Proposition 4.9,

G ∈ {Cc
7,M(4)c, (K2 ⊔K2 ⊔K2)

c},

since G′ has a 4-hole. However, M(4)c has a 5-hole, and

∆(K2⊔K2⊔K2)c = K2 ⊔K2 ⊔K2

has dimension 1 and is not connected. Therefore, G ≃ Cc
7.

(ii) ⇒ (i). By Lemma 4.13, each K4-band is pure vertex decom-
posable. Furthermore, ∆K5 has dimension 0; thus, it is pure vertex
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decomposable. Also, ∆Cc
7
≃ C7 is a connected pure simplicial com-

plex of dimension 1, so it is vertex decomposable by Proposition 3.5.
Therefore, G is vertex decomposable. �

5. Well-covered and Cohen-Macaulay generalized Petersen
graphs. In this section, we characterize the generalized Petersen
graphs, see Definition 2.11, with the following properties: well-covered,
Cohen-Macaulay and pure vertex decomposable.

Lemma 5.1. If G = P (n, r) is a generalized Petersen graph, then:

(i) G contains a 3-cycle if and only if n = 3 or n = 3r.
(ii) G contains a 4-cycle if and only if n = 4, n = 4r or r = 1.
(iii) G contains a 5-cycle if and only if n = 5, or n = 5r, or r = 2,

or n = 5(r/2) with r even, or r = (n− 1)/2 with n odd.

Proof. We assume that V (G) = {a0, a1, . . . , an−1, b0, b1, . . . , bn−1}
and E(G) is

{a0b0, . . . , an−1bn−1} ∪ {aiaj : |i− j| ≡ 1 (mod n)}
∪ {bibj , : |i− j| ≡ r (mod n)}

with n ≥ 3. We take H1 = G[{a0, . . . , an−1}] and H2 = G[{b0, . . . ,
bn−1}]. Thus, H1 is an n-cycle. Since {bi, bj} ∈ E(G) if and only
if |i − j| ≡ r (mod n), then i ≡ r + j or i ≡ n − r + j (mod n).
Hence, H2 is 2-regular, and Ci = (bi, bi+r, . . . , bi+n′r) is a cycle, where
n′ = n/gcd(n, r). Therefore, H2 is the disjoint union of n′-cycles.

Let C be an s-cycle in G, with s ∈ {3, 4, 5}. If C ⊆ H1, then
s = n. Now, suppose that C ⊆ H2. Then, s = n′. This implies that
n = gcd(n, r) · s and r = gcd(n, r) · r′, where gcd(s, r′) = 1. Since
2r < n, thus, 2r′ < s. If s ≤ 4, then r′ = 1. Hence, r = gcd(n, r) and
n = s · r.

Now, if s = 5, then r′ = 1 or r′ = 2, i.e., n = 5 · r or r = 2gcd(n, r)
and n = 5(r/2). Now, we assume that V (C) ∩ V (Hi) ̸= ∅ for i = 1, 2.
Since V (H1) ∩ V (H2) = ∅ and C is connected, then there is an
e ∈ E(C) \ (E(H1)∪E(H2)). We can assume that e = {aj , bj}. Hence,
aj+1 ∈ V (C) or aj−1 ∈ V (C), as well as bj+r ∈ V (C) or bj−r ∈ V (C).
Thus, s ≥ 4. If s = 4, then j±1 ≡ j±r (mod n). Consequently, r = 1,
since 2r < n. Now, we suppose that s = 5. If |V (C) ∩ V (H1)| = 3,
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then i ± 2 ≡ i ± r (mod n). Hence, r = 2, since 2r < n. Finally,
if |V (C) ∩ V (H2)| = 3, then i ± 1 ≡ i ± 2r (mod n). This implies
that 2r ≡ ±1 (mod n). Therefore, n is odd and r = (n− 1)/2, since
2r < n. �

Lemma 5.2. Ks,s is not a generalized Petersen graph.

Proof. If x ∈ G = Ks,s, then degG(x) = s. If G is a generalized
Petersen graph, then G is 3-regular. Thus, s = 3, and V (G) =
{a0, a1, a2, b0, b1, b2}. Hence, H = G[{a0, a1, a2}] is a 3-cycle. This
is a contradiction, since Ks,s is bipartite. �

Theorem 5.3. Let G = P (n, r) be a generalized Petersen graph. Then,
G is well-covered if and only if (n, r) ∈ {(3, 1), (5, 1), (6, 2), (7, 2)}.

Proof.

⇒. G satisfies Theorem 2.6 (i), (ii) or (iii). If G satisfies (i), then, by
Lemma 5.2, G ∼= P14, and (n, r) = (7, 2). Now, if G satisfies (iii), then,
G has a 3-cycle and a 5-cycle. If n = 3, since 2r < n, then, r = 1 and
(n, r) = (3, 1). Now, by Lemma 5.1 (i), we can assume that n = 3r.
Also, by Lemma 5.1 (iii), r = 2 or r = (n− 1)/2. Consequently,
(n, r) = (6, 2) or (n, r) = (3, 1). Now, we can assume that G satisfies
Theorem 2.6 (ii). Thus, G has a 4-cycle, and, by Lemma 5.1, n = 4,
n = 4r or r = 1. Furthermore, G has a 3-cycle, 5-cycle or 7-cycle. If G
has a 3-cycle, then, from Lemma 5.1, (n, r) = (3, 1).

Now, if G has a 5-cycle, then (n, r) ∈ {(5, 1), (3, 1), (8, 2)} by
Lemma 5.1. If (n, r) = (8, 2), then H1 is the 8-cycle (a0, a1, . . . , a7, a0)
and

H2 = (b0, b2, b4, b6, b0) ∪ (b1, b3, b5, b7, b1).

Hence, {a0, a2, a5, b1, b4} and {b0, b1, b4, b5, a3, a6} are maximal stables
sets, contradicting the fact that G is well-covered. Thus, (n, r) ̸= (8, 2).
Finally, we assume that G has a 7-cycle C. If V (C) ⊆ V (H1) or
V (C) ⊆ V (H2), then n = 7 or n = 7r, implying (n, r) = (7, 1). This
further implies H2 = (b0, b1, . . . , b6, b0) and H1 = (a0, a1, . . . , a6, a0).
Consequently, {a1, a3, a5, b0, b2, b4} and {a2, a5, b0, b3} are maximal sta-
bles sets. This is a contradiction, since G is well-covered. Then,
(n, r) ̸= (7, 1). Now, we can assume that aibi ∈ V (C); thus,

|V (C) ∩ V (H1)| ≥ 2 and |V (C) ∩ V (H2)| ≥ 2.
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If |V (C) ∩ V (Hi)| = 2 for some i ∈ {1, 2}, then 4r ± 1 ≡ 0 (mod n)
or r ± 4 ≡ 0 (mod n). If n = 4 or n = 4r, then r − 4 = 0, since
1 < r < n/2. Hence, (n, r) = (16, 4). However,

{a0, a2, a4, a6, a8, a10, a12, a14, b1, b3, b9, b11}

and
{a0, a3, a6, a8, a11, a14, b1, b2, b4, b7, b9, b10, b12, b15}

are maximal stables sets of P (16, 4), a contradiction. Hence, (n, r) ̸=
(16, 4). If r = 1, then n ∈ {3, 5}.

Now, we suppose that |V (C) ∩ V (Hi)| = 3 for some i ∈ {1, 2}. In
this case, we have that 2r ± 3 ≡ 0 (mod n) or 3r ± 2 ≡ 0 (mod n).
If n = 4 or n = 4r, then n is even, and furthermore, r < n, implying
3r ± 2 = 4rq for some q ∈ Z. Thus, r(4q − 3) = ±2, and consequently,
r = 2. This implies (n, r) = (8, 2). However, we proved that P (8, 2) is
not well-covered. Finally, if r = 1, we obtain that 2 ± 3 ≡ 0 (mod n).
Therefore, n = 5, and (n, r) = (5, 1).

⇐. We take G = P (n, r). If (n, r) = (3, 1), then G \NG[x] ≃ K2 for
any vertex x ∈ V (G). Then, the cardinality of every maximal stable set
is two. Thus, G is well-covered. We take G′ = G\NG[{x, y}], where x, y
are non adjacent vertices. Now, if (n, r) = (5, 1), then G′ is isomorphic
to P4, or Kc

2, or K1 ⊔ K2. Hence, the cardinality of every maximal
stable set is four, so P (5, 1) is well-covered. Now, if G = P (6, 2), then
G′ is isomorphic to P4, or C5, or K2 ⊔K2, or

K2 ⊔K3 or K2 ⊔K3,

with an edge of K2 to K3. Then, the cardinality of every maximal
stable set is four. Therefore, (n, r) = (6, 2) is well-covered. Finally,
P (7, 2) ≃ P14. Thus, P (7, 2) is well-covered, by Theorem 2.5. �

Theorem 5.4. Let G = P (n, r) be a generalized Petersen graph.
Then, G is pure vertex decomposable (Cohen-Macaulay) if and only
if (n, r) = (3, 1).

Proof.

⇒. By Theorem 5.3, we have

(n, r) ∈ {(3, 1), (5, 1), (6, 2), (7, 2)},
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since G is well-covered. Furthermore, h(∆P (5,1)) = (1, 6, 6,−4, 1);
h(∆P (6,2)) = (1, 8, 18, 10,−1); and h(∆P (7,2)) = (1, 9, 24, 18,−2,−1).
Therefore, (n, r) = (3, 1).

⇐. ∆P (3,1) is a one-dimensional connected simplicial complex.
Therefore, by Theorem 3.5, P (3, 1) is pure vertex decomposable
(Cohen-Macaulay). �
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Email address: ereyes@math.cinvestav.mx


