
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 48, Number 7, 2018

SOME REFINEMENTS OF CLASSICAL INEQUALITIES

SHIGERU FURUICHI AND HAMID REZA MORADI

ABSTRACT. We give some new refinements and reverses
of Young inequalities in both additive and multiplicative-
type for two positive numbers/operators. We show our ad-
vantages by comparing with known results. A few appli-
cations are also given. Some results relevant to the Heron
mean are also considered.

1. Introduction and preliminaries. In this paper, an operator
means a bound linear operator on a Hilbert space H. An operator X
is said to be positive (denoted by X ≥ 0) if ⟨Xy, y⟩ ≥ 0 for all y ∈ H,
and, in addition, an operator X is said to be strictly positive (denoted
by X > 0) if X is positive and invertible. For convenience, we often
use the following notation:

A!vB≡((1−v)A−1+vB−1)
−1

, A♯vB≡A1/2(A−1/2BA−1/2)
v
A1/2,

Hv(A,B) ≡ A♯vB +A♯1−vB

2
, A∇vB ≡ (1− v)A+ vB,

where A,B are strictly positive operators and 0 ≤ v ≤ 1. When v =
1/2, we write A!B, A♯B, H(A,B) and A∇B for brevity, respectively.

A fundamental inequality between positive real numbers a, b is the
Young inequality, which states

a1−vbv ≤ (1− v)a+ vb, 0 ≤ v ≤ 1,

with equality if and only if a = b. If v = 1/2, we obtain the arithmetic-

geometric mean inequality
√
ab ≤ (a+ b)/2. Recently, considerable
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attention has been dedicated to the study of Young inequalities and
their operator versions [20, 21].

It is well known that, cf., [12]:

(1.1) A!vB ≤ A♯vB ≤ A∇vB, 0 ≤ v ≤ 1,

where the second inequality in (1.1) is known as the operator arithmetic-
geometric mean inequality (or the operator Young inequality).

Based on the refined scalar Young inequality, Kittaneh and Manas-
rah [14] obtained that

(1.2) r(A+B−2A♯B)+A♯vB ≤ A∇vB ≤ R(A+B−2A♯B)+A♯vB,

where r = min{v, 1− v} and R = max{v, 1− v}.
Zou et al., [24] refined the operator Young inequality with the

Kantorovich constant K(x) ≡ (x+ 1)
2
/4x, x > 0, and proposed the

following result:

(1.3) Kr(h)A♯vB ≤ A∇vB,

where
0 < α′I ≤ A ≤ αI ≤ βI ≤ B ≤ β′I

or
0 < α′I ≤ B ≤ αI ≤ βI ≤ A ≤ β′I,

h = β/α and h′ = β′/α′. Note also that the inequality (1.3) improves
Furuichi’s result from [9], which includes the well-known Specht’s ratio
instead of the Kantorovich constant.

As for the reverse of the operator Young inequality, under the same
conditions, Liao et al., [15] gave the following inequality:

(1.4) A∇vB ≤ KR(h)A♯vB.

For more related inequalities and applications, see e.g., [8, 11, 20, 21].

This paper gives some refinements and reverses for the operator
Young inequality via the Hermite-Hadamard inequality, that is, the
following theorem is one of the main results in this paper.

Theorem A. Let A,B be strictly positive operators such that 0 <
h′I ≤ A−1/2BA−1/2 ≤ hI ≤ I for some positive scalars h and h′.
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Then, for each 0 ≤ v ≤ 1,

(1.5) mv(h)A♯vB ≤ A∇vB ≤ Mv(h
′)A♯vB,

where

mv(x) ≡ 1 +
2vv(1− v)(x− 1)2

(x+ 1)v+1
,

and

Mv(x) ≡ 1 +
v(1− v)(x− 1)2

2xv+1
.

The proof of Theorem A is given in Section 2, and its advantage for
previously known results is given by Proposition 3.1 in Section 3.

To state our second main result, we recall that the family of the
Heron mean [1] for two positive numbers a and b is defined as

Fr,v(a, b) ≡ ra1−vbv + (1− r){(1− v)a+ vb}, 0 ≤ v ≤ 1, r ∈ R.

More recently, Furuichi [10] showed that, if r ≤ 1, then

(1.6) ((1− v)a−1 + vb−1)
−1 ≤ Fr,v(a, b), 0 ≤ v ≤ 1.

Theorem B. Let a, b ≥ 0, r ∈ R, 0 ≤ v ≤ 1. Define

gr,v(a, b) ≡ v

(
b− a

a

){
r

(
a+ b

2a

)v−1

+ (1− r)

}
+ 1,

Gr,v(a, b) ≡
v

2

(
b− a

a

)
{ra1−vbv−1 + 2− r}+ 1.

(i) If either a ≤ b, r ≥ 0 or b ≤ a, r ≤ 0, then

gr,v(a, b) ≤ Fr,v(a, b) ≤ Gr,v(a, b).

(ii) If either a ≤ b, r ≤ 0 or b ≤ a, r ≥ 0, then

Gr,v(a, b) ≤ Fr,v(a, b) ≤ gr,v(a, b).

The proof of Theorem B along with its advantages is shown in
Section 4 using four propositions.
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2. On refined Young inequalities and reverse inequalities.
To achieve our results, we need the well known Hermite-Hadamard
inequality which asserts that, if f : [a, b] → R is a convex (concave)
function, then the following chain of inequalities hold:

(2.1) f

(
a+ b

2

)
≤ (≥)

1

b− a

∫ b

a

f(x) dx ≤ (≥)
f(a) + f(b)

2
.

Our first attempt, which is a direct consequence of [18, Theorem 1],
gives an additive-type improvement and reverse for the operator Young
inequality via (2.1).

To obtain inequalities for bounded self-adjoint operators in Hilbert
space, we shall use the following monotonicity property for operator
functions: if X ∈ B(H) is a self-adjoint operator with a spectrum
Sp(X) and f, g are continuous real-valued functions on Sp(X), then

f(t) ≤ g(t), t ∈ Sp(X) =⇒ f(X) ≤ g(X).

The next lemma provides a technical result which will be needed in
the sequel.

Lemma 2.1. Let 0 < v ≤ 1.

(i) For each t > 0, the function fv(t) = v(1− tv−1) is concave.
(ii) The function gv(t) = v(1− v)(t− 1)/tv+1 is concave if t ≤

1 + 2/v, and convex if t ≥ 1 + 2/v.

Proof. The function fv(t) is twice differentiable and fv
′′(t) = v(1−

v)(v − 2)tv−3. According to the assumptions t > 0, 0 ≤ v ≤ 1,
so fv

′′(t) ≤ 0. The function gv(t) is also twice differentiable and
gv

′′(t) = v(1− v)(v + 1)((vt− v − 2)/tv+3), which implies (ii). �
Using this lemma, together with (2.1), we have the following propo-

sition.
Proposition 2.2. Let A,B be strictly positive operators such that
A ≤ B. Then, for each 0 ≤ v ≤ 1,

v(B −A)A−1

(
A−A♮v−1B

2

)
+A♯vB ≤ A∇vB

(2.2)

≤ v(B −A)A−1

(
A−A1/2

(
I +A−1/2BA−1/2

2

)v−1

A1/2

)
+A♯vB.
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Proof. In order to prove (2.2), we firstly prove the corresponding
scalar inequalities. As was shown in Lemma 2.1 (i), the function
fv(t) = v(1 − tv−1), where t ≥ 1 and 0 ≤ v ≤ 1 is concave. Moreover,
it is readily verified that∫ x

1

fv(t) dt = (1− v) + vx− xv.

From inequality (2.1) for the concave function, we infer that

v(x− 1)

(
1− xv−1

2

)
+ xv ≤ (1− v) + vx(2.3)

≤ v(x− 1)

(
1−

(
1 + x

2

)v−1)
+ xv,

where x ≥ 1 and 0 ≤ v ≤ 1. With X = A−1/2BA−1/2, and thus
Sp(X) ⊆ (1,+∞), relation (2.3) holds for any x ∈ Sp(X). Therefore,

v(X − I)

(
I −Xv−1

2

)
+Xv ≤ (1− v)I + vX

≤ v(X − I)

(
I −

(
I +X

2

)v−1)
+Xv.

Finally, multiplying both sides by A1/2, we obtain (2.2). �

By virtue of Proposition 2.2, we can improve the first inequality in
(1.1).

Remark 2.3. It is worthwhile remarking that the left-hand side of
inequality (2.2) is a refinement of the operator Young inequality in the
sense of v(x− 1)(1− xv−1/2) ≥ 0 for each x ≥ 1 and 0 ≤ v ≤ 1, i.e.,

(2.4) A♯vB ≤ v(B −A)A−1

(
A−A♮v−1B

2

)
+A♯vB ≤ A∇vB.

Replacing A and B by A−1 and B−1, respectively, in (2.4), we obtain

A−1♯vB
−1 ≤ v(B−1 −A−1)A

(
A−1 −A−1♮v−1B

−1

2

)
+A−1♯vB

−1

(2.5)

≤ A−1∇vB
−1.
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Taking the inverse in (2.5), we get

A!vB≤
{
v(B−1−A−1)A

(
A−1−A−1♮v−1B

−1

2

)
+A−1♯vB

−1

}−1

≤ A♯vB.

In order to give a proof of our first main result, we need the following,
essential result.

Proposition 2.4. For each 0 < x ≤ 1, 0 ≤ v ≤ 1, the functions
mv(x) and Mv(x) defined in Theorem A are decreasing. Moreover,
1 ≤ mv(x) ≤ Mv(x).

Proof. The function mv(x) is differentiable, and

mv
′(x) =

v(v − 1)2v

(x+ 1)
v+2 ((v − 1)x2 + v + 3− 2(v + 1)x).

By assumption, we can easily find that mv
′(x) ≤ 0, for any 0 < x ≤ 1,

0 ≤ v ≤ 1. In addition, mv(1) = 1, so mv(x) ≥ 1.

Similarly, the function Mv(x) is differentiable, and

Mv
′(x) =

v(v − 1)(x− 1)((v − 1)x− v − 1)

2xv+2
.

Therefore, Mv
′(x) ≤ 0 for any 0 < x ≤ 1, 0 ≤ v ≤ 1. We also have

Mv(1) = 1, i.e., Mv(x) ≥ 1.

It remains to prove mv(x) ≤ Mv(x). Suppose that

Mv(x) ≡ Mv(x)−mv(x), 0 < x ≤ 1, 0 ≤ v ≤ 1.

In a manner similar to what was done above, we can calculate M′
v(x)

in the following:

M′
v(x) =

v(1− v)(1− x)

2(x+ 1)2xv+2
hv(x),

where

hv(x) ≡ 2x2{(1− v)x+ v + 3}
(

2x

x+ 1

)v

− {(1− v)x3 + (3− v)x2 + (v + 3)x+ (v + 1)}.
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Since 0 < x ≤ 1, 2x/(x+ 1)v ≤ 1. Thus, M′
v(x) is bounded from the

above:

M′
v(x) ≤

v(1− v)(1− x)

2(x+ 1)2xv+2
kv(x),

where

kv(x) ≡ (1− v)x3 + 3(v + 1)x2 − (v + 3)x− (v + 1).

By elementary calculations, we find that

k′′v(x) = 6(1− v)x+ 6(v + 1) ≥ 0, kv(0) = −(v + 1) < 0, kv(1) = 0.

Thus, we have kv(x) ≤ 0, which implies M′
v(x) ≤ 0 so that Mv(x) ≥

Mv(1) = 0. Therefore, the proposition follows. �

We are now in a position to prove Theorem A, which is a multiplicative-
type refinement and reverse for the operator Young inequality.

Proof of Theorem A. It is routine to verify that the function

fv(t) =
v(1− v)(t− 1)

tv+1
,

where 0 < t ≤ 1, 0 ≤ v ≤ 1, is concave. We can also verify that∫ 1

x

fv(t) dt = 1− (1− v) + vx

xv
.

Hence, from inequality (2.1), we can write

(2.6) mv(x)x
v ≤ (1− v) + vx ≤ Mv(x)x

v,

for each 0 < x ≤ 1, 0 ≤ v ≤ 1.

Now, we shall use the same procedure as in [9, Theorem 2]. Inequal-
ity (2.6) implies that

min
h′≤x≤h≤1

mv(x)x
v ≤ (1− v) + vx ≤ max

h′≤x≤h≤1
Mv(x)x

v.

Based on this inequality, it can easily be seen that, for X,

(2.7) min
h′≤x≤h≤1

mv(x)X
v ≤ (1− v)I + vX ≤ max

h′≤x≤h≤1
Mv(x)X

v.
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By substituting A−1/2BA−1/2 for X and taking into account that
mv(x) and Mv(x) are decreasing, relation (2.7) implies

mv(h)(A
−1/2BA−1/2)

v
≤ (1− v)I + vA−1/2BA−1/2(2.8)

≤ Mv(h
′)(A−1/2BA−1/2)

v
.

Multiplying A1/2 on both sides in inequality (2.8), we have inequality
(1.5). �

Remark 2.5. Note that, the condition 0 < h′I ≤ A−1/2BA−1/2 ≤
hI ≤ I in Theorem A can be replaced by 0 < α′I ≤ B ≤ αI ≤ βI ≤
A ≤ β′I. In this case, we have

mv(h)A♯vB ≤ A∇vB ≤ Mv(h
′)A♯vB,

where h = α/β and h′ = α′/β′.

It is well known that, for each strictly positive operator A, B (see,
e.g., [13, Proposition 3.3.11]),

(2.9) Hv(A,B) ≤ A∇B, 0 ≤ v ≤ 1.

A counterpart to inequality (2.9) is as follows:

Remark 2.6. Assume the conditions of Theorem A hold. Then,

A∇B ≤
√
Mv(h′2)Hv(A,B).

Theorem A can be used to infer the following remark:

Remark 2.7. Assume the conditions of Theorem A hold. Then,

mv(h)A!vB ≤ A♯vB ≤ Mv(h
′)A!vB.

The left-hand side of inequality (1.5) can be squared by a similar
method as in [16, 17].
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Corollary 2.8. Let 0 < α′I ≤ B ≤ αI ≤ βI ≤ A ≤ β′I. Then, for
every normalized positive linear map Φ,

Φ2(A∇vB) ≤
(
K(h′)

mv(h)

)2

Φ2(A♯vB)(2.10)

and

Φ2(A∇vB) ≤
(
K(h′)

mv(h)

)2

(Φ(A)♯vΦ(B))
2
,(2.11)

where h = α/β and h′ = α′/β′.

Proof. According to the assumptions

(α′ + β′)I ≥ α′β′A−1 +A, (α′ + β′)I ≥ α′β′B−1 +B,

since (t− α′)(t− β′) ≤ 0 for α′ ≤ t ≤ β′. From these, we can write

(2.12) (α′ + β′)I ≥ α′β′Φ(A−1∇vB
−1) + Φ(A∇vB),

where Φ is a normalized positive linear map. We have

∥Φ(A∇vB)α′β′mv(h)Φ
−1(A♯vB)∥

≤ 1

4
∥Φ(A∇vB) + α′β′mv(h)Φ

−1(A♯vB)∥2 (by [3])

≤ 1

4
∥Φ(A∇vB) + α′β′mv(h)Φ(A

−1♯vB
−1)∥2

(by Choi’s inequality [2, page 41])

≤ 1

4
∥Φ(A∇vB) + α′β′Φ(A−1∇vB

−1)∥2 (by Remark 2.5)

≤ 1

4
(α′ + β′)

2
(by (2.12)).

This is the same as stating

(2.13) ∥Φ(A∇vB)Φ−1(A♯vB)∥ ≤ K(h′)

mv(h)
,

where h = α/β and h′ = α′/β′. It is not difficult to see that (2.13) is
equivalent to (2.10). The proof of inequality (2.11) proceeds likewise,
and we omit the details. �
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Remark 2.9. Obviously, the bounds in (2.10) and (2.11) are tighter
than those in [17, Theorem 2.1], under the conditions 0 < α′I ≤ B ≤
αI ≤ βI ≤ A ≤ β′I with h = α/β and h′ = α′/β′.

3. Connection with known results. In this section, we point out
connections between our results given in Section 2 and some inequalities
proven in other contexts, that is, we now explain the advantages of our
results. Let 0 ≤ v ≤ 1, r = min{v, 1−v}, R = max{v, 1−v} and mv(·),
Mv(·) be defined as in Theorem A. As we will show in Appendix A, the
next proposition explains the advantages of our results.

Proposition 3.1. The following statements are true.

(I)

(i) The lower bound of Proposition 2.2 improves the first inequality
in (1.2), when 3/4 ≤ v ≤ 1 with 0 < A ≤ B.

(ii) The upper bound of Proposition 2.2 improves the second in-
equality in (1.2), when 2/3 ≤ v ≤ 1 with 0 < A ≤ B.

(iii) The upper bound of Proposition 2.2 improves the second in-
equality in (1.2), when 0 ≤ v ≤ 1/3 with 0 < A ≤ B.

(II) The upper bound of Theorem A improves the inequality

(1− v) + vx ≤ xvK(x),

when xv ≥ 1/2.
(III) The upper bound of Theorem A improves the inequality given

by Dragomir in [4, Theorem 1],

(3.1) (1− v) + vx ≤ exp(4v(1− v)(K(x)− 1))xv, x > 0,

when 0 ≤ v ≤ 1/2 and 0 < x ≤ 1.
(IV) There is no ordering between Theorem A and the inequalities

(1.3) and (1.4).

Therefore, we conclude that Proposition 2.2 and Theorem A are
not trivial results. The proofs of the above-mentioned are given in
Appendix A.
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4. Inequalities related to the Heron mean. This section aims to
prove new inequalities containing (1.6). These inequalities were given
in Theorem B. Our main idea and technical tool are closely related to
inequality (2.1).

Proof of Theorem B. Consider the function fr,v(t) ≡ rvtv−1 +
(1 − r)v, where t > 0, r ∈ R, 0 ≤ v ≤ 1. Since the function fr,v(t) is
twice differentiable, it can easily be seen that

dfr,v(t)

dt
= r(v − 1)vtv−2,

d2fr,v(t)

dt2
= r(v − 2)(v − 1)vtv−3.

It is not difficult to verify that{
d2fr,v(t)

dt2 ≥ 0 for r ≥ 0,
d2fr,v(t)

dt2 ≤ 0 for r ≤ 0.

Utilizing inequality (2.1) for the function fr,v(t), we infer that

(4.1) gr,v(x) ≤ rxv + (1− r)((1− v) + vx) ≤ Gr,v(x),

where

gr,v(x) ≡ v(x− 1)

{
r

(
1 + x

2

)v−1

+ (1− r)

}
+ 1,(4.2)

Gr,v(x) ≡
v(x− 1)

2
(rxv−1 + 2− r) + 1,(4.3)

for each x ≥ 1, r ≥ 0, 0 ≤ v ≤ 1. Similarly, for each 0 < x ≤ 1,
r ≥ 0, 0 ≤ v ≤ 1, we get

(4.4) Gr,v(x) ≤ rxv + (1− r)((1− v) + vx) ≤ gr,v(x).

If x ≥ 1 and r ≤ 0, we obtain

(4.5) Gr,v(x) ≤ rxv + (1− r)((1− v) + vt) ≤ gr,v(x),

for each 0 ≤ v ≤ 1. For the case 0 < x ≤ 1, r ≤ 0, we have

(4.6) gr,v(t) ≤ rxv + (1− r)((1− v) + vt) ≤ Gr,v(x),

for each 0 ≤ v ≤ 1. �
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Note that we equivalently obtain the operator inequalities from the
scalar inequalities given in Theorem B. We omit such expressions here
for simplicity.

Closing this section, we prove the ordering

{(1− v) + vt−1}−1 ≤ gr,v(t) and {(1− v) + vt−1}−1 ≤ Gr,v(t)

under some assumptions, for the purpose of showing the advantages of
our lower bounds given in Theorem B. It is known that

{(1− v) + vt−1}−1 ≤ tv, 0 ≤ v ≤ 1, t > 0,

so that we also have interests in the ordering gr,v(t) and Gr,v(t) with
tv, that is, we can show the following four propositions. The proofs are
given in Appendix B.

Proposition 4.1. For t ≥ 1, 0 ≤ v, r ≤ 1, we have

(4.7) {(1− v) + vt−1}−1 ≤ gr,v(t).

Proposition 4.2. For 0 < t ≤ 1, 0 ≤ v, r ≤ 1, we have

(4.8) {(1− v) + vt−1}−1 ≤ tv ≤ gr,v(t).

Proposition 4.3. For 0 ≤ r, v ≤ 1, and c ≤ t ≤ 1 with c ≡
(27 − 1)/54, we have

(4.9) {(1− v) + vt−1}−1 ≤ Gr,v(t).

Proposition 4.4. For 0 ≤ v ≤ 1, r ≤ 1, t ≥ 1, we have

(4.10) {(1− v) + vt−1}−1 ≤ tv ≤ Gr,v(t).

Remark 4.5. Propositions 4.1–4.4 show that the lower bounds given
in Theorem B are tighter than the known bound (harmonic mean) for
the cases given in Propositions 4.1–4.4. If r = 1 in Proposition 4.1,
then gr,v(t) ≤ tv, for t ≥ 1, 0 ≤ v ≤ 1. If r = 1 in Proposition 4.3, then
Gr,v(t) ≤ tv, for c ≤ t ≤ 1, 0 ≤ v ≤ 1. We, thus, find that Propositions
4.1 and 4.3 make sense for the purpose of finding the functions between
{(1− v) + vt−1}−1 and tv.
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Remark 4.6. In the process of the proof of Proposition 4.3, we find
the inequality:

tv + t

2
≤ {(1− v) + vt−1}−1,

for 0 ≤ v ≤ 1, c ≤ t ≤ 1. Then, we have the following inequalities:

A♯vB +B

2
≤ A!vB ≤ A♯vB,

for 0 < cA ≤ B ≤ A with c = (27 − 1)/54, 0 ≤ v ≤ 1.

In the process of the proof of Proposition 4.2, we also find the ine-
quality:

t

(
t+ 1

2

)v−1

≤ {(1− v) + vt−1}−1,

for 0 ≤ v ≤ 1, 0 ≤ t ≤ 1. Then, we have the following inequalities:

BA−1/2

(
A−1/2BA−1/2 + I

2

)v−1

A1/2 ≤ A!vB ≤ A♯vB,

for 0 < B ≤ A, 0 ≤ v ≤ 1.

5. Concluding remark. Several refinements and generalizations of
inequality (2.1) have been given (see, e.g., [5, 6, 19, 22]). Of course, if
we apply them with similar considerations as those discussed above, we
can find new results concerning mean inequalities. We leave the details
of this idea to the interested reader, as it is merely an application of
our main results.

Acknowledgments. The authors thank the anonymous referees for
giving valuable comments and suggestions to improve our manuscript.

APPENDICES

A. For the purpose of giving a proof of Proposition 3.1, we need
the following lemma.

Lemma A.1. For each x ≥ 1, we have(
x+ 1

2

)2/3

≥
(√

x+ 1

2
√
x

)(
1 + log

(
x+ 1

2

))
.(A.1)
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Proof. We firstly prove(
x+ 1

2

)2/3

≥
(
1

2
+

x+ 1

4x

)(
1 + log

(
x+ 1

2

))
,(A.2)

for x ≥ 1. Setting t = (x+ 1)/2 ≥ 1, the inequality (A.2) is equivalent
to the inequality

t2/3 ≥ (3t− 1)

2(2t− 1)
(1 + log t),

which is equivalent to

2s2(2s3 − 1) ≥ (3s3 − 1)(1 + 3 log s),

where s = t1/3 ≥ 1. In order to prove the above inequality, we set

F(s) ≡ 4s5 − 3s3 − 2s2 + 1− 9s3 log s+ 3 log s, s ≥ 1.

By simple calculations, we have F(s) ≥ F(1) = 0. Hence, we have
inequality (A.2). For any a > 0, we have 2a/(1 + a) ≤

√
a, that is,

(a+ 1)/(2a) ≥ 1/
√
a. Therefore, for any a > 0, we have

1

2
+

a+ 1

4a
≥ 1

2
+

1

2
√
a
=

√
a+ 1

2
√
a

,

which implies the following, second inequality:(
x+ 1

2

)2/3

≥
(
1

2
+

x+ 1

4x

)(
1 + log

(
x+ 1

2

))
≥

(√
x+ 1

2
√
x

)(
1 + log

(
x+ 1

2

))
.

This completes the proof. �
Proof of Proposition 3.1.

(I) Assume that x ≥ 1.

(i) Consider the function

uv(x) ≡ v(x− 1)

(
1− xv−1

2

)
− r

(
1−

√
x

)2

.
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For 3/4 ≤ v ≤ 1, we have uv(x) ≥ 0. Let us prove this statement.
Since u1(x) = 0 and

d2uv(x)

dv2
=

1

2
(1− x)xv−1{2 log x+ v(log x)2} ≤ 0

for x ≥ 1, we have only to prove u3/4(x) ≥ 0 for x ≥ 1. Since

u3/4(x) =
x5/4 − 3x+ 4x3/4 − 5x1/4 + 3

8x1/4
,

we set the function v(x) ≡ x5/4 − 3x+ 4x3/4 − 5x1/4 + 3. Some calcu-
lations show v(x) ≥ v(x) = 0, which implies u3/4(x) ≥ 0. Hence, our
claim follows.

In this case, the first inequality in (2.2) can be considered as a re-
finement of the first inequality in (1.2).

(ii) Consider the function

wv(x) ≡ R(1−
√
x)

2 − v(x− 1)

(
1−

(
x+ 1

2

)v−1)
.

For 2/3 ≤ v ≤ 1, we have wv(x) ≥ 0. In order to prove this inequality,
let

xv(x) = (1−
√
x)2 − (x− 1)

(
1−

(
x+ 1

2

)v−1)
.

For x ≥ 1, we then have

dxv(x)

dv
= (x− 1)

(
x+ 1

2

)v−1{
log

(
x+ 1

2

)}
≥ 0.

We have only to prove x2/3(x) ≥ 0 for x ≥ 1. By slightly complicated
calculations, we have

x2/3(x) =
24/3(

√
x− 1)

(x+ 1)1/3

{√
x+ 1

2
−

(
x+ 1

2

)1/3}
≥ 0.

Indeed, for t ≥ 1, we have (t − 1)(t2 + 3) ≥ 0 which is equivalent to
(t+ 1)3 ≥ 4(t2 + 1). Setting t =

√
x, we obtain

(
√
x+ 1)3

8
≥ x+ 1

2
,
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which yields √
x+ 1

2
≥

(
x+ 1

2

)1/3

.

Thus, our assertion follows.

(iii) In addition, for 0 ≤ v ≤ 1/3, we have wv(x) ≥ 0. In fact, since
v(x+ 1)/2v−1 is increasing for v, we estimate the first derivative of
wv(x) as

dwv(x)

dv
=−(

√
x−1)

2−(x−1)+(x−1)

(
x+1

2

)v−1(
1+v log

(
x+1

2

))
≤ −(

√
x− 1)

2 − (x− 1)

+ (x− 1)

(
x+ 1

2

)−2/3(
1 +

1

3
log

(
x+ 1

2

))
= −25/3

√
x(
√
x− 1)

(x+ 1)
2/3

{(
x+ 1

2

)2/3

−
√
x+ 1

2
√
x

(
1 +

1

3
log

(
x+ 1

2

))}
≤ 0.

The last inequality is due to Lemma A.1. Consequently, wv(x) ≥
w1/3(x). Thus, we prove w1/3(x) ≥ 0.

w1/3(x) =

√
x− 1

3

(
x+ 1

2

)−2/3{
(
√
x− 3)

(
x+ 1

2

)2/3

+
√
x+ 1

}
.

Now, we set the function y(t) ≡ (t− 3)((t2 + 1)/2)2/3 + t+1 for t ≥ 1.
With some calculations, we get y(t) ≥ y(1) = 0. Therefore, we have
wv(t) ≥ w1/3(t) ≥ 0, as required.

In these cases, the second inequality in (2.2) provides an improve-
ment for the second inequality in (1.2).1

(II) Let x > 0. It is clear that, if xv ≥ 1/2, then Mv(x) ≤
K(x). Indeed, by simple calculations, the inequality Mv(x) ≤ K(x)
is equivalent to the inequality 2v(1− v) ≤ xv. Since v(1− v) ≤ 1/4, we
have xv ≥ 1/2 ≥ 2v(1− v) under the condition xv ≥ 1/2.
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(III) Dragomir [4, Theorem 1] obtained the inequality (3.1) for
x > 0. However, for 0 ≤ v ≤ 1/2, 0 < x ≤ 1, we show

Mv(x) ≤ exp(4v(1− v)(K(x)− 1)).(A.3)

Our upper bound of Theorem A is tighter than that given in [4,
Theorem 1], when 0 ≤ v ≤ 1/2.

Now, we prove the above inequality (A.3), which is identical to the
inequality

1 +
1

2xv

v(1− v)(x− 1)2

x
≤ exp

(
v(1− v)(x− 1)2

x

)
.

We use the inequality

exp(y) ≥ 1 + y +
1

2
y2, y ≥ 0,

with y = (v(1− v)(x− 1)2)/x ≥ 0. Then, we calculate

exp

(
v(1− v)(x− 1)

2

x

)
− 1− 1

2xv

v(1− v)(x− 1)
2

x
(A.4)

≥ v(1− v)(x− 1)
2

x

(
1− 1

2xv
+

v(1− v)(x− 1)
2

2x

)
=

v(1− v)(x− 1)
2

x

(
2xv − 1 + v(1− v)xv−1(x− 1)

2

2xv

)
.

Thus, we have only to prove 2xv −1+ v(1− v)xv−1(x−1)2 ≥ 0 for 0 <
x ≤ 1, 0 ≤ v ≤ 1/2. By setting t = 1/x, the above inequality becomes

t−v−1(2t− tv+1 + v(1− v)(t− 1)2) ≥ 0.

Therefore, it is sufficient to prove the inequality

gv(t) ≡ 2t− tv+1 + v(1− v)(t− 1)2 ≥ 0,

for t ≥ 1, 0 ≤ v ≤ 1/2. With some calculations, we have gv(t) ≥
g1/2(t) ≥ g1/2(1) = 1 > 0. Thus, the proof of inequality (A.3) is
complete.

It should be mentioned here that inequality (A.3)holds for 0 ≤ v ≤ 1
and x ≥ 1/2 from (A.4).

(IV) It is natural to consider mv(x) and Mv(x) as better than Kr(x)
and KR(x) under the assumption 0 < x ≤ 1.
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(i) In general, there is no ordering between Kr(x) and mv(x). For
this purpose, taking v = 0.3 and x = 0.7, then

mv(x)−Kr(x) ≈ 0.002.

On the other hand, taking v = 0.7 and x = 0.1, we have

mv(x)−Kr(x) ≈ −0.15.

(ii) In addition, we have no ordering between KR(x) and Mv(x). In
order to see this, putting v = 0.2 and x = 0.4, observe that

KR(x)−Mv(x) ≈ 0.08.

However, if we choose v = 0.6 and x = 0.3, we obtain

KR(x)−Mv(x) ≈ −0.17. �

B. We begin by proving Proposition 4.1.

Proof of Proposition 4.1. Since gr,v(t) is decreasing in r, gr,v(t) ≥
g1,v(t) so that we only must prove, for t ≥ 1 and 0 ≤ v ≤ 1, the
inequality g1,v(t) ≥ {(1 − v) + vt−1}−1, which is equivalent to the
inequality by v(t− 1) ≥ 0,(

t+ 1

2

)v−1

≥ 1

(1− v)t+ v
.(B.1)

Since t ≥ 1 and 0 ≤ v ≤ 1, we have t((t+ 1)/2)v−1 ≥ tv. In addition,
for t > 0, 0 ≤ v ≤ 1, we have tv ≥ {(1 − v) + vt−1}−1. Thus, we
have t((t+ 1)/2)v−1 ≥ {(1−v)+vt−1}−1, which implies the inequality
(B.1). �

Proof of Proposition 4.2. The first inequality is known for t > 0,
0 ≤ v ≤ 1. Since gr,v(t) is deceasing in r, in order to prove the second
inequality, we only need prove g1,v(t) ≥ tv, that is,

v(t− 1)

(
t+ 1

2

)v−1

+ 1 ≥ tv,

which is equivalent to the inequality

tv − 1

v
≤ (t− 1)

(
t+ 1

2

)v−1

.
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With the use of the Hermite-Hadamard inequality along with a convex
function xv−1 for 0 ≤ v ≤ 1, x > 0, the above inequality can be proven
as (

t+ 1

2

)v−1

≤ 1

1− t

∫ 1

t

xv−1dx =
1− tv

v(1− t)
. �

Proof of Proposition 4.3. We firstly prove h(t) ≡ 2(t− 1)− log t ≥ 0
for c ≤ t ≤ 1. Since h′′(t) ≥ 0,

h(1) = 0 and h(c) ≈ −0.0000354367 < 0.

Thus, we have h(t) ≤ 0 for c ≤ t ≤ 1. Secondly, we prove

lv(t) ≡ 2(t− 1)− ((1− v)t+ v) log t ≤ 0.

Since
dlv(t)

dv
= (t− 1) log t ≥ 0,

we have
lv(t) ≤ l1(t) = h(t) ≤ 0.

Since Gr,v(t) is decreasing in r, we have Gr,v(t) ≥ G1,v(t), so that we
must only prove G1,v(t) ≥ {(1 − v) + vt−1}−1, which is equivalent to
the inequality by v(t− 1) ≤ 0,

tv−1 + 1

2
≤ 1

(1− v)t+ v
,

for 0 ≤ r, v ≤ 1, c ≤ t ≤ 1. Towards this end, we set

fv(t) ≡ 2− (tv−1 + 1)((1− v)t+ v).

Simple calculations imply fv(t) ≥ f1(t) = 0. �
Proof of Proposition 4.4. The first inequality is known for t > 0,

0 ≤ v ≤ 1. Since Gr,v(t) is deceasing in r, in order to prove the second
inequality, we only need prove G1,v(t) ≥ tv, which is equivalent to the
inequality 1

2
v(t− 1)(tv−1 + 1) + 1 ≥ tv.

Towards this end, we set

kv(t) ≡ v(t− 1)(tv−1 + 1) + 2− 2tv.

Simple calculations imply kv(t) ≥ kv(1) = 0. �
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ENDNOTES

1. It is interesting to note that, with computer calculations, we find
that, if v ≥ 0.7, then uv(x) ≥ 0 and, if v ≥ 0.6 or v ≤ 0.4, we have
wv(x) ≥ 0. This means that we have a possibility of extending the
range of v to satisfy one of the conditions of (I) (i), (I) (ii) and (I) (iii)
in Proposition 3.1.
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