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THE HEAT EQUATION FOR LOCAL DIRICHLET
FORMS: EXISTENCE AND BLOW UP OF

NONNEGATIVE SOLUTIONS

TAREK KENZIZI

ABSTRACT. We establish conditions ensuring either ex-
istence or blow up of nonnegative solutions for the following
parabolic problem:{

Hu− V u+ (∂u/∂t) = 0 in X × (0, T ),

u(x, 0) = u0(x) in X,

where T > 0, X is a locally compact separable metric
space, H is a selfadjoint operator associated with a regular
Dirichlet form E; the initial value u0 ∈ L2(X,m), where m is
a positive Radon measure on Borel subset U of X such that
m(U) > 0 and V is a Borel locally integrable function on X.

1. Introduction. In this paper, we discuss the question of existence
as well as blow up of nonnegative solutions for the following parabolic
problem:

(1.1)

{
Hu− V u+ (∂u/∂t) = 0 in X × (0, T ),

u(x, 0) = u0(x) x ∈ X,

where X is a locally compact separable metric space, H is a selfadjoint
operator associated with a regular Dirichlet form E , u0 ∈ L2(X,m),
V ∈ L1

loc(X,m) is a positive Borel function, m a positive Radon
measure. The meaning of a solution for equation (1.1) will be explained
in the next section.

Our main task in this paper is to shed some light towards solving
the problem by giving conditions ensuring existence as well as blow-
up of nonnegative solutions for (1.1). The inspiring point for us, first,
was the research of Baras and Goldstein [8], Cabré and Martel [34] and
Goldstein and Zhang [19], where the problem was addressed and solved
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for the Dirichlet Laplacian Lipschitz domains; second was the paper by
Ben Amor and Kenzizi [7], where the authors established conditions
ensuring existence as well as blow up of nonnegative solutions for a
nonlocal case. Furthermore, for a result concerning the uniqueness
of solution of (1.1), the reader may consult [23]. In this paper, we
generalize the work of [7, 19, 34], where we consider the selfadjoint
operator H associated with a regular Dirichlet form E via Kato’s
representation theorem, that is,

(Hu, v) = E(u, v).

From a physical perspective, such quadratic forms may intuitively be
understood as a model of the “energy functional.” For every t > 0, we
designate by Pt := e−tH the semigroup related to H. Measure pertur-
bation of Dirichlet forms has been studied in increasing generality and
with different aims, see [1, 5, 10, 16, 32]. However, in [28], Stollmann
and Voigt studied the type of perturbations in a different manner from
all of those papers (except [16]); their approach is, given a theoretical
operator, to use potential theory of Dirichlet forms based on proba-
bilistic methods. Moreover, loc cit., they studied the perturbed form
E − µ− + µ+ such that µ− is in a suitable Kato class and µ+ is abso-
lutely continuous with respect to capacity. However, the importance of
Kato potentials is that it is a very large class under which we can still
expect pointwise results for HV := H − V . Of course, this is of im-
portance if one is interested in pointwise results like continuity. Thus,
singular perturbations of Schrödinger-type operators are of interest in
mathematics, e.g., studying spectral phenomena, and in applications
of mathematics in various sciences, e.g., in physics, chemistry, biology,
and in technology. They also often lead to models in quantum theory
which are solvable in the sense that the spectral characteristics (eigen-
values, eigenfunctions, and scattering matrix) can be computed. Such
models then allow us to grasp the essential features of interesting and
complicated phenomena and serve as an orientation in handling more
realistic situations. Singular perturbations of selfadjoint operators can
be defined using Dirichlet forms. This approach was initially used by
researchers of the works [1, 2, 3, 4, 12, 13, 14, 15]. Diffusion pro-
cesses with singular Dirichlet forms are studied in [6]. The main topic
of this paper is to adapt the strategy from the work of Zhang [33]
to a very general local Dirichlet form and to study some of its basic
features. The fundamental principle in this investigation is to give con-
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ditions ensuring existence as well as blow-up of nonnegative solutions
for problem (1.1). More precisely, we proceed as follows. After pre-
senting the basic ingredients of Dirichlet forms, we carry out a careful
study of some results crucial for the later development of the paper in
Section 2. In Sections 3 and 4, we give conditions ensuring existence
and nonexistence of nonnegative solutions for (1.1). Nonetheless, we
shall show that the method used in [7, 19, 34] still applies in our set-
ting. As an application, a special type of Dirichlet forms is considered
in Section 5.

2. Preliminaries and preparation of results. In this section,
we recall the definition of the Dirichlet form and its properties. For
classical theory of Dirichlet forms, the interested reader is referred to
[11, 18, 29, 31] and the references therein.

Throughout this paper, X denotes a locally compact, separable met-
ric space, endowed with a positive radon measure m with Supp(m) =
X. All functions on X will be real valued.

The central object of our studies is a regular Dirichlet form E
with domain F in L2(X,m) and the selfadjoint operator H associated
with E . Recall that a closed non-negative form on L2(X,m) consists of
a dense subspace F ⊂ L2(X,m) and a sesquilinear non-negative map

E : F × F −→ R

such that F is complete with respect to the energy norm
√
E1, defined

by
E1(f) = E(f) + ∥f∥2L2(X,m).

In this case, the space F , together with the inner product

E1(f, g) := E(f, g) + (f, g),

becomes a Hilbert space, and
√
E1 is the induced norm.

A closed form is said to be a Dirichlet form if, for any f ∈ F and
any normal contraction T : R → R, we have

T ◦ f ∈ F and E(T ◦ f) ≤ E .

Here, T : R → R is called a normal contraction if T (0) = 0 and
|T (ξ) − T (ζ)| ≤ |ξ − ζ| for any ξ, ζ ∈ R. A Dirichlet form is called
regular if F ∩Cc(X) is dense both in (F , ∥ · ∥√E1

) and (Cc(X), ∥ · ∥∞),
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where Cc(X) denotes the space of continuous functions with compact
support.

In the remainder of this paper, we shall assume that E is a regular
Dirichlet form. In the sequel, we will write

E(f) := E(f, f).

The selfadjoint operator H associated with E is then characterized by

D(H) ⊂ F and E(f, g) = ⟨Hf, g⟩, f ∈ D(H), g ∈ F .

E is called strongly local if, for any f, g ∈ F such that f is constant on
a neighborhood of Supp(g), we have

E(f, g) = 0.

Note that, if Ω is a domain of Rd, d ≥ 2, H = −△ with D(H) = L2(Ω),

F =W 1,2
0 (Ω) and

E(f, g) =
∫
Ω

(∇f/∇g) dx,

then E is strongly local.

Remark 2.1. Every strongly local, regular Dirichlet form E can be
represented in the form

E(f, g) =
∫
X

dΓ(f, g)

where Γ, called the energy measure, is a positive semidefinite, symmet-
ric bilinear form on F with values in the set of signed radon measures
on X. We remark that Γ is determined by, see [18]:∫

X

ϕdΓ(f, f) = E(f, ϕf)− 1

2
E(f2, ϕ),

for every f ∈ F ∩ L∞(X,m), ϕ ∈ F ∩ Cc(X).

The energy measure Γ satisfies the Leibniz rule,

dΓ(f · g, h) = fdΓ(g, h) + g dΓ(f, h),

as well as the chain rule

dΓ(η(f), h) = η′(f) dΓ(f, h).
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We write dΓ(f) := dΓ(f, f), and note that Γ satisfies the Cauchy-
Schwarz inequality:∫

X

|fg| dΓ(f, g) ≤
(∫

X

|f |2dΓ(f)
)1/2(∫

X

|g|2dΓ(g)
)1/2

.

In order to introduce weak solutions on open subsets of X, we extend
the quadratic forms f 7→ E(f, f) and f 7→ Γ(f, f) to the whole spaces
L2(X,m) and L2

loc(X,m), respectively, in such a way that

F(X) = {f ∈ L2(X,m); E(f, f) < +∞}

and

(2.1) Floc(X) = {f ∈ L2
loc(X,m); Γ(f, f) is a radon measure}.

From now on, we assume that the form (E ,F) is local and regular.
Using the energy measure Γ, we can define the intrinsic metric ρ by:

ρ(x, y) = sup{|f(x)− f(y)|; f ∈ Floc(X) ∩ C(X) and dΓ(f) ≤ dm}.

Note that the above condition implies that Γ(u) is absolutely continu-
ous with respect to m, see [21, 22]. The Radon-Nikodym derivative is
bounded by 1 on X.

We say that E is strictly local if ρ is a metric that induces the original
topology on X. Note that this implies that X is connected, since,
otherwise, points x and y in different connected components would give
ρ(x, y) = ∞ since characteristic functions of connected components are
continuous and have vanishing energy measure.

We denote the intrinsic balls by

B(x, r) := {y ∈ X/ρ(x, y) < r}.

An important consequence of the latter assumption is that, for given
x, the function

y 7−→ ρx(y) := ρ(x, y)

is in Floc and dΓ(ρx) ≤ dm, see [30].

Now, to state our results, it is convenient to introduce the following
notation. The real Hilbert space L2(X,m) will be denoted by L2, and
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its norm will be denoted by

∥u∥ =

(∫
X

u2dm

)1/2

.

We shall write
∫
· · · as an abbreviation for

∫
X
· · · . Variables C, c, C ′,

etc., will denote generic positive constants which may vary in value from
line to line. We shall also use the notation pt = pt(x, y), t > 0, x, y ∈ X
for the heat kernel of the semigroup Pt := e−tH , and P0 = P0(x, t, y, 0)
as the heat kernel of the equation

(2.2) Hu− ∂tu = 0 in X × (0,+∞).

We are now at the stage of giving the notion of the solution for the
heat equation (1.1).

Definition 2.2. Let 0 < T ≤ ∞. A Borel-measurable function
u ∈W 1,2((0, T ),F(X)) is a solution of problem (1.1) if

(a) u ∈ L1
loc((0, T )×X, dt⊗ V dm);

(b) u(t, ·) ∈ Floc(X);

(c)
∫ T

0

∫
K
dΓ[u(·, t)] dt < +∞ for all compact K ⊂ X;

(d) for every 0 ≤ t < T , the following identity holds:

∫ t

0

∫
X

u(s, x)ϕs(s, x) dmds

(2.3)

+

∫ t

0

∫
X

dΓ[u(·, s), ϕ(·, s)] ds =
∫ t

0

∫
X

u(s, x)ϕ(s, x)V (x) dmds

for all

ϕ ∈ F0((0, T )×X) = {ϕ ∈ L2((0, T )×X), ϕ(t, ·) ∈ F(X)

∩ Cc(X), ϕ(·, x) ∈W 1,2
0 ([0, T ])},

and u(·, t) → u0(·) as t→ 0.

Next, we recall the notion of the heat kernel.
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Definition 2.3. A function p(·, ·, ·) : R+ × X × X → R is called a
heat kernel if the following conditions (A1)–(A4) are fulfilled: for m-
almost all (x, y) ∈ X ×X, and for all t, s > 0:

(A1) Markov property: p(t, x, y) > 0 and
∫
X
p(t, x, y)m(dy) ≤ 1;

(A2) Symmetry: p(t, x, y) = p(t, y, x);

(A3) Semigroup property: p(s+t, x, z) =
∫
X
p(s, x, y)p(t, y, z)m(dy);

(A4) Normalization: for all f ∈ L2(X,m),

lim
t→0+

∫
X

p(t, x, y)f(y)m(dy) = f(x) in the L2-norm.

We assume that the heat kernel p(t, x, y) is jointly continuous in x
and y.

Here are some examples of heat kernels.

Example 2.4. (Gauss-Weierstrass). The Gauss-weierstrass function
in Rd is given by

(2.4) p(t, x, y) =
1

(4πt)d/2
exp

(
− |x− y|2

4t

)
,

satisfying all conditions of Definition 2.3 with Lebesgue measure.

Example 2.5. (Li-You estimate [26]). LetX be a connected Riemann-
ian manifold, ρ the geodesic distance and m the Riemannian measure.
Let H be the Laplace-Beltrami operator △ which is associated with
the local Dirichlet form (E ,F) with

(2.5) E(f) =
∫
X

|∇f |2dm, F =W 1,2
0 (X).

Consider {Pt = e−tH}t>0 as the corresponding heat semigroup. It is
known that {Pt} possesses a smooth integral kernel p(t, x, y), which is
indeed a heat kernel on X. It is seen that, if X is geodesically complete
and its Ricci curvature is nonnegative, then, for any x, y ∈ X, t > 0,

(2.6) p(t, x, y) ≍ 1

V (x,
√
t)

exp

(
− c

ρ2(x, y)

t

)
,
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where V (x, r) = m(B(x, r)) is the volume of the geodesic metric open
Ball

B(x, r) = {y ∈ X, ρ(y, r) < r}.

For more details, the reader may consult [20].

Henceforth, our main task is to prove that the existence and blow-up
of nonnegative solutions of (1.1) are deeply related to

(2.7) λV0 := inf

{E(ϕ, ϕ)−
∫
X
ϕ2V dm

∥ϕ∥2L2(X,m)

: ϕ ∈ F , ϕ ̸= 0

}
≥ 0.

For that, we shall need some preparation.

We now consider Vk = V ∧ k, and (Pk) the heat equation corre-
sponding to the selfadjoint negative semidefinite operator associated
with the initial Dirichlet form E , perturbed by −Vk instead of −V . On
the other hand, by using the standard theory of quadratic forms, we
deduce the existence of a unique nonnegative energy solution given by
uk = e−tHku0, t > 0, for problem (Pk), such that Hk is the selfadjoint
operator associated to the closed quadratic form E − Vk. Furthermore,
the solution uk lies in the space

F(X) ∩ L∞(X,m)

in its spacial variable, is continuous in its time variable, and satisfies
the integral formulation:

(2.8) uk(t, x) = e−tHu0(x) +

∫ t

0

∫
X

pt−s(x, y)uk(s, y)Vk(y) dy ds,

where pt is the heat kernel of the operator Pt = e−tH, t > 0.

Remark 2.6. Consider T (·) as the semigroup generated by H in
L2(X,m). Then, the mapping

Tt = T (t) : L2(X,m) −→ L2(X,m), f 7→ T (t)f

defines an L2-semigroup which is exponentially bounded, i.e.,

(2.9) ∥Tt∥L2(X,m) ≤ e−λV
0 t for all t > 0.

By the standard theory of semigroups, there is a unique selfadjoint
operator associated to Tt.
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Note that, the following properties of the sequence (uk) are crucial
for the later development of the paper.

Lemma 2.7.

(i) The sequence (uk) is increasing.

(ii) Assume that problem (1.1) has a nonnegative solution u. Then,
uk(x, t) ≤ u(x, t), for all t > 0 and m almost everywhere x ∈ X.
Moreover, limk→∞ uk is a nonnegative solution of problem (1.1) as well.

Proof.

(i) It is easily seen that the solution of problem (Pk) can be obtained
as
(2.10)

uk(x, t) =

∫
X

ΦVk
(t, x, 0, y)u0(y) dy =

∫
X

PVk
(t, x− y, 0)u0(y) dy,

where u0(x) = u(0, x), ΦVk
is the fundamental solution and PVk

(t, x, y)
= ΦVk

(t, x, 0, y). Furthermore, the function PVk
is often referred to as

the heat kernel of the corresponding semi-group. Thus, we obtain

(2.11) uk+1(t, x)− uk(t, x)

=

∫
X

[PVk+1
(t, x− y, 0)− PVk

(t, x− y, 0)]u0(y) dy ≥ 0.

(ii) Now, using the fact that Vk is nonnegative and bounded, we
obtain

(2.12) uk(t) ≥ T (t)u0, t ≥ 0,

where T (·) is the semigroup generated by H in L2(X,m). Based on
the positivity of T (t)u0, t > 0, we see that uk(x, t) > 0, for all t > 0
and m almost everywhere x ∈ X.

Now, we prove that uk ≤ u. First, note that, from Definition 2.2
and, for each T, R > 0, we have∫ T

0

∫
X

(uk −u)(−∂sϕ−Vk(x)ϕ) dmds+

∫ T

0

∫
X

dΓ[uk −u, ϕ(·, s)] ds

=

∫ T

0

∫
X

(Vk − V )uϕ dmds.
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Hence,

(2.13)

∫ T

0

∫
X

(uk − u)(−∂sϕ+Hϕ− Vk(x)ϕ) dmds

=

∫ T

0

∫
X

(Vk − V )uϕ dmds ≤ 0,

for all ϕ ∈ F0((0, T ) ×X) with suppϕ ⊂ BR × [0, T ] and ϕ(·, T ) = 0.
Fix T, R > 0, 0 ≤ ψ ∈ C∞

c ((0, T ),F(X) ∩ Cc(X)) such that
suppψ ⊂ BR × [0, T ], and consider the parabolic problem

(2.14)


−Hϕ+ Vkϕ+ (∂ϕ/∂t) = −ψ in BR × (0, T ),

ϕ(x, t) = 0 in X\BR × (0, T ),

ϕ(x, T ) = 0 in X.

In view of [24, Theorem 4], there exists a solution 0 ≤ ϕ ∈ F0((0, T )×
BR). Now, consider the extension

ϕ̃(x, t) :=

{
ϕ(x, t) if (x, t) ∈ BR × (0, T ),

0 if(x, t) ∈ Bc
R × (0, T ).

Note that, by inserting the solution ϕ̃ into (2.13), we obtain∫ T

0

∫
X

(uk−u)ψ dmds ≤ 0 for all 0 ≤ ψ ∈ C∞
c ((0, T ),F(X)∩Cc(X)).

Thus, we get
uk ≤ u.

Now, we consider u∞ := limk→∞ uk. By the first step of (2.7), we
have u∞ ≤ u and u∞ ∈ L1

loc((0, T ),F(X))∩L1
loc([0, T ]×X, dt⊗V dm).

Since they are a solution of the heat equation with potential Vk, the uks
satisfy the following: for every 0 ≤ t < T and every ϕ ∈ F0((0, T )×X),

(2.15) −
∫ t

0

∫
X

uk(s, x)ϕs(s, x) dmds+

∫ t

0

∫
X

dΓ[uk(·, s), ϕ(·, s)] dt

=

∫ t

0

∫
X

uk(s, x)ϕ(s, x)Vk(x) dmdt.
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It is known that (uk) is a monotone sequence and |Vkuk| ≤ |V |u ∈
L1
loc((0, T ) × X, dmdt). Then, the dominated convergence theorem

implies that u∞ satisfies equation (2.3), which ends the proof. �

The following lemma is crucial for the development of the paper; it
is inspired from the ‘gradient’ case, where integration by parts is used.

Lemma 2.8. Let uk be the nonnegative solution of the approximate
problem (Pk) and ϕ ∈ F0(X) ∩ L∞(X,m). Then

(2.16)
ϕ2

uk
∈ F0(X) and E

(
uk,

ϕ2

uk

)
≤ E [ϕ].

Proof. It suffices to give the proof for positive ϕ. Let ϕ ≥ 0 and
uk be as specified in the lemma. Since E is a Dirichlet form, to prove
the first part, it suffices to prove that ϕ/uk ∈ F0(X) ∩ L∞(X,m). It
is simple to show that ϕ/uk ∈ L∞(X,m). In order to show that the
latter function has finite energy, we shall proceed directly. By using the
fact that the energy measure satisfies the Leibniz rule, an elementary
computation yields

dΓ

[
ϕ

uk

]
= ϕ2dΓ

[
1

uk

]
+ 2

ϕ

uk
dΓ

[
1

uk
, ϕ

]
+

1

u2k
dΓ[ϕ](2.17)

≤ 2

(
ϕ2 dΓ

[
1

uk

]
+

1

u2k
dΓ[ϕ]

)
≤ 2

u2k

(
ϕ2

u2k
dΓ[uk] + dΓ[ϕ]

)
≤ CdΓ[ϕ].

Thereby, we derive

(2.18) E
[
ϕ

uk

]
=

∫
X

dΓ

[
ϕ

uk

]
<∞,

and consequently, ϕ/uk ∈ F0(X).

Now, we proceed to prove inequality (2.16). For this, using again
the fact that the energy measure satisfies the Leibniz rule,

dΓ

[
uk,

ϕ2

uk

]
= ϕ2 dΓ

[
uk,

1

uk

]
+

1

uk
dΓ[uk, ϕ

2](2.19)

= −ϕ
2

u2k
dΓ[uk] + 2

ϕ

uk
dΓ[uk, ϕ] ≤ dΓ[ϕ].
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Thus,

(2.20) E
(
uk,

ϕ2

uk

)
≤ E [ϕ],

which is the desired result. �

At the end of this section, we give a technical result dealing with
the comparability of the ground state of the operator H which will be
needed in the proof of the nonexistence part.

Lemma 2.9. Suppose that the positivity preserving semigroup e−tH on
L2(X,m) has a continuous integral kernel pt(x, y) such that H has the
normalized ground state φ0 > 0, and let h(t, x) := e−tHu0(x) for every
t > 0 and every x ∈ X. Then

(2.21) h(t, ·) ∼ φ0 for every fixed t > 0.

Proof. Recall thatH is a nonnegative selfadjoint operator on L2(X,m)
such that, for every t > 0, e−Ht has the jointly continuous integral ker-
nel pt(x, y). Since u0 ∈ L2(X,m), then

(2.22) h(t, x) := e−tHu0(x) =

∫
X

pt(x, y)u0(y) dm for all t > 0.

Hence, using the notion of intrinsic ultracontractivity (IU), due to
Davies and Simon [17], we deduce that the operator e−tH is intrinsic
ultracontractive. Moreover, in [17], the authors proved that IU is
equivalent to either of the following two conditions:

(1) for all t > 0, there exist positive constants at and bt, such that

(2.23) atφ0(x)φ0(y) ≤ pt(x, y) ≤ btφ0(x)φ0(y);

(2) for all t > 0, there exists a positive constant ct such that

(2.24) |φn(x)| ≤ ctφ0(x)e
−(λ0−λn)t,

where φn is the eigenfunction associated to the nth eigenvalue λn of
H, whence, (2.21) is an immediate consequence of (2.23). �
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3. Existence of nonnegative solutions.

Theorem 3.1. Assume that λV0 > −∞. Then, the heat equation (1.1)
has at least one nonnegative solution satisfying

(3.1) ∥u(t)∥L2(X,m) ≤Meωt∥u0∥L2(X,m), t > 0,

for some constants M and ω.

Proof. Let us consider un as a solution to problem (Pn). Hence, by
using the fact that (un) ⊂ D(Hn) and (2.7), we obtain

d

dt
∥un∥2L2(X,m) = −2E [un] +

∫
X

Vnu
2
n dm(3.2)

≤ −2λV0

∫
X

u2n(x, t) dm.

Recall that, by Gronwall’s lemma, we achieve the upper estimate

(3.3) ∥un∥L2(X,m) ≤ ∥u0∥L2(X,m)e
−λV

0 t for all t > 0.

Hence, the sequence (un) increases to a nonnegative function u for every
t > 0 and m almost everywhere x ∈ X. Furthermore, due to Fubini’s
theorem, u ∈ L1

loc((0, T ), L
2(X,m)).

Now, we are in position to prove that u solves the heat equation (1.1).
Indeed, having Duhamel’s formula for the uns in hand, we conclude by
the monotone convergence theorem that

(3.4) u(x, t) = e−tHu0(x) +

∫ t

0

∫
X

pt−s(x, y)u(y, s)V (x) dmds.

Note that, pt > 0, t > 0, onX×X; thus, the latter formula implies that
u ∈ L1

loc((0, T ) × X, dt ⊗ V dm). Now, utilizing the equation fulfilled
by the uns being a solution of the Pns, we obtain by the dominated
convergence theorem, for every 0 ≤ t < T and every ϕ ∈ F0((0, T )×X),
that

−
∫ t

0

∫
X

u(s, x)ϕs(s, x) dmds+

∫ t

0

∫
X

dΓ[u(·, s), ϕ(·, s)] ds(3.5)

=

∫ t

0

∫
X

u(s, x)ϕ(s, x)V (x) dmds.

Then, estimate (3.1) follows from (3.3), and it holds with M = 1. �
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4. Blow up of nonnegative solutions. In order to prove the
nonexistence part, we are, first, going to establish an estimate for the
integral

∫
X
lnu, whenever u is a nonnegative solution. Such an estimate

has an independent interest and is involved in deriving regularity
properties for the solutions. It is used in our context and is inspired
from the one corresponding to the Dirichlet Laplacian [19, 34].

Theorem 4.1. Assume that u is a nonnegative solution of the heat
equation (1.1). Then, for all 0 < t1 < t2 < T , and all Φ ∈ F(X) ∩
C0(X), we have

(4.1)

∫
X

Φ2V dm− E [Φ] ≤ 1

t2 − t1

∫
X

ln

(
u(t2)

u(t1)

)
Φ2dm.

Proof. Choose a function Φ ∈ F(X) ∩ C0(X). Without loss of
generality, we may and shall suppose that

∫
X
Φ2dm = 1. By using

the fact that un is a solution of the heat equation, Φ2/un ∈ F0(X) (see
Lemma 2.8 and inequality (2.16)), we obtain∫

X

Φ2Vn dm =

∫
X

(∂tun)
Φ2

un
dm+ E

(
un,

Φ2

un

)
(4.2)

=
d

dt

∫
X

(lnun)Φ
2dm+ E

(
un,

Φ2

un

)
≤ d

dt

∫
X

(lnun)Φ
2dm+ E [Φ].

Hence,

(4.3)

∫
X

Φ2Vn dm− E [Φ] ≤ d

dt

∫
X

(lnun)Φ
2dm.

First, we integrate between t1 and t2, and second, we pass to the
limit and use Lemma 2.7 together with Jensen’s inequality to obtain
inequality (4.1). Then, we are done. �

Theorem 4.2. Assume that λ
(1−ε)V
0 = −∞ for some ε > 0. Then,

the heat equation (1.1) has no nonnegative solution satisfying (3.3).
Moreover, all nonnegative solutions with the above-mentioned property
blow up completely and instantaneously, i.e., limn→∞ un(t, x) = ∞ for
every t > 0 and every x ∈ X.
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Proof.

(a) We take T = ∞, and, by integrating (4.3) with respect to
t ∈ (1,+∞), we obtain∫

X

Φ2Vn dm− E [Φ] ≤ 1

t− 1

∫
X

ln

(
un(t)

un(1)

)
Φ2dm,

which implies, by using the monotone convergence theorem, that∫
X

Φ2V dm− E [Φ] ≤ 1

t− 1

[ ∫
X

ln(ũ(t))Φ2dm−
∫
X

ln(ũ(1))Φ2dm

]
for every t > 1, where ũ(t) = limn→∞ un(t). In view of Jensen’s and
Hölder’s inequality, along with (3.1), we deduce∫
X

Φ2V dm− E [Φ] ≤ 1

t− 1

{
ln

[(∫
X

ũ(t) dm

)1/2(∫
X

Φ4

)1/2]
−

∫
X

ln(ũ(1))Φ2dm

}
≤ 1

2(t− 1)

{
ln

(∫
X

ũ2(t)dm

)
+ ln

(∫
X

Φ4dm

)
− 2

∫
X

ln(ũ(1))Φ2dm

}
≤ 1

2(t− 1)

{
ln

(∫
X

u2(t)dm

)
+ ln

(∫
X

Φ4dm

)
− 2

∫
X

ln(ũ(1))Φ2dm

}
≤ 1

2(t− 1)
(2ωt+ 2 ln ∥u0∥L2(X,m) + 2 ln ∥Φ∥L∞(X,m)).

Note that, by letting t→ +∞, we obtain∫
X

Φ2V dm− E [Φ] ≤ ω.

Hence,

(4.4) −λV0 ≤ ω <∞.

(b) Now, let T <∞, and fix 0 < t1 < t2 < T . By the same argument
as in [7], we prove that, for any r > 0, there exists a C(r) > 0 such
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that

(4.5)
1

t2 − t1

∫
X

ln

(
u(x, t2)

u(x, t1)

)
Φ2dm ≤ rE [Φ] + C(r)

∫
X

Φ2dm

for all Φ ∈ F0(X). Therefore, for any Φ ∈ F(X) ∩ C0(X) such that∫
X
Φ2dm = 1, we have

(4.6)
−C(r)
1 + r

≤ E [Φ]− (1 + r)−1

∫
X

Φ2V dm.

Thus, we obtain

(4.7) λ
(1+r)−1V
0 > −∞ for all r > 0,

which concludes the first step of the proof.

Concept of continuation. Given x ∈ X and t ∈ (0, T ), and setting
ρ = ρ(y) = pt/2(x, y), note that, by using the same idea as in [7], we
prove from the upper bound of the heat kernel that ln ρ ∈ Lp(X,m)
for any p > 1.

Assume that, if there is no s ∈ (0, t/2] such that ρ(·)u(·, s) ∈
L1(X,m), the continuation after blow-up can be studied by writing
the standard integration formula

u(x, t) = Pt/2u

(
x,
t

2

)
+

∫ t

t/2

∫
X

ps(x, y)V (y)u(y, s)m(dy) ds

(4.8)

≥ Pt/2u

(
x,
t

2

)
=

∫
X

pt/2(x, y)u

(
y,
s

2

)
m(dy) =

∫
X

ρ(y)u

(
y,
t

2

)
m(dy) = ∞,

where {Pt, t ≥ 0} denotes the transition semigroup on X.

The case s ∈ (0, t/2] is the only point such that ρ(·)u(·, s) ∈
L1(X,m). Using the standard integration formula for the weak solution
once again, we obtain

u

(
x,

(t+ s)

2

)
≥

∫
X

pt/2(x, y)u

(
y,
s

2

)
m(dy)(4.9)

=

∫
X

ρ(y)u

(
y,
s

2

)
m(dy) = ∞.
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Furthermore, from the parabolic Harnack inequality for time-dependent
locally Dirichlet forms [25, 27], we derive that, for every x ∈ X, every
r > 0 such that Br(x) ⊂ X, every z ∈ Br(x) and every small γ > 0,
there is a constant C = c(t, γ, r) > 0 such that

(4.10) p(t+γr)/2(z, y) ≥ Cpt/2(x, y) for all y ∈ X.

Therefore, for every z ∈ Br(x), we have

u

(
z,
t+ s+ γr

2

)
≥ P(t+γr)/2u

(
z,
s

2

)
(4.11)

=

∫
X

p(t+γr)/2(z, y)u

(
y,
s

2

)
m(dy)

≥ C

∫
X

pt/2(x, y)u

(
y,
s

2

)
m(dy)

≥
∫
X

ρ(y)u

(
y,
s

2

)
m(dy) = ∞.

Moreover, in view of the standard integration formula for the weak
solution (or Duhamel’s formula) and the semigroup property (see
Definition 2.3 or [29, Proposition 2.3 ]), we have

u(x, t) ≥
∫
X

pt−(s/2)(x, y)u

(
y,
s

2

)
m(dy)

(4.12)

=

∫
X

∫
X

p(t−s−γr)/2(x, z)p(t+γr)/2(z, y)u

(
y,
s

2

)
m(dz)m(dy)

=

∫
X

p(t−s−γr)/2(x, z)

[ ∫
X

p(t+γr)/2(z, y)u

(
y,
s

2

)
m(dy)

]
m(dz)

=

∫
X

p(t−s−γr)/2(x, z)u

(
z,
t+ s+ γr

2

)
m(dz)

≥
∫
Br(x)

p(t−s−γr)/2(x, z)u

(
z,
t+ s+ γr

2

)
m(dz).

It follows, since (x, t) is arbitrary, that u blows up, and we obtain the
desired result. �

5. Examples. Let Eω be a Dirichlet form defined on L2(ω2dm) by

(5.1) D(Eω) = {f : ωf ∈ F}, Eω[f ] = E [ωf ] for all f ∈ D(Eω).
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Let ν be a positive radon measure on Borel subset of X and Eν the
form defined by

(5.2) D(Eν) = F , Eν [f ] = E [f ]−
∫
f2dν for all f ∈ F .

Now, let Qω take the form

D(Qω) = {f : ωf ∈ F}, Qω[f ](5.3)

= Eω
ν [f ]−

∫
f2ω2dm for all f ∈ D(Qω).

For more details and elementary properties of the forms Eω
ν and Qω,

which remain unexplained or unproven herein, the reader is referred to
[9].

Proposition 5.1. Assume that there is a real positive constant c and
a function ω > 0, m almost everywhere such that

(5.4) Eν [ω, f ]−
∫
X

fωV dm ≥ c

∫
X

fω dν

for every positive function f , where ν is a positive radon measure on
the Borel subset of X. Then, λV0 ≥ c.

Proof. First, we define the vector space

Cw := {f : f ∈ F ∩ L∞(X,m), w ∈ L2(dΓ[f ])},

as a core for Qω. Recall that λV0 is defined as

(5.5) λV0 = inf

{Eω
ν [f ]−

∫
X
f2ω2V dm∫

X
f2ω2dν

, f ∈ Cw, f ̸= 0

}
.

By using the expression of Qω, we get

Qω[f ] = Eω
ν [f ]−

∫
f2ω2dm

=

∫
dΓ[ω, ωf2]−

∫
f2ω2dν +

∫
ω2dΓ[f ]−

∫
f2ω2V dm(5.6)

= Eν(ω, ωf2)−
∫
f2ω2V dm+

∫
ω2dΓ[f ].



HEAT EQUATION FOR LOCAL DIRICHLET FORMS 2591

Ensuring inequality (5.4), we deduce that

(5.7) Qω[f ] ≥ c

∫
f2ω2dν for all f ∈ Cw,

and we are finished. �

Now, we give an example where the heat equation (1.1) has no
nonnegative solution.

Lemma 5.2. Assume that there exist λ > 1, r > 0, a sequence of
finite intrinsic balls Bk = B(0, r/k) ⊂ X and a sequence {ϕk} ⊂
F(X) ∩ Cc(X) with Suppϕk ⊂ Bk satisfying

∫
ϕ2km(dx) = 1 such that

(5.8)

∫
ϕ2k(x)V m(dx) ≥ λE [ϕk] for all k.

Then, the heat equation (1.1) has no nonnegative solution.

Proof. Since V satisfies the condition given in Lemma 5.2, by using
the strong Poincaré inequality [31], there exist λ′ > 1 and ϵ ∈ (0, 1)
such that

− E [ϕk] + (1− ϵ)

∫
ϕ2k(x)V m(dx) ≥ (λ′ − 1)E [ϕk]

(5.9)

≥ c(λ′ − 1)

(
k

r

)2 ∫
Bk

∣∣∣∣ϕk − 1

m(Bk)

∫
Bk

ϕkdm

∣∣∣∣2dm for all k.

Hence,

λ
(1−ϵ)V
0 (Bk) ≤ −c

(
k

r

)2

−→ −∞, as k → ∞.

On the other hand, by using the inequality

(5.10) λ
(1−ϵ)V
0 (Bk) ≥ λ

(1−ϵ)V
0 ,

we achieve the result. �

Acknowledgments. I thank the referee for his/her time and com-
ments.
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