EIGENVALUES OF SOME p(x)-BIHARMONIC PROBLEMS UNDER NEUMANN BOUNDARY CONDITIONS

MOUNIR HSINI, NAWAL IRZI AND KHALED KEFI

ABSTRACT. In this paper, we study the following p(x)-biharmonic problem in Sobolev spaces with variable exponents

$$\begin{cases} \triangle_{p(x)}^2 u = \lambda(\partial F(x,u)/\partial u) & x \in \Omega, \\ \partial u/\partial n = 0 & x \in \partial \Omega, \\ \partial (|\triangle u|^{p(x)-2} \triangle u)/\partial n = a(x)|u|^{p(x)-2} u & x \in \partial \Omega. \end{cases}$$

By means of the variational approach and Ekeland's principle, we establish that the above problem admits a nontrivial weak solution under appropriate conditions.

1. Introduction. Stimulated by the development of the study of elastic mechanics, see [29], electrorheological fluids, see [26], image processing, see [5], and mathematical description of the filtration processes of an ideal baroscopic gas through a porous medium, see [1], interest in variational problems and differential equations with variable exponents has grown in recent decades. Meanwhile, elliptic problems involving operators in divergence form can be found in [4, 22]. Some other results dealing with the p(x)-Laplace and the p(x)-biharmonic operators in Sobolev spaces with variable exponents can be found in [12, 15, 16, 17, 18, 20, 21].

The purpose of this paper is to study the existence of an eigenvalue for the following p(x)-biharmonic problem

$$(1.1) \qquad \begin{cases} \triangle_{p(x)}^2 u = \lambda(\partial F(x,u)/\partial u) & x \in \Omega, \\ \partial u/\partial n = 0 & x \in \partial \Omega, \\ \partial (|\triangle u|^{p(x)-2}\triangle u)/\partial n = a(x)|u|^{p(x)-2}u & x \in \partial \Omega, \end{cases}$$

²⁰¹⁰ AMS Mathematics subject classification. Primary 35D05, 35D30, 35J58, 35J60, 35J65.

Keywords and phrases. p(x)-biharmonic operator, Ekeland's variational principle, generalized Sobolev spaces, weak solution.

Received by the editors on December 14, 2017, and in revised form on April 18, 2018

where Ω is a bounded smooth domain in \mathbb{R}^N $(N \geq 3)$ with sufficiently smooth boundary $\partial\Omega$, $\Delta^2_{p(x)}u = \Delta(|\Delta u|^{p(x)-2}\Delta u)$ is the p(x)-biharmonic operator of fourth order, n is a unit outward normal to $\partial\Omega$, $a \in L^{\infty}(\partial\Omega)$ with $a^- := \inf_{x \in \partial\Omega} a(x) > 0$, λ is a positive real number and the functions p and F satisfy the following assumptions:

$$p \in C(\overline{\Omega}) \text{ with } p^- := \inf_{x \in \overline{\Omega}} p(x) > 1 \text{ and } F \in C^1(\overline{\Omega} \times \mathbb{R}, \mathbb{R}).$$

The p(x)-biharmonic problem under Neumann boundary conditions has been studied by many authors in recent years. Let us recall that Ben Haddouch, et al. [3], studied the following problem:

(1.2)
$$\begin{cases} \triangle_{p(x)}^2 u = \lambda |u|^{q(x)-2} u & x \in \Omega, \\ \partial u/\partial n = \partial (|\triangle u|^{p(x)-2} \triangle u)/\partial n = 0 & x \in \partial \Omega. \end{cases}$$

The authors established the existence of a continuous family of eigenvalues by using the Mountain pass lemma and Ekeland's variational principle. Moreover, Taarabti, et al. [27], studied the following nonhomogeneous eigenvalue problem

(1.3)
$$\begin{cases} \triangle_{p(x)}^2 u = \lambda V(x) |u|^{q(x)-2} u & x \in \Omega, \\ \partial u/\partial n = \partial (|\triangle u|^{p(x)-2} \triangle u)/\partial n = 0 & x \in \partial \Omega. \end{cases}$$

They used Ekeland's variational principle to prove the existence of a continuous family of eigenvalues which lies in a neighborhood of the origin. Moreover, Bin Ge, et al. [13], proved the existence of a continuous family of eigenvalues by considering different situations concerning the growth rates involved in the above-quoted problem. Inspired by the above-mentioned papers, we study problem (1.1) under the following assumptions.

(**H1**) $F: \overline{\Omega} \times \mathbb{R} \to \mathbb{R}$ is a C^1 function such that

$$F(x,tu)=t^{q(x)}F(x,u),\ t>0,\ \text{for all}\ x\in\Omega,\ u\in\mathbb{R}.$$

(**H2**)
$$\left| \frac{\partial F}{\partial t}(x,t) \right| \le c_1 V(x) |t|^{q(x)-1},$$

for all $t \in \mathbb{R}$, for all $x \in \overline{\Omega}$, where c is a positive constant, $V \in L^{s(x)}(\Omega)$ and $s, q \in C(\overline{\Omega})$ are such that, for all $x \in \overline{\Omega}$, we have 1 < q(x) < p(x) < N/2 < s(x).

(**H3**) There exists an $\Omega_0 \subset\subset \Omega$ with $|\Omega_0| > 0$ such that F(x,t) > 0 in Ω_0 .

Remark 1.1. Due to assumption (H1), F leads to the so-called Euler identity

(1.4)
$$t\frac{\partial F}{\partial t}(x,t) = q(x)F(x,t), \text{ for all } x \in \Omega, \ t \in \mathbb{R}.$$

Our main results establish, for small perturbation, the existence of a continuous family of eigenvalues in a neighborhood of the origin. On the other hand, we show the existence of a global minimizer of the Euler Lagrange functional associated to problem (1.1).

2. Terminology and abstract setting. In order to study p(x)-biharmonic problems, we need some results on the spaces $L^{p(x)}(\Omega)$, $W^{1,p(x)}(\Omega)$ and $W^{k,p(x)}(\Omega)$, see [10, 14, 24, 25] for details, complements and proofs.

Set

$$C_+(\overline{\Omega}):=\{h:h\in C(\overline{\Omega}),\ h(x)>1\ \text{for all}\ x\in\overline{\Omega}\}.$$

For any $p \in C_+(\overline{\Omega})$, we denote $1 < p^- := \min_{x \in \overline{\Omega}} p(x) \le p^+ = \max_{x \in \overline{\Omega}} p(x) < \infty$ and

$$L^{p(x)}(\Omega) = \bigg\{ u: \Omega \to \mathbb{R} \text{ measurable and } \int_{\Omega} |u(x)|^{p(x)} dx < \infty \bigg\}.$$

The spaces $L^{p(x)}(\Omega)$ were introduced by Orlicz [23].

The space $L^{p(x)}(\Omega)$ is endowed with the Luxemburg norm, defined by

$$|u|_{p(x)} = \inf \left\{ \mu > 0 : \int_{\Omega} \left| \frac{u(x)}{\mu} \right|^{p(x)} dx \le 1 \right\}.$$

Clearly, when $p(x) \equiv p$, the space $L^{p(x)}(\Omega)$ reduces to the classical Lebesgue space $L^p(\Omega)$, and the norm $|u|_{p(x)}$ reduces to the standard norm

$$||u||_{L^p} = \left(\int_{\Omega} |u|^p dx\right)^{1/p}$$
 in $L^p(\Omega)$.

For any positive integer k, let

$$W^{k,p(x)}(\Omega) = \{ u \in L^{p(x)}(\Omega) : D^{\alpha}u \in L^{p(x)}(\Omega), |\alpha| \le k \},$$

where $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_N)$ is a multi-index,

$$|\alpha| = \sum_{i=1}^{N} \alpha_i$$
 and $D^{\alpha} u = \frac{\partial^{|\alpha|} u}{\partial^{\alpha_1} x_1 \cdots \partial^{\alpha_N} x_n}$.

Then, $W^{k,p(x)}(\Omega)$ is a separable and reflexive Banach space, equipped with the norm

$$||u||_{k,p(x)} = \sum_{|\alpha| \le k} |D^{\alpha}u|_{p(x)}.$$

Let $L^{p'(x)}(\Omega)$ be the conjugate space of $L^{p(x)}(\Omega)$ with 1/p+1/p'=1. Then, the following Hölder-type inequality

$$\left| \int_{\Omega} uv \, dx \right| \le \left(\frac{1}{p^{-}} + \frac{1}{(p')^{-}} \right) |u|_{p(x)} |v|_{p'(x)}, \quad u \in L^{p(x)}(\Omega), \ v \in L^{p'(x)}(\Omega),$$

holds. Moreover, if h_1 , h_2 and h_3 : $\overline{\Omega} \to (1, \infty)$ are Lipschitz continuous functions such that $1/h_1(x) + 1/h_2(x) + 1/h_3(x) = 1$, then, for any $u \in L^{h_1(x)}(\Omega)$, $v \in L^{h_2(x)}(\Omega)$ and $w \in L^{h_3(x)}(\Omega)$, the following inequality holds [9, Proposition 2.5]:

$$(2.2) \qquad \left| \int_{\Omega} uvw \, dx \right| \leq \left(\frac{1}{h_{1}^{-}} + \frac{1}{h_{2}^{-}} + \frac{1}{h_{3}^{-}} \right) |u|_{h_{1}(x)} |v|_{h_{2}(x)} |w|_{h_{3}(x)}.$$

Inequality (2.1) and its generalized version (2.2) are due to Orlicz [23].

The modular on the space $L^{p(x)}(\Omega)$ is the map $\rho_{p(x)}: L^{p(x)}(\Omega) \to \mathbb{R}$, defined by

$$\rho_{p(x)}(u) := \int_{\Omega} |u|^{p(x)} dx.$$

Proposition 2.1 ([19]). For all $u, v \in L^{p(x)}(\Omega)$, we have

- (i) $|u|_{p(x)} < 1$ (respectively, = 1, > 1) $\Leftrightarrow \rho_{p(x)}(u) < 1$ (respectively, = 1, > 1).
 - (ii) $\min(|u|_{p(x)}^{p^-}, |u|_{p(x)}^{p^+}) \le \rho_{p(x)}(u) \le \max(|u|_{p(x)}^{p^-}, |u|_{p(x)}^{p^+}).$
 - (iii) $\rho_{p(x)}(u-v) \to 0 \Leftrightarrow |u-v|_{p(x)} \to 0.$

Another interesting property of the variable exponent Lebesgue space $L^{p(x)}(\Omega)$ is the following.

Proposition 2.2 ([6]). Let p and q be measurable functions such that $p \in L^{\infty}(\Omega)$ and $1 \leq p(x)q(x) \leq \infty$, for almost every $x \in \Omega$. Let $u \in L^{q(x)}(\Omega)$, $u \neq 0$. Then

$$\min(|u|_{p(x)q(x)}^{p^+}, |u|_{p(x)q(x)}^{p^-}) \le ||u|^{p(x)}|_{q(x)} \le \max(|u|_{p(x)q(x)}^{p^-}, |u|_{p(x)q(x)}^{p^+}).$$

In order to prove the existence of a weak solution for problem (1.1), we introduce the space

$$X = \bigg\{ u \in W^{2,p(x)}(\Omega) : \frac{\partial u}{\partial n} \bigg|_{\partial \Omega} = 0 \bigg\}.$$

This space was first considered by El Amrouss, et al. [7], who proved that X is a nonempty and well-defined closed subspace of $W^{2,p(x)}(\Omega)$.

Let

$$||u||_a := \inf \left\{ \mu > 0 : \int_{\Omega} \left| \frac{\Delta u}{\mu} \right|^{p(x)} dx + \int_{\partial \Omega} a(x) \left| \frac{u}{\mu} \right|^{p(x)} d\sigma \le 1 \right\}$$

for $u \in X$. Since $a \in L^{\infty}(\partial\Omega)$ and $\operatorname{essinf}_{x \in \Omega} a > 0$, we deduce that $\|u\|_a$ is an equivalent norm to $\|u\|_{2,p(x)}$ in X. Here, we will use the norm $\|u\|_a$, and the modular is defined as $\rho^a_{p(x)}: X \to \mathbb{R}$ by

$$\rho_{p(x)}^{a}(u) = \int_{\Omega} |\Delta u|^{p(x)} dx + \int_{\partial \Omega} a(x) |u|^{p(x)} d\sigma,$$

which satisfies the same properties as Proposition 2.1. Accordingly, we have, similar to [11, Theorem 1.3], the following propositions.

Proposition 2.3. For all $u \in L^{p(x)}(\Omega)$, we have

- (i) $||u||_a < 1$ (respectively, = 1, > 1) $\Leftrightarrow \rho_{p(x)}^a(u) < 1$ (respectively, = 1, > 1).
 - (ii) $\min(\|u\|_a^{p^-}, \|u\|_a^{p^+}) \le \rho_{p(x)}^a(u) \le \max(\|u\|_a^{p^-}, \|u\|_a^{p^+}).$
- (iii) $||u_n||_a \to 0$ (respectively, $\to \infty$) $\Leftrightarrow \rho_{p(x)}^a(u_n) \to 0$ (respectively, $\to \infty$).

Arguments similar to those used in the proof of [2, Proposition 4.2] showed the following.

Proposition 2.4. Let

$$I_a(u) = \int_{\Omega} \frac{1}{p(x)} |\Delta u|^{p(x)} dx + \int_{\partial \Omega} \frac{1}{p(x)} a(x) |u|^{p(x)} d\sigma.$$

Then

- (i) $I_a:X\to\mathbb{R}$ is sequentially weakly lower semi-continuous, $I_a\in C^1(X,\mathbb{R}).$
- (ii) The mapping $I'_a: X \to X^*$ is a strictly monotone, bounded homeomorphism, and is of type (S_+) , that is, if $u_n \to u$ and $\limsup_{n \to +\infty} I'_a(u_n)(u_n-u) \leq 0$, then $u_n \to u$.

We recall that the critical Sobolev exponent is defined as follows:

$$p^*(x) = \begin{cases} \frac{Np(x)}{N - p(x)} & p(x) < \frac{N}{2}, \\ +\infty & p(x) \ge \frac{N}{2}. \end{cases}$$

We point out that, if $q \in C^+(\overline{\Omega})$ and $q(x) < p^*(x)$ for all $x \in \overline{\Omega}$, then X is continuously and compactly embedded in $L^{q(x)}(\Omega)$. The Lebesgue and Sobolev spaces with variable exponents coincide with the usual Lebesgue and Sobolev spaces, provided that p is constant. According to [25, pages 8–9], these function spaces $L^{p(x)}$ and $W^{1,p(x)}$ have some unusual properties, such as:

(i) Assuming that $1 < p^- \le p^+ < \infty$, and $p : \overline{\Omega} \to [1, \infty)$ is a smooth function, then the following co-area formula

$$\int_{\Omega} |u(x)|^p dx = p \int_{0}^{\infty} t^{p-1} |\{x \in \Omega; \ |u(x)| > t\}| dt$$

has no analog in the framework of variable exponents.

(ii) Spaces $L^{p(x)}$ do not satisfy the mean continuity property. More exactly, if p is nonconstant and continuous in an open ball B, then there is some $u \in L^{p(x)}(B)$ such that $u(x+h) \notin L^{p(x)}(B)$ for every $h \in \mathbb{R}^N$ with arbitrary small norm.

(iii) Function spaces with variable exponents are *never* invariant with respect to translations. The convolution is also limited. For instance, the classical Young inequality

$$|f * g|_{p(x)} \le c |f|_{p(x)} ||g||_{L^1}$$

remains true if and only if p is constant.

3. Main results and auxiliary properties. Throughout the paper, the letters $c, c_i, i = 1, 2, \ldots$, denote positive constants which may change from line to line. In the sequel, denote by s'(x) the conjugate exponent of the function s(x), and put $\alpha(x) := s(x)q(x)/(s(x) - q(x))$. Then, we have:

Remark 3.1. Under assumption (\mathbf{H}_2) , we have $s'(x)q(x) < p^*(x)$ for all $x \in \overline{\Omega}$, $\alpha(x) < p^*(x)$ for all $x \in \overline{\Omega}$; hence, the embeddings $X \hookrightarrow L^{s'(x)q(x)}(\Omega)$ and $X \hookrightarrow L^{\alpha(x)}(\Omega)$ are compact and continuous.

Proposition 3.2 ([8, Theorem 2.4]). Let $\Omega \in \mathbb{R}^N$ be an open bounded domain with Lipschitz boundary. Let m be a positive integer. Suppose that $p \in C^0(\overline{\Omega})$ with $p^- > 1$ and $mp^+ < N$. If $q \in S(\partial\Omega)$, where $S(\partial\Omega)$ is the set of all measurable real functions defined on Ω , and there exists a positive constant ε such that

$$1 \le q(x) < q(x) + \varepsilon \le \frac{(N-1)p(x)}{N - mp(x)} \quad \textit{for } x \in \partial \Omega,$$

then the boundary trace embedding $W^{m,p(.)}(\Omega) \hookrightarrow L^{q(.)}(\partial\Omega)$ is compact.

Remark 3.3. Since p > 1/2, then, by Proposition 3.2, we have that $W^{2,p(x)}(\Omega) \hookrightarrow L^{p(x)}(\partial\Omega)$ is compact.

Note that an eigenvalue for problem (1.1) satisfies the following definition.

Definition 3.4. We say that $\lambda \in \mathbb{R}$ is an eigenvalue of problem (1.1), if there exists a $u \in X \setminus \{0\}$ such that

$$\int_{\Omega} |\triangle u|^{p(x)-2} \triangle u \triangle v \, dx + \int_{\partial \Omega} a(x) |u|^{p(x)-2} uv \, d\sigma = \lambda \int_{\Omega} \frac{\partial F}{\partial u}(x,u) v \, dx,$$

for any $v \in X$, and we recall that, if λ is an eigenvalue of problem (1.1), then, the corresponding $u \in X \setminus \{0\}$ is a weak solution of (1.1).

Proposition 3.5. If $u \in X$ is a weak solution of (1.1) and $u \in C^4(\overline{\Omega})$, then, u is a classical solution of (1.1).

Proof. Let $u \in C^4(\overline{\Omega})$ be a weak solution of problem (1.1). Then, for every $v \in X$, we have

$$\int_{\Omega} |\triangle u|^{p(x)-2} \triangle u \triangle v \, dx + \int_{\partial \Omega} a(x) |u|^{p(x)-2} uv \, d\sigma = \lambda \int_{\Omega} \frac{\partial F}{\partial u}(x,u) v \, dx.$$

By applying Green's formula, we have:

$$\int_{\Omega} \triangle(|\triangle u|^{p(x)-2}\triangle u)v \, dx = -\int_{\Omega} \nabla(|\triangle u|^{p(x)-2}\triangle u) \cdot \nabla v \, dx$$
$$+\int_{\partial\Omega} v \frac{\partial}{\partial n} (|\triangle u|^{p(x)-2}\triangle u) \, d\sigma,$$

and

$$\begin{split} \int_{\Omega} |\triangle u|^{p(x)-2} \triangle u \triangle v \, dx &= -\int_{\Omega} \nabla (|\triangle u|^{p(x)-2} \triangle u) \cdot \nabla v \, dx \\ &+ \int_{\partial \Omega} (|\triangle u|^{p(x)-2} \triangle u) \frac{\partial}{\partial n} (v) \, d\sigma. \end{split}$$

Since $v \in X$, then $\partial(v)/\partial n = 0$. For $v \in D(\Omega)$, we have

$$\triangle(|\triangle u|^{p(x)-2}\triangle u) = \lambda \frac{\partial F}{\partial u}(x,u) \text{ almost everywhere } x \in \Omega.$$

For each $v \in X$, we have

$$\int_{\partial\Omega} \frac{\partial}{\partial n} (|\triangle u|^{p(x)-2} \triangle u) v d\sigma = \int_{\partial\Omega} a(x) |u|^{p(x)-2} uv d\sigma.$$

Then, for all $v \in D(\Omega)$, we have

$$\int_{\partial\Omega}\frac{\partial}{\partial n}(|\triangle u|^{p(x)-2}\triangle u)v\,d\sigma=\int_{\partial\Omega}a(x)|u|^{p(x)-2}uv\,d\sigma,$$

which implies that

$$\frac{\partial}{\partial n}(|\triangle u|^{p(x)-2}\triangle u) - a(x)|u|^{p(x)-2}u = 0$$
 almost everywhere $x \in \Omega$.

The first result in this paper is the following.

Theorem 3.6. Assume that hypotheses (**H1**), (**H2**) and (**H3**) are fulfilled. Then, there exists a $\lambda^* > 0$, such that any $\lambda \in (0, \lambda^*)$ is an eigenvalue of problem (1.1).

In the second, we establish that the Euler-Lagrange functional associated to problem (1.1) has a global minimizer.

Theorem 3.7. Assume that hypotheses (H1), (H2) and (H3) hold. Then, any $\lambda > 0$ is an eigenvalue of problem (1.1).

In order to formulate the variational problem (1.1), we introduce the functionals Φ and $J: X \to \mathbb{R}$, defined by:

$$\Phi(u) = \int_{\Omega} \frac{1}{p(x)} |\Delta u|^{p(x)} dx + \int_{\partial \Omega} \frac{a(x)}{p(x)} |u|^{p(x)} d\sigma$$

and

$$J(u) = \int_{\Omega} F(x, u) \, dx.$$

The Euler Lagrange functional corresponding to problem (1.1) is defined by $\Psi_{\lambda}: X \to \mathbb{R}$, where

$$\Psi_{\lambda}(u) := \Phi(u) - \lambda J(u).$$

Standard arguments show that $\Psi_{\lambda} \in C^{1}(X, \mathbb{R})$ and

$$\langle d\Psi_{\lambda}(u), v \rangle = \int_{\Omega} |\triangle u|^{p(x)-2} \triangle u \triangle v \, dx$$
$$+ \int_{\partial \Omega} a(x) |u|^{p(x)-2} uv \, d\sigma - \lambda \int_{\Omega} \frac{\partial F}{\partial u}(x, u) v \, dx,$$

for any $v \in X$. Hence, a solution to problem (1.1) is a critical point of Ψ_{λ} .

We begin with the following auxiliary lemmas.

Lemma 3.8. Suppose that we are under the hypotheses of Theorem 3.6. Then, for all $\rho \in (0,1)$, there exist $\lambda^* > 0$ and b > 0 such that, for all

 $u \in X \text{ with } ||u||_a = \rho,$

$$\Psi_{\lambda}(u) \ge b > 0 \quad \text{for all } \lambda \in (0, \lambda^*).$$

Proof. Since the embedding $X \hookrightarrow L^{s'(x)q(x)}(\Omega)$ is continuous, then

$$(3.1) |u|_{s'(x)q(x)} \le c_2 ||u||_a, \text{for all } u \in X.$$

We assume that $||u||_a < \min(1, 1/c_2)$, where c_2 is the positive constant of inequality (3.1). Then, we have $|u|_{s'(x)q(x)} < 1$, using Hölder inequality (2.1), Proposition 2.3, Remark 1.1 and inequality (3.1), we deduce that, for any $u \in X$ with $||u||_a = \rho$, the following inequalities hold:

$$\begin{split} \Psi_{\lambda}(u) &= \int_{\Omega} \frac{1}{p(x)} |\Delta u|^{p(x)} dx + \int_{\partial \Omega} \frac{a(x)}{p(x)} |u|^{p(x)} d\sigma - \lambda \int_{\Omega} F(x, u) dx \\ &\geq \frac{1}{p^{+}} ||u||_{a}^{p^{+}} - \lambda c_{1} |V|_{s(x)} ||u|^{q(x)}|_{s'(x)} \\ &\geq \frac{1}{p^{+}} ||u||_{a}^{p^{+}} - \lambda c_{1} |V|_{s(x)} |u|_{s'(x)q(x)}^{q^{-}} \\ &\geq \frac{1}{p^{+}} ||u||_{a}^{p^{+}} - \lambda c_{1} |V|_{s(x)} c_{2}^{q^{-}} ||u||_{a}^{q^{-}} \\ &= \frac{1}{p^{+}} \rho^{p^{+}} - \lambda c_{1} c_{2}^{q^{-}} |V|_{s(x)} \rho^{q^{-}} \\ &= \rho^{q^{-}} \left(\frac{1}{p^{+}} \rho^{p^{+} - q^{-}} - \lambda c_{1} c_{2}^{q^{-}} |V|_{s(x)} \right). \end{split}$$

From the above inequality, we remark that, if we define

(3.2)
$$\lambda^* = \frac{\rho^{p^+ - q^-}}{2p^+} \frac{1}{c_1 c_2^{q^-} |V|_{s(x)}},$$

then, for any $\lambda \in (0, \lambda^*)$ and $u \in X$ with $||u||_a = \rho$, there exists a b > 0 such that

$$\Psi_{\lambda}(u) \ge b > 0.$$

The proof of Lemma 3.8 is complete.

The next result asserts the existence of a valley for Ψ_{λ} near the origin.

Lemma 3.9. There exists a $\phi \in X$ such that $\phi \geq 0$, $\phi \neq 0$ and $\Psi_{\lambda}(t\phi) < 0$, for t > 0 small enough.

Proof. Assumption (**H2**) implies that q(x) < p(x) for all $x \in \overline{\Omega}_0$. In the sequel, denote $q_0^- = \inf_{\Omega_0} q(x)$ and $p_0^- = \inf_{\Omega_0} p(x)$. Let ϵ_0 be such that $q_0^- + \epsilon_0 < p_0^-$. On the other hand, since $q \in C(\overline{\Omega}_0)$, there exists an open set $\Omega_1 \subset \Omega_0$ such that $|q(x) - q_0^-| < \epsilon_0$ for all $x \in \Omega_1$. It follows that $q(x) \le q_0^- + \epsilon_0 < p_0^-$, for all $x \in \Omega_1$.

Let $\phi \in C_0^{\infty}(\Omega)$ be such that $\operatorname{supp}(\phi) \subset \Omega_1 \subset \Omega_0$, $\phi = 1$ in a subset $\Omega'_1 \subset \operatorname{supp}(\phi)$, $0 \le \phi \le 1$ in Ω_1 . We obtain

$$\begin{split} \Psi_{\lambda}(t\phi) &= \int_{\Omega} \frac{1}{p(x)} |\Delta(t\phi)|^{p(x)} dx + \int_{\partial\Omega} \frac{a(x)}{p(x)} |t\phi|^{p(x)} d\sigma - \lambda \int_{\Omega} F(x, t\phi) dx \\ &\leq \frac{1}{p_0^-} \bigg(\int_{\Omega_0} t^{p(x)} |\Delta\phi|^{p(x)} dx + \int_{\partial\Omega} t^{p(x)} a(x) |\phi|^{p(x)} d\sigma \bigg) \\ &- \lambda \int_{\Omega_1} t^{q(x)} F(x, \phi) dx \\ &\leq \frac{t^{p_0^-}}{p_0^-} \rho_{p(x)}^a(\phi) - \lambda t^{q_0^- + \epsilon_0} \int_{\Omega_1} F(x, \phi) dx, \\ &\leq \frac{t^{p_0^-}}{p_0^-} \max(\|\phi\|_a^{p^-}, \|\phi\|_a^{p^+}) - \lambda t^{q_0^- + \epsilon_0} \int_{\Omega_1} F(x, \phi) dx. \end{split}$$

Therefore,

$$\Psi_{\lambda}(t\phi) < 0$$

for $t < \delta^{1/(p_0^- - q_0^- - \epsilon_0)}$, with

$$0 < \delta < \min \left\{ 1, \frac{\lambda p_0^- \int_{\Omega_1} F(x, \phi) dx}{\max(\|\phi\|_p^{p^+}, \|\phi\|_p^{p^-})} \right\}.$$

Since $\phi = 1$ in Ω'_1 , then $\|\phi\|_a > 0$; thus, the proof of Lemma 3.9 is complete.

Proof of Theorem 3.6. Let $\lambda^* > 0$ be defined as in (3.2) and $\lambda \in (0, \lambda^*)$. By Lemma 3.8 it follows that, on the boundary of the ball centered at the origin and of radius ρ in X, denoted by $B_{\rho}(0)$, we have

(3.3)
$$\inf_{\partial B_{\lambda}(0)} \Psi_{\lambda} > 0.$$

On the other hand, by Lemma 3.9, there exists a $\phi \in X$ such that $\Psi_{\lambda}(t\phi) < 0$ for all t > 0 small enough. Moreover, using Hölder inequality (2.1), Proposition 2.3 and inequality (3.1), we deduce that, for any $u \in B_{\rho}(0)$, we have

$$\Psi_{\lambda}(u) \geq \frac{1}{p^{+}} \|u\|_{a}^{p^{+}} - \lambda c_{1} c_{2}^{q^{-}} |V|_{s(x)} \|u\|_{a}^{q^{-}}.$$

It follows that

$$-\infty < \underline{c} := \inf_{\overline{B_{\rho}(0)}} \Psi_{\lambda} < 0.$$

Let $0 < \epsilon < \inf_{\partial B_{\rho}(0)} \Psi_{\lambda} - \inf_{B_{\rho}(0)} \Psi_{\lambda}$. Using the above information, the functional $\Psi_{\lambda} : \overline{B_{\rho}(0)} \to \mathbb{R}$ is lower bounded on $\overline{B_{\rho}(0)}$ and $\Psi_{\lambda} \in C^{1}(\overline{B_{\rho}(0)}, \mathbb{R})$. Then, by Ekeland's variational principle, there exists a $u_{\epsilon} \in \overline{B_{\rho}(0)}$ such that

$$\begin{cases} \underline{c} \leq \Psi_{\lambda}(u_{\epsilon}) \leq \underline{c} + \epsilon, \\ 0 < \Psi_{\lambda}(u) - \Psi_{\lambda}(u_{\epsilon}) + \epsilon \cdot ||u - u_{\epsilon}||_{a} \quad u \neq u_{\epsilon}. \end{cases}$$

Since

$$\Psi_{\lambda}(u_{\epsilon}) \leq \inf_{\overline{B_{\rho}(0)}} \Psi_{\lambda} + \epsilon \leq \inf_{B_{\rho}(0)} \Psi_{\lambda} + \epsilon < \inf_{\partial B_{\rho}(0)} \Psi_{\lambda},$$

we deduce that $u_{\epsilon} \in B_{\rho}(0)$.

Now, we define $I_{\lambda}: \overline{B_{\rho}(0)} \to \mathbb{R}$ by $I_{\lambda}(u) = \Psi_{\lambda}(u) + \epsilon \cdot ||u - u_{\epsilon}||_{a}$. It is clear that u_{ϵ} is a minimum point of I_{λ} , and thus,

$$\frac{I_{\lambda}(u_{\epsilon} + t \cdot v) - I_{\lambda}(u_{\epsilon})}{t} \ge 0,$$

for small t > 0 and any $v \in B_1(0)$. The above relation yields

$$\frac{\Psi_{\lambda}(u_{\epsilon} + t \cdot v) - \Psi_{\lambda}(u_{\epsilon})}{t} + \epsilon \cdot ||v||_{a} \ge 0.$$

Letting $t \to 0$, it follows that $\langle d\Psi_{\lambda}(u_{\epsilon}), v \rangle + \epsilon \cdot ||v||_a \geq 0$, and we infer that $||d\Psi_{\lambda}(u_{\epsilon})||_a \leq \epsilon$. We deduce that there exists a sequence $\{w_n\} \subset B_{\rho}(0)$ such that

(3.4)
$$\Psi_{\lambda}(w_n) \longrightarrow \underline{c} < 0 \text{ and } d\Psi_{\lambda}(w_n) \longrightarrow 0_{X^*}.$$

It is clear that $\{w_n\}$ is bounded in X. Thus, there exists a w in X such that, up to a subsequence, $\{w_n\}$ weakly converges to w in X. Since $\alpha(x) < p^*(x)$ for all $x \in \overline{\Omega}$, we deduce that there exists a compact

embedding $E \hookrightarrow L^{\alpha(x)}(\Omega)$, and consequently, $\{w_n\}$ strongly converges in $L^{\alpha(x)}(\Omega)$. For the strong convergence of $\{w_n\}$ in X, we need the following proposition.

Proposition 3.10.

$$\lim_{n \to \infty} \int_{\Omega} \frac{\partial F}{\partial u}(x, w_n)(w_n - w) dx = 0.$$

Proof. Using Hölder inequality (2.1), we have:

$$\int_{\Omega} \left| \frac{\partial F}{\partial u}(x, w_n)(w_n - w) \right| dx \le c_1 |V|_{s(x)} ||w_n|^{q(x) - 2} w_n(w_n - w)|_{s'(x)}$$

$$\le c_1 |V|_{s(x)} |||w_n|^{q(x) - 2} w_n|_{q(x)/(q(x) - 1)} |w_n - w|_{\alpha(x)}.$$

Now, if $||w_n|^{q(x)-2}w_n|_{q(x)/(q(x)-1)} > 1$, by Proposition 2.2, we get $||w_n|^{q(x)-2}w_n|_{q(x)/(q(x)-1)} \leq |w_n|_{q(x)}^{q^+}$. The compact embedding $X \hookrightarrow L^{q(x)}(\Omega)$ concludes the proof.

Since $d\Psi_{\lambda}(w_n) \to 0$, and w_n is bounded in X, we have

$$\begin{aligned} |\langle d\Psi_{\lambda}(w_n), w_n - w \rangle| &\leq |\langle d\Psi_{\lambda}(w_n), w_n \rangle| + |\langle d\Psi_{\lambda}(w_n), w \rangle| \\ &\leq ||d\Psi_{\lambda}(w_n)||_a ||w_n||_a + ||d\Psi_{\lambda}(w_n)||_a ||w||_a. \end{aligned}$$

Moreover, using Proposition 3.10, we have

$$\lim_{n \to \infty} \langle d\Psi_{\lambda}(w_n), w_n - w \rangle = 0.$$

Hence,

$$\lim_{n \to \infty} \int_{\Omega} |\triangle w_n|^{p(x)-2} \triangle w_n (\triangle w_n - \triangle w) \, dx$$
$$+ \int_{\partial \Omega} a(x) |w_n|^{p(x)-2} w_n (w_n - w) \, d\sigma = 0.$$

Now, Proposition 2.4 ensures that $\{w_n\}$ strongly converges to w in X. Since $\Psi_{\lambda} \in C^1(X, \mathbb{R})$, we conclude

(3.5)
$$d\Psi_{\lambda}(w_n) \longrightarrow d\Psi_{\lambda}(w) \text{ as } n \to \infty.$$

Relations (3.4) and (3.5) show that $d\Psi_{\lambda}(w) = 0$, and thus, w is a weak solution for problem (1.1). Moreover, by relation (3.4), it follows

that $\Psi_{\lambda}(w) < 0$, and thus, w is a nontrivial weak solution for (1.1). The proof of Theorem 3.6 is complete.

Proof of Theorem 3.7. Using Hölder inequality (2.1) for $||u||_a > 1$, we have

$$\begin{split} \Psi_{\lambda}(u) &= \int_{\Omega} \frac{1}{p(x)} |\Delta u|^{p(x)} dx + \int_{\partial \Omega} \frac{1}{p(x)} |a(x)| u|^{p(x)} d\sigma - \lambda \int_{\Omega} F(x, u) dx \\ &\geq \frac{1}{p^{+}} \|u\|_{a}^{p^{-}} - \lambda c_{1} |V|_{s(x)} \|u|^{q(x)}|_{s'(x)} \\ &\geq \frac{1}{p^{+}} \|u\|_{a}^{p^{-}} - \lambda c_{1} |V|_{s(x)} |u|_{s'(x)q(x)}^{q^{+}} \\ &\geq \frac{1}{p^{+}} \|u\|_{a}^{p^{-}} - \lambda c_{1} |V|_{s(x)} c_{2}^{q^{+}} \|u\|_{a}^{q^{+}} \longrightarrow +\infty \quad \text{as } \|u\|_{a} \to +\infty. \end{split}$$

In conclusion, since Ψ_{λ} is weakly lower semi-continuous, then it has a global minimizer which is a solution of problem (1.1); moreover, Lemma 3.9 ensures that this minimizer is nontrivial, which ends the proof.

Example 3.11. Put $F(x,t) = V(x)t^{q(x)}$, where the function $V(\cdot)$ was as in the assumption **(H2)**, and consider the problem

$$(3.6) \qquad \begin{cases} \triangle_{p(x)}^2 u = \lambda(\partial F(x,u)/\partial u) & x \in \Omega, \\ \partial u/\partial n = 0 & x \in \partial \Omega, \\ \partial (|\triangle u|^{p(x)-2} \triangle u)/\partial n = a(x)|u|^{p(x)-2} u & x \in \partial \Omega, \end{cases}$$

where Ω is a bounded smooth domain in \mathbb{R}^N , $N \geq 3$, with sufficiently smooth boundary $\partial \Omega$, n is a unit outward normal to $\partial \Omega$, $a \in L^{\infty}(\partial \Omega)$ with $a^- := \inf_{x \in \partial \Omega} a(x) > 0$ and λ is a positive real number.

First, observe that the function F satisfies assumptions (**H1**), (**H2**) and (**H3**). Then, Theorem 3.6 asserts that there exists a $\lambda^* > 0$, under which problem (3.6) has a nontrivial weak solution. Moreover, due to Theorem 3.7, we have a solution for any $\lambda > 0$.

Acknowledgments. The authors thank the anonymous referee for a careful and constructive analysis of this paper and for the remarks and comments, which considerably improved the initial version of the present work.

REFERENCES

- 1. S.N. Antontsev and S.I Shmarev, A model porous medium equation with variable exponent of nonlinearity: Existence, uniqueness and localization properties of solutions, Nonlin. Anal. Th. Meth. Appl. 60 (2005), 515–545.
- 2. A. Ayoujil and A.R. El Amrouss, On the spectrum of a fourth order elliptic equation with variable exponent, Nonlin. Anal. 71 (2009), 4916–4926.
- 3. K. Ben Haddouch, Z. El Allali, A. Ayoujil and N. Tsouli, Continuous spectrum of a fourth order eigenvalue problem with variable exponent under Neumann boundary conditions, Ann. Univ. Craiova, Math. Comp. Sci. 42 (2015), 42–55.
- 4. M. Cencelj, D. Repovš and Z. Virk, Multiple perturbations of a singular eigenvalue problem, Nonlin. Anal. 119 (2015), 37–45.
- 5. Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image processing, SIAM J. Appl. Math. 66 (2006), 1383–1406.
- D. Edmunds and J. Rakosnik, Sobolev embeddings with variable exponent, Stud. Math. 143 (2000), 267–293.
- **7**. A.R. El Amrouss, F. Moradi and M. Moussaoui, Existence and multiplicity of solutions for a p(x)-biharmonic problem with Neumann boundary condition, preprint.
- 8. X. Fan, Boundary trace embedding theorems for variable exponent Sobolev spaces, J. Math. Anal. Appl. 339 (2008), 1395–1412.
- **9.** X. Fan and X. Han, Existence and multiplicity of solutions for p(x)-Laplacian equations in \mathbb{R}^N , Nonlin. Anal. **59** (2004), 173–188.
- 10. X. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$, J. Math. Anal. Appl. 262 (2001), 749–760.
- **11**. X.L. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl. **263** (2001), 424–446.
- 12. Y. Fu and Y. Shan, On the removability of isolated singular points for elliptic equations involving variable exponent, Adv. Nonlin. Anal. 5 (2016), 121–132.
- 13. B. Ge, Q.-M. Zhou and Y.-H. Wu, Eigenvalues of the p(x)-biharmonic operator with indefinite weight, Springer, Berlin, 2014.
- 14. P. Harjulehto, P. Hästö, U.V. Le and M. Nuortio, Overview of differential equations with non-standard growth, Nonlin. Anal. 72 (2010), 4551–4574.
- 15. K. Kefi, On the Robin problem with indefinite weight in Sobolev spaces with variable exponents, Z. Anal. Anwend. 37 (2018), 25–38.
- 16. $\underline{\hspace{1cm}}$, p(x)-Laplacian with indefinite weight, Proc. Amer. Math. Soc. 139 (2011), 4351–4360.
- 17. K. Kefi and V. Rãdulescu, On a p(x)-biharmonic problem with singular weights, Z. angew. Math. Phys. (2017), 68–80.
- 18. K. Kefi and K. Saoudi, On the existence of a weak solution for some singular p(x)-biharmonic equation with Navier boundary conditions. Adv. Nonlin. Anal., DOI: https://doi.org/10.1515/anona-2016-0260.

- 19. R.A. Mashiyev, S. Ogras, Z. Yucedag and M. Avci, Existence and multiplicity of weak solutions for nonuniformly elliptic equations with non-standard growth condition, Compl. Var. Ellip. Eqs. 57 (2012), 579–595.
- 20. M. Mihcailescu, P. Pucci and V. Radulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl. 340 (2008), 687–698.
- 21. _____, Nonhomogeneous boundary value problems in anisotropic Sobolev spaces, C.R. Acad. Sci. Paris 345 (2007), 561–566.
- 22. G. Molica Bisci and D. Repovš, Multiple solutions for elliptic equations involving a general operator in divergence form, Ann. Acad. Sci. Fenn. Math. 39 (2014), 259–273.
- 23. W. Orlicz, Über konjugierte Exponentenfolgen, Stud. Math. 3 (1931), 200–212.
- **24**. V.D. Rădulescu, Nonlinear elliptic equations with variable exponent: Old and new, Nonlin. Anal. **121** (2015), 336–369.
- **25**. V.D. Rădulescu and D.D. Repovš, *Partial differential equations with variable exponents: Variational methods and qualitative analysis*, Mono. Res. Notes Math., Taylor & Francis, London, 2015.
- 26. M. Ruzicka, Electrorheological fluids: Modeling and mathematical theory, Springer, Berlin, 2000.
- **27**. S. Taarabti, Z. El Allali and K. Ben Hadddouch, Eigenvalues of the p(x)-biharmonic operator with indefinite weight under Neumann boundary conditions, Bol. Soc. Paran. Mat. **36** (2018), 195–213.
- 28. A. Zang and Y. Fu, Interpolation inequalities for derivatives in variable exponent Lebesgue Sobolev spaces, Nonlin. Anal. Th. Meth. Appl. 69 (2008), 3629–3636.
- **29**. V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk **50** (1986), 675–710; Math. USSR-Izv. **29** (1987), 33–66 (in English).

University of Tunis, Mathematics Department, Faculty of Science, Tunis,

Email address: mounir.hsini@ipeit.rnu.tn

University of Tunis, Mathematics Department, Faculty of Science, Tunis, Tunisia

Email address: nawalirzi15@gmail.com

NORTHERN BORDER UNIVERSITY, COMMUNITY COLLEGE OF RAFHA, SAUDI ARABIA AND UNIVERSITY OF TUNIS, MATHEMATICS DEPARTMENT, FACULTY OF SCIENCE, TUNIS, TUNISIA

Email address: khaled_kefi@yahoo.fr