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NOTE ON THE TRUNCATED GENERALIZATIONS OF
GAUSS’S SQUARE EXPONENT THEOREM

SHANE CHERN

ABSTRACT. In this note, we investigate Liu’s work on
the truncated Gaussian square exponent theorem and obtain
more truncations. We also discuss some possible multiple
summation extensions of Liu’s results.

1. Introduction. One major topic of q-series deals with various q-
identities, most of which can be treated as the q-analog of combinatorial
identities. Some renowned examples include Euler’s pentagonal number
theorem [1, Corollary 1.7]

(1.1)
∏
n≥1

(1− qn) =

∞∑
k=−∞

(−1)kqk(3k+1)/2

and Gauss’s square exponent theorem [1, Corollary 2.10]

(1.2)
∏
n≥1

1− qn

1 + qn
=

∞∑
k=−∞

(−1)kqk
2

.

Interestingly, some q-identities involving infinite sums and/or prod-
ucts also have the corresponding truncated version. Before presenting
such truncations, we introduce some standard q-series notation:

(a; q)n :=
n−1∏
k=0

(1− aqk),

(a; q)∞ :=
∏
k≥0

(1− aqk).
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We also adopt the q-binomial coefficient

[
n
m

]
=

[
n
m

]
q

:=


(q; q)n

(q; q)m(q; q)n−m
if 0 ≤ m ≤ n,

0 otherwise.

In [4], Berkovich and Garvan combinatorially proved the following
finite q-identity

(1.3)
L∑

k=−L

(−1)kqk(3k+1)/2

[
2L− k
L+ k

]
= 1.

If we let L → ∞, then (1.3) becomes (1.1). In fact, (1.3) is a direct
consequence of

(1.4)

⌊n/2⌋∑
r=0

(−1)rq(
r
2)
[
n− r
r

]

=

{
(−1)⌊n/3⌋qn(n−1)/6 if n ̸≡ 2 (mod 3),

0 if n ≡ 2 (mod 3),

which first appears in [6]. To see this, we only need to replace n by
3L, r by L+k and q by 1/q in (1.4). On the other hand, Warnaar [16]
observed that, if one replaces n by 3L+ 1, r by L+ k and q by 1/q in
(1.4), another truncated generalization of Euler’s pentagonal number
theorem can be derived

(1.5)
L∑

k=−L

(−1)kqk(3k−1)/2

[
2L− k + 1

L+ k

]
= 1.

Recently, Liu [12] obtained more truncated versions of (1.1) with a
surprisingly elementary proof.

The truncations of Gauss’s square exponent theorem (1.2), however,
mainly come from a different direction. For example, in [8], Guo and
Zeng showed that, for L ≥ 1,
(1.6)

(−q; q)∞
(q; q)∞

L∑
k=−L

(−1)kqk
2

=1+(−1)L
∞∑

n=L+1

q(L+1)n(−q; q)L(−1; q)n−L

(q; q)n

[
n− 1
L

]
.
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The origin of this type of truncation comes from Andrews and Merca’s
work [2] on Euler’s pentagonal number theorem. For other similar
truncated theta series, the interested readers may refer to [3, 5, 9,
11, 14, 17]. Nonetheless, one should admit that (1.6) is complicated,
especially compared with (1.3) and (1.5). Hence, we would expect
truncated generalizations of Gauss’s square exponent theorem as neat
as (1.3) and (1.5). In [13], Liu provided such truncations:

L∑
k=−L

(−1)kqk
2

(−q; q)L−k

[
3L− k + 1

L+ k

]
= 1,(1.7)

L∑
k=−L

(−1)kqk
2

(−q; q)L−k

[
3L− k
L+ k

]
1− q2L

1− q3L−k
= 1,(1.8)

L∑
k=−L

(−1)kqk
2

(−q; q)L−k

[
3L− k − 1
L+ k − 1

]
= 1.(1.9)

All three identities are, respectively, direct consequences of identities
analogous to (1.4):

n∑
r=0

(−1)rq(
r
2)(−q; q)n−r

[
2n− r + 1

r

]
(1.10)

=

{
0 if n = 2m− 1,

(−1)mqm(3m+1) if n = 2m,

n∑
r=0

(−1)rq(
r
2)(−q; q)n−r

[
2n− r

r

]
1− qn

1− q2n−r
(1.11)

=

{
0 if n = 2m− 1,

(−1)mqm(3m−1) if n = 2m,

n∑
r=0

(−1)rq(
r
2)(−q; q)n−r

[
2n− r

r

]
(1.12)

=

{
(−1)m−1q3m

2−3m+1 if n = 2m− 1,

(−1)mqm(3m−1) if n = 2m.

For example, (1.7) is deduced by replacing n by 2L, r by L+ k and q
by 1/q in (1.10). We remark that (1.10) appears in an early paper of
Jouhet [10, equation (2.7)].
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We have two purposes in this note. The first purpose is to further
investigate Liu’s results. We then discuss some possible multiple
summation extensions of (1.10) and (1.12), the idea of which originates
from [7].

2. Further investigation of Liu’s results. We begin with the
following identity deduced from (1.10).

Theorem 2.1. For n ≥ 1,

n∑
r=0

(−1)rq(
r
2)(−q; q)n−r

[
2n− r + 1

r

]
1− q2n+1

1− q2n−r+1
(2.1)

=

{
(−1)mqm(3m−1) if n = 2m− 1,

(−1)mqm(3m+1) if n = 2m.

Proof. Following Liu’s notation, we write the left-hand side of (1.10)
as Un, namely,

Un =
n∑

r=0

(−1)rq(
r
2)(−q; q)n−r

[
2n− r + 1

r

]
.

Then,

n∑
r=0

(−1)rq(
r
2)(−q; q)n−r

[
2n− r + 1

r

]
1− q2n+1

1− q2n−r+1

=
n∑

r=0

(−1)rq(
r
2)(−q; q)n−r

[
2n− r + 1

r

](
1 + q2n−r+1 1− qr

1− q2n−r+1

)

= Un − q2n
n∑

r=1

(−1)r−1q(
r−1
2 )(−q; q)n−r

[
2n− r
r − 1

]

= Un − q2n
n−1∑
r=0

(−1)rq(
r
2)(−q; q)n−r−1

[
2n− r − 1

r

]
= Un − q2nUn−1.

The desired result follows from (1.10). �
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If we replace n by 2L− 1 and r by L+ k in (2.1), then

L−1∑
k=−L

(−1)L+kq(
L+k

2 )(−q; q)L−k−1

[
3L− k − 1

L+ k

]
1− q4L−1

1− q3L−k−1

= (−1)LqL(3L−1).

We then replace q by 1/q and note that[
n
m

]
q−1

= qm(m−n)

[
n
m

]
q

and

(−q−1; q−1)n = q−(
n+1
2 )(−q; q)n.

Hence,

(−1)Lq−L(3L−1) =

L−1∑
k=−L

(−1)L+kq−(
L+k

2 )q−(
L−k

2 )(−q; q)L−k

× q(L+k)(−2L+2k+1)

[
3L− k + 1

L+ k

]
1− q−(4L−1)

1− q−(3L−k−1)
.

This leads to a new truncation of Gauss’s square exponent theorem, as
follows.

Theorem 2.2. For L ≥ 1,

(2.2)
L−1∑
k=−L

(−1)kqk
2

(−q; q)L−k−1

[
3L− k − 1

L+ k

]
1− q4L−1

1− q3L−k−1
= 1.

We next observe that[
2n− r + 1

r

]
1− q2n+1

1− q2n−r+1
=

[
2n− r
r − 1

]
1− q2n+1

1− qr
(2.3)

=

[
2n− r
r − 1

](
1 +

qr(1− q2n−r+1)

1− qr

)
=

[
2n− r
r − 1

]
+ qr

[
2n− r + 1

r

]
.
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On one hand, we have

Theorem 2.3. For n ≥ 1,

n∑
r=0

(−1)rq(
r−1
2 )(−q; q)n−r

[
2n− r + 1

r

]
1− q2n+1

1− q2n−r+1

(2.4)

=

{
(−1)mq(m−1)(3m−2) if n = 2m− 1,

(−1)mqm(3m+1)+1 if n = 2m.

Proof. It follows from (2.3) that

n∑
r=0

(−1)rq(
r−1
2 )(−q; q)n−r

[
2n− r + 1

r

]
1− q2n+1

1− q2n−r+1

=
n∑

r=0

(−1)rq(
r−1
2 )(−q; q)n−r

([
2n− r
r − 1

]
+ qr

[
2n− r + 1

r

])

= −
n∑

r=1

(−1)r−1q(
r−1
2 )(−q; q)n−r

[
2n− r
r − 1

]
+ qUn

= −
n−1∑
r=0

(−1)rq(
r
2)(−q; q)n−r−1

[
2n− r − 1

r

]
+ qUn

= −Un−1 + qUn.

The desired result follows from (1.10). �

If we replace n by 2L, r by L + k and q by 1/q in (2.4), we obtain
another new truncation of Gauss’s square exponent theorem.

Theorem 2.4. For L ≥ 1,

(2.5)
L∑

k=−L

(−1)kqk
2

(−q; q)L−k

[
3L− k + 1

L+ k

]
1− q4L+1

1− q3L−k+1
= 1.

On the other hand, we obtain, from (2.3),
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Theorem 2.5. For n ≥ 1,
(2.6)

n∑
r=0

(−1)rq(
r+1
2 )(−q; q)n−r

[
2n− r + 1

r

]
=

⌊(n+1)/2⌋∑
m=−⌊n/2⌋

(−1)mqm(3m−1).

Proof. For convenience, we write

Ũn =
n∑

r=0

(−1)rq(
r+1
2 )(−q; q)n−r

[
2n− r + 1

r

]
.

It follows from (2.3) that

n∑
r=0

(−1)rq(
r
2)(−q; q)n−r

[
2n− r + 1

r

]
1− q2n+1

1− q2n−r+1

=

n∑
r=0

(−1)rq(
r
2)(−q; q)n−r

([
2n− r
r − 1

]
+ qr

[
2n− r + 1

r

])

= −
n∑

r=1

(−1)r−1q(
r
2)(−q; q)n−r

[
2n− r
r − 1

]
+ Ũn

= −
n−1∑
r=0

(−1)rq(
r+1
2 )(−q; q)n−r−1

[
2n− r − 1

r

]
+ Ũn

= −Ũn−1 + Ũn.

From this telescoping identity, along with (2.1) and the fact that

Ũ0 = 1, we arrive at the desired result. �

Remark 2.6. Letting n → ∞ in (2.6) reduces it to

(−q; q)∞

∞∑
r=0

(−1)rq(
r+1
2 )

(q; q)r
=

∞∑
m=−∞

(−1)mqm(3m−1).

We further deduce from Euler’s pentagonal number theorem (1.1) that

∞∑
r=0

(−1)rq(
r+1
2 )

(q; q)r
=

(q2; q2)∞
(−q; q)∞

= (q; q)∞.

This identity, which is a special case of the q-binomial theorem (cf., [1,
Theorem 2.1]), is another pioneering work of q-identities due to Euler;
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see [1, Corollary 2.2]. The interested reader may refer to [12, Theorem
1.1] for the following, different truncation of this identity:

⌊n/2⌋∑
r=0

(−1)rq(
r+1
2 )

[
n− r
r

]
=

⌊n/3⌋∑
m=−⌊(n+1)/3⌋

(−1)mqm(3m+1)/2.

3. Multiple summations. In [7], Guo and Zeng obtained the
multiple summation extensions of (1.3) and (1.5):

2L∑
j1,...,jm=−L

m∏
k=1

(−1)jkqjkjk+1+(jk+1
2 )

[
2L− jk
L+ jk+1

](3.1)

=

{
1 if m ̸≡ 0 (mod 3),

3L+ 1 if m ≡ 0 (mod 3),

2L+1∑
j1,...,jm=−L

m∏
k=1

(−1)jkqjkjk+1+(jk2 )
[
2L− jk + 1
L+ jk+1

](3.2)

=

{
(−1)⌊m

2/3⌋ if m ̸≡ 0 (mod 3),

(−1)m/3(3L+ 2) if m ≡ 0 (mod 3).

Here, we assume that jm+1 = j1. The two multiple summations come
from a multiple extension of (1.4). Motivated by their work, we study
some possible multiple extensions of (1.10) and (1.12).

Parallel to Liu’s notation in [13], for the positive integer m, we put

Um(n) =
2n+1∑

r1,...,rm=0

m∏
k=1

(−1)rkq(
rk
2 )(−q; q)n−rk

[
2n− rk + 1

rk+1

]
,

Wm(n) =
2n∑

r1,...,rm=0

m∏
k=1

(−1)rkq(
rk
2 )(−q; q)n−rk

[
2n− rk
rk+1

]
,

where, again, we assume that rm+1 = r1. Hence, U1(n) and W1(n)
reduce to Liu’s Un and Wn, respectively.

We shall show the following.
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Theorem 3.1. For n ≥ 1,

U2(n) = 0,(3.3)

U3(n) =

0 if n = 2k − 1,

(−1)k−1

2
q9k

2+3k if n = 2k,
(3.4)

W2(n) = (−1)nqn(3n−1)/2,(3.5)

W3(n) =


(−1)k

2
(q9k

2−9k+3 − 3q9k
2−11k+3) if n = 2k − 1,

(−1)k−1

2
(q9k

2−3k − 3q9k
2−k) if n = 2k.

(3.6)

Instead of using the traditional q-series approach, we turn to a
computer-assisted proof of Theorem 3.1. We recall that Riese im-
plemented a powerful Mathematica package, qMultiSum, whose main
function is generating recurrence relations for multiple summation q-
identities. We refer to [15] or the url:

http://www.risc.jku.at/research/combinat/software/ergosum/

RISC/qMultiSum.html

for an introduction to this package.

In our cases, the package gives us the following.

Lemma 3.2. For n ≥ 1,

0 = −q6n+8U2(n) + U2(n+ 2),

(3.7)

0 = q9n+12U3(n) + U3(n+ 2),

0 = −q9n+11(1 + qn+3)W2(n)− q6n+10(1 + qn+3)W2(n+ 1)

+ q3n+7(1 + qn+1)W2(n+ 2) + (1 + qn+1)W2(n+ 3),

0 = −q15n+24(1 + qn+2)(−1 + qn+3)(1 + qn+3)(1 + qn+4)

×
(
− 1− 2qn+2 + qn+3

)
W3(n)

− q11n+23(1 + qn+3)(1 + qn+4)

×
(
− 1 + q − 2qn+2 − 2qn+3 + 2qn+4 − 6q2n+4 + 6q2n+5
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− q2n+6 − q2n+7 + 2q3n+7 + 3q3n+8

− 2q3n+9 − q3n+10 + 5q4n+9 − 2q4n+10

− 3q4n+11 + 2q4n+12 − 2q5n+12 + 2q5n+13
)
W3(n+ 1)

+ q6n+18(1 + qn+1)(1 + qn+4)(−1 + q2n+5)

×
(
1 + 2qn+1 − qn+3 + 7q2n+3 − 6q2n+4 − 2q2n+5 + q2n+6

+ 2q3n+6 − q3n+8 + q4n+10
)
W3(n+ 2)

+ q2n+8(1 + qn+1)(1 + qn+2)

×
(
− 2 + 2q + 5qn+2 − 2qn+3 − 3qn+4 + 2qn+5 + 2q2n+5

+ 3q2n+6 − 2q2n+7 − q2n+8 − 6q3n+7 + 6q3n+8

− q3n+9 − q3n+10 − 2q4n+10 − 2q4n+11 + 2q4n+12

− q5n+13 + q5n+14
)
W3(n+ 3)

+ (1 + qn+1)(−1 + qn+2)(1 + qn+2)(1 + qn+3)

×
(
2− q + qn+3

)
W3(n+ 4).

Proof. We prove (3.7) by calling (with the initialization
<<RISC‘qMultiSum‘)

stru = qFindStructureSet[qBinomial[2n-r1+1,r2,q]

qBinomial[2n-r2+1,r1,q] (-1)^(r1+r2) q^(r1

(r1-1)/2+r2(r2-1)/2) qPochhammer[-q,q,n-r1]

qPochhammer[-q,q,n-r2], {n}, {r1,r2}, {1},

{1,1}, {1,1}, qProtocol->True]

rec = qFindRecurrence [qBinomial[2n-r1+1,r2,q]

qBinomial [2n-r2+1,r1,q] (-1)^(r1+r2) q^(r1

(r1-1)/2+r2(r2-1)/2) qPochhammer [-q,q,n-r1]

qPochhammer [-q,q,n-r2], {n}, {r1,r2}, {1},

{1,1}, {1,1}, qProtocol->True, StructSet->

stru[[1]]]

sumrec = qSumRecurrence[rec]

For the remaining three recurrence relations, apart from the corre-
sponding summand, we may set other parameters as follows:
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{n}, {r1,...,rm}, {1}, {1,...,1}, {1,...,1}

We remark that it costs over five hours to obtain the recurrence relation
for W3(n). �

Proof of Theorem 3.1. Theorem 3.1 is a direct consequence of Lem-
ma 3.2 and several initial values. �

Of course, it will be exciting to see traditional q-series proofs of
identities in Theorem 3.1. We also notice from Theorem 3.1 that the
multiple extensions of Gauss’s square exponent theorem are not as neat
as Guo and Zeng’s multiple extensions of Euler’s pentagonal number
theorem (cf., [7, Corollary 2.3 and Theorem 2.4]). However, it would
be appealing to see if there exist closed forms of Um(n) and Wm(n) for
arbitrary m.

Acknowledgments. I would like to thank George Andrews for help-
ful discussions.
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