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OPTIMAL MORREY ESTIMATE FOR
PARABOLIC EQUATIONS IN

DIVERGENCE FORM VIA GREEN’S FUNCTIONS

JUNJIE ZHANG AND SHENZHOU ZHENG

ABSTRACT. This paper presents a local Morrey regular-
ity with the optimal exponents for linear parabolic equations
in divergence form under the assumption that the leading
coefficient is independent of t and not necessarily symmetric
based on a rather different approach. Here, we achieve it
by applying natural growth properties of Green’s functions
through the use of parabolic operators and the hole-filling
technique.

1. Introduction. Let Q = Ω × [0, T ] ⊂ Rn+1 be a cylindrical
domain with an open connected set Ω ⊂ Rn for n ≥ 1 and 0 < T <∞,
and let u(x, t) : Q→ R be a Sobolev function in V 1,0

2 (Q) (see Definition
2.1 below). The main purpose of this paper is to consider the following
parabolic operator based on a rather different argument:

(1.1) Lu := ut −Dj(aij(x)Diu), i, j = 1, . . . , n.

Here, we suppose that the coefficient A(x) = (aij(x))
n
i,j=1 is an n × n

matrix whose entries are real-valued measurable functions satisfying
the uniform boundedness condition and the strong ellipticity:

(1.2) aij(x) ∈ L∞(Ω) and ∥aij∥L∞(Ω) ≤ Λ,

(1.3) aij(x)ξiξj ≥ λ|ξ|2 for all x ∈ Ω ⊂ Rn for all ξ ∈ Rn
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with some positive constants 0 < λ ≤ Λ < ∞. It is worth noting that
the coefficients aij(x) are assumed only to be time-independent due to
our main proof which includes an estimate of ut.

It is well known that fundamental solutions and Green’s functions
play important roles in studying the qualitative theory of classical
partial differential equations. There is much literature on Green’s
functions of uniformly elliptic and parabolic equations of second order.
For example, it has been established that the Harnack inequality, the
existence of solution, the Wiener criterion of the regular boundary and
the representation formula point to the classical Laplacian and heat
operators defined in a bounded domain by way of using the properties
of Green’s functions, for details, see [3, 14]. To a uniformly elliptic
operator with bounded measurable symmetrical coefficients, various
estimates of Green’s functions compared with that of Laplacian and
its application to Wiener’s criterion on the boundary point have been
studied by Littman, et al. [20]. Later, Grüter and Widman [15]
generalized these estimates of Green’s functions to the uniformly elliptic
operators with non-symmetrical coefficients and Mazzoni [21] further
obtained local estimates of Green’s functions for X-elliptic operators
with non-regular coefficients. Recently, Hofmann, et al. [12, 16, 24]
gave a unified approach for studying Green’s functions for both scalar
equations and systems of elliptic type. Later, Choi and Kim [7]
also obtained similar properties of Green’s functions on the Neumann
boundary condition of second order divergence elliptic systems with
bounded measurable coefficients in a bounded Lipschitz domain or
a Lipschitz graph domain, which enjoys the assumption that weak
solutions of the system satisfy an interior Hölder continuity.

As for the parabolic settings, in 1967, Aronson [2] proved Gauss-
ian upper and lower bounds for the fundamental solutions of parabolic
equations in divergence form with bounded measurable coefficients. In
fact, to establish the Gaussian lower bound, Aronson made use of the
Harnack inequality for nonnegative solutions, which was proven by
Nash in [22]. From then on, much research has been conducted on
this subject, see e.g., [5, 6, 8, 12, 16, 18, 19], and the references
therein. Compared to the investigation of Green’s functions for para-
bolic equations, there has been relatively little study on Green’s ma-
trices for parabolic systems. We observe that Cho, Dong and Kim [5]
established global estimates for Green’s matrix of second order diver-
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gence parabolic systems in a cylindrical domain, under the assumption
that weak solutions vanish on a portion of the boundary and satisfy
a certain local boundedness estimate as well as a local Hölder conti-
nuity estimate. Recently, Dong and Kim [12] improved the results
in [5] by constructing Green’s functions of similar parabolic systems
in non smooth time-varying domains under the assumption that weak
solutions satisfy an interior Hölder continuity estimate.

In this paper, we attempt to utilize these estimates of Green’s
functions from Cho, Dong and Kim’s papers [5, 6, 12] to present a
local Morrey regularity. It is our main aim of this paper to give a new
approach for attaining the local Morrey estimate and Hölder continuity
of the weak solution with the sharp regularity index instead of the
classical argument of the De Giorgi, Moser, Nash iteration. Before
stating the main result, we recall the definition of a VMO space. We
say that a measurable function aij(x) belongs to a VMO space if, for
any ρ > 0,

ωρ(aij) := sup
x∈Rn

0<r<ρ

−
∫
Br(x)

|aij(y)− aij | dy −→ 0 as ρ→ 0,

where aij = −
∫
Br(x)

aij(y) dy.

Theorem 1.1. Let (q, s, n) ∈ ((n+ 2)/2,∞) × (n + 2,∞) × N and

u ∈ L∞(Q)∩V 1,0
2 (Q) be any weak solution of linear parabolic equations

(1.4) ut −
n∑

i,j=1

Dj(aij(x)Diu) = g(x, t)−
n∑

i=1

Dif
i

with the coefficients aij(x) satisfying (1.2), (1.3) and belonging to the
VMO space. Assume that g(x, t) ∈ Lq(Q,R) and f(x, t) ∈ Ls(Q,Rn).
Then, we have

Du ∈ L2,λ
loc (Q,R)

for every 0 < λ ≤ n+ α0 with

α0 = min

{
2− 2(n+ 2)

s
, 4− 2(n+ 2)

q

}
∈ (0, 2).

Indeed, our argument for obtaining the local optimal Morrey es-
timate of (1.4) is inspired by some applications of Green’s functions
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to elliptic problems from the recent papers [13, 25]. In addition, an
important idea comes from Huang and Wang’s paper [17], in which
they applied the Riesz potential with the parabolic metric to prove the
C1,α-regularity of heat flow of harmonic maps.

As an immediate consequence, by the Morrey lemma, we obtain a
local Hölder continuity with an optimal Hölder exponent. As is well
known, it does not reach the optimal Hölder index, based upon the
argument of the De Giorgi, Moser, Nash iteration.

Corollary 1.2. Let u ∈ L∞(Q) ∩ V 1,0
2 (Q) be any weak solution of

linear parabolic equations (1.4) with coefficients aij(x) and data f(x, t)
and g(x, t) satisfying the same assumptions as Theorem 1.1. Then, we
have

u ∈ C
γ,γ/2
x,t (Q, loc)

with an optimal Hölder index γ = α0/2, where α0 is as shown in
Theorem 1.1.

Remark 1.3. As a local estimate of the weak solutions, we do not
require the base Ω of the cylinder Q = Ω × [0, T ] to be bounded or to
have a regular boundary.

Remark 1.4. If the coefficient aij is a bounded, measurable function
in x and t, then we can only obtain the Hölder continuity of Green’s
function with respect to the time variable due to De Girogi, Moser and
Nash’s iteration, as follows.

|G(X,Y )−G(X ′, Y )| ≤ Cδ(X,X ′)µ0δ(X,Y )−n−µ0 , X,X ′, Y ∈ Q,

where µ0 is a constant in (0, 1), and δ(·, ·) is the parabolic distance (see
below). Therefore, the pointwise estimate of DtG is absent. However,
if the coefficient aij is time-independent, Green’s function of parabolic
operators (1.1) is often called the heat kernel, studied by many authors,
see Davies [9, 10] or Alexander and Andras [1]. In this case, the
pointwise estimate of DtG is present (see Lemma 2.6 below).

The remainder of this paper is organized as follows. In Section 2,
we recall some related notation and basic facts, as well as some natural
growth properties of Green’s function. In Section 3, we provide a proof
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of Theorem 1.1 by the hole-filling technique based on Green’s function
as a part of test functions. Finally, we provide a brief conclusion.

2. Preliminaries. We denote by X = (x, t) any point in Q ⊂ Rn+1

with x = (x1, . . . , xn) in Ω ⊂ Rn. Similarly, we write Y = (y, s),
X0 = (x0, t0), . . . . We denote the parabolic distance between the points
X = (x, t) and Y = (y, s) by

δ(X,Y ) := max{|x− y|,
√
|t− s|},

where | · | denotes the usual Euclidean norm. Hence, we can easily
see that there are positive constants C1 and C2 such that the double
inequality

C1R ≤ δ(X,X0) ≤ C2R for all X ∈ P (X0, 2R) \ P (X0, (1/2)R)

holds. For a cylinder Q = Ω× [0, T ], we set

SQ = ∂Ω× [0, T ],

∂pQ = (∂Ω× [0, T ]) ∪ (Ω× {t = 0}),

∂̃pQ = (∂Ω× [0, T ]) ∪ (Ω× {t = T}),

and define a distance function to the parabolic boundary ∂pQ by

dist(X, ∂pQ) := inf
{
δ(X,Y ) : for all Y ∈ ∂pQ

}
.

Set

PR(X) = P (X,R) = Bδ
R(X) = BR(x)× [t−R2, t+R2] ⊂⊂ Q,

P−(X,R) = BR(x)× [t−R2, t],

P+(X,R) = BR(x)× [t, t+R2],

and, if no confusion arises in the context, we will simply write PR =
PR(X0). By C(n, λ,Λ, . . .), we denote a universal constant depending
only upon prescribed quantities and possibly varying from line to line.

Let n̂ denote the Hausdorff dimension of Rn+1 with respect to the
parabolic distance δ. Then, we have n̂ = n + 2. Throughout this
paper, we denote the time derivative of u by ut = Dtu = ∂u/∂t,
the spatial gradient of u by Du = Dxu = (D1u, . . . ,Dnu), where
Diu = Dxiu = ∂u/∂xi for i = 1, . . . , n.
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The Sobolev space W 1,0
p (Q) is the class of all functions u ∈ Lp(Q)

with its weak derivative Du ∈ Lp(Q) obeying

∥u∥W 1,0
p (Q) := ∥u∥Lp(Q) + ∥Du∥Lp(Q) <∞.

Let W 1,1
2 (Q) denote the Hilbert space with the inner product

⟨u, v⟩W 1,1
2 (Q) :=

∫
Q

uv dX +

n∑
i=1

∫
Q

DiuDiv dX +

∫
Q

utvt dX,

and let V2(Q) denote the set of all u ∈W 1,0
2 (Q) satisfying

∥u∥V2(Q) :=
{
∥Du∥2L2(Q) + ess sup

0≤t≤T
∥u(·, t)∥2L2(Ω)

}1/2

<∞.

Furthermore, V 1,0
2 (Q) stands for the set of all functions u ∈ V2(Q) such

that
lim
h→0

∥u(·, t+ h)− u(·, t)∥L2(Ω) = 0, t, t+ h ∈ [0, T ],

with the norm ∥u∥V2(Q). Clearly, W 1,1
2 (Q), V2(Q) and V 1,0

2 (Q) are all
Banach spaces, and they have the relations:

W 1,1
2 (Q) ⊂ V2(Q) ⊂ V 1,0

2 (Q).

In fact, V 1,0
2 (Q) is obtained by completing the set of W 1,1

2 (Q) in the

norm of ∥u∥V2(Q). In any case, we also define W̊ 1,1
2 (Q), V̊2(Q) and

V̊ 1,0
2 (Q), respectively, to be the sets of all functions in W 1,1

2 (Q), V2(Q)

and V 1,0
2 (Q) with u(·, t)|∂Ω = 0 for almost every t ∈ [0, T ].

Now, we understand the weak solution of equation (1.4) in the
following distributional sense:

Definition 2.1. Let (q, s) ∈ ((n+ 2)/2,∞) × (n + 2,∞) and g(X) ∈
Lq(Q,R), f(X) ∈ Ls(Q,Rn). A real-valued function u(X) is called a

bounded weak solution of (1.4) if u ∈ L∞(Q) ∩ V 1,0
2 (Q) such that

(2.1) −
∫
Q

uϕt dX +

∫
Q

aijDiuDjϕdX =

∫
Q

gϕ dX +

∫
Q

f iDiϕdX

for any ϕ ∈ V̊ 1,0
2 (Q,R).



OPTIMAL MORREY ESTIMATE 2437

For the parabolic operator L of (1.1), its adjoint operator tL is
introduced by

tL = −ut −
n∑

i,j=1

Dj (ãij(x)Diu) ,

where (ãij)
n
i,j=1 is the transpose of (aij)

n
i,j=1 with ãij = aji. It is

obvious that the coefficients ãij satisfy (1.2) and (1.3) with the same
constants λ,Λ.

Next, we recall the definitions of Green’s functions associated with
L and tL, cf., [5, 6, 12].

Definition 2.2. We say that a function G(X,X0) = G(x, t, x0, t0),
defined on the set {(X,X0) ∈ Q×Q : X ̸= X0}, is a Green’s function
of L in Q, if it satisfies the following properties:

(i) G(·, X0) ∈ V 1,0
2 (Q \ PR(X0)) for each fixed point X0 ∈ Q, small

R > 0, and G(·, X0) vanishes on SQ.

(ii) G(·, X0) ∈ W 1,0
1,loc(Q), and LG(·, X0) = δX0 for all X0 ∈ Q is

understood in the weak sense

−
∫
Q

G(·, X0)ϕt dX +

∫
Q

aijDiG(·, X0)DjϕdX = ϕ(X0)(2.2)

for all ϕ ∈ V̊ 1,0
2 (Q,R).

(iii) For any h ∈ L∞
c (Q), the function u, given by

u(X) =

∫
Q

G(X,X0)h(X0) dX0,

belongs to V̊ 1,0
2 (Q) and satisfies tLu = h in the sense that∫

Q

uϕt dX +

∫
Q

ãijDiuDjϕdX =

∫
Q

hϕ dX for all ϕ ∈ V̊ 1,0
2 (Q,R).

Definition 2.3. Similarly, we say that a function G̃(X,X0) = G̃(x, t,
x0, t0) is a Green’s function of tL, defined on the set {(X,X0) ∈ Q×Q :
X ̸= X0}, if it satisfies the following properties:

(i) G̃(·, X0) ∈ V 1,0
2 (Q \ PR(X0)) for each fixed point X0 ∈ Q, small

R > 0, and G̃(·, X0) vanishes on SQ.
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(ii) G̃(·, X0) ∈W 1,0
1,loc(Q) and LG̃(·, X0) = δX0 for all X0 ∈ Q in the

following sense:∫
Q

G̃(·, X0)ϕt dX +

∫
Q

ãijDiG̃(·, X0)DjϕdX = ϕ(X0)(2.3)

for all ϕ ∈ V̊ 1,0
2 (Q,R).

(iii) For any h ∈ L∞
c (Q), the function u, given by

u(X) =

∫
Q

G̃(X,X0)h(X0) dX0,

belongs to V̊ 1,0
2 (Q) and satisfies Lu = h in the sense of (2.1).

Remark 2.4. Definition 2.3 (iii), combined with the uniqueness of

weak solutions of tLu = h and Lu = h in V̊ 1,0
2 (Q) for any h ∈ L∞

c (Q),

implies that Green’s functions G(X,X0) and G̃(X,X0) are unique.

Let us recall that the weak-Lp spaces Lp
∗(PR) comprise the class of

all functions f ∈ Lp(PR) such that

∥f∥Lp
∗(PR) :=inf{C :µ|{X∈PR : |f(X)|>µ}|1/p≤C for all µ>0}<∞

for all p ≥ 1. In particular, for any 1 ≤ q < p, the following hold:

∥f∥Lp
∗(PR) ≤ ∥f∥Lp(PR)

and

(2.4) ∥f∥Lq(PR) ≤
(

p

p− q

)1/q

|PR|1/q−1/p∥f∥Lp
∗(PR),

cf., [14]. According to [12, Corollary 4.9], we know that the assump-
tion that coefficients aij(x) belong to VMO implies that the weak so-
lution of Lu = 0 enjoys interior Hölder continuity, which in turn guar-
antees that the Green’s function of L exists and satisfies the following
natural growth properties, cf., [6, Theorem 2.7], [12, Theorem 3.1],
[23, Lemma 5].

Lemma 2.5. For any fixed point X0 ∈ Q, the Green’s function G(X,
X0) of L has the following properties:
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(i) 0 ≤ G(X,X0) ≤ Cδ(X,X0)
−n, whenever 0 < δ(X,X0) <

(1/2) dist(X0, ∂pQ) and X,X0 ∈ Q;

(ii) there exist fixed constants C1 and C2 depending on n, λ and Λ
such that

G(X,X0) ≥
1

C1(t− t0)n/2
e−C2|x−x0|2/t−t0 .

(iii) ∥G(X,X0)∥Lν(Q(X0,R)) ≤ CR−n+(n+2)/ν for any 0 < R <
dist(X0, ∂pQ), and ν ∈ [1, (n+ 2)/n);

(iv) G(X,X0) ∈ Lκ
∗(Q) for κ = (n+ 2)/n, with

∥G(X,X0)∥Lκ
∗ (Q) ≤ C(n, λ,Λ);

(v) ∥DG(X,X0)∥Lp(Q(X0,R)) ≤ CR−n−1+(n+2)/p for any 0 < R <
dist(X0, ∂pQ), and p ∈ [1, (n+ 2)/(n+ 1));

(vi) DG(X,X0) ∈ Lτ
∗(Q) for τ = (n+ 2)/(n+ 1), with

∥DG(X,X0)∥Lτ
∗(Q) ≤ C(n, λ,Λ).

The above natural growth properties are also valid for the Green’s

function G̃ of the adjoint operator tL.

In what follows, we state the pointwise estimate of DtG to parabolic
equations, provided by Alexander and Andras [1, Corollary 5.7] via an
argument for the heat semigroup. More precisely, we have

Lemma 2.6. For any fixed point X0 ∈ Q, the derivative of the Green’s
function G(X,X0), with respect to time variable t, satisfies

|DtG(X,X0)| ≤ Cδ(X,X0)
−(n+2)

for any 0 < δ(X,X0) <∞ and some positive constant C = C(n). The

above estimate is also valid for the Green’s function G̃ of the adjoint
operator tL in Q.

The next lemma states that the weak solution of (1.4) satisfies a
Poincaré-type inequality, cf., [6, Lemma 2.4], [23, Lemma 3].
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Lemma 2.7. There exists a positive constant C = C(n, λ,Λ) such that,
if u is a weak solution of equation (1.4) in PR, then∫

PR

|u− uR|2dX ≤ CR2

∫
PR

|Du|2dX(2.5)

+ CR4+(n+2)(1−2/q)∥g∥2Lq(PR)

+ CR2+(n+2)(1−2/s)∥f∥2Ls(PR),

where uR = −
∫
PR
u dX.

The following iteration lemma will be needed later; its proof may be
found in [14].

Lemma 2.8. Let ω be a non-decreasing function defined on the interval
(0, R], which satisfies inequality

ω(τr) ≤ θω(r) +Krα,

where 0 < θ, τ < 1. Then, for δ ∈ (0, α), we have

ω(r) ≤ C

(
r

R

)δ(
ω(R) +KRα

)
,

where both C = C(τ, θ) and δ = δ(τ, θ, α) are positive constants.

Finally, we introduce a version of Morrey space from [3], which is
slightly stronger than the standard Morrey space.

Definition 2.9. Let (p, λ) ∈ [1,∞) × (0, n̂). A real-valued function
u(X) ∈ Lp(Q) belongs to the Morrey space Lp,λ(Q) if and only if

∥u∥Lp,λ(Q) := sup
X0∈Q
0<ϱ≤d

(∫
Q(X0,ρ)

|u|p

δ(X,X0)λ
dX

)1/p

<∞,

where Q(X0, ρ) = P (X0, ρ) ∩Q and d = diam(Q).
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3. Proof of the main theorem.

Proof of Theorem 1.1. For any given point X0 = (x0, t0) ∈ Q and
a constant 0 < R0 < (1/4) dist(X0, ∂pQ), let η(X) ∈ C∞

0 (P2R) be a
cut-off function such that η(X) ≡ 1 for X ∈ PR/2 and

0 ≤ η(X) ≤ 1,

|Dη| ≤ K1

R
,(3.1)

|ηt| ≤
K2

R2
for all X ∈ P2R;

where 0 < R < R0 and K1 and K2 are two positive constants. We
denote uR to be an integral average of u over P2R \ PR/2 with

uR =
1

|P2R \ PR/2|

∫
P2R\PR/2

u(X) dX for all P2R ⊂ Q.

Since ψ(X) = η2G̃(X,X0) ∈ V̊ 1,0
2 (P2R,R) and u ∈ L∞(Q) ∩ V 1,0

2 (Q),
we derive that ϕ(X) = ψ(X)(u−uR) ∈ V2(P2R,R) satisfying ϕ(X) = 0
on ∂pP2R and

lim
h→0

∥ϕ(·, t+ h)− ϕ(·, t)∥L2(Ω)

≤ ∥u∥L∞ lim
h→0

∥ψ(·, t+ h)− ψ(·, t)∥L2(Ω) = 0,

t, t+ h ∈ [0, T ].

This implies that ϕ(X) ∈ V̊ 1,0
2 (P2R,R); thus, we can take ϕ(X) as a

test function of (2.1), yielding

ϕt = η2DtG̃(u− uR) + 2ηG̃(u− uR)ηt + η2G̃Dt(u− uR)

and
Diϕ = ψDiu+Diψ(u− uR), i = 1, . . . , n.

Substituting the above formula into (2.1), we deduce∫
Q

utϕdX +

∫
Q

aijDiuDjuψ dX +

∫
Q

aijDiuDjψ(u− uR) dX

=

∫
Q

gψ(u− uR) dX +

∫
Q

(f i, ψDiu) dX +

∫
Q

(f i, Diψ(u− uR)) dX,
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which can be rewritten as

(3.2)

∫
Q

aijDiuDjuψ dX = I + II,

with

I = −
∫
Q

utϕdX −
∫
Q

aijDiuDjψ(u− uR) dX =: I1 +I2

and

II=

∫
Q

gψ(u− uR) dX +

∫
Q

(f i, ψDiu) dX +

∫
Q

(f i, Diψ(u− uR)) dX.

In the sequel, we focus on the estimates of |I| and |II|, respectively. In
order to estimate |I|, by employing integration by parts and substituting
ϕt into I1, we have

I1 = −
∫
Q

Dt(u− uR)ϕdX =

∫
Q

(u− uR)ϕt dX(3.3)

=

∫
Q

η2DtG̃(u− uR)
2dX

+ 2

∫
Q

ηG̃(u− uR)
2ηt dX +

∫
Q

Dt(u− uR)ϕdX

=
1

2

∫
Q

η2DtG̃(u− uR)
2 dX +

∫
Q

ηG̃(u− uR)
2ηt dX.

Note that
Djψ = 2ηG̃Djη + η2DjG̃,

and substituting into I2, it follows that
(3.4)

I2 = −
∫
Q

aijDiuDjG̃(u− uR)η
2dX − 2

∫
Q

aijDiuG̃(u− uR)Djηη dX.

Now, we insert (3.3) and (3.4) into the formula I. This yields
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I =
1

2

∫
Q

η2DtG̃(u− uR)
2dX +

∫
Q

ηG̃(u− uR)
2ηt dX

−
∫
Q

aijDiuDjG̃(u− uR)η
2dX − 2

∫
Q

aijDiuG̃(u− uR)Djηη dX

= −
[
− 1

2

∫
Q

η2DtG̃(u− uR)
2dX +

∫
Q

aijDiuDjG̃(u− uR)η
2dX

]
+

∫
Q

ηG̃(u− uR)
2ηt dX − 2

∫
Q

aijDiuG̃(u− uR)Djηη dX

= −
[
−
∫
Q

DtG̃

(
1

2
(u−uR)2η2

)
dX+

∫
Q

ãjiDjG̃Di

(
1

2
(u−uR)2η2

)
dX

]
+

∫
Q

ãjiDjG̃Diη(u− uR)
2η dX +

∫
Q

ηG̃(u− uR)
2ηt dX

− 2

∫
Q

aijDiuG̃(u− uR)Djηη dX

= −1

2
(u(X0)− uR)

2η2(X0) +

∫
Q

ãjiDjG̃Diη(u− uR)
2η dX

+

∫
Q

ηG̃(u− uR)
2ηt dX − 2

∫
Q

aijDiuG̃(u− uR)Djηη dX

≤
∫
Q

ãjiDjG̃Diη(u− uR)
2η dX +

∫
Q

ηG̃(u− uR)
2ηt dX

− 2

∫
Q

aijDiuG̃(u− uR)Djηη dX.

In the fourth equality above, we use aij = ãji as well as equality (2.3),
which yield the Green’s function of the adjoint operator tL. Therefore,

| I | ≤ Λ

∫
Q

|DG̃||Dη||u− uR|2η dX(3.5)

+

∫
Q

ηG̃|u− uR|2|ηt| dX



2444 JUNJIE ZHANG AND SHENZHOU ZHENG

+ 2Λ

∫
Q

|Du|G̃|u− uR||Dη|η dX

=: A1 + A2 + A3.

Estimate of A1. Using Young’s inequality with an arbitrary ε1 > 0,
we find that

A1 = Λ

∫
Q

|DG̃||Dη||u− uR|2η dX

≤ Λ

∫
P2R\PR/2

(|u− uR||Dη|G̃1/2)

(
η|u− uR|

|DG̃|
G̃1/2

)
dX

≤ ε1

∫
P2R\PR/2

|u− uR|2|Dη|2G̃ dX + C(Λ, ε1)

·
∫

P2R\PR/2

η2|u− uR|2
|DG̃|2

G̃
dX

=: A11 + A12

By virtue of Lemma 2.5 (i), (3.1) and Lemma 2.7, we deduce

A11 = ε1

∫
P2R\PR/2

|u− uR|2|Dη|2G̃ dX ≤ Cε1

∫
P2R\PR/2

|u− uR|2

R2δ(X,X0)n
dX

≤ Cε1
Rn+2

∫
P2R\PR/2

|u− uR|2dX ≤ Cε1
Rn

∫
P2R\PR/2

|Du|2dX

+ Cε1R
4−(2n+4)/q∥g∥2Lq(P2R) + Cε1R

2−(2n+4)/s∥f∥2Ls(P2R).

Then, it remains to estimate A12. We introduce a new, smooth cut-off
function, satisfying:

ξ(X) =

{
0 for X ∈ PR/2,

η(X) for X ∈ Rn+1 \ PR/2.

For the Green’s function G̃, defined by (2.3), we take ϕ = G̃−1/2(u −
uR)

2ξ2 ∈ C∞
0 (P2R\PR/2,R) as the test function. Note that ϕ(X0) ≡ 0,
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and

Djϕ = −1

2
G̃−3/2DjG̃(u− uR)

2ξ2 + 2G̃−1/2[ξ(u− uR)][Dj(ξ(u− uR))].

By substituting ϕ(X0) and Djϕ into (2.3), we find that

1

2

∫
P2R\PR/2̃

aijDiG̃DjG̃G̃
−3/2(u− uR)

2ξ2dX

= −
∫

P2R\PR/2

DtG̃G̃
−1/2(u− uR)

2ξ2dX(3.6)

+ 2

∫
P2R\PR/2̃

aijDiG̃G̃
−1/2[ξ(u− uR)][Dj(ξ(u− uR))] dX.

Now, combining (1.2), (3.6) and (1.3), we have

λ

2

∫
P2R\PR/2

|DG̃|2G̃−3/2(u−uR)2ξ2dX ≤
∫

P2R\PR/2

|DtG̃|G̃−1/2|u−uR|2ξ2dX

(3.7)

+ 2Λ

∫
P2R\PR/2

|DG̃|G̃−1/2ξ|u− uR||Dj(ξ(u− uR))| dX.

Applying Lemma 2.5 (i), Lemma 2.6, (3.1) and Lemma 2.7, the first
term on the right-hand side of (3.7) satisfies∫
P2R\PR/2

|DtG̃|G̃−1/2|u−uR|2ξ2dX ≤ C

∫
P2R\PR/2

δ(X,X0)
n/2

δ(X,X0)n+2
|u−uR|2dX

≤ C

∫
P2R\PR/2

|u− uR|2

δ(X,X0)n/2+2
dX

≤ CR−n/2−2

∫
P2R\PR/2

|u− uR|2dX

(3.8)

≤ CR−n/2

∫
P3R\PR/2

|Du|2dX + CR4+n/2−(2n+4)/q∥g∥2Lq(P2R)

+ CR2+n/2−(2n+4)/s∥f∥2Ls(P2R).
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Using Young’s inequality with arbitrary ε2 > 0, Lemma 2.5 (i) and
Lemma 2.7, the second term on the right-hand side of (3.7) satisfies

2Λ

∫
P2R\PR/2

|DG̃|G̃−1/2ξ|u− uR||Dj(ξ(u− uR))| dX

(3.9)

= 2Λ

∫
P2R\PR/2

[|DG̃|G̃−3/4ξ|u− uR|][G̃1/4|Dj(ξ(u− uR))|] dX

≤ ε2

∫
P2R\PR/2

|DG̃|2G̃−3/2|u− uR|2ξ2dX + C(Λ, ε2)

·
∫

P2R\PR/2

G̃1/2(|Dξ|2|u− uR|2 + ξ2|Du|2) dX

≤ ε2

∫
P2R\PR/2

|DG̃|2G̃−3/2|u− uR|2ξ2dX + CR−n/2

·
∫

P2R\PR/2

(|Dξ|2|u− uR|2 + ξ2|Du|2) dX

≤ ε2

∫
P2R\PR/2

|DG̃|2G̃−3/2|u− uR|2ξ2dX + CR−n/2

·
∫

P2R\PR/2

(
|u− uR|2

R2
+ |Du|2

)
dX

≤ ε2

∫
P2R\PR/2

|DG̃|2G̃−3/2|u− uR|2ξ2dX + CR−n/2

∫
P3R\PR/2

|Du|2dX

+ CR4+n/2−(2n+4)/q∥g∥2Lq(P2R) + CR2+n/2−(2n+4)/s∥f∥2Ls(P2R).

Letting ε2 < λ/2, from (3.8) and (3.9), inequality (3.7) becomes∫
P2R\PR/2

|DG̃|2G̃−3/2|u− uR|2ξ2dX(3.10)

≤ CR−n/2

∫
P3R\PR/2

|Du|2dX + CR4+n/2−(2n+4)/q∥g∥2Lq(P2R)

+ CR2+n/2−(2n+4)/s∥f∥2Ls(P2R).
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Again using Lemma 2.5 (i), together with (3.10), we deduce

A12 = C

∫
P2R\PR/2

η2|u− uR|2
|DG̃|2

G̃
dX

= C

∫
P2R\PR/2

G̃1/2|DG̃|2G̃−3/2|u− uR|2ξ2dX

≤ CR−n/2

∫
P2R\PR/2

|DG̃|2G̃−3/2|u− uR|2ξ2dX

≤ CR−n

∫
P3R\PR/2

|Du|2dX + CR4−(2n+4)/q∥g∥2Lq(P2R)

+ CR2−(2n+4)/s∥f∥2Ls(P2R).

Thus, the estimates of A11 and A12 imply

A1 ≤ CR−n

∫
P3R\PR/2

|Du|2dX + CR4−(2n+4)/q∥g∥2Lq(P2R)

+ CR2−(2n+4)/s∥f∥2Ls(P2R).

Estimate of A2. We use (3.1), Lemma 2.5 (i) and Lemma 2.7 to
deduce

A2 =

∫
Q

ηG̃|u− uR|2|ηt| dX

≤ K2

R2

∫
P2R\PR/2

G̃|u− uR|2dX

≤ C

R2

∫
P2R\PR/2

|u− uR|2

δ(X,X0)n
dX

≤ C

Rn+2

∫
P2R\PR/2

|u− uR|2dX
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≤ C

Rn

∫
P3R\PR/2

|Du|2dX + CR4−(2n+4)/q∥g∥2Lq(P2R)

+ CR2−(2n+4)/s∥f∥2Ls(P2R).

Estimate of A3. By (3.1), Young’s inequality with arbitrary ε3 > 0
and Lemma 2.5 (i), we can derive

A3 = 2Λ

∫
Q

|Du|G̃|u− uR||Dη|η dX

(3.11)

≤ 2K1Λ

∫
P2R\PR/2

(η|Du|G̃1/2)

(
|u− uR|

R
G̃1/2

)
dX

≤ ε3

∫
P2R\PR/2

η2|Du|2G̃ dX + C(Λ, ε3)

∫
P2R\PR/2

|u− uR|2

R2
G̃ dX

≤ Cε3

∫
P3R\PR/2

|Du|2

δ(X,X0)n
dX

+ C

∫
P2R\PR/2

|u− uR|2

R2
G̃ dX,

and the second term in (3.11) satisfies

C

∫
P2R\PR/2

|u− uR|2

R2
G̃ dX ≤ C

∫
P2R\PR/2

|u− uR|2

R2δ(X,X0)n
dX

≤ C

Rn+2

∫
P2R\PR/2

|u− uR|2 dX

≤ C

Rn

∫
P3R\PR/2

|Du|2dX + CR4−(2n+4)/q∥g∥2Lq(P2R)

+ CR2−(2n+4)/s∥f∥2Ls(P2R),
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whence

A3 ≤ CR−n

∫
P3R\PR/2

|Du|2dX + CR4−(2n+4)/q∥g∥2Lq(P2R)

+ CR2−(2n+4)/s∥f∥2Ls(P2R).

Now, placing the estimations of A1, A2 and A3 into (3.5), we obtain

| I | ≤ CR−n

∫
P3R\PR/2

|Du|2dX + CR4−(2n+4)/q∥g∥2Lq(P2R)(3.12)

+ CR2−(2n+4)/s∥f∥2Ls(P2R).

Next, we are ready to derive

|II| ≤
∫
Q

|g||u− uR||ψ| dX +

∫
Q

|f ||Du||ψ| dX

+

∫
Q

|f ||u− uR||Dψ| dX(3.13)

=: B1 + B2 + B3.

Estimate of B1. Recalling ψ = η2G̃ and using Young’s inequality
with arbitrary ε4 > 0, we have

B1 =

∫
Q

|g||u− uR|G̃η2dX

≤
∫

P2R\PR/2

(R|g|G̃1/2)

(
|u− uR|G̃1/2

R

)
dX

≤ C(ε4)R
2

∫
P2R\PR/2

|g|2G̃ dX + ε4

∫
P2R\PR/2

|u− uR|2

R2
G̃ dX

=: B11 + B12.

For B11, Lemma 2.5 (iv) tells us that ∥G̃∥Lκ
∗

≤ C(n, λ,Λ) with
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κ = (n+ 2)/n. Hence, by the Hölder inequality and (2.4), we have

B11 = R2

∫
P2R\PR/2

|g|2G̃ dX

≤ R2

(∫
P2R\PR/2

G̃νdX

)1/ν(∫
P2R\PR/2

|g|2ν
′
dX

)1/ν′

≤ CR2|P2R|(1/ν−1/κ)∥G̃∥Lκ
∗
|P2R|(1/ν

′−2/q)∥g∥2Lq

≤ CR2|P2R|(1−1/κ−2/q)∥G̃∥Lκ
∗
∥g∥2Lq

≤ CR2+(n+2)(1−1/κ−2/q),

where the exponent of R is positive due to q > (n+ 2)/2, and ν′ is the
Hölder conjugate number of ν with 1 ≤ ν < (n+ 2)/n.

For B12, by Lemma 2.7, it follows that

B12 = ε4

∫
P2R\PR/2

|u− uR|2

R2
G̃ dX

≤ Cε4
Rn+2

∫
P2R\PR/2

|u− uR|2dX

≤ Cε4
Rn

∫
P3R\PR/2

|Du|2dX + Cε4R
4−(2n+4)/q∥g∥2Lq(P2R)

+ Cε4R
2−(2n+4)/s∥f∥2Ls(P2R).

Combining the estimates of B11 and B12, we obtain

B1 ≤ Cε4
Rn

∫
P3R\PR/2

|Du|2dX + CR2+(n+2)(1−1/κ−2/q)

+ Cε4R
4−(2n+4)/q∥g∥2Lq(P2R) + Cε4R

2−(2n+4)/s∥f∥2Ls(P2R).

Estimate of B2. Note that ψ = η2G̃ and supp(η) = P2R. From
Lemma 2.5 (iv), it follows that

∫
P2R\PR/2

|f |2G̃ dX ≤
(∫

P2R\PR/2

G̃νdX

)1/ν(∫
P2R\PR/2

|f |2ν
′
dX

)1/ν′
(3.14)

≤ C|P2R|(1/ν−1/κ)∥G̃∥Lκ
∗
|P2R|(1/ν

′−2/s)∥f∥2Ls
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≤ C|P2R|(1−1/κ−2/s)∥G̃∥Lκ
∗
∥f∥2Ls

≤ CR(n+2)(1−1/κ−2/s),

where the exponent of R is positive due to s > n + 2. Then, using
(3.14) and Young’s inequality with arbitrary ε5 > 0, we have

B2 =

∫
Q

|f ||Du|G̃η2dX

≤ C(ε5)

∫
P2R\PR/2

|f |2G̃ dX + ε5

∫
P2R\PR/2

|Du|2η4G̃ dX

≤ CR(n+2)(1−1/κ−2/s) +
Cε5
Rn

∫
P3R\PR/2

|Du|2dX.

Estimate of B3. Since

B3 ≤ 2

∫
Q

|f ||u−uR|G̃|Dη|η dX+

∫
Q

|f ||u−uR|η2|DG̃| dX =: B31+B32,

it suffices to estimate B31 and B32, respectively. Similar to the estimate
of B2, we find that

B31 = 2

∫
Q

|f ||u− uR|G̃|Dη|η dX

≤ C

∫
P2R\PR/2

|f |2G̃η2dX + C

∫
P2R\PR/2

|u− uR|2|Dη|2G̃ dX

≤ C

∫
P2R\PR/2

|f |2G̃ dX + CR−n−2

∫
P2R\PR/2

|u− uR|2dX

≤ CR(n+2)(1−1/κ−2/s) + CR−n

∫
P3R\PR/2

|Du|2dX

+ CR4−(2n+4)/q∥g∥2Lq(P2R) + CR2−(2n+4)/s∥f∥2Ls(P2R).

We use Young’s inequality with arbitrary ε6 > 0 to see that

B32 =

∫
Q

|f ||u− uR|η2|DG̃| dX(3.15)
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≤
∫

P2R\PR/2

(
|f ||DG̃|R
G̃1/2

)(
|u− uR|G̃1/2

R

)
dX

≤ C(ε6)R
2

∫
P2R\PR/2

|f |2|DG̃|2

G̃
dX + ε6

∫
P2R\PR/2

|u− uR|2G̃
R2

dX.

Looking at the first term in (3.15), from Lemma 2.5 (vi), we know that

∥DG̃∥Lτ
∗
≤ C(n, λ,Λ) with τ = (n+ 2)/(n+ 1).

R2

∫
P2R\PR/2

|f |2|DG̃|2

G̃
dX(3.16)

≤ CR2

∫
P2R\PR/2

δ(X,X0)
n|f |2|DG̃|2dX

≤ CRn+2

∫
P2R\PR/2

|f |2|DG̃|2dX

≤ CRn+2

( ∫
P2R\PR/2

|DG̃|2δdX

)1/δ( ∫
P2R\PR/2

|f |2δ
′
dX

)1/δ′

≤ CRn+2|P2R|(1/δ−2/τ)∥DG̃∥Lτ
∗
|P2R|(1/δ

′−2/s)∥f∥2Ls

≤ CRn+2|P2R|(1−2/τ−2/s)∥DG̃∥Lτ
∗
∥f∥2Ls

≤ CRn+2+(n+2)(1−2/τ−2/s),

where δ′ is the Hölder conjugate number of δ with 1 ≤ δ < (n+ 2)/
(n+ 1). Since s > n+ 2, direct calculation gives

n+ 2 + (n+ 2)

(
1− 2

τ
− 2

s

)
> 0.

With the same argument as for B12, we have

(3.17) ε6

∫
P2R\PR/2

|u− uR|2G̃
R2

dX ≤ Cε6
Rn

∫
P3R\PR/2

|Du|2dX

+ Cε6R
4−(2n+4)/q∥g∥2Lq(P2R) + Cε6R

2−(2n+4)/s∥f∥2Ls(P2R).
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Hence, combining (3.15), (3.16) and (3.17), we obtain

B32 ≤ Cε6R
−n

∫
P3R\PR/2

|Du|2dX + CRn+2+(n+2)(1−(2/τ)−(2/s))

+ Cε6R
4−(2n+4)/q∥g∥2Lq(P2R) + Cε6R

2−(2n+4)/s∥f∥2Ls(P2R).

This estimate, together with the estimate of B31, implies

B3 ≤ CR−n

∫
P3R\PR/2

|Du|2dX

+ CR(n+2)(1−1/κ−2/s) + CRn+2+(n+2)(1−2/τ−2/s)

+ CR4−(2n+4)/q∥g∥2Lq(P2R) + CR2−(2n+4)/s∥f∥2Ls(P2R).

Now, combining the estimates of B1, B2 and B3, we obtain

(3.18) |II| ≤ CR−n

∫
P3R\PR/2

|Du|2dX + CRα0 ,

where

α0 = min

{
2 + (n+ 2)

(
1− 1

κ
− 2

q

)
, (n+ 2)

(
1− 1

κ
− 2

s

)
,

n+ 2 + (n+ 2)

(
1− 2

τ
− 2

s

)
, 4− 2n+ 4

q
, 2− 2n+ 4

s

}
= min

{
2− 2(n+ 2)

s
, 4− 2(n+ 2)

q

}
∈ (0, 2).

Combining (3.2), (3.12) and (3.18), it follows that

λ

∫
Q

G̃η2|Du|2dX ≤ CR−n

∫
P3R\PR/2

|Du|2dX + CRα0 .

In accordance with Lemma 2.5 (ii), we have

λ

∫
Q

G̃η2|Du|2dX

≥ λ

∫
PR/2

|Du|2 1

C1(t− t0)n/2
e−C2|X−X0|2/t−t0dX
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= λ
∞∑

j=1

∫
PR/2j \PR/2j+1

|Du|2 1

C1(t−t0)n/2
e−C2|X−X0|2/t−t0dX(3.19)

≥ λ
∞∑

j=1

∫
PR/2j \PR/2j+1

|Du|2 2nj

C1Rn
e−C2(R/2j)2/(R/2j+1)2dX

=
λe−4C2

C1Rn

∞∑
j=1

2nj
∫

PR/2j \PR/2j+1

|Du|2dX

≥ λe−4C2

C1Rn

∞∑
j=1

∫
PR/2j \PR/2j+1

|Du|2dX

=
λe−4C2

C1Rn

∫
PR/2

|Du|2dX.

Thus, there is a basic estimate for positive constants K0 and C, which
only depends upon n, λ and Λ such that

R−n

∫
PR/2

|Du|2dX ≤ K0R
−n

∫
P3R\PR/2

|Du|2dX + CRα0

≤ K0R
−n

∫
P3R

|Du|2dX−K0R
−n

∫
PR/2

|Du|2dX+CRα0 ,

that is,

R−n

∫
PR/2

|Du|2dX ≤
(

K0

K0 + 1

)
R−n

∫
P3R

|Du|2dX + CRα0 , α0 > 0.

Since K0/(K0 + 1) < 1, Lemma 2.8 implies

(3.20)

∫
PR

|Du|2dX ≤ CRn+α0 .

By virtue of the hole-filling technique [11], we conclude that Du ∈
L2,λ
loc (Q,Rn) for every 0 < λ ≤ n+ α0, and this completes the proof of

Theorem 1.1. �
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The following is a parabolic version of the Morrey lemma, and Corol-
lary 1.2 follows as a direct consequence of Theorem 1.1.

Lemma 3.1 (Morrey lemma [14]). Suppose that u ∈ W 1,1
p,loc(Q) with

Q ⊂ Rn+1 satisfies the following inequality. There exist a constant
M > 0 and some β ∈ (0, 1) such that∫

PR

|Du|pdx ≤MpRn+2−p+pβ ,

for any PR ⊂ Q. Then, u ∈ C
β,β/2
x,t (Q, loc). Moreover, for any

Q′ ⊂⊂ Q the following holds

sup
Q′

|u|+ sup
X

Y ∈Q′

X ̸=Y

|u(X)− u(Y )|
δ(X,Y )n

≤ C(M + ∥u∥Lp(Q)),

where M = supQ|u| and C = C(n, β,Q′, Q) > 0.

Proof of Corollary 1.2. Since (3.20) holds, we can easily derive that∫
PR

|Du|2dX ≤ CRn+α0 .

Therefore, following from Lemma 3.1, the proof of Corollary 1.2 is
complete. �

4. Conclusions. In this paper, we first reviewed some natural
growth properties of Green’s functions to linear parabolic operator
(1.1), including the estimate of the derivative with respect to the time
variation t. Then, as an application of these estimates, we derived a
local regularity in Morrey spaces for the weak solution of equation (1.4)
by employing Green’s functions as a part of test functions and the hole-
filling technique. We also gave an alternative proof of a locally Hölder
continuity with optimal Hölder exponent to the weak solution of linear
parabolic equations with time-independent coefficients.
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