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JENSEN TYPE INEQUALITIES AND
THEIR APPLICATIONS VIA
FRACTIONAL INTEGRALS

SADEGH ABBASZADEH, ALI EBADIAN AND MOHSEN JADDI

ABSTRACT. The present paper is devoted to the study
of Jensen type inequalities for fractional integration on fi-
nite subintervals of the real axis. The complete form of
Jensen’s inequality and the generalized Jensen’s inequality
are investigated by using the Chebyshev inequality. As ap-
plications, some new integral inequalities, including Hölder’s
and Minkowski’s inequalities, are obtained by using Jensen’s
inequality via Riemann-Liouville fractional integrals.

1. Introduction. The theory of fractional integro-differentiation
was initiated by Liouville [10] in the 1830s. The suggested definition
by Liouville was based on differentiating an exponential function f ,
which may be shown as

f(x) =
∞∑
k=1

cke
akx =⇒ Dpf(x) =

∞∑
k=1

cka
p
ke

akx

for any p ∈ C. Continuing this concept, the differentiation formula of
a power function was derived by Liouville as

D−pf(x) =
1

(−1)pΓ(p)

∫ ∞

0

φ(x+ t)tp−1dt,

where x ∈ R and Real(p) > 0. This formula is called the Liouville form
of fractional integration. There are many applications of fractional
integration in geometry, physics, mechanics, etc., see [3, 9].

The classical Jensen inequality is one of the interesting inequalities
in the theory of differential and difference equations, as well as other
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areas of mathematics. The well-known Jensen inequality for convex
functions is given as follows: Let (X,Σ, µ) be a measure space and f
a real valued µ-measurable and µ-integrable function on a set D ∈ Σ
with µ(D) ∈ ]0,∞[. If φ is a convex function on an open interval I in
R, and, if f(D) ⊂ I, then

φ

(
1

µ(D)

∫
D

fdµ

)
≤ 1

µ(D)

∫
D

φ ◦ f dµ.

In recent years, there have been many extensions, refinements and
similar results of the classical Jensen inequality, see [1, 2, 6, 7, 16,
19, 21]. For 1 ≤ p ≤ ∞ and a µ-measurable set of real numbers E,
Lp(E) is a normed space of functions f with ∥f∥p <∞, where

∥f∥p =

(∫
E

|f |pdµ
)1/p

.

The triangular inequality for Lp(E), i.e.,

∥f + g∥p ≤ ∥f∥p + ∥g∥p

is called Minkowski’s inequality. The number q is called the Hölder
conjugate number of p, if 1/p + 1/q = 1 with 1 < p. For f ∈ Lp(E)
and g ∈ Lq(E), the fact that fg belongs to Lp(E) is shown by Hölder’s
inequality as ∫

E

|fg|dµ ≤ ∥f∥p · ∥g∥q,

where q is the Hölder conjugate number of p.

The continuous form of Jensen’s inequality (integral version) and
its extensions are important consequences of convexity. The aim of
this paper is to obtain a generalization of Jensen-type inequalities for
fractional integrals on a finite interval [a, b]. The complete form of
Jensen’s inequality [15] and the generalized Jensen’s inequality [17] are
investigated by using Chebyshev’s integral inequality. As applications,
Hölder’s and Minkowski’s inequalities via Riemann-Liouville fractional
integrals are established.

This paper is organized as follows. The definition of the Riemann-
Liouville fractional integral along with a series of their desirable prop-
erties are given in Section 2. Jensen’s inequality, the complete form
of Jensen’s inequality and the generalized Jensen’s inequality for con-
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vex functions via fractional integrals are presented in Section 3. Some
applications and results related to other renowned integral inequalities
are given in Section 4. Finally, a conclusion is given in Section 5.

2. Definitions and basic properties. Throughout this paper,
[a, b], −∞ < a < b < ∞, will denote a finite interval on the real
axis R. We use standard notation such as R := ]−∞,∞[, R+ := [0,∞[
and R+ := ]0,∞[ for the entire real line, the closed half-line and the
open half-line, respectively.

A function f : I → R is called convex (on an interval I of the real
axis R), if:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y),

for all points x and y in I and all λ ∈ [0, 1]. It is called strictly convex if
the above inequality strictly holds whenever x and y are distinct points
and λ ∈ ]0, 1[. If −f is convex (respectively, strictly convex), then we
say that f is concave (respectively, strictly concave). For an arbitrary
function f : I → R, the following properties are well known [17]:

(1) f is convex if and only if there is at least one line of support for
f at each x0 ∈ int I, i.e.,

f(x) ≥ f(x0) + λ(x− x0), for all x ∈ int I,

where λ depends on x0 and is given by λ = f ′(x0), when f
′ exists, and

λ ∈ [f ′−(x0), f
′
+(x0)], when f

′
−(x0) ̸= f ′+(x0). We call the set ∂f(x0) of

all such λ the subdifferential of f at x0.

(2) Every function φ : I → R for which φ(x) ∈ ∂f(x) whenever
x ∈ int I verifies the double inequality

f ′−(x) ≤ φ(x) ≤ f ′+(x),

and thus, it is nondecreasing on int I.

The continuous form of Jensen’s inequality (integral version) and its
extensions are important consequences of the convexity. We will point
out these concepts in the following.

Theorem 2.1 ([15]). Let (X,Σ, µ) be a finite measure space, and let
f be a real valued µ-measurable and µ-integrable function on X. If φ is
a convex function given on an interval I that includes the image of f ,
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then
1

µ(X)

∫
X

f dµ ∈ I,

and

φ

(
1

µ(X)

∫
X

f dµ

)
≤ 1

µ(X)

∫
X

φ ◦ f dµ,

provided that φ◦f is µ-integrable. If φ is strictly convex on I, then the
above inequality becomes an equality if and only if f is constant almost
everywhere on X.

Theorem 2.2 (The complete form of Jensen’s inequality [15]). Let
(X,Σ, µ) be a finite measure space, and let f be a real valued µ-
measurable and µ-integrable function on a set X. If φ is a convex
function given on an interval I that includes the image of f , and
g : I → R is a function such that

(i) g(x) ∈ ∂φ(x) for every x ∈ I, and

(ii) g ◦ f and f · (g ◦ f) are µ-integrable functions,

then the following inequalities hold :

0 ≤ 1

µ(X)

∫
X

φ ◦ f dµ− φ

(
1

µ(X)

∫
X

f dµ

)
≤ 1

µ(X)

∫
X

f · (g ◦ f) dµ− 1

(µ(X))2

(∫
X

f dµ

)(∫
X

g ◦ f dµ
)
.

Theorem 2.3 (Generalized Jensen’s inequality [17]). Let (X,Σ, µ) be
a finite measure space, and let f be a real valued µ-measurable function
on a set X from L∞(µ). If φ is a convex function given on an interval
I that includes the image of f , and p : X → R is a nonnegative function
from L1(µ) such that

∫
X
pdµ ̸= 0, then

φ

(
1∫

X
p dµ

∫
X

p · f dµ
)

≤ 1∫
X
pdµ

∫
X

p · (φ ◦ f) dµ.

If φ is strictly convex on I, then the above inequality becomes an equality
if and only if f is constant almost everywhere on X.

Remark 2.4. If f is concave, then the inequalities in Theorems 2.1,
2.2 and 2.3 hold in the reverse direction.
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Let C(X,Y ) be the set of all continuous functions from X to Y . The
following corollaries are true if µ is the standard Lebesgue measure and
X = [a, b].

Corollary 2.5 ([14]). If f ∈ C
(
[a, b], ]c, d[

)
and φ ∈ C(]c, d[,R) is

convex, then

(2.1) φ

(
1

b− a

∫ b

a

f(x) dx

)
≤ 1

b− a

∫ b

a

φ(f(x)) dx.

Corollary 2.6 ([15]). If f ∈ C([a, b], ]c, d[) and φ ∈ C(]c, d[,R) is
convex and also g ∈ C(]c, d[,R) such that g(s) ∈ ∂φ(s) for every
s ∈ ]c, d[, then

0 ≤ 1

b− a

∫ b

a

φ(f(x)) dx− φ

(
1

b− a

∫ b

a

f(x) dx

)(2.2)

≤ 1

b− a

∫ b

a

f · (g ◦ f) dµ− 1

(b− a)2

(∫ b

a

f dµ

)(∫ b

a

g ◦ f dµ
)
.

Corollary 2.7 ([11]). If f ∈ C([a, b], ]c, d[) and φ ∈ C(]c, d[,R) is

convex and also p ∈ C([a, b],R+) such that
∫ b

a
p(x) dx ̸= 0, then

(2.3)

φ

(
1∫ b

a
p(x) dx

∫ b

a

p(x)f(x) dx

)
≤ 1∫ b

a
p(x) dx

∫ b

a

p(x)φ(f(x)) dx.

Let L1[a, b] be the space of all Riemann integrable functions on
[a, b]. In the following, we will give the definition of Riemann-Liouville
fractional integrals on [a, b] and present some of their properties in
L1[a, b]. For more details, one can refer to [8, 12, 18, 20].

Definition 2.8 ([8]). Let f ∈ L1[a, b]. The Riemann-Liouville frac-
tional integrals jαa+ and jαb− of order α ∈ R, α > 0, are defined by

jαa+f(x) :=
1

Γ(α)

∫ x

a

(x− t)α−1f(t) dt, a < x ≤ b,
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and

jαb−f(x) :=
1

Γ(α)

∫ b

x

(t− x)α−1f(t) dt, a ≤ x < b,

where Γ(α) :=
∫∞
0
e−ttα−1dt is the Gamma function and j0a+f(x) =

j0b−f(x) = f(x). These integrals are called the left-side and the right-
side fractional integrals, respectively.

In the case of α = 1, the fractional integrals reduce to the classical
integral.

Theorem 2.9 ([13]). Let f(x) and g(x) be such that both jαa+f(x) and
jαb−f(x) exist. Then, the following basic properties of the Riemann-
Liouville fractional integrals hold.

(i) Interpolation (continuity):

lim
α→n

jαa+f(x) = jna+f(x) and lim
α→n

jαb−f(x) = jnb−f(x),

where jna+ and jnb− , n ∈ N, are the classical operators for n-fold
integration.

(ii) Linearity :

jαa+(λf(x) + g(x)) = λjαa+f(x) + jαa+g(x)

and
jαb−(λf(x) + g(x)) = λjαb−f(x) + jαb−g(x), λ ∈ R.

(iii) Semi-group property (law of exponents):

jαa+(j
β
a+)f(x) = jα+β

a+ f(x) and jαb−(j
β
b−)f(x) = jα+β

b− f(x)

for each α > 0 and β > 0.

(iv) Commutativity :

jα+β
a+ f(x) = jβ+α

a+ f(x) and jα+β
b− f(x) = jβ+α

b− f(x)

for each α > 0 and β > 0.

The following Chebyshev’s inequality for fractional integrals has
been proved by Belarbi and Dahamani [4].



JENSEN TYPE INEQUALITIES 2465

Theorem 2.10. If f, g : [a, b] → R are Riemann integrable and
synchronous (in the sense that (f(x)− f(y))(g(x)− g(y)) ≥ 0 for all x
and y), then:

(i) for each x ∈ ]a, b] and α > 0, we have

Γ(α+ 1)

(x− a)α
jαa+f(x) jαa+g(x) ≤ jαa+(fg)(x).

(ii) For each x ∈ [a, b[ and α > 0, we have

Γ(α+ 1)

(x− a)α
jαb−f(x) j

α
b−g(x) ≤ jαb−(fg)(x).

3. The main results. The aim of this section is to show the Jensen-
type inequalities for convex functions via fractional integrals.

Theorem 3.1. If f ∈ C
(
[a, b], ]c, d[

)
and φ ∈ C

(
]c, d[ ,R

)
is convex,

then

(i)
Γ(α+ 1)

(x− a)α
jαa+f(x) ∈ ]c, d[ for all x ∈ ]a, b] ,

and the following inequality for fractional integrals holds:

(3.1) φ

(
Γ(α+ 1)

(x− a)α
jαa+f(x)

)
≤

(
Γ(α+ 1)

(x− a)α

)
jαa+φ(f(x)),

for all α > 0 and x ∈ ]a, b].

(ii)
Γ(α+ 1)

(b− x)α
jαb−f(x) ∈ ]c, d[ ,

for all x ∈ [a, b[, and the following inequality for fractional integrals
holds:

(3.2) φ

(
Γ(α+ 1)

(b− x)α
jαb−f(x)

)
≤

(
Γ(α+ 1)

(b− x)α

)
jαb−φ(f(x)),

for α > 0 and x ∈ [a, b[.
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Proof.

(i) By the assumption,

(3.3) c < f(t) < d

for all t ∈ [a, b]. Multiplying inequality (3.3) by (x− t)α−1/Γ(α) and
integrating the resulting inequality with respect to t over [a, x], we
obtain

c

Γ(α)

∫ x

a

(x− t)α−1dt <
1

Γ(α)

∫ x

a

(x− t)α−1f(t) dt

<
d

Γ(α)

∫ x

a

(x− t)α−1dt

for all x ∈ ]a, b]. Consequently,

(3.4) c <
Γ(α+ 1)

(x− a)α
jαa+f(x) < d.

Choose a function h : ]c, d[ → R such that h(s) ∈ ∂φ(x) for every
s ∈ ]c, d[. Since

Γ(α+ 1)

(x− a)α
jαa+f(x) ∈ (c, b),

then

φ(f(t)) ≥ φ

(
Γ(α+1)

(x−a)α
jαa+f(x)

)
+

(
f(t)−Γ(α+1)

(x−a)α
jαa+f(x)

)
· h

(
Γ(α+1)

(x−a)α
jαa+f(x)

)
for all t ∈ [a, b]. Multiplying the previous inequality by (x− t)α−1/Γ(α)
and integrating the resulting inequality with respect to t over [a, x], we
obtain

1

Γ(α)

∫ x

a

(x−t)α−1φ
(
f(t)

)
dt− 1

Γ(α)

∫ x

a

(x−t)α−1φ

(
Γ(α+1)

(x− a)α
jαa+f(x)

)
dt

≥
(

1

Γ(α)

∫ x

a

(x−t)α−1f(t) dt− 1

Γ(α)

∫ x

a

(x−t)α−1Γ(α+1)

(x−a)α
jαa+f(x) dt

)
· h

(
Γ(α+ 1)

(x− a)α
jαa+f(x)

)
.
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Consequently,

jαa+φ(f(x))− φ

(
Γ(α+ 1)

(x− a)α
jαa+f(x)

)(
(x− a)α

Γ(α+ 1)

)
≥

(
jαa+f(x)−

(
Γ(α+1)

(x− a)α
jαa+f(x)

)(
(x−a)α

Γ(α+1)

))
h

(
Γ(α+1)

(x−a)α
jαa+f(x)

)
,

for each x ∈ ]a, b]. Thus,

φ

(
Γ(α+ 1)

(x− a)α
jαa+f(x)

)
≤

(
Γ(α+ 1

(x−a)α

)
jαa+φ(f(x)).

The proof of (i) is now complete.

(ii) Multiplying the inequality (3.3) by (t− x)α−1/Γ(α) and inte-
grating the resulting inequality with respect to t over [x, b], we obtain

c

Γ(α)

∫ b

x

(t−x)α−1dt<
1

Γ(α)

∫ b

x

(t−x)α−1f(t) dt<
d

Γ(α)

∫ b

x

(t−x)α−1 dt

for each x ∈ [a, b[. Thus,

(3.5) c <
Γ(α+ 1)

(b− x)α
jαb−f(x) < d.

Since
Γ(α+ 1)

(b− x)α
jαb−f(x) ∈ (c, b),

then

φ(f(t)) ≥ φ

(
Γ(α+ 1)

(b− x)α
jαb−f(x)

)
+

(
f(t)− Γ(α+ 1)

(b− x)α
jαb−f(x)

)
h

(
Γ(α+ 1)

(b− x)α
jαb−f(x)

)
for all t ∈ [a, b]. Multiplying the above inequality by (t− x)α−1/Γ(α)
and integrating the resulting inequality with respect to t over [x, b], we
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obtain

1

Γ(α)

∫ b

x

(t−x)α−1φ
(
f(t)

)
dt− 1

Γ(α)

∫ b

x

(t−x)α−1φ

(
Γ(α+1)

(b−x)α
jαb−f(x)

)
dt

≥
(

1

Γ(α)

∫ b

x

(t−x)α−1f(t) dt− 1

Γ(α)

∫ b

x

(t−x)α−1Γ(α+1)

(b−x)α
jαb−f(x) dt

)
· h

(
Γ(α+ 1)

(b− x)α
jαb−f(x)

)
.

Consequently,

jαb−φ(f(x))− φ

(
Γ(α+ 1)

(b− x)α
jαb−f(x)

)(
(b− x)α

Γ(α+ 1)

)
≥

(
jαb−f(x)−

(
Γ(α+1)

(b−x)α
jαb−f(x)

)(
(b−x)α

Γ(α+1)

))
h

(
Γ(α+1)

(b−x)α
jαb−f(x)

)
for each x ∈ [a, b[. Thus,

φ

(
Γ(α+ 1)

(b− x)α
jαb−f(x)

)
≤

(
Γ(α+ 1

(b− x)α

)
jαb−φ(f(x)),

and the proof of (ii) is complete. �

Remark 3.2. If we let α = 1 and x = b in Theorem 3.1 (i) or α = 1
and x = a in Theorem 3.1 (ii), then the inequalities (3.1) and (3.2)
become the inequality (2.1). We also note that, if the function φ is
concave in Theorem 3.1, then the inequalities (3.1) and (3.2) hold in
the reverse direction.

Combining (3.1) and (3.2), we get the following theorem.

Theorem 3.3. If f ∈ C
(
[a, b], ]c, d[

)
and φ ∈ C

(
]c, d[ ,R

)
is convex,

then
Γ(α+ 1)

2(b− a)α
(
jαa+f(b) + jαb−f(a)

)
∈ ]c, d[ ,

and the following inequality for fractional integrals holds:

φ

(
Γ(α+1)

2(b−a)α
(
jαa+f(b)+jαb−f(a)

))
≤
(
Γ(α+1)

2(b−a)α

)
(jαa+φ(f(b))+jαb−φ(f(a))),

(3.6)

with α > 0.
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Proof. Combining (3.4) and (3.5) in the two previous theorems, we
get

c <

(
Γ(α+ 1)

2(b− a)α
(
jαa+f(b) + jαb−f(a)

))
< d.

Since

α0 :=
Γ(α+ 1)

2(b− a)α
(
jαa+f(b) + jαb−f(a)

)
∈ ]c, d[ ,

then

(3.7) φ(f(t)) ≥ φ(α0) + (f(t)− α0)h(α0)

for all t ∈ [a, b]. Multiplying the inequality (3.7) by (x− t)α−1/Γ(α)
and integrating the resulting inequality with respect to t over [a, x], we
get

jαa+φ(f(x))− φ(α0)

(
(x− a)α

Γ(α+ 1)

)
≥

(
jαa+f(x)− α0

(
(x− a)α

Γ(α+ 1)

))
h(α0),

for each x ∈ ]a, b]. In particular, taking x = b, we have
(3.8)

jαa+φ
(
f(b)

)
− φ(α0)

(
(b− a)α

Γ(α+ 1)

)
≥

(
jαa+f(b)− α0

(
(b− a)α

Γ(α+ 1)

))
h(α0).

On the other hand, multiplying the inequality (3.7) by (t−x)α−1/Γ(α)
and integrating the resulting inequality with respect to t over [x, b], we
get

jαb−φ(f(x))− φ(α0)

(
(b− x)α

Γ(α+ 1)

)
≥

(
jαb−f(x)− α0

(
(b− x)α

Γ(α+ 1)

))
h(α0),

for each x ∈ [a, b[. In particular, taking x = a, we have
(3.9)

jαb−φ
(
f(a)

)
− φ(α0)

(
(b− a)α

Γ(α+ 1)

)
≥

(
jαb−f(a)− α0

(
(b− a)α

Γ(α+ 1)

))
h(α0).

Combining (3.8) and (3.9), we get

jαa+φ
(
f(b)

)
+ jαb−φ

(
f(a)

)
− 2φ(α0)

(
(b− a)α

Γ(α+ 1)

)
≥

(
jαa+f(b) + jαb−f(a)− 2α0

(
(b− a)α

Γ(α+ 1)

))
h(α0).
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Thus,

φ(α0) ≤
(
Γ(α+ 1)

2(b− a)α

)(
jαa+φ(f(b)) + jαb−φ

(
f(a)

))
,

i.e.,

φ

(
Γ(α+ 1)

2(b− a)α
(
jαa+f(b) + jαb−f(a)

))
≤

(
Γ(α+ 1)

2(b− a)α

)(
jαa+φ(f(b)) + jαb−φ

(
f(a)

))
.

Thus, the proof is finished. �

Remark 3.4. If we let α = 1 in Theorem 3.3, then inequality (3.6)
becomes inequality (2.1). We also note that, if the function φ is concave
in Theorem 3.3, then inequality (3.6) holds in the reverse direction.

The complement of Jensen’s inequality by Chebyshev’s inequality is
given in the next result.

Theorem 3.5 (The complete form of Jensen’s inequality). If f ∈
C([a, b], ]c, d[), φ ∈ C

(
]c, d[ ,R

)
is convex and also g ∈ C

(
]c, d[ ,R

)
such that g(s) ∈ ∂φ(x) for every s ∈ ]c, d[, then:

(i) the following inequality for each x ∈ ]a, b] and α > 0 holds
(3.10)

0 ≤
(
Γ(α+ 1)

(x− a)α

)
jαa+φ(f(x))− φ

(
Γ(α+ 1)

(x− a)α
jαa+f(x)

)
≤

(
Γ(α+1)

(x−a)α

)
jαa+

(
f · (g ◦ f)

)
(x)−

(
Γ(α+1)

(x−a)α

)2

jαa+f(x)jαa+(g ◦ f)(x).

(ii) The following inequality for each x ∈ [a, b[ and α > 0 holds

0 ≤
(
Γ(α+ 1)

(b− x)α

)
jαb−φ(f(x))− φ

(
Γ(α+ 1)

(b− x)α
jαb−f(x)

)(3.11)

≤
(
Γ(α+1)

(b−x)α

)
jαb−

(
f · (g ◦ f)

)
(x)−

(
Γ(α+1)

(b−x)α

)2

jαb−f(x)j
α
b−(g ◦ f)(x).
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Proof.

(i) The left hand side inequality is that of Jensen (fractional integral
version). Since

Γ(α+ 1)

(x− a)α
jαa+f(x) ∈ (c, b) for all x ∈ ]a, b] ,

then the right hand side inequality can be obtained from

φ

(
Γ(α+ 1)

(x− a)α
jαa+f(x)

)
− φ(f(t)) ≥

(
Γ(α+ 1)

(x− a)α
jαa+f(x)− f(t)

)
g(f(t))

for all t ∈ [a, b]. Multiplying the previous inequality by (x− t)α−1/Γ(α)
and integrating the resulting inequality with respect to t over [a, x], we
obtain

1

Γ(α)

∫ x

a

(x−t)α−1φ

(
Γ(α+1)

(x−a)α
jαa+f(x)

)
dt− 1

Γ(α)

∫ x

a

(x−t)α−1φ(f(t)) dt

≥ 1

Γ(α)

∫ x

a

(x− t)α−1Γ(α+ 1)

(x− a)α
jαa+f(x)g(f(t)) dt

− 1

Γ(α)

∫ x

a

(x− t)α−1f(t) · g(f(t)) dt.

Consequently,

φ

(
Γ(α+ 1)

(x− a)α
jαa+f(x)

)(
(x− a)α

Γ(α+ 1)

)
− jαa+φ(f(x))

≥ Γ(α+ 1)

(x− a)α
jαa+f(x)jαa+g(f(x))− jαa+f(x) · g

(
f(x)

)
.

Thus,

0≤
(
Γ(α+1)

(x−a)α

)
jαa+φ(f(x))−φ

(
Γ(α+1)

(x−a)α
jαa+f(x)

)
≤
(
Γ(α+1)

(x−a)α

)
jαa+

(
f · (g ◦ f)

)
(x)−

(
Γ(α+1)

(x−a)α

)2

jαa+f(x)jαa+(g ◦ f)(x).

Thus, the proof of (i) is finished.

(ii) The proof of (ii) is similar to that of (i). �

Remark 3.6. If we let α = 1 and x = b in Theorem 3.5 (i) or α = 1 and
x = a in Theorem 3.5 (ii), then inequalities (3.10) and (3.11) become
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inequality (2.2). We also note that, if the function φ is concave in
Theorem 3.1, then the inequalities (3.10) and (3.11) hold in the reverse
direction.

The next results are related to the generalized Jensen’s inequality,
see Theorem 2.3.

Theorem 3.7. If f ∈ C
(
[a, b], ]c, d[

)
, and φ ∈ C

(
]c, d[ ,R

)
is convex

as well as p ∈ C
(
[a, b],R+

)
, then:

(i) the following inequality for each α > 0 and x ∈ ]a, b] with
jαa+p(x) > 0 holds

(3.12) φ

(
1

jαa+p(x)
jαa+(p(x)f(x))

)
≤ 1

jαa+p(x)
jαa+

(
p(x)φ(f(x))

)
.

(ii) The following inequality for each α > 0 and x ∈ [a, b[ with
jαb−p(x) > 0 holds

(3.13) φ

(
1

jαb−p(x)
jαb−(p(x)f(x))

)
≤ 1

jαb−p(x)
jαb−

(
p(x)φ(f(x))

)
.

Proof.

(i) Under the above-mentioned assumptions,

(3.14) c < f(t) < d

for all t ∈ [a, b]. Multiplying inequality (3.14) by ((x− t)α−1/Γ(α))p(t)
and integrating the resulting inequality with respect to t over [a, x], we
get

c

Γ(α)

∫ x

a

(x− t)α−1p(t) dt <
1

Γ(α)

∫ x

a

(x− t)α−1p(t)f(t) dt

<
d

Γ(α)

∫ x

a

(x− t)α−1p(t) dt

for each x ∈ ]a, b]. Consequently,

c <
jαa+(p(x)f(x))

jαa+p(x)
< d.
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Choose a function h : ]c, d[ → R such that h(s) ∈ ∂φ(x) for every
s ∈ ]c, d[. Since jαa+(p(x)f(x))/(jαa+p(x)) ∈ (c, b), then

φ(f(t)) ≥ φ

(
jαa+(p(x)f(x))

jαa+p(x)

)
+

(
f(t)−

jαa+(p(x)f(x))

jαa+p(x)

)
h

(
jαa+(p(x)f(x))

jαa+p(x)

)
for all t ∈ [a, b]. Multiplying the previous inequality by ((x− t)α−1/
Γ(α))p(t) and integrating the resulting inequality with respect to t over
[a, x], we get

1

Γ(α)

∫ x

a

(x−t)α−1p(t)φ(f(t))dt− 1

Γ(α)

∫ x

a

(x−t)α−1φ

(
jαa+(p(x)f(x))

jαa+p(x)

)
p(t)dt

≥
(

1

Γ(α)

∫ x

a

(x− t)α−1p(t)f(t) dt

− 1

Γ(α)

∫ x

a

(x−t)α−1 j
α
a+(p(x)f(x))

jαa+p(x)
p(t) dt

)
h

(
jαa+(p(x)f(x))

jαa+p(x)

)
.

Thus,

jαa+p(x)φ(f(x))− φ

(
jαa+(p(x)f(x))

jαa+p(x)

)
jαa+p(x)

≥
(
jαa+p(x)f(x)−

jαa+(p(x)f(x))

jαa+p(x)
jαa+p(x)

)
h

(
jαa+(p(x)f(x))

jαa+p(x)

)
,

i.e.,

φ

(
1

jαa+p(x)
jαa+(p(x)f(x))

)
≤ 1

jαa+p(x)
jαa+

(
p(x)φ(f(x))),

and the proof of (i) is finished.

(ii) The proof of (ii) is similar to that of (i). �

Remark 3.8. If we let α = 1 and x = b in Theorem 3.7 (i) or α = 1 and
x = a in Theorem 3.7 (ii), then inequalities (3.12) and (3.13) become
inequality (2.3). We also note that, if the function φ is concave in
Theorem 3.7, then the inequalities (3.12) and (3.13) hold in the reverse
direction.
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Corollary 3.9. If f ∈ C
(
[a, b], ]c, d[

)
and φ ∈ C

(
]c, d[ ,R

)
is convex

and, in addition, p ∈ C([a, b],R), then:
(i) the following inequality for each α > 0 and x ∈ ]a, b] with

jαa+ |p(x)| > 0 holds

(3.15) φ

(
1

jαa+ |p(x)|
jαa+(|p(x)|f(x))

)
≤ 1

jαa+ |p(x)|
jαa+(|p(x)|φ(f(x))).

(ii) The following inequality for each α > 0 and x ∈ [a, b[ with
jαb− |p(x)| > 0 holds

(3.16) φ

(
1

jαb− |p(x)|
jαb−(|p(x)|f(x))

)
≤ 1

jαb− |p(x)|
jαb−(|p(x)|φ(f(x))).

Remark 3.10. In particular, for case p = 1, Corollary 3.9 reduces to
Theorem 3.1.

Corollary 3.11. If p, f [a, b] → R are integrable and φ ∈ C
(
]c, d[ ,R

)
is convex, then:

(i) the following inequality for each α > 0 and x ∈ ]a, b] with
jαa+ |p(x)| > 0 holds

(3.17) φ

(
1

jαa+ |p(x)|
jαa+(|p(x)|f(x))

)
≤ 1

jαa+ |p(x)|
jαa+(|p(x)|φ(f(x)))

where f([a, b]) ⊆ ]c, d[.

(ii) The following inequality for each α > 0 and x ∈ [a, b[ with
jαb− |p(x)| > 0 holds

(3.18) φ

(
1

jαb− |p(x)|
jαb−(|p(x)|f(x))

)
≤ 1

jαb− |p(x)|
jαb−(|p(x)|φ(f(x)))

where f([a, b]) ⊆ ]c, d[.

Remark 3.12. In particular, for cases α = 1 and x = b in Corollary
3.9 (i) or x = a in Corollary 3.9 (ii), the inequalities (3.15) and (3.16)
coincide with the inequality (2.3). Also, in particular, for case α = 1
in Corollary 3.11, the inequalities (3.17) and (3.18) coincide with the
inequality (7.1) in [14].
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Remark 3.13. Let f ∈ C([a, b],R+), p ∈ C([a, b],R) and φ(x) = xβ

on ]0,∞[. It is clear that φ is convex on ]0,∞[ for β < 0 or β > 1, and
f is concave on ]0,∞[ for β ∈ ]0, 1[. Then:

(i) The following inequalities for each α > 0 and x ∈ ]a, b] with
jαa+ |p(x)| > 0 hold:(

1

jαa+ |p(x)|
jαa+(|p(x)|f(x))

)β

≤ 1

jαa+ |p(x)|
jαa+

(
|p(x)|fβ(x)

)
,

if β < 0 or β > 1;(
1

jαa+ |p(x)|
jαa+(|p(x)|f(x))

)β

≥ 1

jαa+ |p(x)|
jαa+

(
|p(x)|fβ(x)

)
,

if β ∈ ]0, 1[.

(ii) The following inequalities for each α > 0 and x ∈ [a, b[ with
jαb− |p(x)| > 0 hold:(

1

jαb− |p(x)|
jαb−(|p(x)|f(x))

)β

≤ 1

jαb− |p(x)|
jαb−

(
|p(x)|fβ(x)

)
,

if β < 0 or β < 0 or β > 1;(
1

jαb− |p(x)|
jαb−(|p(x)|f(x))

)β

≥ 1

jαb− |p(x)|
jαb−

(
|p(x)|fβ(x)

)
,

if β ∈ ]0, 1[.

Remark 3.14. Let f ∈ C([a, b],R+), p ∈ C([a, b],R) and φ(x) = ln(x)
on ]0,∞[. Obviously, φ is concave on ]0,∞[. Then

ln

(
1

jαa+ |p(x)|
jαa+(|p(x)|f(x))

)
≥ 1

jαa+ |p(x)|
jαa+(|p(x)| ln(f(x))),

if x ∈ ]a, b] , 0 < α;

ln

(
1

jαb− |p(x)|
jαb−(|p(x)|f(x))

)
≥ 1

jαb− |p(x)|
jαb−(|p(x)| ln(f(x))),

if x ∈ [a, b[, 0 < α.
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Remark 3.15. Let f ∈ C([a, b],R+), p = 1 and φ(x) = ln(x) on ]0,∞[.
Then:

(i) if x ∈ ]a, b], 0 < α,

(3.19)
Γ(α+ 1)

(x− a)α
jαa+f(x) ≥ exp

(
Γ(α+ 1)

(x− a)α
jαa+ ln(f(x))

)
;

(ii) if x ∈ [a, b[, 0 < α,

(3.20)
Γ(α+ 1)

(b− x)α
jαb−f(x) ≥ exp

(
Γ(α+ 1)

(b− x)α
jαb− ln(f(x))

)
.

Remark 3.16. If we let α = 1 and x = b in Remark 3.15 (i) or α = 1
and x = a in Remark 3.15 (ii), then the inequalities (3.19) and (3.20)
coincide with [15, Remark 1.8.2]. In the above remark, by choosing
a = 0, b = 1, f = xβ , β > 0 and α > 0, we conclude that

Γ(α+ 1)

xα
jα0+x

β ≥ exp

(
Γ(α+ 1)

xα
jα0+ ln(xβ)

)
.

On the other hand, by [12, equations (2.3), (3.21)], we know that

jα0+x
β =

Γ(β + 1)

Γ(α+ β + 1)
xα+β

and

jα0+ ln(x) =
xα

Γ(α+ 1)

(
ln(x)− γ − ψ(α+ 1)

)
,

where ψ is the digamma function and γ is Euler’s constant. Thus,

Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 1)
xβ ≥ exp(β(ln(x)− γ − ψ(α+ 1))).

In the previous inequality, by choosing β = 1, α = 1/2 and x = 1/2,
we have

Γ(3/2)Γ(2)

Γ(5/2)

1

2
≥ exp

(
ln

(
1

2

)
− γ − ψ

(
3

2

))
or

1

3
≥ exp

(
ln

(
1

2

)
− γ − ψ

(
3

2

))
.

We note that ψ(3/2) = 2− γ − ln 4.
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Remark 3.17. Let f ∈ C([a, b],R), p ∈ C([a, b],R+) and φ(x) =
exp(x) on R. Obviously, φ is convex on R. Then:

(i) the following inequality for each α > 0 and x ∈ ]a, b] holds

jαa+p(x) · exp
(
jαa+(p(x)f(x))

jαa+p(x)

)
≤ jαa+(p(x) exp(f(x)));

(ii) the following inequality for each α > 0 and x ∈ [a, b[ holds

jαb−p(x) · exp
(
jαb−(p(x)f(x))

jαb−p(x)

)
≤ jαb−(p(x) exp(f(x))).

4. Applications of Jensen-type inequalities via fractional
integrals. Using the generalized Jensen’s inequality via fractional
integrals, the following well-known inequalities are proven.

Theorem 4.1. Let f, p ∈ C
(
[a, b],R+

)
. Then:

(i) the following inequality for each α > 0 and x ∈ ]a, b] with
jαa+(f(x)p(x)) > 0, jαa+f(x) > 0 and jαa+f(x)/p(x) > 0 holds(

1

jαa+(f(x)/p(x))
jαa+

(
f(x)

p(x)
ln p(x)

))
<

1

jαa+(f(x)p(x))
jαa+

(
f(x)p(x) ln p(x)

)
.

(ii) The following inequality for each α > 0 and x ∈ [a, b[ with
jαb−(f(x)p(x)) > 0, jαb−f(x) > 0 and jαb−f(x)/p(x) > 0 holds(

1

jαb−(f(x)/p(x))
jαb−

(
f(x)

p(x)
ln p(x)

))
<

1

jαb−(f(x)p(x))
jαb−

(
f(x)p(x) ln p(x)

)
.

Proof.

(i) Since φ(x) = − ln(x) is strictly convex, it follows from Theo-
rem 3.7 that
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ln

(
1

jαa+(f(x)/p(x))
jαa+f(x)

)
= − ln

(
1

jαa+f(x)
jαa+f(x)

1

p(x)

)
< − 1

jαa+f(x)
jαa+f(x) ln

(
1

p(x)

)
=

1

jαa+f(x)
jαa+f(x) ln p(x).

Thus,

(4.1)

(
1

jαa+(f(x)/p(x))
jαa+f(x)

)
< exp

(
1

jαa+f(x)
jαa+f(x) ln p(x)

)
.

Similarly,

1

jαa+f(x)
jαa+f(x)p(x) =

1

jαa+(f(x)p(x))/p(x)
jαa+f(x)p(x)(4.2)

< exp

(
1

jαa+f(x)p(x)
jαa+f(x)p(x) ln p(x)

)
.

Since exp is a strictly convex function, it follows from (4.1), (4.2) and
Theorem 3.7 that

exp

(
1

jαa+(f(x)/p(x))
jαa+

(
f(x)

p(x)
ln p(x)

))
<

1

jαa+

f(x)
p(x)

jαa+

(
f(x)

p(x)
exp(ln p(x))

)
by Theorem 3.7

=
1

jαa+(f(x)/p(x))
jαa+

(
f(x)

p(x)
p(x)

)
=

1

jαa+(f(x)/p(x))
jαa+f(x)

< exp

(
1

jαa+f(x)
jαa+(f(x) ln p(x))

)
by (4.1)

<
1

jαa+f(x)
jαa+(f(x) exp(ln p(x))) by Theorem 3.7

=
1

jαa+f(x)
jαa+(f(x)p(x))

< exp

(
1

jαa+(f(x)p(x))
jαa+

(
f(x)p(x) ln p(x)

))
by (4.2),

which completes the proof.

(ii) The proof of (ii) is similar to that of (i). �
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In the standard proof of Hölder’s inequality, the basic Young in-
equality x1/py1/q ≤ x/p + y/q for nonnegative x and y is used. Here,
we present a proof based on the application of the generalized Jensen’s
inequality via fractional integrals.

Theorem 4.2 (Generalized Hölder’s inequality via fractional inte-
grals). Let f, g, h ∈ C

(
[a, b],R+

)
and q be the Hölder conjugate numbers

of p. Then:

(i) the following inequality for each α > 0 and x ∈ ]a, b] with
jαa+

(
h(x)gq(x)

)
> 0 and jαa+h(x) > 0 holds

(4.3) jαa+(h(x)f(x)g(x)) ≤ (jαa+(h(x)fp(x)))1/p(jαa+(h(x)gq(x)))1/q.

(ii) The following inequality for each α > 0 and x ∈ [a, b[ with
jαb−(h(x)g

q(x)) > 0 and jαb−h(x) > 0 holds

(4.4) jαb−(h(x)f(x)g(x)) ≤ (jαb−(h(x)f
p(x)))1/p(jαb−

(
h(x)gq(x)))1/q.

Proof. Since φ(x) = xp is convex for 1 < p, it follows from Theo-
rem 3.7 that

(4.5)

(
1

jαa+h(x)
jαa+(h(x)g(x))

)p

≤ 1

jαa+h(x)
jαa+(h(x)gp(x)).

Replacing g by fg−q/p and h by hgq in inequality (4.5), we get(
1

jαa+

(
h(x)gq(x)

)jαa+(h(x)gq(x)f(x)g−q/p(x))

)p

≤ 1

jαa+(h(x)gq(x))
jαa+(h(x)gq(x)(f(x)g−q/p(x))p).

Using the fact that 1/p+ 1/q = 1, we deduce

jαa+(h(x)f(x)g(x)) ≤ (jαa+(h(x)fp(x)))1/p(jαa+(h(x)gq(x)))1/q.

(ii) The proof of (ii) is similar to that of (i). �

Remark 4.3. In particular, for case h = 1, Theorem 4.2 gives Hölder’s
inequality via fractional integrals:

jαa+(f(x)g(x)) ≤ (jαa+fp(x))1/p(jαa+gq(x))1/q
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if x ∈ ]a, b], 0 < α, jαa+gq(x) > 0,

jαb−(f(x)g(x)) ≤ (jαb−f
p(x))1/p(jαb−g

q(x))1/q

if x ∈ [a, b[, 0 < α, jαa+gq(x) > 0.

Remark 4.4. In particular, for cases α = 1, h = 1 and x = b in
Theorem 4.2 (i) or α = 1, h = 1 and x = a in Theorem 4.2 (ii),
the inequalities (4.3) and (4.4) coincide with the classical Hölder’s
inequality:∫ b

a

f(x)g(x) dx ≤
(∫ b

a

fp(x) dx

)1/p(∫ b

a

gq(x)dx

)1/q

,

where 1/p+ 1/q = 1 and 1 < p.

Remark 4.5. In particular, for cases h = 1 and p = q = 2,
Theorem 4.2 gives the Schwarz inequality via the fractional integrals:

jαa+(f(x)g(x)) ≤
√
(jαa+f2(x))(jαa+g2(x)) if x ∈ ]a, b] , 0 < α,

jαb−(f(x)g(x)) ≤
√
(jαb−f

2(x))(jαb−g
2(x)) if x ∈ [a, b[ , 0 < α.

Remark 4.6. In particular, for cases α = 1, h = 1, p = q = 2
and x = b in Theorem 4.2 (i) or α = 1, h = 1 and x = a in Theorem
4.2 (ii), inequalities (4.3) and (4.4) coincide with the classical Schwarz’s
inequality∫ b

a

f(x)g(x) dx ≤

√(∫ b

a

f2(x) dx

)(∫ b

a

g2(x) dx

)
.

We are now in a position to prove the Minkowski inequality using
Hölder’s inequality.

Theorem 4.7 (Minkowski’s inequality via fractional integrals). If
f, g, h ∈ C

(
[a, b],R+

)
and p > 1, then:

(i) the following inequality for each α > 0 and x ∈ ]a, b] with
jαa+(f(x) + g(x))p > 0 holds

jαa+(f(x) + g(x))1/p ≤
(
jαa+fp(x)

)1/p
+
(
jαa+gp(x)

)1/p
.
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(ii) The following inequality for each α > 0 and x ∈ [a, b[ with
jαb−(f(x) + g(x))p > 0 holds

jαb−(f(x) + g(x))1/p ≤
(
jαb−f

p(x)
)1/p

+
(
jαb−g

p(x)
)1/p

.

Proof.

(i) We have

jαa+(f(x)+g(x))p= jαa+((f(x)+g(x))p−1(f(x)+g(x)))

= jαa+(f(x)(f(x)+g(x))p−1+g(x)(f(x)+g(x))p−1).

Now, applying Hölder’s inequality with q = p/(p− 1), we obtain

jαa+(f(x) + g(x))p

=
(
jαa+fp(x)

)1/p
(jαa+(f(x) + g(x))q(p−1))1/q

+ (jαa+gp(x))1/p(jαa+(f(x) + g(x))q(p−1))1/q

= ((jαa+fp(x))1/p +
(
jαa+gp(x))1/p)(jαa+(f(x) + g(x))p)1/q.

Dividing both sides of the last inequality by (jαa+(f(x)+ g(x))p)1/q, we
get the desired conclusion.

(ii) The proof of (ii) is similar to that of (i). �

As another application of Hölder’s inequality via fractional integrals,
we have the following theorem.

Theorem 4.8. If f, g, h ∈ C
(
[a, b],R+

)
, then

(i) the following inequality for each α > 0 and x ∈ ]a, b] with
jαa+h(x) > 0 and jαa+h(x)f(x) > 0 holds

((jαa+h(x)f(x))p + (jαa+h(x)g(x))p)1/p ≤ jαa+h(x)(fp(x) + gp(x))1/p,

if p > 1;

((jαa+h(x)f(x))p + (jαa+h(x)g(x))p)1/p ≥ jαa+h(x)(fp(x) + gp(x))1/p,

if 0 < p < 1.
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(ii) The following inequality for each α > 0 and x ∈ [a, b[ with
jαb−h(x) > 0 and jαb−h(x)f(x) > 0 holds

((jαb−h(x)f(x))
p + (jαb−h(x)g(x))

p)1/p ≤ jαb−h(x)(f
p(x) + gp(x))1/p,

if p > 1;

((jαb−h(x)f(x))
p + (jαb−h(x)g(x))

p)1/p ≥ jαb−h(x)(f
p(x) + gp(x))1/p,

if 0 < p < 1.

Proof.

(i) Clearly, φ(x) = (1 + xp)1/p is convex on ]0,∞[ for p > 1. Hence,
by Theorem 3.7, we have

(4.6)

(
1 +

(
jαa+h(x)f(x)

jαa+h(x)

)p)1/p

≤
jαa+h(x)

(
1 + fp(x)

)1/p
jαa+h(x)

.

Replacing h by hf and f by g/f in inequality (4.6), we get our desired
result. If 0 < p < 1, then φ is concave, and hence, the inequality (4.6)
holds in the reverse direction.

(ii) Similarly, we can prove case (ii). �

Finally, some applications of Jensen-type inequalities via fractional
integrals for the continuous function φ, which is twice differentiable on
]c, d[ and there exists m = infc<x<d φ

′′(x) orM = supc<x<d φ
′′(x), will

be presented.

Theorem 4.9. If f ∈ C
(
[a, b], ]c, d[

)
, p ∈ C

(
[a, b],R+

)
and φ ∈

C
(
]c, d[ ,R

)
is twice differentiable and, in addition, there exists an m =

infc<x<d φ
′′(x), then:

(i) the following inequality for each α > 0 and x ∈ ]a, b] with jαa+p(x)
> 0 holds

1

jαa+p(x)
jαa+(p(x)φ(f(x)))− φ

(
1

jαa+p(x)
jαa+(p(x)f(x))

)
≥m

2

(
1

jαa+p(x)
jαa+(p(x)(f(x))2)−

(
1

jαa+p(x)
jαa+(p(x)f(x))

)2)
.
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(ii) The following inequality for each α > 0 and x ∈ [a, b[ with
jαb−p(x) > 0 holds

1

jαb−p(x)
jαb−(p(x)φ(f(x)))− φ

(
1

jαb−p(x)
jαb−(p(x)f(x))

)
≥ m

2

(
1

jαb−p(x)
jαb−(p(x)(f(x))

2)−
(

1

jαb−p(x)
jαb−(p(x)f(x))

)2)
.

Proof.

(i) We choose

ψ(x) = φ(x)− m

2
x2.

Differentiating two times on both sides of ψ, we get

ψ′′(x) = φ′′(x)−m ≥ 0.

Thus, ψ is a convex function on ]c, d[. By Theorem 3.7, we have

ψ

(
1

jαa+p(x)
jαa+(p(x)f(x))

)
≤ 1

jαa+p(x)
jαa+

(
p(x)ψ(f(x))

)
.

Now, by the definition of ψ and Proposition 2.9 (ii), we conclude that

(4.7) φ

(
1

jαa+p(x)
jαa+(p(x)f(x))

)
− m

2

(
1

jαa+p(x)
jαa+(p(x)f(x))

)2

≤ 1

jαa+p(x)
jαa+

(
p(x)φ(f(x))

)
− m

2

1

jαa+p(x)
jαa+

(
p(x)(f(x))2

)
.

Then, by (4.7), we can write

1

jαa+p(x)
jαa+

(
p(x)φ(f(x))

)
− φ

(
1

jαa+p(x)
jαa+(p(x)f(x))

)
≥ m

2

(
1

jαa+p(x)
jαa+

(
p(x)(f(x))2

)
−

(
1

jαa+p(x)
jαa+(p(x)f(x))

)2)
.

(ii) The proof of (ii) is similar to that of (i). �

Theorem 4.10. If f ∈ C
(
[a, b], ]c, d[

)
, p ∈ C

(
[a, b],R+

)
and φ ∈

C
(
]c, d[ ,R

)
is twice differentiable and, in addition, there exists an

M = supc<x<d φ
′′(x), then:



2484 S. ABBASZADEH, A. EBADIAN AND M. JADDI

(i) the following inequality for each α > 0 and x ∈ ]a, b] with
jαa+p(x) > 0 holds

1

jαa+p(x)
jαa+

(
p(x)φ(f(x))

)
− φ

(
1

jαa+p(x)
jαa+(p(x)f(x))

)
≤ M

2

(
1

jαa+p(x)
jαa+(p(x)(f(x))2)−

(
1

jαa+p(x)
jαa+(p(x)f(x))

)2)
.

(ii) The following inequality for each α > 0 and x ∈ [a, b[ with
jαb−p(x) > 0 holds

1

jαb−p(x)
jαb−

(
p(x)φ(f(x))

)
− φ

(
1

jαb−p(x)
jαb−(p(x)f(x))

)
≤ M

2

(
1

jαb−p(x)
jαb−(p(x)(f(x))

2)−
(

1

jαb−p(x)
jαb−(p(x)f(x))

)2)
.

Proof.

(i) We choose ψ(x) = φ(x)−(M/2)x2. Differentiating twice on both
sides of ψ, we get ψ′′(x) = φ′′(x) − M ≤ 0. Then, ψ is a concave
function on ]c, d[ and, by a similar proof as that of Theorem 4.9, we
obtain

1

jαa+p(x)
jαa+

(
p(x)φ(f(x))

)
− φ

(
1

jαa+p(x)
jαa+(p(x)f(x))

)
≤ M

2

(
1

jαa+p(x)
jαa+(p(x)(f(x))2)−

(
1

jαa+p(x)
jαa+(p(x)f(x))

)2)
.

(ii) Similarly, we can prove case (ii). �

Remark 4.11. In particular, for cases α = 1 and x = b in Theorem
4.9 (i) and 4.10(i) or α = 1 and x = a in Theorem 4.9 (ii) and 4.10 (ii),
Theorems 4.9 and 4.10 coincide with [5, Theorem 1.4].

By choosing p = 1 in Theorems 4.9 and 4.10, we have the following
corollary.
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Corollary 4.12. If f ∈ C
(
[a, b], ]c, d[

)
and φ ∈ C

(
]c, d[ ,R

)
is twice

differentiable and, in addition, there exists an m = infc<x<d φ
′′(x),

then:

(i) the following inequality for each α > 0 and x ∈ ]a, b] holds

Γ(α+ 1)

(x− a)α
jαa+φ(f(x))− φ

(
Γ(α+ 1)

(x− a)α
jαa+f(x)

)
≥ m

2

(
Γ(α+ 1)

(x− a)α
jαa+(f(x))2 −

(
Γ(α+ 1)

(x− a)α
jαa+f(x)

)2)
.

(ii) The following inequality for each α > 0 and x ∈ [a, b[ holds

Γ(α+ 1)

(b− x)α
jαb−φ(f(x))− φ ≤

(
Γ(α+ 1)

(b− x)α
jαb−f(x)

)
≥ m

2

(
Γ(α+ 1)

(b− x)α
jαb−(f(x))

2 −
(
Γ(α+ 1)

(b− x)α
jαb−f(x)

)2)
.

Corollary 4.13. If f ∈ C
(
[a, b], ]c, d[

)
and φ ∈ C

(
]c, d[ ,R

)
is twice

differentiable and, in addition, there exists an M = supc<x<d φ
′′(x),

then:

(i) the following inequality for each α > 0 and x ∈ ]a, b] holds

Γ(α+ 1)

(x− a)α
jαa+φ(f(x))− φ

(
Γ(α+ 1)

(x− a)α
jαa+f(x)

)
≤ M

2

(
Γ(α+ 1)

(x− a)α
jαa+(f(x))2 −

(
Γ(α+ 1)

(x− a)α
jαa+f(x)

)2)
.

(ii) The following inequality for each α > 0 and x ∈ [a, b[ holds

Γ(α+ 1)

(b− x)α
jαb−φ(f(x))− φ

(
Γ(α+ 1)

(b− x)α
jαb−f(x)

)
≤ M

2

(
Γ(α+ 1)

(b− x)α
jαb−(f(x))

2 −
(
Γ(α+ 1)

(b− x)α
jαb−f(x)

)2)
.

Remark 4.14. In particular, for cases α = 1 and x = b in Corollaries
4.12 (i) and 4.13 (i) or α = 1 and x = a in Corollaries 4.12 (ii) and
4.13 (ii), Corollaries 4.12 and 4.13 coincide with [5, Corollary 1.5].
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Corollary 4.15. If f ∈ C
(
[a, b], ]c, d[

)
and φ ∈ C

(
]c, d[ ,R

)
is twice

differentiable and, in addition, there exist an m = infc<x<d φ
′′(x) and

M = supc<x<d φ
′′(x), then:

(i) the following inequalities for each α > 0 and x ∈ ]a, b] hold

m

2

(
Γ(α+ 1)

(x− a)α
jαa+(f(x))2 −

(
Γ(α+ 1)

(x− a)α
jαa+f(x)

)2)
≤ Γ(α+ 1)

(x− a)α
jαa+φ(f(x))− φ

(
Γ(α+ 1)

(x− a)α
jαa+f(x)

)
≤ M

2

(
Γ(α+ 1)

(x− a)α
jαa+(f(x))2 −

(
Γ(α+ 1)

(x− a)α
jαa+f(x)

)2)
.

(ii) The following inequalities for each α > 0 and x ∈ [a, b[ hold

m

2

(
Γ(α+ 1)

(b− x)α
jαb−(f(x))

2 −
(
Γ(α+ 1)

(b− x)α
jαb−f(x)

)2)
≤ Γ(α+ 1)

(b− x)α
jαb−φ(f(x))− φ

(
Γ(α+ 1)

(b− x)α
jαb−f(x)

)
≤ M

2

(
Γ(α+ 1)

(b− x)α
jαb−(f(x))

2 −
(
Γ(α+ 1)

(b− x)α
jαb−f(x)

)2)
.

Remark 4.16. In particular, for cases α = 1, a = 0 and x = b = 1 in
Corollaries 4.15 (i) or α = 1, b = 1 and x = a = 0 in Corollary 4.15 (ii),
Corollary 4.15 coincide with [5, Corollary 1.7].

5. Conclusion. The concept of convexity has a great impact on our
everyday lives, and there are numerous applications of this concept
in industry, business, medicine, art, etc. The applications of the
convexity in equilibrium of non-cooperative games and the problems
of optimum allocation of resources are significant. Jensen’s inequality
is the first important result for convex (concave) functions defined on
an interval. The classical Jensen’s inequality, the complete form of
Jensen’s inequality and the generalized Jensen’s inequality for convex
functions are important results in theoretical and applied mathematics,
and in this paper we studied these inequalities via fractional integrals.
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17. J.E. Pečarić, F. Proschan and Y.L. Tong, Convex functions, partial order-
ings, and statistical applications, Academic Press, San Diego, 1992.

18. I. Podlubny, Geometric and physical interpretation of fractional integration
and fractional differentiation, Fract. Calc. Appl. Anal. 5 (2002), 367–386.

19. H. Román-Flores, A. Flores-Franulič and Y. Chalco-Cano, A Jensen type
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