ON VERTEX DECOMPOSABLE AND COHEN-MACAULAY REGULAR GRAPHS

J. LUVIANO AND E. REYES

ABSTRACT. We characterize the Cohen-Macaulay property for generalized Petersen graphs and 3-regular graphs. In particular, we prove that these graphs are vertex decomposable. Also, we characterize pure vertex decomposability for 4-transitive graphs without 5-holes. Finally, we study the small cycles of well-covered and Cohen-Macaulay regular graphs.

1. Introduction. Let G be a simple graph (without loops and multiple edges) whose vertex set is $V(G) = \{x_1, \ldots, x_n\}$ and edge set E(G). A subset F of V(G) is a stable set or independent set if $e \notin F$ for each $e \in E(G)$. The cardinality of the maximum stable set is denoted by $\beta(G)$. The graph G is called *well-covered* if every maximal stable set has the same cardinality. The Stanley-Reisner complex of G, denoted by Δ_G , is the simplicial complex whose faces are the stables sets of G. Recall that a simplicial complex Δ is called *pure* if every facet (maximal face) has the same number of elements. Thus, Δ_G is pure if and only if G is well-covered. The deletion of a vertex x in Δ is the subcomplex del_{Δ}($\{x\}$) = { $F \in \Delta \mid x \notin F$ }. Furthermore, for $F \in \Delta$, the link of F in Δ is the subcomplex, $\lim_{\Delta} (F) = \{G \in \Delta \mid F \cap G = \emptyset, F \cup G \in \Delta\}$. A simplicial complex Δ is vertex decomposable if either { x_1, \ldots, x_n } is the unique facet or there is a vertex x such that:

- (1) both $link_{\Delta}(\{x\})$ and $del_{\Delta}(\{x\})$ are vertex decomposable; and
- (2) no face of $link_{\Delta}(\{x\})$ is a facet of $del_{\Delta}(\{x\})$.

A vertex x which satisfies condition (2) is called a *shedding vertex*.

DOI:10.1216/RMJ-2018-48-8-2625 Copyright ©2018 Rocky Mountain Mathematics Consortium

²⁰¹⁰ AMS Mathematics subject classification. Primary 05C75, 05E45, 13F55. Keywords and phrases. Pure vertex decomposability, Cohen Macaulay, regular graphs, generalized Petersen graphs, transitive graphs and well-covered.

This research was partially supported by SNI-CONACYT.

Received by the editors on August, 1, 2017, and in revised form on May 18, 2018.

On the other hand, Δ is *shellable* if the facets of Δ can be ordered F_1, \ldots, F_t such that, for all $1 \leq i < j \leq t$, there is some $x \in F_j \setminus F_i$ and $k \in \{1, \ldots, j-1\}$ such that $\{x\} = F_j \setminus F_k$. A graph G is called *shellable* if Δ_G is shellable. Let $R = k[x_1, \ldots, x_n]$ be a polynomial ring over a field k, the *edge ideal* of G, denoted I(G), is the ideal of R generated by all monomials $x_i x_j$ such that $\{x_i, x_j\} \in E(G)$. We say that G is *Cohen-Macaulay* if R/I(G) is a Cohen-Macaulay ring. In general, we have the following implications [4, 16, 20]:

 $\begin{array}{l} \text{Pure vertex} \\ \text{decomposable} \implies \begin{array}{l} \text{Pure} \\ \text{shellable} \implies \end{array} \\ \text{Cohen-Macaulay} \implies \text{Well-covered}. \end{array}$

An *n*-cycle is a cycle with *n* vertices with or without chords, and an *n*-hole is an *n*-cycle without chords. In [5], pure vertex decomposability is characterized for graphs whose 5-cycles have at least 3-chords. In this paper, we characterize the pure vertex decomposability for 4-transitive graphs without 5-holes. The equivalence between Cohen-Macaulayness and pure vertex decomposability has been studied for some families of graphs: bipartite graphs (in [10, 17]); very well-covered graphs (in [13]); theta-ring graphs (in [6]); graphs with girth at least 5 and block-cactus (in [11]); graphs without 4-cycles and 5-cycles (in [1]); and graphs without 3-cycles and 5-cycles (in [4]). In this paper, we prove that equivalence for 3-regular graphs and generalized Petersen graphs.

The paper is organized as follows. In Section 2, we study the smaller cycles of well-covered and Cohen-Macaulay regular graphs. We will use these results in the following sections. In Section 3, we prove that the pure vertex decomposability and Cohen-Macaulayness are equivalent for cubic graphs. Furthermore, we prove that the connected components of these graphs are K_4 or P(3, 1). In Section 4, we characterize 4-transitive graphs without 5-holes whose simplicial complexes are vertex decomposable. In Section 5, we prove that a generalized Petersen graph G = P(n, r) is Cohen-Macaulay if and only if (n, r) = (3, 1) if and only if Δ_G is pure vertex decomposable.

2. Well-covered and Cohen-Macaulay regular graphs and cycles. Let X be a subset of V(G); the subgraph induced by X in

G is the graph with vertex set X, whose edge set is

$$\{\{x, y\} \in E(G) \mid x, y \in X\},\$$

denoted by G[X]. Furthermore, $G \setminus X$ denotes the induced subgraph $G[V(G) \setminus X]$. The girth of G is the length of the shortest cycle in G. A matching of G is a set of pairwise non-adjacent edges. The matching number $\nu(G)$ of a graph G is the cardinality of a maximum matching. A perfect matching (1-factor) is a matching such that each vertex in G is incident to exactly one edge of the matching. The neighbor of a vertex v is

$$N_G(v) = \{ w \in V(G) \mid \{v, w\} \in E(G) \},\$$

and its closed neighborhood is

$$N_G[v] = N_G(v) \cup \{v\}.$$

The degree of v in G is $\deg_G(v) = |N_G(v)|$. Furthermore, if $\deg_G(v) = r$ for every $v \in V(G)$, then G is called *r*-regular. If H is not an induced subgraph of G, then G is called an H-free graph.

Remark 2.1. Let G be a graph. We have $del_{\Delta_G}(x) = \Delta_{G\setminus x}$ and $link_{\Delta_G}(x) = \Delta_{G\setminus N[x]}$; hence, x is a shedding vertex if and only if each stable set in $G \setminus N_G[x]$ is not a maximal stable set in $G \setminus x$.

Definition 2.2. An *end vertex* is a vertex of degree 1. A *pendant edge* is an edge incident with an end vertex. A 5-cycle C in G is called *basic* if C does not contain two adjacent vertices of degree 3 or more in G.

Let C(G) be the set of vertices contained in at least one basic 5-cycle and P(G) the set of vertices contained in at least one pendant edge. We say that $G \in \mathcal{PC}$ if $\{P(G), C(G)\}$ is a partition of V(G) such that the vertex sets of the basic 5-cycle is a partition of C(G), and the pendant edge is a partition of P(G).

Definition 2.3. A vertex x is simplicial if $G[N_G[x]]$ is a complete subgraph of G. The graph G is in the family \mathcal{F} if there is a set $\{x_1, x_2, \ldots, x_k\} \subseteq V(G)$ such that x_i is a simplicial vertex, $|N_G[x_i]| \leq 3$ and $\{N_G[x_1], \ldots, N_G[x_k]\}$ is a partition of V(G).

J. LUVIANO AND E. REYES

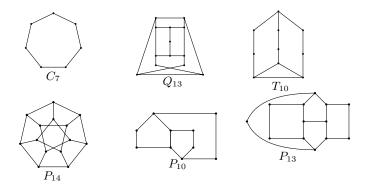


FIGURE 1. Special well-covered graphs.

Definition 2.4. A subset $D \subseteq V(G)$ is a vertex cover of G if $D \cap e \neq \emptyset$ for each $e \in E(G)$. The covering number of G, denoted $\tau(G)$, is the cardinality of a minimum vertex cover of G.

Theorem 2.5 ([8, 9, 15]). Let G be a connected well-covered graph.

(i) If the girth of G is at least 5, then $G \in \mathcal{PC}$ or G is isomorphic to one element in $\{K_1, C_7, P_{10}, P_{13}, Q_{13}, P_{14}\}$, see Figure 1.

(ii) If G contains neither C_4 nor C_5 , then $G \in \mathcal{F}$ or G is isomorphic to one element in $\{K_1, C_7, T_{10}\}$, see Figure 1.

(iii) If G is $\{C_3, C_5, C_7\}$ -free, then G has a perfect matching e_1, \ldots, e_s with $s = \tau(G)$ such that $\{a, b\} \in E(G)$ when $e_i = \{x_i, y_i\}$ and $\{x_i, a\}, \{y_i, b\} \in E(G)$.

Theorem 2.6. Let G be a connected regular graph. If G is well-covered, then G satisfies one of the following conditions:

- (i) G is isomorphic to one element in $\{K_1, K_2, C_3, C_5, C_7, P_{14}, K_{r,r}\}$.
- (ii) G has a 4-cycle. In addition, G has an induced 3-, 5- or 7-cycle.
- (iii) G has a 3-cycle and a 5-hole.

Proof. Suppose that the girth of G is at least 5. If $G \in \mathcal{PC}$, then $V(G) = P(G) \cup C(G)$. If $P(G) \neq \emptyset$, then there is an end vertex and $G \simeq K_2$, since G is regular. Now, if $C(G) \neq \emptyset$, then there is a basic 5-cycle, which implies that G has a vertex of degree 2. Thus, $G \simeq C_5$, since G is regular. Now, if $G \notin \mathcal{PC}$, then, from Theorem 2.5 (i),

 $G \in \{K_1, C_7, P_{14}\}$ since P_{10} , P_{13} and Q_{13} are not regular. Therefore, G satisfies (i).

Now, we assume that G has a 3- or a 4-cycle. Suppose that G has no 4-cycles. Hence, if G does not satisfy (iii), then G has no 5-holes. Furthermore, if G has a 5-cycle, then G contains a 4-cycle. Thus, G has no 5-cycles. Therefore, from Theorem 2.5, $G \in \mathcal{F}$, or G is isomorphic to either K_1 , C_7 or T_{10} . Hence, $G = C_3$, since G is regular and it has a 3-cycle. Therefore, G satisfies (i). Now, we can assume that Ghas a 4-cycle. If G does not satisfy (ii), then G is $\{C_3, C_5, C_7\}$ -free. Consequently, from Theorem 2.5, there exists a perfect matching

$$e_1 = \{x_1, y_1\}, e_2 = \{x_2, y_2\}, \dots, e_g = \{x_g, y_g\}$$

with $g = \tau(G)$. We can suppose that $\{x_1, \ldots, x_g\}$ is a minimum vertex cover. Then, $\{y_1, \ldots, y_g\}$ is a stable set. Furthermore, we assume that $N_G(y_1) = \{x_1, x_2, \ldots, x_r\}$. If $\{x_j, y_i\} \in E(G)$ with $i \in \{1, \ldots, r\}$ and j > r, then, by Theorem 2.5, $\{x_j, y_1\} \in E(G)$, a contradiction. Thus, $N_G(y_i) \subseteq N_G(y_1)$ for $i \in \{1, \ldots, r\}$. Since G is regular, $N_G(y_i) = N_G(y_1)$. Hence, $\{y_1, \ldots, y_r\} \subseteq N_G(x_l)$ for $l \in \{1, \ldots, r\}$. Therefore, $G = K_{r,r}$, since G is a connected regular graph. \Box

Definition 2.7. Let (\mathcal{G}, e) be a finite group, and let S be an inverse closed subset of $\mathcal{G} \setminus \{e\}$. The *Cayley graph* $Cay(\mathcal{G}, S)$ on \mathcal{G} with respect to S is the graph whose vertex set is \mathcal{G} and edge set is

 $E(\operatorname{Cay}(\mathcal{G}, S)) = \{\{x, y\} \mid x, y \in \mathcal{G} \text{ such that } y = xs \text{ for some } s \in S\}.$

Definition 2.8. A graph G is *vertex-transitive* if, for every pair of vertices, there exists an automorphism mapping one to the other. Furthermore, if G is *r*-regular, then G is called *r*-transitive.

Remark 2.9. If $G = \operatorname{Cay}(\mathcal{G}, S)$ is a Cayley graph, then G is a vertextransitive graph, since \mathcal{G} acts on $\operatorname{Cay}(\mathcal{G}, S)$ by left multiplication, and this action is transitive on V(G).

Lemma 2.10. The complete graphs and cycles are Cayley graphs.

Proof. Let G be a graph with |V(G)| = n. If G is complete, then $G \simeq \operatorname{Cay}(\mathbb{Z}_n, S)$, where $S = \mathbb{Z}_n \setminus \{0\}$. Furthermore, if G is a cycle, then $G \simeq \operatorname{Cay}(\mathbb{Z}_n, \{1\})$.

Definition 2.11. For integers $n \ge 3$ and $1 \le r < n/2$, the generalized *Petersen graph* P(n, r) is the graph with vertex set

$$V(P(n,r)) = \{a_0, a_1, \dots, a_{n-1}, b_0, b_1, \dots, b_{n-1}\}$$

and edges $a_i b_i$, $a_i a_{i+1}$ and $b_i b_{i+r}$, for $i \in \{0, 1, \ldots, n-1\}$ with arithmetic modulo n.

Remark 2.12 ([14]). With the exception of the dodecahedron P(10, 2), the generalized Petersen graph P(n, r) is vertex-transitive, if and only if $r^2 \equiv \pm 1 \pmod{n}$. Furthermore, P(n, r) is a Cayley graph if and only if $r^2 \equiv 1 \pmod{n}$.

Corollary 2.13. If G is a connected well-covered Cayley graph with girth at least 5, then G is isomorphic to one of the elements in $\{K_1, K_2, C_5, C_7\}$.

Proof. From Theorem 2.6, $G \in \{K_1, K_2, C_5, C_7, P_{14}\}$. Furthermore, by Remark 2.12, $G \neq P_{14} \simeq P(7, 2)$.

Remark 2.14. From Corollary 2.13, the connected Cohen-Macaulay Cayley graphs with girth at least 5 are K_1 , K_2 and C_5 , since C_7 is not Cohen-Macaulay.

Definition 2.15. A subgraph H of G is called a *c*-minor of G if there exists a stable set S of G such that $H = G \setminus N_G[S]$.

Remark 2.16 ([18, Theorems 7.4.4, 7.4.11]). The properties wellcovered, shellable, Cohen-Macaulay and vertex decomposable are closed under *c*-minors.

Proposition 2.17 ([4, Corollary 33]). If G is a Cohen-Macaulay graph without 3- and 5-cycles, then G has an end vertex or an isolated vertex.

Theorem 2.18. If G is a Cohen-Macaulay regular graph, then G satisfies one of the following conditions:

- (i) G is isomorphic to one element in $\{K_1, K_2, C_3, C_5\}$.
- (ii) G has a 3-cycle. Furthermore, G contains a 4-cycle or a 5-hole.
- (iii) G has a 4-hole and a 5-hole.

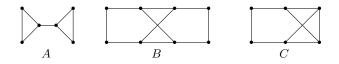


FIGURE 2.

Proof. Suppose that G does not satisfy (ii) and (iii). First, we assume that G is C_3 -free. If G has no 4-cycles, then, by Theorem 2.6, $G \in \{K_1, K_2, C_5, C_7, P_{14}\}$. However, C_7 is a c-minor of P_{14} and C_7 is not Cohen-Macaulay; thus, G satisfies (i). Now, if G has a 4-cycle, then G has no 5-cycles, since G does not satisfy (iii), and it is C_3 -free. Hence, by Proposition 2.17, $G \in \{K_1, K_2\}$. Now, we suppose that G has a 3-cycle. Since G does not satisfy (ii), G has no 4-cycles and 5-holes. Consequently, by Theorem 2.6, $G = C_3$. Therefore, G satisfies (i).

3. Cohen-Macaulay cubic graph. In this section, we characterize which cubic graphs are Cohen-Macaulay.

Definition 3.1. Let A, B and C be the graphs given in Figure 2. A *terminal pair* is a pair of adjacent degree 2 vertices in A, B or C. A graph G is in W if G is a collection of copies of A, B and C, where every terminal pair of vertices is joined by edges to another terminal pair (possibly the same subgraphs A, B or C) such that G is cubic.

Remark 3.2. Let G be a graph in \mathcal{W} . G is denoted by (D_1, D_2, \ldots, D_r) if

$$V(G) = \bigsqcup_{i=1}^{n} V(D_i) \quad \text{with } D_i \in \{A, B, C\}$$

and a terminal pair of D_i is joined by two edges to a terminal pair of D_{i+1} . Furthermore, $D_1 = D_r = C$ or a terminal pair of D_1 is joined by two edges to a terminal pair of D_r .

Theorem 3.3 ([3]). Let G be a connected cubic graph. Then, G is well-covered if and only if one of the following conditions is true:

(i)
$$G \in \mathcal{W}$$
; or

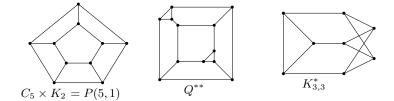


FIGURE 3. Special well-covered cubic graphs.

 (ii) G is one of six exceptional graphs: K₄, K_{3,3}, K^{*}_{3,3}, C₅ × K₂, Q^{**} or P₁₄.

Definition 3.4. Let Δ be a simplicial complex with vertex set V. We denote by f_i the number of *i*-dimensional faces of Δ . We have $f_0 = |V|$ and $f_{-1} = 1$ since $\emptyset \in \Delta$. If dim $\Delta = d$, then the *f*-vector of Δ is the (d+2)-tuple $f(\Delta) = (f_{-1}, f_0, f_1, \ldots, f_d)$, and the *h*-vector of Δ is the (d+2)-tuple $h(\Delta) = (h_0, h_1, \ldots, h_{d+1})$, where

$$h_k = \sum_{i=0}^k (-1)^{k-i} \binom{d+1-i}{k-i} f_{i-1}.$$

Proposition 3.5 ([7, Theorem 2.3]). Let Δ be a simplicial complex.

- (i) If Δ is Cohen-Macaulay, then $h(\Delta)$ has only non-negative entries.
- (ii) If dimΔ = 1, then Δ is vertex decomposable/shellable/Cohen-Macaulay if and only if Δ is connected.

In [7, Theorem 7.5], Earl, Vander Meulen and Van Tuyl showed that K_4 and P(3,1) are the only cubic circulant graphs that are Cohen-Macaulay. In the following theorem, we show that there are no other Cohen-Macaulay cubic graphs.

Theorem 3.6. If G is a cubic graph, then the following conditions are equivalent:

- (i) Each connected component of G is K_4 or P(3,1);
- (ii) G is Cohen-Macaulay;
- (iii) Δ_G is pure vertex decomposable.

Proof.

(ii) \Rightarrow (i). We can suppose that G is connected. If $G \notin W$, then, by Theorem 3.3, $G \simeq K_4$ since

$$h(K_{3,3}) = (1, 3, -3, 1),$$
 $h(K_{3,3}^*) = (1, 5, 3, -2),$
 $h(C_5 \times K_2) = (1, 6, 6, -4, 1),$ $h(Q^{**}) = (1, 8, 18, 10, -1)$

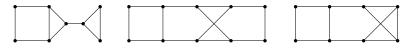
and

$$h(P_{14}) = (1, 9, 24, 18, -2, -1).$$

Now, we can assume that $G \in \mathcal{W}$. Hence, $G = (D_1, D_2, \dots, D_r)$ with $D_i \in \{A, B, C\}$. If r = 2, then

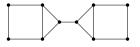
$$G = \{ (A, A), (A, B), (B, B), (C, C) \}.$$

Consequently, one of the following graphs



is a c-minor of G, whose h-vectors are (1, 5, 5, -1), (1, 6, 8, 0, -1) and (1, 5, 4, -2), respectively, a contradiction, by Proposition 3.5. Now, if $r \geq 3$, then there is a $D_j \in \{A, B\}$ where $1 \leq j \leq r$. If $D_i = B$, then the following graph

is a *c*-minor of *G*, whose *h*-vector is (1, 7, 12, 0, -5, -3). Furthermore, if $D_i = A$, then the following graph is a *c*-minor of *G*:



whose h-vector is (1, 6, 8, -2, -1). Thus, r = 1. Therefore, G = (B) or G = (A). However, the h-vector of (B) is (1, 5, 3, -1); hence, $G = (A) \simeq P(3, 1)$.

(i) \Rightarrow (iii). Δ_{K_4} is zero-dimensional, $\Delta_{P(3,1)}$ is one-dimensional, and they are connected. Thus, by Proposition 3.5, K_4 and P(3,1) are pure vertex decomposable.

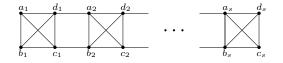


FIGURE 4. A K_4 -chain.

4. 4-transitive graphs without 5-holes.

Definition 4.1. Let H be a graph where H_1, \ldots, H_s is a partition of V(H) such that $H[H_i] \simeq K_4$. Then, H is a K_4 -chain if

$$E(H) = \left(\bigcup_{i=1}^{s} E(H[H_i])\right) \bigcup \left(\bigcup_{i=1}^{s-1} \{\{d_i, a_{i+1}\}, \{c_i, b_{i+1}\}\}\right),$$

where $H_i = \{a_i, b_i, c_i, d_i\}$ for $1 \leq i \leq s$, see Figure 4. Hence, if $x \in V(H) \setminus \{a_1, b_1, c_s, d_s\}$, then $\deg_H(x) = 4$. In this case, we write $H = (H_1, \ldots, H_s)$. Furthermore, if G is a 4-regular graph with a K_4 -chain H such that V(H) = V(G), then G is called K_4 -band.

Remark 4.2. Let A be a stable set of G. If $x \in V(G) \setminus A$ is such that $N_G(x) \subseteq N_G(A)$, then x is not a shedding vertex.

Proof. We take a maximal stable set B of G such that $A \subseteq B$. Thus, $N_G(x) \subseteq N_G(B)$. Furthermore, $B \cap N_G(B) = \emptyset$, since B is a stable set. Hence, $B \cap N_G(x) = \emptyset$. Since B is maximal, we have that $x \in B$ and $B \setminus x \in \text{link}_{\Delta}(\{x\})$, where $\Delta = \Delta_G$. Also, since $x \notin A$, then $A \subseteq B \setminus x$ and

$$N_G(x) \subseteq N_G(A) \subseteq N_G(B \setminus x).$$

If there is a $y \notin B$, then $y \in N_G(B)$, since B is maximal. Hence,

$$y \in N_G(B \setminus x) \cup N_G(x) \subseteq N_G(B \setminus x).$$

This implies that $B \setminus x$ is a maximal stable set in $del_{\Delta}(\{x\})$. Therefore, x is not a shedding vertex.

Remark 4.3. Let G be a K_4 -chain with $x \in V(G)$. Then, $G[N_G(x)]$ has two connected components, a 3-cycle and an isolated vertex.

Lemma 4.4. Let G be a connected 4-transitive graph where each vertex is shedding. If $K_4 \subseteq G$, then G is a K_4 -band or $G \simeq K_5$.

Proof. We can assume that $G \not\simeq K_5$. Since K_4 is a K_4 -chain, there is a maximal K_4 -chain subgraph $H = (H_1, \ldots, H_s)$ of G. We assume that $V(H_i) = \{a_i, b_i, c_i, d_i\}$ with $\{c_i, a_{i+1}\}, \{d_i, b_{i+1}\} \in E(G)$ for each $1 \leq i \leq s - 1$.

We will prove that $N_G(a_1) \subseteq V(H)$. By contradiction, suppose that there is a $y \in N_G(a_1) \setminus V(H)$. Hence, there is a $K_4 \simeq H'_1 \subseteq G$ such that $y \in V(H'_1)$, since G is vertex-transitive. Now, we consider two cases:

Case 1. First, we assume that $\{a_1, b_1, c_s, d_s\} \cap V(H'_1) \neq \emptyset$. Then,

$$V(H_1') \cap \{c_1, d_1, a_s, b_s\} \neq \emptyset,$$

since $\deg_H(a_1) = \deg_H(b_1) = \deg_H(c_s) = \deg_H(d_s) = 3$. Thus, $N_G(y) \cap \{c_1, d_1, a_s, d_s\} \neq \emptyset$. However, if s > 1, then $\deg_H(c_1) = \deg_H(d_1) = \deg_H(a_s) = \deg_H(b_s) = 4$. Hence, s = 1 implies that $|V(H'_1) \cap V(H_1)| = 3$. Thus, $G[N_G(a_1)]$ is connected, since $|N_G(y) \cap V(H_1)| \geq 3$. Consequently, $G[N_G(y)]$ is connected, since G is vertex-transitive. Then, $N_G(y) = V(H_1)$. Therefore, $G \simeq K_5$ since Gis connected and 4-regular, a contradiction.

Case 2. Now, we assume that $\{c_s, d_s, b_1, a_1\} \cap V(H'_1) = \emptyset$. Then, $V(H'_1) \cap V(H) = \emptyset$. We set $V(H'_1) = \{a'_1, b'_1, c'_1, y\}$. Suppose that $s \geq 2$. Then $(c_1, d_1, a_2, b_2, c_1)$ is a 4-hole. In addition, G is vertextransitive; hence, there is a 4-hole C' such that $a_1 \in V(C')$. Since C' does not have chords, $|V(C') \cap V(H_1)| = 2$ and $y \in V(C')$. Thus, $|V(C') \cap V(H'_1)| = 2$, since $N_G[y] = V(H'_1) \cup \{a_1\}$. Furthermore, $b_1 \in V(C')$, since $\deg_G(c_1) = \deg_G(d_1) = 4$. Thus, $C' = (y, a_1, b_1, u, y)$, where $u \in V(H'_1) \setminus \{y\}$. Hence, there is a K_4 -chain with vertex set $V(H) \cup V(H'_1)$, a contradiction, since H is maximal. This implies s = 1 and $H \simeq K_4$. By the maximality of H, we have that

$$N_G(H) \cap V(H'_1) = \{y\}$$

For ease of exposition, we take $V(H) = \{x_1, x_2, x_3, x_4\}$. Thus, by symmetry, there are $y_1, y_2, y_3, y_4 \in V(G) \setminus V(H)$ such that

$$N_G[x_i] = V(H) \cup \{y_i\} \quad \text{for } 1 \le i \le 4.$$

Furthermore, there are $z_1^i, z_2^i, z_3^i \in N_G(y_i) \setminus V(H)$, such that $G_i = G[\{y_i, z_1^i, z_2^i, z_3^i\}] \simeq K_4$ and $y_j \notin V(G_i)$ for $j \neq i$. Consequently, $\{y_1, y_2, y_3, y_4\}$ is a stable set, since $y_j \notin V(G_i) = N_G[y_i] \setminus \{x_i\}$. We have

$$N_G(x_1) = \{y_1, x_2, x_3, x_4\} \subseteq N_G(\{y_2, y_3, y_4, z_j^1\}).$$

Then, $\{y_2, y_3, y_4, z_j^1\}$ is not a stable set; if it were, Remark 4.2 would then imply that x_j^1 is not a shedding vertex, contradicting the fact that every vertex is a shedding vertex. Thus,

$$N_G(z_j^1) \cap \{y_2, y_3, y_4\} \neq \emptyset \text{ for } j = 2, 3, 4.$$

In addition,

$$G[N_G(z_j^1)] \simeq G[N_G(x_1)] \simeq K_3 \sqcup K_1.$$

If $y_i \in N_G(z_j^1) \cap N_G(z_{j'}^1)$ with $j \neq j'$, then $G[N_G(z_j^1)]$ is connected, a contradiction. This implies that $|N_G(y_i) \cap \{z_1^1, z_2^1, z_3^1\}| = 1$. Hence, we can assume that $\{y_j, z_{j-1}^1\} \in E(G)$ for j = 2, 3, 4. Thus,

$$N_G[\{x_2, z_1^1\}] \cap N_G[y_2] = \{x_2, y_2, z_1^1\}.$$

Furthermore, there is a $K_4 \simeq K \subset G$, such that $y_2 \in V(K)$, since $H \simeq K_4$, and G is vertex-transitive. However, $\deg_G(y_2) = 4$; thus, $x_2 \in V(K)$ or $z_1^1 \in V(K)$. Consequently,

$$V(K) \subset N_G[\{x_2, z_1^1\}] \cap N_G[y_2],$$

a contradiction, since $|N_G[\{x_2, z_1^1\}] \cap N_G[y_2]| = 3$. Therefore, $N_G(a_1) \subseteq V(H)$. Similarly, $N_G(\{b_1, c_s, d_s\}) \subseteq V(H)$ implies V(G) = V(H). Therefore, G is a K_4 -band, since G is 4-regular.

Proposition 4.5. Let G be a connected 4-transitive graph such that every 5-cycle of G has at least two chords. If G is pure vertex decomposable, then $G \simeq K_5$.

Proof. If $x \in V(G)$, then x is shedding, since G is vertex-transitive. Consequently, by [5, Lemma 3.7], there exists a $y \in N_G(x)$ such that $N_G[y] \subseteq N_G[x]$. Thus, $N_G[y] = N_G[x]$, since G is regular. Now, we consider two cases:

Case 1. First, suppose that each 5-cycle has at least four chords. Thus, G has a simplicial vertex by [5, Theorem 3.11]. Hence, $G \simeq K_5$, since G is vertex-transitive. Case 2. Now, we assume that there is a 5-cycle $C = (x_1, x_2, x_3, x_4, x_5)$ with at most three chords. If C has two non disjoint chords, we can suppose that $\{x_1, x_3\}, \{x_1, x_4\} \in E(G)$. Then, there is a $y \in N_G(x_1)$ such that

$$N_G[y] = N_G[x_1] = \{x_1, x_2, x_3, x_4, x_5\}.$$

Since C has at most three chords, $y \in \{x_3, x_4\}$. Without loss of generality, we can assume that $y = x_4$. This implies that

$$\{x_2, x_4\} \in E(G)$$
 and $G[\{x_1, x_2, x_3, x_4\}] \simeq K_4.$

By Lemma 4.4, G is a K_4 -band, since C has at most three chords, a contradiction by Remark 4.3, since $G[N_G(x_1)]$ is connected. Hence, the chords of C are disjoint. We can suppose that $\{x_1, x_4\}, \{x_2, x_5\} \in E(G)$. Thus, there are $y_1 \neq x_5$ and $x \in N_G(x_5) \setminus V(C)$ such that

$$N_G[y_1] = N_G[x_5] = \{x, x_1, x_2, x_4, x_5\}.$$

Since the chords of C are disjoint, $y_1 \in \{x, x_1\}$. Thus, $\{x, x_1\} \in E(G)$. Also, there is a $y_2 \neq x_2$ such that

$$N_G[y_2] = N_G[x_2] \supseteq \{x_1, x_2, x_3, x_5\}.$$

Since the chords of C are disjoint, $y_2 \notin \{x_1, x_3, x_5\}$. Furthermore, $y_2 \in N_G(x_1) = \{x, x_2, x_4, x_5\}$. Then, $y_2 = x$ and $\{x_2, x\} \in E(G)$. This implies that $G[\{x, x_1, x_2, x_5\}] \simeq K_4$. By Lemma 4.4, G is a K_4 band, since $|V(G)| \ge 6$, which is a contradiction by Remark 4.3, since $G[N_G(x_1)]$ is connected.

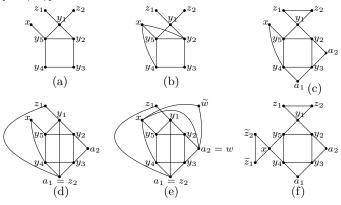


FIGURE 5.

Lemma 4.6. Let G be a 4-transitive vertex decomposable graph such that every 5-cycle has exactly one chord. If $C = (y_1, y_2, y_3, y_4, y_5)$ is a 5-cycle with chord $\{y_2, y_5\}$ and $x \in N_G(y_5) \setminus V(C)$, then $\{x, y_1\} \in E(G)$.

Proof. By contradiction, suppose that $\{x, y_1\} \notin E(G)$. Then, there exist

$$\{z_1, z_2\} \subseteq N_G(y_1) \setminus (V(C) \cup \{x\}),\$$

since $\deg_G(x_1) = 4$ and each 5-cycle has exactly one chord, see Figure 5 (a).

Now, we will prove $|\{z_1, z_2\} \cap N_G(y_3)| \leq 1$. By contradiction, assume that $\{z_1, z_2\} \subseteq N_G(y_3)$. Then,

$$N_G(y_1) = \{y_5, y_2, z_1, z_2\} \subseteq N_G(x, y_3).$$

Since G is vertex-transitive, each vertex is a shedding vertex. Furthermore, $\{x, y_3\} \notin E(G)$, since $\deg_G(y_3) = 4$, a contradiction, by Remark 4.2, since y_1 is shedding. Therefore, $|\{z_1, z_2\} \cap N_G(y_3)| \leq 1$. Hence, we can assume that $z_1 \notin N_G(y_3)$.

If $N_G(x) \cap \{y_3, z_1\} \neq \emptyset$, then $N_G(y_5) = \{y_1, y_2, y_4, x\} \subseteq N_G(\{z_1, y_3\})$, a contradiction by Remark 4.2, since y_5 is shedding. This implies that $N_G(x) \cap \{y_3, z_1\} = \emptyset$.

We will prove that $y_2 \notin N_G(x)$. By contradiction, suppose that $y_2 \in N_G(x)$. If $y_4 \in N_G(x)$, then $\{y_2, y_5\}$ and $\{x, y_5\}$ are chords of $C_1 = (y_1, y_2, x, y_4, y_5, y_1)$, see Figure 5 (b), a contradiction. Therefore, $y_4 \notin N_G(x)$ and $N_G(x) \cap V(C) = \{y_2, y_5\}$. Consequently, (x, y_2, y_1) is a path in $G[N_G(y_5)]$. Furthermore, $N_G(\{y_2, y_5\}) \subseteq V(C) \cup \{x\}$. Then, $\{y_2, y_5\}$ is a connected component of $G[N_G(x)]$, since $N_G(x) \cap V(C) = \{y_2, y_5\}$. Thus, $G[N_G(x)]$ does not have a path with three vertices, a contradiction, since G is vertex-transitive. Therefore, $y_2 \notin N_G(x)$.

Now, we will prove $y_4 \notin N_G(x)$. By contradiction, assume that $y_4 \in N_G(x)$. Then, $N_G(x) \cap V(C) = \{y_4, y_5\}$. Thus, $G[N_G(y_5)]$ has exactly two edges. Since G is vertex-transitive,

$$G[N_G(y_5)] \simeq G[N_G(y_1)] \simeq G[N_G(y_4)]$$

has exactly two edges. Then, $\{z_1, z_2\}$ and $\{a_1, y_3\} \in E(G)$ for some $a_1 \in N_G(y_4) \setminus (V(C) \cup \{x\})$. Since $G[N_G(y_3)] \simeq G[N_G(y_5)], \{y_2, a_2\} \in E(G)$ for some $a_2 \in N_G(y_3) \setminus (V(C) \cup \{x, a_1\})$, see Figure 5 (c). Since

2638

 $G[N_G(z)] \simeq G[N_G(y_5)]$ for each $z \in V(G)$, we have $\{x, a_1\}, \{a_1, a_2\}, \{a_2, y_1\} \notin E(G)$.

We will prove $\{y_1, a_1\} \notin E(G)$. By contradiction, suppose that $\{y_1, a_1\} \in E(G)$. Then, $a_1 = z_2$, since $\{z_1, y_3\} \notin E(G)$, see Figure 5 (d). Since $C_2 = (y_2, y_3, y_4, y_5, y_2)$ is a 4-hole and G is vertex-transitive, x is in a 4-hole C' such that $|V(C') \cap \{y_4, y_5\}| = 1$. Consequently, there exists a $w \in N_G(x) \setminus \{y_5, y_4\}$ such that

$$w \in N_G(N_G(\{y_5, y_4\}) \setminus \{x, y_5, y_4\}) \setminus \{x, y_5, y_4\} = \{y_1, y_2, y_3, z_1, z_2, a_2\}.$$

Thus, $w \in \{z_1, a_2\}$, since the other vertices have degree 4. If $z_1 \in N_G(x)$, then

$$N_G(y_5) = \{x, y_1, y_2, y_4\} \subseteq N_G(\{z_1, y_3\}),$$

a contradiction, by Remark 4.2. Thus, $z_1 \notin N_G(x)$ and $w = a_2$. Since $G[N_G(x)]$ has exactly two edges, there is a $\widetilde{w} \in V(G) \setminus (V(C) \cup \{x, z_1, z_2, a_2\}$ such that

$$\widetilde{w} \in N_G(x) \cap N_G(a_2),$$

see Figure 5 (e). If $\{z_1, \widetilde{w}\}$ is a stable set, then C_2 is a connected component of $G \setminus N_G(\{z_1, \widetilde{w}\})$, a contradiction, since a 4-hole is not vertex decomposable. Hence, $\{z_1, \widetilde{w}\} \in E(G)$. Furthermore,

$$C_3 = (y_5, y_1, z_2, y_4, y_5)$$
 and $C_4 = (y_5, x, a_2, y_2, y_5)$

are two 4-holes with $V(C_3) \cap V(C_4) = \{y_5\}$. Since G is vertex-transitive, z_1 is in two 4-holes. Thus, there is a 4-hole $(z_1, \tilde{w}, b_1, b_2, z_1)$ where $b_2 \in \{y_1, z_2\}$. Hence,

$$b_1 \in N_G(\{y_1, z_2\}) \setminus \{y_1, z_1, z_2\} = \{y_2, y_3, y_4, y_5\},\$$

a contradiction, since $\widetilde{w} \notin N_G(C_2)$. Therefore, $\{y_1, a_1\} \notin E(G)$. This implies that $\{z_1, z_2\} \cap (V(C) \cup \{x, a_1, a_2\}) = \emptyset$.

Similarly, $\{x, a_2\} \notin E(G)$ (by symmetry between x and y_1). Thus, $N_G(x) = \{y_4, y_5, \tilde{z}_1, \tilde{z}_2\}$ such that $\{\tilde{z}_1, \tilde{z}_2\} \in E(G)$ and

$$\{\widetilde{z}_1, \widetilde{z}_2\} \cap (V(C) \cup \{x, a_1, a_2\}) = \emptyset,$$

see Figure 5 (f). If $\{z_i, \tilde{z}_j\}$ is a stable set for some $1 \leq i \leq j \leq 2$, then $N_G(y_5) \subseteq N_G(\{z_i, \tilde{z}_j, y_3\})$, a contradiction, by Remark 4.2. Consequently, $\{z_i, \tilde{z}_j\} \in E(G)$ for each $1 \leq i \leq j \leq 2$. Thus, $G[N_G(z_1)]$

is connected, a contradiction, since $G[N_G(z_1)] \simeq G[N_G(y_5)]$. Therefore, $y_4 \notin N_G(x)$.

Hence, $y_2, y_3, y_4, z_1 \notin N_G(y_5)$, and $G[N_G(y_5)]$ has exactly one edge. We take $a \in N_G(x) \setminus \{y_5\}$. Then, $N_G(y_5) \subseteq N_G(\{a, z_1, y_3\})$. By Remark 4.2, $a \in N_G(\{z_1, y_3\})$, since y_5 is a shedding vertex and $\{z_1, y_3\} \notin E(G)$. Thus,

$$N_G(x) \setminus \{y_5\} \subseteq N_G(\{z_1, y_3\}) \setminus (V(C) \cup \{z_1\}).$$

Furthermore, $|N_G(x) \setminus \{y_5\}| = 3$ and $|N_G(y_3) \setminus V(C)| = 2$; thus, there is a

$$y \in (N_G(x) \setminus \{y_5\}) \cap N_G(z_1)$$

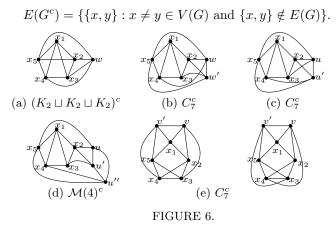
and $C_5 = (x, y_5, y_1, z_1, y, x)$ is a 5-cycle. Since $\deg_G(y_5) = 4$, $N_G(y_5) \cap V(C_5) = \{x, y_1\}$. Furthermore $\{y, y_1\} \notin E(G)$, since $G[N_G(y_1)] \simeq G[N_G(y_5)]$ has exactly one edge. This implies that C_5 is induced since $N_G(x) \cap (V(C) \cup \{z_1\}) = \emptyset$. This is a contradiction, since each 5-cycle has exactly one chord. Therefore, $\{x, y_1\} \in E(G)$.

Lemma 4.7. Let G be a 4-transitive graph such that every 5-cycle has exactly one chord. If G is vertex decomposable, then G contains K_4 .

Proof. By Proposition 4.5, if G does not have a 5-cycle, then $G \simeq K_5$, which contradicts the fact that each 5-cycle has exactly one chord. Thus, there is a 5-cycle $C = (y_1, y_2, y_3, y_4, y_5, y_1)$ of G. We can assume that $\{y_2, y_5\} \in E(G)$. Since $\deg_G(y_5) = \deg_G(y_2) = 4$, there are

$$x \in N_G(y_5) \setminus V(C)$$
 and $y \in N_G(y_2) \setminus V(C)$.

By Lemma 4.6, $\{x, y_1\}, \{y, y_1\} \in E(G)$. If x = y, then $G[\{x, y_1, y_2, y_5\}] \simeq K_4$. Now, if $x \neq y$, then $G[N_G(y_1)]$ is connected. Since G is vertextransitive, $G[N_G(y_5)]$ is connected. Hence, $\{x, y_4\} \in E(G)$, since $\deg_G(y_1) = \deg_G(y_2) = 4$. Similarly, $\{y, y_3\} \in E(G)$, since $G[N_G(y_2)]$ is connected. Thus, $C' = (y_1, y_2, y_3, y_4, x, y_1)$ is a 5-cycle. Since $\deg_G(y_1) = \deg_G(y_2) = 4$, and since C' must have a chord, we are forced to use $\{x, y_3\}$ as the chord of C'. Hence, $\{y_4, y_5\}$ and $\{x, y_3\}$ are chords of $(y_2, y_3, y_4, x, y_5, y_2)$, a contradiction, since each 5-cycle has exactly one chord. **Definition 4.8.** The complement of a graph G, denoted G^c , is a graph whose vertex set is V(G), and



Proposition 4.9. Let G be a 4-transitive connected graph such that G has a 5-cycle C with at least two chords and a 4-hole. Then, G is isomorphic to $(K_2 \sqcup K_2 \sqcup K_2)^c$ or C_7^c or $\mathcal{M}(4)^c$.

Proof. We set $C = (x_1, x_2, x_3, x_4, x_5, x_1)$. First, we suppose that C has two concurrent chords. Then, we assume that $\{x_1, x_3\}$ and $\{x_1, x_4\} \in E(G)$. Since G has a 4-hole and is vertex-transitive, there is a 4-hole C' with $x_1 \in V(C')$. Thus,

$$|\{x_2, x_5\} \cap V(C')| \ge 1,$$

since $\{x_3, x_4\} \in E(G)$. Now we will study two cases:

Case 1. If $|\{x_2, x_5\} \cap V(C')| = 1$, then, we can assume that $x_2 \in C'$. Thus, $C' = (x_1, x_2, w, x_4, x_1)$ with $w \in V(G) \setminus V(C)$. Since $G[N_G(x_1)]$ is connected and G is vertex-transitive, we have

$$G[N_G(x_4)] = G[\{x_1, x_3, x_5, w\}]$$

is connected. Hence, $\{x_3, x_5\} \cap N_G(w) \neq \emptyset$, since $\deg_G(x_1) = 4$.

We assume $\{x_3, w\} \in E(G)$. Thus, $G[N_G(x_3)]$ has a 4-cycle. Since G is vertex-transitive, $G[N_G(x_1)]$ and $G[N_G(x_4)]$ have a 4-cycle. This implies that $\{x_2, x_5\}, \{w, x_5\} \in E(G)$, since

$$\deg_G(x_4) = \deg_G(x_3) = \deg_G(x_1) = 4.$$

Therefore, $G \simeq (K_2 \sqcup K_2 \sqcup K_2)^c$, since G is 4-regular, see Figure 6 (a).

Now, suppose that $\{x_3, w\} \notin E(G)$. Then,

 $\{x_5, w\} \in E(G) \text{ and } G[N_G(x_4)]$

have no 4-cycles. Consequently, $G[N_G(x_1)]$ has no 4-cycles, and $\{x_2, x_5\} \notin E(G)$. Since $\deg_G(x_1) = 4$ and $\{w, x_3\} \notin E(G)$, there is a $w' \in N_G(w) \setminus V(C)$. Furthermore, $G[N_G(w)] \simeq G[N_G(x_1)]$ is connected, $\deg_G(x_4) = 4$ and $\{x_2, x_5\} \notin E(G)$. Then, $x_2, x_5 \in N_G(w')$. In addition, $G[N_G(x_2)] \simeq G[N_G(x_1)]$ is connected and $\deg_G(w) = \deg_G(x_1) = 4$; thus, $\{x_3, w'\} \in E(G)$. Therefore, $G \simeq C_7^c$, see Figure 6 (b).

Case 2. Now, we assume that $x_2, x_5 \in V(C'')$, for each 4-hole C'' with $x_1 \in V(C'')$. Thus, there is a $u \in V(G) \setminus V(C)$ such that $C' = (x_1, x_5, u, x_2, x_1)$; hence, $\{x_2, x_5\} \notin E(G)$. Since $\deg_G(x_2) = 4$, there is a

$$u' \in N_G(x_2) \setminus \{x_1, x_2, x_3, x_5, u\}.$$

We shall prove $u' \neq x_4$. By contradiction, we assume that $u' = x_4$. If P_4 is a path with four vertices, then $P_4 \subseteq G[N_G(x_1)]$. Since G is vertextransitive, we have $P_4 \subseteq G[N_G(x_2)]$. This implies that $\{x_3, u\} \in E(G)$, since $\deg_G(x_1) = \deg_G(x_4) = 4$. Furthermore, there is a

$$v \in V(G) \setminus (V(C) \cup \{u\})$$

such that $\{u, v\} \in E(G)$, since G is 4-regular and $\deg_G(x_1) = \deg_G(x_4) = 4$. Since G is vertex-transitive,

$$P_4 \subseteq G[N_G(u)] \simeq G[\{x_2, x_3, x_5, v\}].$$

This is a contradiction, since $\deg_G(x_2) = \deg_G(x_3) = 4$. Therefore, $u' \neq x_4$. Hence, $u' \notin (V(C) \cup \{u\})$. Also, $P_4 \subseteq G[N_G(x_1)] \simeq G[N_G(x_2)]$. Consequently, $\{u, u'\} \in E(G)$ and $\{u, u'\} \cap N_G(x_3) \neq \emptyset$, since $\deg_G(x_1) = 4$. Thus, $\{x_3, u\} \in E(G)$ or $\{x_3, u'\} \in E(G)$.

If $\{x_3, u\} \in E(G)$, then $\{x_5, u'\} \in E(G)$, since $P_4 \subseteq G[N_G(u)]$ and $\deg_G(x_2) = \deg_G(x_3) = 4$. Similarly, $\{x_4, u'\} \in E(G)$, since $P_4 \subseteq G[N_G(x_5)]$ and $\deg_G(x_1) = \deg_G(u) = 4$. Therefore, $G \simeq C_7^c$, see Figure 6 (c). Now, if $\{x_3, u'\} \in E(G)$, then $P_4 \simeq G[N_G(x_1)]$, since $\deg_G(x_2) = \deg_G(x_3) = 4$. Since G is vertex-transitive, $P_4 \simeq$ $G[N_G(x_3)]$, thus, $\{x_4, u'\} \notin E(G)$. Hence, there is a $u'' \in N_G(u) \cap$

2642

 $N_G(u')$, since

$$G[N_G(u')] \simeq P_4, \qquad N_G(x_3) = \{x_1, x_2, x_4, u'\}$$

and $\{u', x_4\} \notin E(G)$. Furthermore, if $u'' \in V(C)$, then $u'' = x_5$. This implies that $\{u, x_4\} \in E(G)$, since $P_4 \simeq G[N_G(x_5)]$ and $\deg_G(x_1) = \deg_G(u') = 4$, a contradiction, since $C''' = (x_1, x_4, u, x_2, x_1)$ is a 4-hole with $x_1 \in V(C''')$ and $x_5 \notin V(C''')$. Consequently, $u'' \notin V(C)$. Hence, $\{u'', x_5\} \in E(G)$, since $G[N_G(u)] \simeq P_4$ and $\deg_G(x_2) = 4$. Thus, $\{x_4, u''\} \in E(G)$, since

$$G[N_G(x_5)] \simeq P_4$$
 and $\deg_G(u) = \deg_G(x_1) = 4.$

Therefore, $G \simeq \mathcal{M}(4)^c$, see Figure 6 (d).

Finally, suppose that C has no concurrent chords. Thus, C has exactly two chords. We can assume that $\{x_2, x_4\}$ and $\{x_3, x_5\} \in E(G)$. Then, $\{x_2, x_5\} \notin E(G)$, and there exist $v, v' \in N_G(x_1) \setminus V(C)$, since $\deg_G(x_1) = 4$. Furthermore $P_3 \subseteq G[N_G(x_3)]$; thus, $P_3 \subseteq G[N_G(x_1)]$, since G is vertex-transitive. Consequently, there is an edge between at least one vertex of $\{v, v'\}$ and one vertex of $\{x_2, x_5\}$. Without loss of generality, we can suppose that $\{x_2, v\} \in E(G)$. This implies that $K_2 \sqcup K_2 \subseteq G[N_G(x_2)] \simeq G[N_G(x_1)]$. Hence, $\{x_5, v'\} \in E(G)$, since $\deg_G(x_2) = 4$. In addition, $G[N_G(x_1)] \supseteq P_3$. Then, $\{v, v'\} \in E(G)$, since $\deg_G(x_2) = \deg_G(x_5) = 4$. Thus,

$$P_4 \simeq G[N_G(x_1)] \simeq G[N_G(x_2)] \simeq G[N_G(x_5)].$$

Hence, $N_G(v) \cap \{x_3, x_4\} \neq \emptyset$ and $N_G(v') \cap \{x_3, x_4\} \neq \emptyset$, since $\deg_G(x_1) = 4$. Since

$$\deg_G(v) = \deg_G(v') = \deg_G(x_3) = \deg_G(x_4) = 4,$$

we have two cases:

- (i) $\{v, x_3\}, \{v', x_4\} \in E(G)$, or
- (ii) $\{v, x_4\}, \{v', x_3\} \in E(G).$

In both cases, $G \simeq C_7^c$, since G is 4 regular, see Figure 6 (e).

Definition 4.10. Let G be a graph such that $V(G) = V(F) \cup V(H)$, where $H = (H_1, \ldots, H_s)$ is a K_4 -chain, $V(H_i) = \{a_i, b_i, c_i, d_i\}$, and its end vertices are a_1, b_1, c_s, d_s . G is an edge- K_4 -chain if $F \simeq K_2$ with

 $V(F) = \{x, y\}$ and

$$E(G) = E(H) \cup E(F) \cup \{\{x, a_1\}, \{y, b_1\}\}.$$

G is a triangle- K_4 -chain if $F \simeq K_3$ with $\{x, y, z\}$ and $E(G) = E(H) \cup E(F) \cup \{\{x, a_1\}, \{y, b_1\}\}$. In both cases, we denote $G = (F, H_1, H_2, \ldots, H_s)$.

Remark 4.11. If S is a stable set of G, where $G = (F, H_1, \ldots, H_s)$ is an (edge) triangle- K_4 -chain, or $G = (H_1, \ldots, H_s)$ is a K_4 -chain, then $|S \cap H_i| \leq 1$ and $|S \cap F| \leq 1$. Furthermore, $\{x, c_1, \ldots, c_s\}$ or $\{c_1, \ldots, c_s\}$ is a stable set. Therefore, $\beta(G) = s + 1$ or $\beta(G) = s$, respectively.

Lemma 4.12. If G is a K_4 -chain, triangle- K_4 -chain or edge- K_4 -chain, then G is pure vertex decomposable.

Proof. We perform the proof by induction on |V(G)|. First, suppose $G = (H_1, \ldots, H_s)$ is a K_4 -chain. Then, $\beta(G) = s$, by Remark 4.11. If s = 1, then $G \simeq K_4$, and G is pure vertex decomposable. Now, assume that $s \ge 2$. Furthermore, $G_1 = G \setminus a_1$ is the triangle- K_4 -chain (T_1, H_2, \ldots, H_s) , where $T_1 = H_1 \setminus a_1$. In addition,

$$G_2 = G \setminus N_G[a_1]$$

is the K_4 -chain (H_2, \ldots, H_s) . By induction, G_1 and G_2 are pure vertex decomposable. Furthermore, by Remark 4.11, $\beta(G_1) = s$ and $\beta(G_2) = s - 1$. Hence, each face of Δ_{G_2} is not a facet of Δ_{G_1} . This implies, by Remark 2.1, that a_1 is a shedding vertex. Therefore, G is pure vertex decomposable.

Now, suppose that $G = (F_1, H_1, H_2, \dots, H_s)$ is a triangle- K_4 -chain, with $V(F_1) = (r_1 + r_2)$

$$V(F_1) = \{x, y, z\},\$$

 $V(H_i) = \{a_i, b_i, c_i, d_i\}$

and

$$\{x, a_1\}, \{y, b_1\} \in E(G).$$

Also, $G_3 = G \setminus z$ is the edge- K_4 -chain $(F'_1, H_1, H_2, \ldots, H_s)$, where $F'_1 = F_1 \setminus z \simeq K_2$. Furthermore, $G_4 = G \setminus N_G[z]$ is the K_4 -chain (H_1, H_2, \ldots, H_s) . Thus, by induction, G_3 and G_4 are pure vertex decomposable. From Remark 4.11, $\beta(G_3) = s + 1$ and $\beta(G_4) = s$.

Then, by Remark 2.1, z is a shedding vertex. Therefore, G is pure vertex decomposable.

Finally, if $G = (F_2, H_1, H_2, ..., H_s)$ is an edge- K_4 -chain, $V(F_2) = \{x, y\}$ and $V(H_i) = \{a_i, b_i, c_i, d_i\}$, where $\{x, a_1\}, \{y, b_1\} \in E(G)$. Consequently,

$$G_5 = G \setminus N_G[a_1] = (H_2, \dots, H_s) \cup \{y\}$$

if $s \geq 2$, or

$$G_5 = G \setminus N_G[a_1] = \{y\}$$

if s = 1. Thus, by induction, G_5 is pure vertex decomposable and $\beta(G_5) = s$. Furthermore,

$$G_6 = G \setminus a_1 = (F'_2, H_2, \dots, H_s) \cup \{\{x, y\}, \{y, b_1\}\},\$$

where $F'_2 = G[\{b_1, c_1, d_1\}] \simeq K_3$ and $\beta(G_6) = s + 1$. Then, a_1 is a shedding vertex. Now, we take $G_7 = G_6 \setminus \{y\}$ and $G_8 = G_6 \setminus N_G[y]$. If $s \ge 2$, then

$$G_7 = (F'_2, H_2, \dots, H_s) \cup \{x\},\$$

where (F'_2, H_2, \ldots, H_s) is a triangle- K_4 -chain, and G_8 is the edge- K_4 chain $(F''_2, H_2, \ldots, H_s)$, where $F''_2 = G[\{c_1, d_1\}] \simeq K_2$. Also, if s = 1, then

$$G_7 = F'_2 \cup \{x\}$$
 and $G_8 = G[\{c_1, d_1\}] \simeq K_2.$

Hence, by the induction hypothesis, G_7 and G_8 are pure vertex decomposable. Furthermore, by Remark 4.11, $\beta(G_7) = s + 1$ and $\beta(G_8) = s$. Thus, y is shedding. This implies that G_6 is pure vertex decomposable. Therefore, G is pure vertex decomposable.

Lemma 4.13. If G is a K_4 -band, then G is pure vertex decomposable.

Proof. Since G is a K_4 -band, there is a K_4 -chain $H = (H_1, \ldots, H_s)$ such that V(G) = V(H), where $V(H_i) = \{a_i, b_i, c_i, d_i\}$ and $H_i \simeq K_4$. Furthermore, if G is 4-regular, then $\{a_1, c_s\} \in E(G)$ or $\{a_1, d_s\} \in E(G)$. We take $G_1 = G \setminus N_G[a_1]$. Then, G_1 is a triangle if s = 2, or G_1 is a triangle- K_4 -chain $(H_2, \ldots, H_{s-1}, F_1)$ if $s \ge 3$. In the second case, F_1 is a triangle. Moreover, $V(F_1) = \{a_s, b_s, d_s\}$ if $\{a_1, c_s\} \in E(G)$, or $V(F_1) = \{a_s, b_s, c_s\}$ if $\{a_1, d_s\} \in E(G)$. Thus, by Lemma 4.12 and Remark 4.11, G_1 is pure vertex decomposable and $\beta(G_1) = s - 1$. Now, we take $G_2 = G \setminus a_1$. Hence, $G_2 \setminus b_1$ is the edge- K_4 -chain (F_2, H_2, \ldots, H_s) , where F_2 is the edge $\{c_1, d_1\}$. Consequently, by Lemma 4.12 and Remark 4.11, $G_2 \setminus b_1$ is pure vertex decomposable and $\beta(G_2 \setminus b_1) = s$. Now, we take $G' = G_2 \setminus N_{G_2}[b_1]$. Then, G' is a triangle if s = 2, or G' is the triangle- K_4 -chain $(H_2, \ldots, H_{s-1}, F_3)$ if $s \geq 3$. In the second case, F_3 is a triangle, where $V(F_3) = \{a_s, b_s, c_s\}$ if $\{a_1, c_s\} \in E(G)$, or $V(F_3) = \{a_s, b_s, d_s\}$ if $\{a_1, d_s\} \in E(G)$. From Remark 4.11, $\beta(G') = s - 1$. Hence, b_1 is a shedding vertex and $\beta(G_2) = s$. Furthermore, by Lemma 4.12, G' is pure vertex decomposable. This implies that G_2 is pure vertex decomposable, since $G_2 \setminus b_1$ and G' are pure vertex decomposable. Hence, a_1 is a shedding vertex decomposable, since $\beta(G_1) = s - 1$ and $\beta(G_2) = s$. Therefore, G is pure vertex decomposable. \Box

Theorem 4.14. Let G be a 4-transitive graph without a 5-hole. Then, the following conditions are equivalent:

- (i) Δ_G is pure vertex decomposable.
- (ii) Each connected component of G is isomorphic to K₅ or C₇^c or a K₄-band.

Proof.

(i) \Rightarrow (ii). Let G' be a connected component of G. By Proposition 4.5, we can assume that there is a 5-cycle C with exactly one chord in G'. Thus, G' has a 4-hole. We consider two cases:

(a) First, suppose each 5-cycle of G' has exactly one chord. Then, by Lemma 4.7, G' contains a K_4 . Hence, by Lemma 4.4, $G = K_5$ or G is a K_4 -band.

(b) Now, we assume that G' has a 5-cycle with at least two chords. Thus, by Proposition 4.9,

$$G \in \{C_7^c, \mathcal{M}(4)^c, (K_2 \sqcup K_2 \sqcup K_2)^c\},\$$

since G' has a 4-hole. However, $\mathcal{M}(4)^c$ has a 5-hole, and

$$\Delta_{(K_2 \sqcup K_2 \sqcup K_2)^c} = K_2 \sqcup K_2 \sqcup K_2$$

has dimension 1 and is not connected. Therefore, $G \simeq C_7^c$.

(ii) \Rightarrow (i). By Lemma 4.13, each K_4 -band is pure vertex decomposable. Furthermore, Δ_{K_5} has dimension 0; thus, it is pure vertex

decomposable. Also, $\Delta_{C_7^c} \simeq C_7$ is a connected pure simplicial complex of dimension 1, so it is vertex decomposable by Proposition 3.5. Therefore, G is vertex decomposable.

5. Well-covered and Cohen-Macaulay generalized Petersen graphs. In this section, we characterize the generalized Petersen graphs, see Definition 2.11, with the following properties: well-covered, Cohen-Macaulay and pure vertex decomposable.

Lemma 5.1. If G = P(n, r) is a generalized Petersen graph, then:

- (i) G contains a 3-cycle if and only if n = 3 or n = 3r.
- (ii) G contains a 4-cycle if and only if n = 4, n = 4r or r = 1.
- (iii) G contains a 5-cycle if and only if n = 5, or n = 5r, or r = 2, or n = 5(r/2) with r even, or r = (n-1)/2 with n odd.

Proof. We assume that $V(G) = \{a_0, a_1, \dots, a_{n-1}, b_0, b_1, \dots, b_{n-1}\}$ and E(G) is

$$\{a_0b_0, \dots, a_{n-1}b_{n-1}\} \cup \{a_ia_j : |i-j| \equiv 1 \pmod{n}\} \\ \cup \{b_ib_j, : |i-j| \equiv r \pmod{n}\}$$

with $n \geq 3$. We take $H_1 = G[\{a_0, \ldots, a_{n-1}\}]$ and $H_2 = G[\{b_0, \ldots, b_{n-1}\}]$. Thus, H_1 is an *n*-cycle. Since $\{b_i, b_j\} \in E(G)$ if and only if $|i - j| \equiv r \pmod{n}$, then $i \equiv r + j$ or $i \equiv n - r + j \pmod{n}$. Hence, H_2 is 2-regular, and $C_i = (b_i, b_{i+r}, \ldots, b_{i+n'r})$ is a cycle, where $n' = n/\gcd(n, r)$. Therefore, H_2 is the disjoint union of n'-cycles.

Let C be an s-cycle in G, with $s \in \{3, 4, 5\}$. If $C \subseteq H_1$, then s = n. Now, suppose that $C \subseteq H_2$. Then, s = n'. This implies that $n = \gcd(n, r) \cdot s$ and $r = \gcd(n, r) \cdot r'$, where $\gcd(s, r') = 1$. Since 2r < n, thus, 2r' < s. If $s \le 4$, then r' = 1. Hence, $r = \gcd(n, r)$ and $n = s \cdot r$.

Now, if s = 5, then r' = 1 or r' = 2, i.e., $n = 5 \cdot r$ or $r = 2 \operatorname{gcd}(n, r)$ and n = 5(r/2). Now, we assume that $V(C) \cap V(H_i) \neq \emptyset$ for i = 1, 2. Since $V(H_1) \cap V(H_2) = \emptyset$ and C is connected, then there is an $e \in E(C) \setminus (E(H_1) \cup E(H_2))$. We can assume that $e = \{a_j, b_j\}$. Hence, $a_{j+1} \in V(C)$ or $a_{j-1} \in V(C)$, as well as $b_{j+r} \in V(C)$ or $b_{j-r} \in V(C)$. Thus, $s \ge 4$. If s = 4, then $j \pm 1 \equiv j \pm r \pmod{n}$. Consequently, r = 1, since 2r < n. Now, we suppose that s = 5. If $|V(C) \cap V(H_1)| = 3$, then $i \pm 2 \equiv i \pm r \pmod{n}$. Hence, r = 2, since 2r < n. Finally, if $|V(C) \cap V(H_2)| = 3$, then $i \pm 1 \equiv i \pm 2r \pmod{n}$. This implies that $2r \equiv \pm 1 \pmod{n}$. Therefore, n is odd and r = (n-1)/2, since 2r < n.

Lemma 5.2. $K_{s,s}$ is not a generalized Petersen graph.

Proof. If $x \in G = K_{s,s}$, then $\deg_G(x) = s$. If G is a generalized Petersen graph, then G is 3-regular. Thus, s = 3, and $V(G) = \{a_0, a_1, a_2, b_0, b_1, b_2\}$. Hence, $H = G[\{a_0, a_1, a_2\}]$ is a 3-cycle. This is a contradiction, since $K_{s,s}$ is bipartite.

Theorem 5.3. Let G = P(n, r) be a generalized Petersen graph. Then, G is well-covered if and only if $(n, r) \in \{(3, 1), (5, 1), (6, 2), (7, 2)\}$.

Proof.

⇒. G satisfies Theorem 2.6 (i), (ii) or (iii). If G satisfies (i), then, by Lemma 5.2, $G \cong P_{14}$, and (n, r) = (7, 2). Now, if G satisfies (iii), then, G has a 3-cycle and a 5-cycle. If n = 3, since 2r < n, then, r = 1 and (n, r) = (3, 1). Now, by Lemma 5.1 (i), we can assume that n = 3r. Also, by Lemma 5.1 (iii), r = 2 or r = (n - 1)/2. Consequently, (n, r) = (6, 2) or (n, r) = (3, 1). Now, we can assume that G satisfies Theorem 2.6 (ii). Thus, G has a 4-cycle, and, by Lemma 5.1, n = 4, n = 4r or r = 1. Furthermore, G has a 3-cycle, 5-cycle or 7-cycle. If G has a 3-cycle, then, from Lemma 5.1, (n, r) = (3, 1).

Now, if G has a 5-cycle, then $(n,r) \in \{(5,1), (3,1), (8,2)\}$ by Lemma 5.1. If (n,r) = (8,2), then H_1 is the 8-cycle $(a_0, a_1, \ldots, a_7, a_0)$ and

$$H_2 = (b_0, b_2, b_4, b_6, b_0) \cup (b_1, b_3, b_5, b_7, b_1).$$

Hence, $\{a_0, a_2, a_5, b_1, b_4\}$ and $\{b_0, b_1, b_4, b_5, a_3, a_6\}$ are maximal stables sets, contradicting the fact that G is well-covered. Thus, $(n, r) \neq (8, 2)$. Finally, we assume that G has a 7-cycle C. If $V(C) \subseteq V(H_1)$ or $V(C) \subseteq V(H_2)$, then n = 7 or n = 7r, implying (n, r) = (7, 1). This further implies $H_2 = (b_0, b_1, \ldots, b_6, b_0)$ and $H_1 = (a_0, a_1, \ldots, a_6, a_0)$. Consequently, $\{a_1, a_3, a_5, b_0, b_2, b_4\}$ and $\{a_2, a_5, b_0, b_3\}$ are maximal stables sets. This is a contradiction, since G is well-covered. Then, $(n, r) \neq (7, 1)$. Now, we can assume that $a_i b_i \in V(C)$; thus,

$$|V(C) \cap V(H_1)| \ge 2$$
 and $|V(C) \cap V(H_2)| \ge 2$

If $|V(C) \cap V(H_i)| = 2$ for some $i \in \{1, 2\}$, then $4r \pm 1 \equiv 0 \pmod{n}$ or $r \pm 4 \equiv 0 \pmod{n}$. If n = 4 or n = 4r, then r - 4 = 0, since 1 < r < n/2. Hence, (n, r) = (16, 4). However,

$$\{a_0, a_2, a_4, a_6, a_8, a_{10}, a_{12}, a_{14}, b_1, b_3, b_9, b_{11}\}$$

and

$$\{a_0, a_3, a_6, a_8, a_{11}, a_{14}, b_1, b_2, b_4, b_7, b_9, b_{10}, b_{12}, b_{15}\}$$

are maximal stables sets of P(16, 4), a contradiction. Hence, $(n, r) \neq (16, 4)$. If r = 1, then $n \in \{3, 5\}$.

Now, we suppose that $|V(C) \cap V(H_i)| = 3$ for some $i \in \{1, 2\}$. In this case, we have that $2r \pm 3 \equiv 0 \pmod{n}$ or $3r \pm 2 \equiv 0 \pmod{n}$. If n = 4 or n = 4r, then n is even, and furthermore, r < n, implying $3r \pm 2 = 4rq$ for some $q \in \mathbb{Z}$. Thus, $r(4q - 3) = \pm 2$, and consequently, r = 2. This implies (n, r) = (8, 2). However, we proved that P(8, 2) is not well-covered. Finally, if r = 1, we obtain that $2 \pm 3 \equiv 0 \pmod{n}$. Therefore, n = 5, and (n, r) = (5, 1).

 \Leftarrow . We take G = P(n, r). If (n, r) = (3, 1), then $G \setminus N_G[x] \simeq K_2$ for any vertex $x \in V(G)$. Then, the cardinality of every maximal stable set is two. Thus, G is well-covered. We take $G' = G \setminus N_G[\{x, y\}]$, where x, yare non adjacent vertices. Now, if (n, r) = (5, 1), then G' is isomorphic to P_4 , or K_2^c , or $K_1 \sqcup K_2$. Hence, the cardinality of every maximal stable set is four, so P(5, 1) is well-covered. Now, if G = P(6, 2), then G' is isomorphic to P_4 , or C_5 , or $K_2 \sqcup K_2$, or

$$K_2 \sqcup K_3$$
 or $K_2 \sqcup K_3$,

with an edge of K_2 to K_3 . Then, the cardinality of every maximal stable set is four. Therefore, (n,r) = (6,2) is well-covered. Finally, $P(7,2) \simeq P_{14}$. Thus, P(7,2) is well-covered, by Theorem 2.5.

Theorem 5.4. Let G = P(n,r) be a generalized Petersen graph. Then, G is pure vertex decomposable (Cohen-Macaulay) if and only if (n,r) = (3,1).

Proof.

 \Rightarrow . By Theorem 5.3, we have

$$(n,r) \in \{(3,1), (5,1), (6,2), (7,2)\},\$$

since G is well-covered. Furthermore, $h(\Delta_{P(5,1)}) = (1, 6, 6, -4, 1);$ $h(\Delta_{P(6,2)}) = (1, 8, 18, 10, -1);$ and $h(\Delta_{P(7,2)}) = (1, 9, 24, 18, -2, -1).$ Therefore, (n, r) = (3, 1).

 \Leftarrow . $\Delta_{P(3,1)}$ is a one-dimensional connected simplicial complex. Therefore, by Theorem 3.5, P(3,1) is pure vertex decomposable (Cohen-Macaulay).

Acknowledgments. The authors are grateful to the referees, whose suggestions improved the presentation of this paper.

REFERENCES

1. T. Biyikoğlu and Y. Civan, Vertex decomposable graphs, codismantlability, Cohen-Macaulayness, and Castelnuovo-Mumford regularity, Electr. J. Comb. 21 (2014).

2. W. Bruns and J. Herzog, *Cohen-Macaulay ring*, Cambridge University Press, Cambridge, 1997.

3. S.R. Campbell, M.N. Ellingham and G.F. Royle, A characterization of wellcovered cubic graphs, J. Comb. Math. Comb. Comput. **13** (1993), 193–212.

4. I. Castrillón, R. Cruz and E. Reyes, On well-covered, vertex decomposable and Cohen-Macaulay graphs, Electr. J. Comb. 23 (2016).

5. I. Castrillón and E. Reyes, *Pure vertex decomposable simplicial complex associated to graphs whose* 5-*cycles are chorded*, Bol. Soc. Mat. Mex. **23** (2017), 399–412.

6. _____, Well-covered and Cohen-Macaulay theta-ring graphs, preprint.

7. J. Earl, K.N. Vander Meulen and A. Van Tuyl, *Independence complexes of well-covered circulant graphs*, Exp. Math. **25** (2016), 441–451.

8. A. Finbow, B. Hartnell and R.J. Nowakowski, A characterization of wellcovered graphs of girth 5 or greater, J. Comb. Th. B 57 (1993), 44–68.

9. _____, A characterization of well-covered graphs that contain neither 4 nor 5-cycles, J. Graph Th. **18** (1994), 713–721.

10. J. Herzog and T. Hibi, Distributive lattices, bipartite graphs and Alexander bipartite graphs and Alexander duality, J. Alg. Comb. 22 (2005), 289–302.

11. D.T. Hoang, N.C. Minh and T.N. Trung, *Cohen-Macaulay graphs with large girth*, J. Alg. Appl. 14 (2015).

 M. Katzman, Characteric-independence of Betti numbers of graph ideals, J. Comb. Th. A 113 (2006), 435–454.

M. Mahmoudi, A. Mousivand, M. Crupi, G. Rinaldo, N. Terai and S. Yassemi, Vertex decomposability and regularity of very well-covered graphs, J. Pure Appl. Alg. 215 (2011), 2473–2480.

14. R. Nedela and M. Škoviera, Which generalized Petersen graphs are Cayley graphs?, J. Graph Th. 19 (1995), 1–11.

REGULAR GRAPHS

15. B. Randerath and P.D. Vestergaand, On well-covered graphs of odd girth 7 or greater, Discuss. Math. Graph Th. 22 (2002), 159–172.

16. R.P. Stanley, *Combinatorics and commutative algebra*, Progr. Math. 41 (1996).

17. A. Van Tuyl and R.H. Villarreal, Shellable graphs and sequentially Cohen-Macaulay bipartite graphs, J. Comb. Th. 115 (2008), 799–814.

18. R.H. Villarreal, Monomial algebras, Mono. Res. Note Math. (2015).

 M.L. Wachs, Obstructions to shellability, Discr. Comp. Geom. 22 (1999), 95–103.

20. R. Woodroofe, Vertex decomposable graphs and obstruction to shellability, Proc. Amer. Math. Soc. **137** (2009), 3235–3246.

Centro de Investigación y de Estudios Avanzados del IPN, Departamento de Matemáticas, Apt. Postal 14-740, 07000 Ciudad de México, México Email address: jluviano@math.cinvestav.mx

Centro de Investigación y de Estudios Avanzados del IPN, Departamento de Matemáticas, Apt. Postal 14-740, 07000 Ciudad de México, México **Email address: ereyes@math.cinvestav.mx**