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ON VERTEX DECOMPOSABLE AND
COHEN-MACAULAY REGULAR GRAPHS

J. LUVIANO AND E. REYES

ABSTRACT. We characterize the Cohen-Macaulay prop-
erty for generalized Petersen graphs and 3-regular graphs.
In particular, we prove that these graphs are vertex decom-
posable. Also, we characterize pure vertex decomposability
for 4-transitive graphs without 5-holes. Finally, we study
the small cycles of well-covered and Cohen-Macaulay regular
graphs.

1. Introduction. Let G be a simple graph (without loops and
multiple edges) whose vertex set is V(G) = {z1,...,2,} and edge set
E(G). A subset F of V(G) is a stable set or independent set if e ¢ F for
each e € E(G). The cardinality of the maximum stable set is denoted
by 8(G). The graph G is called well-covered if every maximal stable set
has the same cardinality. The Stanley-Reisner compler of G, denoted
by Ag, is the simplicial complex whose faces are the stables sets of G.
Recall that a simplicial complex A is called pure if every facet (maximal
face) has the same number of elements. Thus, Ag is pure if and only
if G is well-covered. The deletion of a vertex x in A is the subcomplex
delan({z}) = {F € A | ¢ F}. Furthermore, for F' € A, the link of F
in A is the subcomplex, linka (F) ={G €A | FNG =0, FUG € A}.
A simplicial complex A is vertez decomposable if either {z1,...,z,} is
the unique facet or there is a vertex x such that:

(1) both linka ({z}) and dela({z}) are vertex decomposable; and
(2) no face of linka ({z}) is a facet of dela ({x}).

A vertex x which satisfies condition (2) is called a shedding vertex.
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On the other hand, A is shellable if the facets of A can be ordered
Fi,..., Fy such that, for all 1 <14 < j <, there is some z € F;\ F; and
ke{l,...,j—1} such that {x} = F;\ Fi. A graph G is called shellable
if Ag is shellable. Let R = k[z1,...,2,] be a polynomial ring over a
field k, the edge ideal of G, denoted I(G), is the ideal of R generated
by all monomials z;x; such that {z;,2;} € E(G). We say that G is
Cohen-Macaulay if R/I(G) is a Cohen-Macaulay ring. In general, we
have the following implications [4, 16, 20]:

Pure vertex Pure

decomposable = hellable — Cohen-Macaulay = Well-covered.

An n-cycle is a cycle with n vertices with or without chords, and an
n-hole is an n-cycle without chords. In [5], pure vertex decomposability
is characterized for graphs whose 5-cycles have at least 3-chords. In this
paper, we characterize the pure vertex decomposability for 4-transitive
graphs without 5-holes. The equivalence between Cohen-Macaulayness
and pure vertex decomposability has been studied for some families
of graphs: bipartite graphs (in [10, 17]); very well-covered graphs
(in [13]); theta-ring graphs (in [6]); graphs with girth at least 5 and
block-cactus (in [11]); graphs without 4-cycles and 5-cycles (in [1]);
and graphs without 3-cycles and 5-cycles (in [4]). In this paper, we
prove that equivalence for 3-regular graphs and generalized Petersen
graphs.

The paper is organized as follows. In Section 2, we study the
smaller cycles of well-covered and Cohen-Macaulay regular graphs.
We will use these results in the following sections. In Section 3, we
prove that the pure vertex decomposability and Cohen-Macaulayness
are equivalent for cubic graphs. Furthermore, we prove that the
connected components of these graphs are K4 or P(3,1). In Section 4,
we characterize 4-transitive graphs without 5-holes whose simplicial
complexes are vertex decomposable. In Section 5, we prove that a
generalized Petersen graph G = P(n,r) is Cohen-Macaulay if and only
if (n,r) = (3,1) if and only if Ag is pure vertex decomposable.

2. Well-covered and Cohen-Macaulay regular graphs and
cycles. Let X be a subset of V(G); the subgraph induced by X in
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G is the graph with vertex set X, whose edge set is
{{z,y} € E(G) | z,y € X},

denoted by G[X]. Furthermore, G \ X denotes the induced subgraph
G[V(G)\ X]. The girth of G is the length of the shortest cycle in G. A
matching of G is a set of pairwise non-adjacent edges. The matching
number v(G) of a graph G is the cardinality of a maximum matching,.
A perfect matching (1-factor) is a matching such that each vertex in G
is incident to exactly one edge of the matching. The neighbor of a
vertex v is

Ng(v) ={w e V(G) | {v,w} € E(G)},
and its closed neighborhood is
Nglv] = Nea(v) U {v}.

The degree of v in G is deg(v) = |[Ng(v)|. Furthermore, if deg(v) = r
for every v € V(G), then G is called r-regular. If H is not an induced
subgraph of G, then G is called an H-free graph.

Remark 2.1. Let G be a graph. We have dela,(z) = Ag\, and
linka, (2) = Ag\n[a); hence, z is a shedding vertex if and only if each
stable set in G \ Ng(] is not a maximal stable set in G \ z.

Definition 2.2. An end vertex is a vertex of degree 1. A pendant
edge is an edge incident with an end vertex. A 5-cycle C in G is called
basic if C' does not contain two adjacent vertices of degree 3 or more
in G.

Let C(G) be the set of vertices contained in at least one basic 5-cycle
and P(G) the set of vertices contained in at least one pendant edge. We
say that G € PC if {P(G),C(G)} is a partition of V(G) such that the
vertex sets of the basic 5-cycle is a partition of C(G), and the pendant
edge is a partition of P(G).

Definition 2.3. A vertex z is simplicial if G[Ng|z]] is a complete
subgraph of G. The graph G is in the family F if there is a set
{z1,22,..., 2k} C V(G) such that z; is a simplicial vertex, |Ng[z;]| < 3
and {Ng[z1],..., Ng[zk]} is a partition of V(G).
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FIGURE 1. Special well-covered graphs.

Definition 2.4. A subset D C V(G) is a vertezx cover of G if DNe # ()
for each e € E(G). The covering number of G, denoted 7(G), is the
cardinality of a minimum vertex cover of G.

Theorem 2.5 ([8, 9, 15]). Let G be a connected well-covered graph.

(i) If the girth of G is at least 5, then G € PC or G is isomorphic to
one element in {K1,C7, Pio, P13, Q13, P14}, see Figure 1.

(ii) If G contains neither Cy nor Cs, then G € F or G is isomorphic
to one element in {K1,C7,Tio}, see Figure 1.

(iil) If G is {C5,C5,Cr}-free, then G has a perfect matching
e1,...,es with s = 7(G) such that {a,b} € E(G) when e¢; = {z;,vy;}
and {x;,a}, {y;,b} € E(G).

Theorem 2.6. Let G be a connected regular graph. If G is well-covered,
then G satisfies one of the following conditions:
(1) G is isomorphic to one element in { K1, Ko,Cs,C5,C7, P1a, K, }.
(ii) G has a 4-cycle. In addition, G has an induced 3-, 5- or T-cycle.
(iii) G has a 3-cycle and a 5-hole.

Proof. Suppose that the girth of G is at least 5. If G € PC, then
V(G) = P(G)UC(G). If P(G) # 0, then there is an end vertex and
G ~ Ko, since G is regular. Now, if C(G) # ), then there is a basic
5-cycle, which implies that G has a vertex of degree 2. Thus, G ~ Cs,
since G is regular. Now, if G ¢ PC, then, from Theorem 2.5 (i),
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G € {K1,Cy, P14} since Pig, Pi3 and Q13 are not regular. Therefore,
G satisfies (i).

Now, we assume that G has a 3- or a 4-cycle. Suppose that G has
no 4-cycles. Hence, if G does not satisfy (iii), then G has no 5-holes.
Furthermore, if G has a 5-cycle, then GG contains a 4-cycle. Thus, G has
no 5-cycles. Therefore, from Theorem 2.5, G € F, or G is isomorphic
to either Ky, C7 or T1yp. Hence, G = (3, since G is regular and it
has a 3-cycle. Therefore, G satisfies (i). Now, we can assume that G
has a 4-cycle. If G does not satisfy (ii), then G is {Cjs,C3, C7}-free.
Consequently, from Theorem 2.5, there exists a perfect matching

€1 = {l‘layl}’@ = {x2ay2}7 s €9 = {xg7yg}

with g = 7(G). We can suppose that {z1,...,24} is a minimum vertex
cover. Then, {yi,...,y,} is a stable set. Furthermore, we assume
that Ng(y1) = {z1,22,..., 2 }. I {z;,y:} € E(G) with i € {1,...,r}
and j > r, then, by Theorem 2.5, {z;,y1} € E(G), a contradiction.
Thus, Ng(yi) € Ng(yi) for i € {1,...,r}. Since G is regular,
Na(y;) = Ng(y1). Hence, {y1,...,yr} C Ng(z) for I € {1,...,r}.
Therefore, G = K, ,, since G is a connected regular graph. O

Definition 2.7. Let (G,e) be a finite group, and let S be an inverse
closed subset of G\ {e}. The Cayley graph Cay(G, S) on G with respect
to S is the graph whose vertex set is G and edge set is

E(Cay(G,S)) = {{z,y} | #,y € G such that y = zs for some s € S}.

Definition 2.8. A graph G is vertez-transitive if, for every pair of
vertices, there exists an automorphism mapping one to the other.
Furthermore, if G is r-regular, then G is called r-transitive.

Remark 2.9. If G = Cay(G, S) is a Cayley graph, then G is a vertex-
transitive graph, since G acts on Cay(G, S) by left multiplication, and
this action is transitive on V(G).

Lemma 2.10. The complete graphs and cycles are Cayley graphs.
Proof. Let G be a graph with |V(G)| = n. If G is complete, then

G ~ Cay(Zy, S), where S = Z, \ {0}. Furthermore, if G is a cycle,
then G ~ Cay(Z,,{1}). O
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Definition 2.11. For integers n > 3 and 1 < r < n/2, the generalized
Petersen graph P(n,r) is the graph with vertex set

V(P(n,r)) ={ao, a1y, an-1,b0,b1,. .. bpn_1}

and edges a;b;, a;a;+1 and bbby, for i« € {0,1,...,n — 1} with
arithmetic modulo n.

Remark 2.12 ([14]). With the exception of the dodecahedron P(10,2),
the generalized Petersen graph P(n,r) is vertex-transitive, if and only
if 72 = +1 (mod n). Furthermore, P(n,r) is a Cayley graph if and
only if 72 =1 (mod n).

Corollary 2.13. If G is a connected well-covered Cayley graph with
girth at least 5, them G is isomorphic to one of the elements in
{K1, K2,Cs5,C7}

Proof. From Theorem 2.6, G € {K1, K2,C5,C7, P14 }. Furthermore,
by Remark 2.12, G # P14 ~ P(7,2). O

Remark 2.14. From Corollary 2.13, the connected Cohen-Macaulay
Cayley graphs with girth at least 5 are K7, K5 and Cs, since C7 is not
Cohen-Macaulay.

Definition 2.15. A subgraph H of G is called a c-minor of G if there
exists a stable set S of G such that H = G\ Ng[S].

Remark 2.16 ([18, Theorems 7.4.4, 7.4.11]). The properties well-
covered, shellable, Cohen-Macaulay and vertex decomposable are closed
under c-minors.

Proposition 2.17 ([4, Corollary 33]). If G is a Cohen-Macaulay graph
without 3- and 5-cycles, then G has an end vertex or an isolated vertex.

Theorem 2.18. If G is a Cohen-Macaulay reqular graph, then G
satisfies one of the following conditions:

(i) G is isomorphic to one element in {K1, K2,C3,C5}.
(ii) G has a 3-cycle. Furthermore, G contains a 4-cycle or a 5-hole.
(ili) G has a 4-hole and a 5-hole.
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Proof. Suppose that G does not satisfy (ii) and (iii). First, we
assume that G is Cs-free. If G has no 4-cycles, then, by Theorem 2.6,
G € {K1, K»,C5,C7,P14}. However, C7 is a c-minor of P4 and C7
is not Cohen-Macaulay; thus, G satisfies (i). Now, if G has a 4-cycle,
then G has no 5-cycles, since G does not satisfy (iii), and it is Cs-
free. Hence, by Proposition 2.17, G € {K;,K>}. Now, we suppose
that G has a 3-cycle. Since G does not satisfy (ii), G has no 4-cycles
and 5-holes. Consequently, by Theorem 2.6, G = C5. Therefore, G
satisfies (i). O

3. Cohen-Macaulay cubic graph. In this section, we characterize
which cubic graphs are Cohen-Macaulay.

Definition 3.1. Let A, B and C be the graphs given in Figure 2. A
terminal pair is a pair of adjacent degree 2 vertices in A, B or C. A
graph G is in W if G is a collection of copies of A, B and C, where
every terminal pair of vertices is joined by edges to another terminal
pair (possibly the same subgraphs A, B or C) such that G is cubic.

Remark 3.2. Let G be a graph in W. G is denoted by (D1, Da, ..., D;)
if
V(G)=| | V(D) with D; € {4, B,C}
i=1
and a terminal pair of D; is joined by two edges to a terminal pair of
D;yq. Furthermore, D; = D, = C or a terminal pair of D; is joined
by two edges to a terminal pair of D,..

Theorem 3.3 ([3]). Let G be a connected cubic graph. Then, G is
well-covered if and only if one of the following conditions is true:

(i) GeW; or
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FIGURE 3. Special well-covered cubic graphs.

(ii) G is one of siz exceptional graphs: Ky, K33, K33, Cs X Ko,
Q** or Pi4.

Definition 3.4. Let A be a simplicial complex with vertex set V. We
denote by f; the number of i-dimensional faces of A. We have fy = |V|
and f_1 = 1 since ) € A. If dimA = d, then the f-vector of A is the
(d + 2)-tuple f(A) = (f-1, fo, f1,---, fa), and the h-vector of A is the
(d + 2)-tuple h(A) = (ho, h1, ..., hg+1), where

k ,
hy = Z(*l)k% <d2/,_il_ Z> fi—1.

=0
Proposition 3.5 ([7, Theorem 2.3]). Let A be a simplicial complez.

(i) If A is Cohen-Macaulay, then h(A) has only non-negative
entries.

(i) If dimA =1, then A is vertex decomposable/shellable/Cohen-
Macaulay if and only if A is connected.

In [7, Theorem 7.5], Earl, Vander Meulen and Van Tuyl showed that
K, and P(3,1) are the only cubic circulant graphs that are Cohen-
Macaulay. In the following theorem, we show that there are no other
Cohen-Macaulay cubic graphs.

Theorem 3.6. If G is a cubic graph, then the following conditions are
equivalent:

(i) Each connected component of G is K4 or P(3,1);
(ii) G is Cohen-Macaulay;
(iii) Ag is pure vertex decomposable.
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Proof.

(ii) = (i). We can suppose that G is connected. If G ¢ W, then, by
Theorem 3.3, G ~ K, since

hKs3)=(1,3,-3,1), h(Kg‘yS) =(1,5,3,-2),
h(Cs x Ky) = (1,6,6,—4,1), h(Q**) = (1,8,18,10,—1)

and
h(P14) = (1,9,24,18, -2, —1).

Now, we can assume that G € W. Hence, G = (D1, Do, ..., D,) with
D; € {A,B,C}. If r = 2, then

G = {(AaA)7 (AaB)a (B7B)’ (07 C)}

Consequently, one of the following graphs

is a c-minor of G, whose h-vectors are (1,5,5,—1), (1,6,8,0,—1) and
(1,5,4,—2), respectively, a contradiction, by Proposition 3.5. Now, if
r > 3, then there is a D; € {A, B} where 1 < j <r. If D, = B, then
the following graph

is a c-minor of G, whose h-vector is (1,7,12,0,—5,—3). Furthermore,
if Dj = A, then the following graph is a c-minor of G

whose h-vector is (1,6,8,—2,—1). Thus, » = 1. Therefore, G = (B)
or G = (A). However, the h-vector of (B) is (1,5,3,—1); hence,
G=(A)~P(3,1).

(i) = (iii). Ak, is zero-dimensional, Ap(s 1) is one-dimensional, and
they are connected. Thus, by Proposition 3.5, K4 and P(3,1) are pure
vertex decomposable. O
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FIGURE 4. A Kj-chain.

4. 4-transitive graphs without 5-holes.

Definition 4.1. Let H be a graph where Hy,..., H is a partition of
V(H) such that H[H;] ~ K. Then, H is a K4-chain if

B(H) = (QE<H[Hi1>) U (:L_Jll{{di,am}, ()}

where H; = {a;,b;,c;,d;} for 1 < i < s, see Figure 4. Hence, if
x € V(H)\ {a1,b1,cs,ds}, then degy(z) = 4. In this case, we write
H = (Hy,...,H;). Furthermore, if G is a 4-regular graph with a K-
chain H such that V(H) = V(G), then G is called K4-band.

Remark 4.2. Let A be a stable set of G. If x € V(G) \ A is such that
Ng(z) € Ng(A), then z is not a shedding vertex.

Proof. We take a maximal stable set B of G such that A C B. Thus,
Ng(x) € Ng(B). Furthermore, BN Ng(B) = {), since B is a stable set.
Hence, BN Ng(z) = 0. Since B is maximal, we have that 2 € B and
B\ z € linka ({z}), where A = Ag. Also, since z ¢ A, then A C B\ z
and

If there is a y ¢ B, then y € Ng(B), since B is maximal. Hence,
y € Ng(B\ z) UNg(z) C Ng(B\ z).

This implies that B\ z is a maximal stable set in dela ({x}). Therefore,
x is not a shedding vertex. ]

Remark 4.3. Let G be a Ky-chain with z € V(G). Then, G[Ng(z)]
has two connected components, a 3-cycle and an isolated vertex.
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Lemma 4.4. Let G be a connected 4-transitive graph where each vertex
is shedding. If K4 C G, then G is a K4-band or G ~ K.

Proof. We can assume that G 2 K5. Since K4 is a K4-chain, there
is a maximal Ky-chain subgraph H = (Hy,..., Hs) of G. We assume
that V(HZ) = {ai,bi,ci,di} with {ci,ai+1}, {di7bi+1} S E(G) for each
1<i1<s—1.

We will prove that Ng(a1) C V(H). By contradiction, suppose that
there is a y € Ng(a1) \ V(H). Hence, there is a Ky ~ H] C G such
that y € V(Hy), since G is vertex-transitive. Now, we consider two
cases:

Case 1. First, we assume that {ay,b1,cs,ds} NV (H]) # (). Then,
V(Hi) N {Cl7dla g, bs} 7£ (Z),

since degy(a1) = degy(b1) = degy(cs) = degy(ds) = 3. Thus,
Ng(y) N {ec1,dr,as,ds} # 0. However, if s > 1, then degpy(c1) =
degy(dy) = degy(as) = degy(bs) = 4. Hence, s = 1 implies
that |V(H]) N V(Hy)| = 3. Thus, G[Ng(a1)] is connected, since
|N¢(y) NV (Hy)| > 3. Consequently, G[N¢(y)] is connected, since G is
vertex-transitive. Then, Ng(y) = V(Hy). Therefore, G ~ Kj since G
is connected and 4-regular, a contradiction.

Case 2. Now, we assume that {cs,ds,b1,a1} NV (H]) = 0. Then,
V(H)NV(H) = 0. We set V(H]) = {a,b},c},y}. Suppose that
s > 2. Then (¢1,d1,a9,be,c1) is a 4-hole. In addition, G is vertex-
transitive; hence, there is a 4-hole C” such that a; € V(C’). Since
C’ does not have chords, |V(C")NV(H;)| =2 and y € V(C’). Thus,
[V(C")YNV(H])| = 2, since Ngly] = V(H;) U {a1}. Furthermore,
by € V(C"), since degy(c1) = deg(dy) = 4. Thus, C' = (y, a1, b1, u,y),
where u € V(Hj) \ {y}. Hence, there is a K4-chain with vertex set
V(H) U V(Hy), a contradiction, since H is maximal. This implies
s =1and H ~ K,. By the maximality of H, we have that

Ne(H) NV (H1) = {y}.

For ease of exposition, we take V(H) = {x1,x2,x3,24}. Thus, by
symmetry, there are y1,y2,ys,ys € V(G) \ V(H) such that

Nela,] = V(H) U {y:} forl<i<4.
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Furthermore, there are z2%,2%, 25 € Ng(y;) \ V(H), such that G; =
Gl{yi, 2}, 25,24} ~ Ky and y; ¢ V(G;) for j # 4. Consequently,
{v1,y2,Y3,y4} is a stable set, since y; ¢ V(G;) = Nglyi] \ {z:}. We
have

NG(1'1) = {y1,$2,$3,$4} - NG({yQ,y37y4aZ;})'

Then, {y2,ys, Y, zjl} is not a stable set; if it were, Remark 4.2 would
then imply that acjl is not a shedding vertex, contradicting the fact that
every vertex is a shedding vertex. Thus,

Ne(z; N {ya, ys,ya} #0 for j =2,3,4.

In addition,

G[Ng(zjl»)] ~ G[Ng(z1)] ¥ K3 U Kj.

If yi € No(zj) N Ng(zj,) with j # j', then G[Ng(2})] is connected, a
contradlctlon This implies that |Ng(y;) N {21, 23, 23 }| = 1. Hence, we
can assume that {y;,zj_,} € E(G) for j = 2,3,4. Thus,

Ng[{za, 21 }] N Nelyo) = {z2,y2, 21 }-

Furthermore, there is a Ky ~ K C @G, such that yo € V(K), since
H ~ K4, and G is vertex-transitive. However, degs(y2) = 4; thus,
29 € V(K) or 21 € V(K). Consequently,

V(K) € Nel{z2, 21} N Nely],

a contradiction, since |Ng[{z2, 2 }]HNG [y2]| = 3. Therefore, Ng(a1) C
V(H). Similarly, Ng({b1,cs,ds}) € V(H) implies V(G) = (H)
Therefore, G is a K4-band, since G is 4-regular.

Proposition 4.5. Let G be a connected 4-transitive graph such that
every 5-cycle of G has at least two chords. If G is pure vertex decom-
posable, then G ~ K.

Proof. If x € V(Q), then x is shedding, since G is vertex-transitive.
Consequently, by [5, Lemma 3.7], there exists a y € Ng(x) such that
N¢ly] € Nglz]. Thus, Ngly] = Nglz], since G is regular. Now, we
consider two cases:

Case 1. First, suppose that each 5-cycle has at least four chords.
Thus, G has a simplicial vertex by [5, Theorem 3.11]. Hence, G ~ K5,
since G is vertex-transitive.
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Case 2. Now, we assume that there is a 5-cycle C' = (21, xa, 23, 24, T5)
with at most three chords. If C' has two non disjoint chords, we can
suppose that {z1, 23}, {1,24} € E(G). Then, there is a y € Ng(x1)
such that

NG[y] = NG[:El] = {1’1, T2, X3, T4, 1'5}.
Since C' has at most three chords, y € {z3,x4}. Without loss of gener-
ality, we can assume that y = x4. This implies that

{z2,24} € E(G) and G[{z1,x2,73,24}] ~ Kjy.

By Lemma 4.4, G is a K4-band, since C' has at most three chords, a
contradiction by Remark 4.3, since G[Ng(x1)] is connected. Hence,
the chords of C' are disjoint. We can suppose that {z1,z4}, {z2,25} €
E(G). Thus, there are y; # x5 and « € Ng(z5) \ V(C) such that

Nely1] = Nglos] = {x, x1, 22, 24, 25}

Since the chords of C' are disjoint, y; € {z,x1}. Thus, {z,21} € E(G).
Also, there is a ys # x5 such that

Ngly2] = Nglza] 2 {21, 22,23, 75}

Since the chords of C are disjoint, y2 ¢ {x1,z3,25}. Furthermore,
y2 € Ng(z1) = {z,22,24,25}. Then, yo = = and {z2,2} € E(G).
This implies that G[{z,z1, z2,25}] ~ K4. By Lemma 4.4, G is a K4-
band, since |V (G)| > 6, which is a contradiction by Remark 4.3, since

G[N¢(x1)] is connected. O
z1 D) z1 z2 Z1 z2
kv Y T, Y T, Y
Ys Y2 Y5 Y2 Y5 2
az
Ya Y3 Y4 Y3 Y4 Y3
(a) (b) a1 (¢)
z z w z1 z2
7 Y1 1 Y
Y5 Y2 Y5 a 22 Y, Yo
as az = w Z az
4 Y3 4 Y3 Z1 Ya Y3
a] = 22 a; = z2 ai
(e) (f)

FIGURE 5.
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Lemma 4.6. Let G be a 4-transitive vertex decomposable graph such
that every 5-cycle has exactly one chord. If C = (y1, Y2, Y3, Y4, Ys) @S a 5-
cycle with chord {y2,ys} and x € Ng(ys) \ V(C), then {z,y1} € E(Q).

Proof. By contradiction, suppose that {z,y;} ¢ E(G). Then, there
exist

{2122} € Nea(y) \ (V(C) U{z}),

since degq(x1) = 4 and each 5-cycle has exactly one chord, see Figure
5 (a).

Now, we will prove |{z1, 22 }NNg(ys)| < 1. By contradiction, assume
that {z1,22} C Ng(y3). Then,

Ne(y1) = {vs, y2, 21, 22} € Na(z,y3).

Since G is vertex-transitive, each vertex is a shedding vertex. Further-
more, {z,y3} ¢ E(G), since deg(y3) = 4, a contradiction, by Remark
4.2, since y; is shedding. Therefore, [{z1, 22} N Ng(ys)| < 1. Hence, we
can assume that z; ¢ Ng(ys3).

If Na ()N {ys, 21} # 0, then Na(ys) = {y1, 42, ya, 2} € Na({z1,y3}),
a contradiction by Remark 4.2, since y5 is shedding. This implies that

Ng(z) N {ys, 21} = 0.

We will prove that yo ¢ Ng(x). By contradiction, suppose that
y2 € Ng(x). If y4 € Ng(z), then {ys,y5} and {z,ys} are chords of
Cy = (Y1, Y2, , Y4, Y5, Y1), see Figure 5 (b), a contradiction. Therefore,
ys ¢ Ng(z) and Ng(z) NV(C) = {y2,ys5}. Consequently, (z,y2,y1) is
a path in G[Ng(ys)]. Furthermore, Ng({y2,ys}) C V(C)U{z}. Then,
{y2, ys} is a connected component of G[N¢(z)], since Ng(z) NV (C) =
{y2,y5}. Thus, G[Ng(x)] does not have a path with three vertices, a
contradiction, since G is vertex-transitive. Therefore, yo ¢ Ng(x).

Now, we will prove y4s ¢ Ng(z). By contradiction, assume that
ys € Ng(z). Then, Ng(x) NV (C) = {ys,ys}. Thus, G[Ng(ys)] has
exactly two edges. Since G is vertex-transitive,

G[Ng(ys)] = G[Na(y1)] =~ G[Ng(ya)]

has exactly two edges. Then, {z1, 22} and {a1,y3} € E(G) for some

a1 € Ng(ya) \ (V(C) U{z}). Since G[Na(ys)] =~ G[Na(ys)], {y2, a2} €
E(QG) for some as € Ng(y3) \ (V(C)U{x,a1}), see Figure 5 (c). Since
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G[Ng(#)] ~ G[Ng(ys)] for each z € V(G), we have {z,a1}, {a1,a2},
{a2, 1} ¢ E(G).

We will prove {y1,a:} ¢ E(G). By contradiction, suppose that
{y1,a1} € E(G). Then, a1 = 22, since {z1,y3} ¢ E(G), see Figure
5 (d). Since Cy = (y2,¥ys3,Y4,Y5,y2) is a 4-hole and G is vertex-
transitive, = is in a 4-hole C” such that |[V(C') N {ys,ys} = 1.
Consequently, there exists a w € Ng(z) \ {ys,vya} such that

w € No(Na({ys, ya}) \{z,ys5,y4}) \ {2, ¥5, ¥4} = {¥1, Y2, ¥3, 21, 22, a2 }.

Thus, w € {z1,as2}, since the other vertices have degree 4. If z; €
N¢g(z), then

NG(y5) = {xvylay27y4} g NG({Zlay3})>

a contradiction, by Remark 4.2. Thus, 21 ¢ Ng(z) and w = as.
Since G[Ng(x)] has exactly two edges, there is a w € V(G) \ (V(C) U
{x, 21, 22, a2} such that

w e Ng(x) N Ng(ag),

see Figure 5 (e). If {z1,w} is a stable set, then Cs is a connected
component of G \ Ng({z1,w}), a contradiction, since a 4-hole is not
vertex decomposable. Hence, {z;,w} € E(G). Furthermore,

Cs = (Y5, Y1, 22,Ya,y5) and Cy = (ys, 2, a2,Y2,Ys)

are two 4-holes with V(C3)NV(Cy) = {ys}. Since G is vertex-transitive,
z1 is in two 4-holes. Thus, there is a 4-hole (z1,w, by, bs, 21) where
by € {y1,22}. Hence,

bl S NG({?]]_,ZQ}) \ {ylazla'zQ} = {y2793>y4a95}7

a contradiction, since w ¢ Ng(Cs). Therefore, {y1,a1} ¢ E(G). This
implies that {z1, 22} N (V(C) U {x,a1,a2}) = 0.
Similarly, {z,a2} ¢ E(G) (by symmetry between x and y;). Thus,
Ng(l‘) = {y47y5,gl,52} such that {51722} (S E(G) and
{51722} N (V(C) U {.L“, ai, CLQ}) = (Z),

see Figure 5 (f). If {z;,%;} is a stable set for some 1 < ¢ < j <
2, then Ng(ys) € Ne({zi,Zj,ys}), a contradiction, by Remark 4.2.
Consequently, {z;,%;} € E(G) foreach 1 < i < j < 2. Thus, G[Ng(#1)]
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is connected, a contradiction, since G[Ng(21)] ~ G[N¢(y5)]- Therefore,
ys & Neg(x).

Hence, y2,ys3, Y4, 21 ¢ N (ys), and G[Ng(ys)] has exactly one edge.
We take a € Ng(z) \ {ys}. Then, Na(ys) € Na({a,z1,¥3}). By

Remark 4.2, a € NG({Zlvyg}), since 5 is a Shedding vertex and
{71,935} ¢ E(G). Thus,

Ng(2)\ {ys} € Na({z1,ys}) \ (V(C) U{z1}).

Furthermore, |Na(z) \ {ys}| = 3 and |Ng(y3) \ V(C)| = 2; thus, there
is a
€ (Ne(@) \ {ys}) N Na(z1)

and Cs = (z,ys,Y1, 21, Y, x) is a 5-cycle. Since deg(ys) =4, Ng(ys) N
V(C5) = {x,y1}. Furthermore {y,y1} ¢ E(G), since G[Ng(y1)] =~
G[N¢g(ys)] has exactly one edge. This implies that C5 is induced since
Ng(x)N(V(C)U{z1}) = 0. This is a contradiction, since each 5-cycle
has exactly one chord. Therefore, {x,y1} € E(G). O

Lemma 4.7. Let G be a 4-transitive graph such that every 5-cycle has
exactly one chord. If G is vertex decomposable, then G contains K.

Proof. By Proposition 4.5, if G does not have a 5-cycle, then G ~
K5, which contradicts the fact that each 5-cycle has exactly one chord.
Thus, there is a 5-cycle C' = (y1, y2, 3, Y, Y5, y1) of G. We can assume
that {y2,ys} € E(G). Since degq(ys) = dega(y2) = 4, there are

z € Ng(ys) \V(C) and y € Ne(y2) \ V(C).

By Lemma 4.6, {x,y1 }, {y,y1} € E(G). If x = y, then G[{z,y1,y2,ys5}] =
K,. Now, if  # y, then G[Ng(y1)] is connected. Since G is vertex-
transitive, G[Ng(ys5)] is connected. Hence, {z,y4} € E(G), since
degg(y1) = degg(y2) = 4. Similarly, {y,ys} € E(G), since G[Ng(y2)]
is connected. Thus, C' = (y1,¥2,93,Y4,2,y1) is a 5-cycle. Since
degi(y1) = degn(y2) = 4, and since ¢’ must have a chord, we are
forced to use {z,y3} as the chord of C’. Hence, {y4,ys} and {z,y3} are
chords of (y2,ys3,y4,,ys,y2), a contradiction, since each 5-cycle has
exactly one chord. ]
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Definition 4.8. The complement of a graph G, denoted G¢, is a graph
whose vertex set is V(G), and

E(G) = {z,y}: 2 #y € V(G) and {z,y} ¢ E(G)}.

w I
4

Z 5 w
xT W U
(a) (K2 U K2 U K>)° (b) C7 (c) C7
v’ v v’ v
@ < T
" ) 3 ~—
(e) C7

FIGURE 6.

Proposition 4.9. Let G be a 4-transitive connected graph such that
G has a 5-cycle C with at least two chords and a 4-hole. Then, G is
isomorphic to (Ko U Ko U K5)¢ or C5 or M(4)°.

Proof. We set C = (x1, 2,3, 24,2s5,21). First, we suppose that
C has two concurrent chords. Then, we assume that {z1,z3} and
{z1,24} € E(G). Since G has a 4-hole and is vertex-transitive, there
is a 4-hole C" with z; € V(C"). Thus,

{2,251 NV(C)] 2 1,
since {z3,24} € F(G). Now we will study two cases:

Case 1. If [{z9, 25} NV (C")| = 1, then, we can assume that x5 € C'.
Thus, ¢’ = (21,22, w,z4,21) with w € V(G) \ V(C). Since G[Ng(z1)]
is connected and G is vertex-transitive, we have

G[Ng(r4)] = G[{x1, 73,25, w}]
is connected. Hence, {x3,z5} N Ng(w) # 0, since degg(z1) = 4.

We assume {z3,w} € E(G). Thus, G[Ng(z3)] has a 4-cycle. Since
G is vertex-transitive, G[Ng(z1)] and G[Ng(z4)] have a 4-cycle. This
implies that {z2, 25}, {w,z5} € E(G), since

degg(z4) = degg(w3) = degg(w1) = 4.
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Therefore, G ~ (KU Ky K3)¢, since G is 4-regular, see Figure 6 (a).
Now, suppose that {z5,w} ¢ F(G). Then,

{z5,w} € E(G) and G[Ng(z4)]

have no 4-cycles. Consequently, G[Ng(z1)] has no 4-cycles, and
{z2,25} ¢ E(G). Since degn(z1) = 4 and {w,z3} ¢ E(G), there is
aw' € Ng(w)\ V(C). Furthermore, G[Ng(w)] ~ G[Ng(x1)] is con-
nected, degs(x4) = 4 and {z2,25} ¢ E(G). Then, z3,25 € Ng(w').
In addition, G[Ng(z2)] =~ G[Ng(z1)] is connected and degq(w) =
dego(z1) = 4; thus, {z3,w'} € E(G). Therefore, G ~ C¢, see Fig-
ure 6 (b).

Case 2. Now, we assume that zs,25 € V(C"), for each 4-hole
C" with #; € V(C”). Thus, there is a u € V(G) \ V(C) such that
C' = (x1,x5,u, 2, 21); hence, {z2,25} ¢ E(G). Since degqs(z2) = 4,
there is a

u' € Ng(x2) \ {1, 22, 23, 5, u}.

We shall prove u’ # x4. By contradiction, we assume that v’ = x4. If
P, is a path with four vertices, then Py C G[Ng(z1)]. Since G is vertex-
transitive, we have Py C G[Ng(x2)]. This implies that {zs,u} € E(G),
since degq(x1) = deg(x4) = 4. Furthermore, there is a

v e V(G)\ (V(C) U{u})

such that {u,v} € E(G), since G is 4-regular and deg,(xz1) =
deg(z4) = 4. Since G is vertex-transitive,

P, C G[Ng(u)] ~ G[{z2,x3,x5,v}].

This is a contradiction, since degq(z2) = degn(xs) = 4. Therefore,
u # x4. Hence, v ¢ (V(C)U {u}). Also, P, C G[Ng(z1)] =~
G[Ng(z2)]. Consequently, {u,u'} € E(G) and {u,u'} N Ng(z3) # 0,
since degq(x1) = 4. Thus, {z3,u} € E(G) or {z3,u'} € E(G).

If {z5,u} € E(G), then {z5,4'} € E(G), since Py C G[Ng(u)]
and degq(z2) = degg(zs) = 4. Similarly, {x4,v'} € E(G), since
P, C G[Ng(z5)] and degy(z1) = dege(u) = 4. Therefore, G ~ C%,
see Figure 6 (¢). Now, if {z3,u'} € F(G), then Py ~ G[Ng(z1)],
since degq(x2) = degn(z3) = 4. Since G is vertex-transitive, Py ~
G[N¢(x3)], thus, {z4,u'} ¢ E(G). Hence, there is a v” € Ng(u) N
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Ng(u'), since
G[Ng(u')] ~ Py, Ng(z3) = {z1, 22, 24,u"}

and {v',z4} ¢ E(G). Furthermore, if v’ € V(C), then v’ = x5. This
implies that {u,24} € E(G), since Py ~ G[Ng(z5)] and degq (1) =
deg.(u') = 4, a contradiction, since C" = (x1, 4, u,x2,21) is a 4-hole
with 27 € V(C"') and x5 ¢ V(C""). Consequently, v” ¢ V(C). Hence,
{v",z5} € E(QG), since G[Ng(u)] ~ Py and degs(z2) = 4. Thus,
{z4,v"} € E(G), since

G[Ng(z5)] = Py and  degg(u) = degg(z1) = 4.

Therefore, G ~ M (4)¢, see Figure 6 (d).

Finally, suppose that C has no concurrent chords. Thus, C' has
exactly two chords. We can assume that {z3,24} and {z3,25} € E(G).
Then, {z2,25} ¢ F(G), and there exist v,v" € Ng(x1) \ V(C), since
degy(z1) = 4. Furthermore P; C G[Ng(x3)]; thus, P3 C G[Ng(z1)],
since G is vertex-transitive. Consequently, there is an edge between
at least one vertex of {v,v’'} and one vertex of {z2,z5}. Without loss
of generality, we can suppose that {z3,v} € E(G). This implies that
Ky U Ky C G[Ng(x2)] ~ G[Ng(x1)]. Hence, {z5,v'} € E(G), since
deg(z2) = 4. In addition, G[Ng(z1)] 2 Ps. Then, {v,v'} € E(G),
since degq(x2) = dege(x5) = 4. Thus,

P, ~ G[Ng(x1)] =~ G[Ng(22)] ~ G[Ng(zs)].
Hence, Ng(v) N {z3,24} # O and Ng(v') N {x3,24} # 0, since
degq(z1) = 4. Since
degq(v) = degg(v') = degg(23) = degg(z4) = 4,

we have two cases:

(i) {v,z3},{v', 24} € E(G), or

(ii) {v, za}, {v', 23} € E(G).
In both cases, G ~ C%, since G is 4 regular, see Figure 6 (e). O

Definition 4.10. Let G be a graph such that V(G) = V(F) UV (H),
where H = (Hy, ..., H;) is a Ky-chain, V(H;) = {a;, b;, ¢;,d; }, and its
end vertices are ay, by, cs, ds. G is an edge-K4-chain if F' ~ K, with
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V(F) ={z,y} and
E(G) = E(H)UE(F) U {{z, a1}, {y,b1}}.

G is a triangle-K-chain if F ~ Kj3 with {z,y,2} and E(G)
E(H)U E(F) U {{z,a1},{y,b1}}. In both cases, we denote G =
(F,Hy,Ho,... ,Hy).

Remark 4.11. If S is a stable set of G, where G = (F, Hy, ..., Hy) is
an (edge) triangle- Ky-chain, or G = (Hy,..., Hy) is a K4-chain, then
|[SNH;| < 1and|SNF| < 1. Furthermore, {z,¢1,...,¢cs} or {c1,...,¢s}
is a stable set. Therefore, 5(G) = s+ 1 or B(G) = s, respectively.

Lemma 4.12. If G is a K4-chain, triangle-K4-chain or edge-K4-chain,
then G is pure vertex decomposable.

Proof. We perform the proof by induction on |V(G)|. First, suppose
G = (Hy,...,Hy) is a Ky~chain. Then, 8(G) = s, by Remark 4.11.
If s =1, then G ~ K4, and G is pure vertex decomposable. Now,
assume that s > 2. Furthermore, G; = G \ a1 is the triangle- K -chain
(Th, Hs, ..., Hs), where Ty = H; \ a;. In addition,

G2 = G \ Ng[al]

is the Ky-chain (Hs,...,H,). By induction, G; and Gs are pure
vertex decomposable. Furthermore, by Remark 4.11, 3(G1) = s and
B(G2) = s — 1. Hence, each face of Ag, is not a facet of Ag,. This
implies, by Remark 2.1, that a; is a shedding vertex. Therefore, G is
pure vertex decomposable.

Now, suppose that G = (Fy, Hy, Ha, ..., Hy) is a triangle- K4-chain,
with
V(Fl) = {Jﬁ, Y, Z}v
V(HZ) = {aiabivci7di}
and
{z,a1},{y,b1} € E(G).
Also, G35 = G\ z is the edge-K4-chain (F|, Hy, Hs,...,H;), where
F| = F1 \ z ~ K,. Furthermore, G4 = G \ Ng[z] is the K4-chain

(Hy,Hs,...,H). Thus, by induction, G3 and G4 are pure vertex
decomposable. From Remark 4.11, 8(G3) = s+ 1 and 3(G4) = s.
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Then, by Remark 2.1, z is a shedding vertex. Therefore, G is pure
vertex decomposable.

Finally, if G = (Fy, Hy, Ha, ..., Hs) is an edge-K4-chain, V(Fy) =
{z,y} and V(H;) = {a; b;,ci,d;}, where {z,a1},{y,b1} € E(G).
Consequently,

Gs = G\ Ngla1] = (Ha, ..., Hy) U {y}

if s > 2, or
Gs = G\ Ngla1] = {y}

if s = 1. Thus, by induction, G5 is pure vertex decomposable and
B(Gs) = s. Furthermore,

Ge = G\al = (F2/7H27‘ .- 7H8) U {{x»y}7 {yvbl}}7

where Fj = G[{b1,c1,d1}] ~ K3 and 3(Gg) = s+ 1. Then, a; is a
shedding vertex. Now, we take G7 = Gg \ {y} and Gg = Gg \ Ng[y]. If
s > 2, then

Gy = (F Ho,..., H)) U {z},

where (F3, Ha, ... Hy) is a triangle-Ky-chain, and Gy is the edge-Ky-
chain (FY, Hy,...,H), where F}) = G[{c1,d1}] =~ Ka. Also, if s =1,
then

G;=F,U{z} and Ggs=G[{c1,d1}] ~ K>.

Hence, by the induction hypothesis, G; and Gg are pure vertex decom-
posable. Furthermore, by Remark 4.11, 3(G7) = s+ 1 and B(Gs) = s.
Thus, y is shedding. This implies that Gg is pure vertex decomposable.
Therefore, G is pure vertex decomposable. O

Lemma 4.13. If G is a K4-band, then G is pure vertex decomposable.

Proof. Since G is a K -band, there is a Ky-chain H = (Hy,..., Hy)
such that V(G) = V(H), where V(H;) = {a;,b;,¢;,d;} and H; ~ Kj.
Furthermore, if G is 4-regular, then {a1, ¢;} € E(G) or {a1,ds} € E(G).
We take G; = G \ Ngla1]. Then, G; is a triangle if s = 2, or Gy is
a triangle- Ky-chain (Hs,...,Hs;_1,Fy) if s > 3. In the second case,
Fy is a triangle. Moreover, V(F1) = {as,bs,ds} if {a1,¢5} € E(Q),
or V(F1) = {as, bs, cs} if {a1,ds} € E(G). Thus, by Lemma 4.12 and
Remark 4.11, G is pure vertex decomposable and 3(G1) = s — 1.
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Now, we take Go = G \ a;. Hence, G2 \ by is the edge-K4-chain
(Fy,Ha, ..., H), where F is the edge {c1,d1}. Consequently, by
Lemma 4.12 and Remark 4.11, G5 \ by is pure vertex decomposable
and (G2 \ b1) = s. Now, we take G' = G3 \ Ng,[b1]. Then, G’ is a
triangle if s = 2, or G’ is the triangle- K -chain (Ha, ..., Hs_1, F3) if
s > 3. In the second case, Fj is a triangle, where V(F3) = {as, bs, ¢s}
if {a1,¢s} € E(G), or V(F5) = {as,bs,ds} if {a1,ds} € E(G).
From Remark 4.11, 8(G') = s — 1. Hence, b; is a shedding vertex
and B(Gy) = s. Furthermore, by Lemma 4.12, G’ is pure vertex
decomposable. This implies that G2 is pure vertex decomposable, since
G2 \ by and G’ are pure vertex decomposable. Hence, a; is a shedding
vertex, since 5(G1) = s—1 and B(G2) = s. Therefore, G is pure vertex
decomposable, since G; and G5 are pure vertex decomposable. O

Theorem 4.14. Let G be a 4-transitive graph without a 5-hole. Then,
the following conditions are equivalent:

(i) Ag is pure vertex decomposable.
ii) Fach connected component of G is isomorphic to K5 or CS or
(i) P D 5 ¢

a K4-band.
Proof.

(i) = (ii). Let G’ be a connected component of G. By Proposi-
tion 4.5, we can assume that there is a 5-cycle C with exactly one
chord in G’. Thus, G’ has a 4-hole. We consider two cases:

(a) First, suppose each 5-cycle of G’ has exactly one chord. Then,
by Lemma 4.7, G’ contains a K4. Hence, by Lemma 4.4, G = K5 or G
is a Ky-band.

(b) Now, we assume that G’ has a 5-cycle with at least two chords.
Thus, by Proposition 4.9,

G e {C?, M(4)C, (KQ LKy U KQ)C},
since G’ has a 4-hole. However, M(4)¢ has a 5-hole, and
A(kyuKauk,)e = Ko U Ko U K>

has dimension 1 and is not connected. Therefore, G ~ C¥.

(ii) = (i). By Lemma 4.13, each Ky-band is pure vertex decom-
posable. Furthermore, Ak, has dimension 0; thus, it is pure vertex
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decomposable. Also, Ace ~ C7 is a connected pure simplicial com-
plex of dimension 1, so it is vertex decomposable by Proposition 3.5.
Therefore, G is vertex decomposable. O

5. Well-covered and Cohen-Macaulay generalized Petersen
graphs. In this section, we characterize the generalized Petersen
graphs, see Definition 2.11, with the following properties: well-covered,
Cohen-Macaulay and pure vertex decomposable.

Lemma 5.1. If G = P(n,r) is a generalized Petersen graph, then:

(i) G contains a 3-cycle if and only if n =3 orn = 3r.
(ii) G contains a 4-cycle if and only if n =4, n=4r orr = 1.
(iii) G contains a 5-cycle if and only if n =5, orn = 5r, orr =2,
orn = 5(r/2) with r even, or r = (n—1)/2 with n odd.

Proof. We assume that V(G) = {ag,a1,...,an-1,b0,01,...,bpn_1}
and E(G) is

{aobo, ..., an—1bp—1}U{asa; : [i—j|=1 (mod n)}
U{b;bj,: |i —j|=r (modn)}

with n > 3. We take H; = G[{ao,...,an—1}] and Ho = G[{bo,...,
bn—1}]. Thus, H; is an n-cycle. Since {b;,b;} € E(G) if and only
if i —j| = r (modn), theni =r+jori =n—r+7j (mod n).
Hence, Hs is 2-regular, and C; = (b;, bjxr, ..., bitnr) is a cycle, where
n’ = n/ged(n,r). Therefore, Hy is the disjoint union of n’-cycles.

Let C be an s-cycle in G, with s € {3,4,5}. If C C H;, then
s = n. Now, suppose that C C Hs. Then, s = n/. This implies that
n = ged(n,r) - s and r = ged(n,r) - v/, where ged(s,r’) = 1. Since
2r < n, thus, 2r’ < s. If s < 4, then 7' = 1. Hence, r = ged(n,r) and
n=s-r.

Now, if s =5, then ' =1 or ' =2,i.e., n =5-r or r = 2ged(n,r)
and n = 5(r/2). Now, we assume that V(C) NV (H;) # 0 for i = 1,2.
Since V(Hy,) N V(Hz) = () and C is connected, then there is an
e€ E(C)\ (E(H,)UE(H;)). We can assume that e = {a;,b;}. Hence,
aj+1 € V(C) or aj—1 € V(C), as well as bj1, € V(C) or bj_, € V(C).
Thus, s > 4. If s =4, then j+1 = j+7r (mod n). Consequently, r = 1,
since 2r < n. Now, we suppose that s = 5. If |[V(C) NV (Hy)| = 3,
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then i £2 = ¢ £ r (mod n). Hence, 7 = 2, since 2r < n. Finally,
if [V(C)NV(Hy)| = 3, then ¢ £1 = ¢ £ 2r (mod n). This implies
that 2r = £1 (mod n). Therefore, n is odd and r = (n — 1)/2, since
2r < n. O

Lemma 5.2. K, ; is not a generalized Petersen graph.

Proof. If © € G = K, 5, then degn(x) = s. If G is a generalized
Petersen graph, then G is 3-regular. Thus, s = 3, and V(G) =
{ag,a1,a2,b9,b1,b2}. Hence, H = G[{ap,a1,a2}] is a 3-cycle. This
is a contradiction, since K ; is bipartite. O

Theorem 5.3. Let G = P(n,r) be a generalized Petersen graph. Then,
G is well-covered if and only if (n,r) € {(3,1),(5,1),(6,2),(7,2)}.

Proof.

=. G satisfies Theorem 2.6 (i), (ii) or (iii). If G satisfies (i), then, by
Lemma 5.2, G = Pyy, and (n,r) = (7,2). Now, if G satisfies (iii), then,
G has a 3-cycle and a 5-cycle. If n = 3, since 2r < n, then, r = 1 and
(n,7) = (3,1). Now, by Lemma 5.1 (i), we can assume that n = 3r.
Also, by Lemma 5.1 (iii), » = 2 or r = (n—1)/2. Consequently,
(n,r) = (6,2) or (n,r) = (3,1). Now, we can assume that G satisfies
Theorem 2.6 (ii). Thus, G has a 4-cycle, and, by Lemma 5.1, n = 4,
n = 4r or r = 1. Furthermore, G has a 3-cycle, 5-cycle or 7-cycle. If G
has a 3-cycle, then, from Lemma 5.1, (n,r) = (3,1).

Now, if G has a 5-cycle, then (n,r) € {(5,1),(3,1),(8,2)} by
Lemma 5.1. If (n,7) = (8,2), then H; is the 8-cycle (ag, a1,...,ar,aop)
and

Hy = (bo, b2, b4, b6, bo) U (b1, b3, s, b7, b1).

Hence, {ag, az,as,b1,bs} and {bg, b1, by, b5, a3, ag} are maximal stables
sets, contradicting the fact that G is well-covered. Thus, (n,r) # (8,2).
Finally, we assume that G has a T-cycle C. If V(C) C V(H;) or
V(C) C V(Hy), then n = 7 or n = 7r, implying (n,r) = (7,1). This
further implies Hy = (bo, b1,...,bs,b0) and Hy = (ag,a1,...,as,a0)-
Consequently, {a1, as, as, bo, ba, by} and {as, as, by, b3 } are maximal sta-
bles sets. This is a contradiction, since G is well-covered. Then,
(n,r) # (7,1). Now, we can assume that a;b; € V(C); thus,

V(C)NV(Hy)| >2 and |V(C)NV(Hy) > 2.
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If [V(C)NV(H;)| =2 for some ¢ € {1,2}, then 4r £ 1 = 0 (mod n)
orr+£4 =0 (modn). If n =4 or n =4r, then r —4 = 0, since
1 < r < n/2. Hence, (n,r) = (16,4). However,

{(107(127(147(16,(18,(110, a2, a147b1; b3a bga bll}

and
{a'07a'37a‘67a87a‘113 aiq, b17 b27 b47b77b93 b107 bl?a b15}

are maximal stables sets of P(16,4), a contradiction. Hence, (n,r) #
(16,4). If r = 1, then n € {3,5}.

Now, we suppose that |V (C) NV (H;)| = 3 for some i € {1,2}. In
this case, we have that 2r £3 = 0 (mod n) or 3r £2 = 0 (mod n).
If n =4 or n = 4r, then n is even, and furthermore, r < n, implying
3r + 2 = 4rq for some g € Z. Thus, r(4q — 3) = £2, and consequently,
r = 2. This implies (n,r) = (8,2). However, we proved that P(8,2) is
not well-covered. Finally, if » = 1, we obtain that 2+ 3 =0 (mod n).
Therefore, n =5, and (n,r) = (5,1).

<. We take G = P(n,r). If (n,r) = (3,1), then G\ Ng[z] ~ K for
any vertex € V(G). Then, the cardinality of every maximal stable set
is two. Thus, G is well-covered. We take G’ = G\ Ng[{z,y}], where z,y
are non adjacent vertices. Now, if (n,r) = (5,1), then G’ is isomorphic
to Py, or K§, or K1 Ul K. Hence, the cardinality of every maximal
stable set is four, so P(5,1) is well-covered. Now, if G = P(6,2), then
G’ is isomorphic to Py, or Cs, or K5 LI K, or

K2|_|K3 or K2|_|K3,

with an edge of Ky to Ks3. Then, the cardinality of every maximal
stable set is four. Therefore, (n,r) = (6,2) is well-covered. Finally,
P(7,2) ~ Pyy. Thus, P(7,2) is well-covered, by Theorem 2.5. O

Theorem 5.4. Let G = P(n,r) be a generalized Petersen graph.
Then, G is pure vertex decomposable (Cohen-Macaulay) if and only
if (n,7) = (3,1).

Proof.

=. By Theorem 5.3, we have

(n,7) €{(3,1),(5,1),(6,2),(7,2)},
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since G is well-covered. Furthermore, h(Aps1)) = (1,6,6,—4,1);
h(Apez) = (1,8,18,10,—1); and h(Apra) = (1,9,24,18, 2, —1).
Therefore, (n,r) = (3,1).

<. Ap,) is a one-dimensional connected simplicial complex.
Therefore, by Theorem 3.5, P(3,1) is pure vertex decomposable
(Cohen-Macaulay). O
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