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INFINITELY MANY SOLUTIONS OF SYSTEMS OF
KIRCHHOFF-TYPE EQUATIONS
WITH GENERAL POTENTIALS

GUOFENG CHE AND HAIBO CHEN

ABSTRACT. This paper is concerned with the following
systems of Kirchhoff-type equations:

−
(
a+ b

∫
RN

|∇u|2dx
)
∆u

+ V (x)u = Fu(x, u, v) x ∈ RN ,

−
(
c+ d

∫
RN

|∇v|2dx
)
∆v

+ V (x)v = Fv(x, u, v) x ∈ RN ,

u(x) → 0, v(x) → 0 as |x| → ∞.

Under some more relaxed assumptions on V (x) and F (x, u, v),
we prove the existence of infinitely many negative-energy so-
lutions for the above system via the genus properties in
critical point theory. Some recent results from the literature
are greatly improved and extended.

1. Introduction. In this paper, we consider the following systems
of Kirchhoff-type equations:
(1.1)

−
(
a+ b

∫
RN

|∇u|2dx
)
∆u+ V (x)u = Fu(x, u, v) x ∈ RN ,

−
(
c+ d

∫
RN

|∇v|2dx
)
∆v + V (x)v = Fv(x, u, v) x ∈ RN ,

u(x) −→ 0, v(x) −→ 0 as |x| → ∞,
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where a, c > 0, b, d ≥ 0, V (x) and F (x, u, v) satisfy the following
hypotheses:

(V1) V ∈ C(RN ,R) satisfies inf
x∈RN

V (x) = a > 0;

(f1) F ∈ C(RN × R2,R), and there exist 1 < α1 < α2 < · · · <
αm < 2, 1 < β1 < β2 < · · · < βm < 2, ci ∈ L2/(2−αi)(RN ,R+) and
di ∈ L2/(2−βi)(RN ,R+) such that

|Fu(x, u, v)| ≤
m∑
i=1

αici(x)|(u, v)|αi−1,

and

|Fv(x, u, v)| ≤
m∑
i=1

βidi(x)|(u, v)|βi−1,

for any (x, u) ∈ RN × R2, where |(u, v)| = (u2 + v2)1/2;

(f2) there exist a bounded open set J ⊂ RN and three constants
a1, a2 > 0 and a3 ∈ (1, 2) such that

F (x, u, v) ≥ a2|(u, v)|a3

for all (x, u, v) ∈ J × [−a1, a1]× [−a1, a1];

(f3) F (x, u, v) = F (x,−u,−v) for all (x, u, v) ∈ RN × R2.

Kirchhoff-type problems are related to the stationary analog of the
equation

(1.2) utt −
(
a+ b

∫
Ω

|∇u|2dx
)
△u = f(x, u), in Ω,

where u denotes the displacement, f(x, u) the external force and b
the initial tension, while a is related to the intrinsic properties of the
string (such as Young’s modulus). Equations of this type were first
proposed by Kirchhoff in [10] to describe the transversal oscillations
of a stretched string, in particular, taking into account the subsequent
change in string length caused by oscillations. For more details on the
physical and mathematical background of problem (1.2), the reader is
referred to [1, 10, 12, 13], and the references therein.
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Kirchhoff-type problems are often referred to as being nonlocal due
to the presence of the integral over the entire Ω, which provokes some
mathematical difficulties and also makes the study of such a class of
problem particularly interesting. There has been much research on
the existence of nontrivial solutions by using variational methods, for
example, see [1, 3, 5, 7, 8, 9, 11, 15, 17, 18, 19, 20, 21, 24, 25,
26, 27, 28, 29], and the references therein. In [5], by using Nehari
manifolds and the fibering map, Chen, Kuo and Wu established the
existence of multiple positive solutions for Kirchhoff type equations
that involve sign-changing weight functions. Jin and Wu [9] obtained
three existence results of infinitely many radial solutions for a class
of Kirchhoff-type problems by using the Fountain theorem. In [24],
Wu obtained four new existence results for nontrivial solutions and
a sequence of high energy solutions for Schrödinger-Kirchhoff type
equations by using a Symmetric mountain pass theorem.

Recently, Wu [25] obtained five new critical point theorems on the
product spaces and three existence theorems for the sequence of high
energy solutions for problem (1.1). They assumed that the potential
V (x) satisfies (V1) and

(V2) for any M > 0, meas{x ∈ RN : V (x) ≤ M} < ∞, where meas
denotes the Lebesgue measure in RN .

Later, under conditions (V1) and (V2), Zhou, Wu and Wu [29]
presented a new proof technique to prove the existence of high energy
solutions for problem (1.1) under some assumptions that are weaker
than those in [25], which unify and sharply improve [25, Theorems 3.1–
3.3], as well as some results in other literature, such as [24, Theorems 1–
4]. We emphasize hypotheses (V1) and (V2), which appeared in Bartsch
and Wang [2], were used to guarantee the compact embedding of the
working space (see [30, Lemma 3.4]). Evidently, if assumptions (V1)
and (V2) are replaced by (V1), then the compactness of the embedding
fails, and the situation becomes more complicated. More recently, the
authors in [4, 6, 11, 15, 18, 22] dealt with this case.

Motivated by the above facts, the aim of this paper is to study the
existence of nontrivial solutions and infinitely many negative-energy
solutions for problem (1.1) under some more general conditions on V (x)
via variational methods. To the best of our knowledge, there has been
little work concerning this case up until now.
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Now, we state our main results.

Theorem 1.1. Assume that conditions (V1), (f1) and (f2) hold. Then,
problem (1.1) possesses at least one nontrivial solution.

Theorem 1.2. Assume that conditions (V1) and (f1)−(f3) hold. Then,
problem (1.1) possesses infinitely many nontrivial solutions.

By Theorems 1.1 and 1.2, we have the following corollaries.

Corollary 1.3. Assume that conditions (V1), (V2) hold, and F (x, u, v)
satisfies the following conditions:

(f4) F (x, u, v) = b(x)G(u, v), where G ∈ C1(R × R,R) and b ∈
C1(RN ,R)

∩
L2/(2−γ1)(RN ,R), for the constant γ1 ∈ (1, 2), and some

x0 > 0 such that b(x0) > 0;

(f5) there exist constants M , m > 0 and γ0 ∈ (1, 2) such that

m|(u, v)|γ0 ≤ G(u, v) ≤M |(u, v)|γ1 for all (u, v) ∈ R× R.

Then, problem (1.1) possesses at least one nontrivial solution.

Corollary 1.4. Assume that conditions (V1), (V2), (f4), (f5) and
G(−u,−v) = G(u, v) hold for any (u, v) ∈ R×R. Then, problem (1.1)
possesses infinitely many nontrivial solutions.

Remark 1.5. It is not difficult to find the functions V (x) and F (x, u, v)
satisfying all of the conditions of Theorem 1.2. For example, let

V (x) = 1 + sin2 x1

and

F (x, u, v) =
sin2 x1
1 + e|x|

|(u, v)|7/6 + cos2 x1
1 + e|x|

|(u, v)|4/3,

where x = {x1, x2, . . . , xN}. Then,

Fu(x, u, v) =
7 sin2 x1
6(1 + e|x|)

|(u, v)|−5/6u+
4 cos2 x1
3(1 + e|x|)

|(u, v)|−2/3u,

Fv(x, u, v) =
7 sin2 x1
6(1 + e|x|)

|(u, v)|−5/6v +
4 cos2 x1
3(1 + e|x|)

|(u, v)|−2/3v,
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|Fu(x, u, v)| ≤
7 sin2 x1
6(1 + e|x|)

|(u, v)|1/6 + 4 cos2 x1
3(1 + e|x|)

|(u, v)|1/3,

|Fv(x, u, v)| =
7 sin2 x1
6(1 + e|x|)

|(u, v)|1/6 + 4 cos2 x1
3(1 + e|x|)

|(u, v)|1/3,

and

Fu(x, u, v) ≥
cos2 1

1 + e
|(u, v)|4/3,

for all (x, u, v) ∈ J × [−1, 1]× [−1, 1]. This also shows that (f2) holds,
where

7

6
= α1 = β1 < β2 = α2 =

4

3
,

c1(x) = d1(x) =
sin2 x1
1 + e|x|

,

c2(x) = d2(x) =
cos2 x1
1 + e|x|

,

and

a1 = 1, a2 =
cos2 1

1 + e
, a3 =

4

3
, J = B(0, 1).

Notation 1.6. Throughout this paper, we shall denote by ∥·∥r the Lr-
norm and C various positive generic constants, which may vary from
line to line.

2∗ =
2N

N − 2
for N ≥ 3 and 2∗ = ∞, N = 1, 2,

is the critical Sobolev exponent. Also, if we take a subsequence of a
sequence {(un, vn)}, we shall denote it again by {(un, vn)}.

The remainder of this paper is as follows. In Section 2, some
preliminary results are presented. In Section 3, we give the proofs
of our main results.

2. Variational setting and preliminaries. Let

H1(RN ) :=
{
u ∈ L2(RN ) : ∇u ∈ L2(RN )

}
,
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with the norm

∥u∥H =

(∫
RN

(|∇u|2 + V (x)|u|2)dx
)1/2

.

Let

X :=

{
u ∈ H1(RN ) |

∫
RN

V (x)u2dx < +∞
}
,

with the inner product and norm

⟨u, v⟩X =

∫
RN

(∇u∇v + V (x)uv) dx, ∥u∥X = ⟨u, u⟩1/2X .

As is standard, for 1 ≤ p < +∞, we let

∥u∥p =

(∫
RN

|u(x)|pdx
)1/p

, u ∈ Lp(RN ),

and
∥u∥∞ = ess supx∈RN |u(x)|, u ∈ L∞(RN ).

Then, E = X ×X is a Hilbert space with the following inner product:

⟨(u, v), (φ,ψ)⟩ = ⟨u, φ⟩X + ⟨v, ψ⟩X , (u, v), (φ,ψ) ∈ X ×X,

and the norm

||(u, v)||2 = ⟨(u, v), (u, v)⟩ = ∥u∥2X + ∥v∥2X , (u, v) ∈ X ×X.

Lemma 2.1. Suppose that condition (V1) holds. Then, the embedding

E ↩→ Lr(RN )× Lr(RN )

is continuous for 2 ≤ r ≤ 2∗ and

E ↩→ Lr
loc(RN )× Lr

loc(RN )

is compact for 2 ≤ r < 2∗.

Proof. By [30, Lemma 3.4], we know that, under the assumption
(V1), the embedding X ↩→ Lr(RN ) is continuous for r ∈ [2, 2∗], and
X ↩→ Lr

loc(RN ) is compact for r ∈ [2, 2∗), i.e., there exist constants
Cr > 0 such that

∥u∥r ≤ Cr∥u∥X , for all u ∈ X,
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and, for any bounded sequence {un} ⊂ X, there exists a subsequence
of {un} such that un ⇀ u0 in X,

un → u0 in Lr
loc(RN ), r ∈ [2, 2∗).

Therefore, for any (u, v) ∈ E, there exists a C > 0 such that

||(u, v)||rr ≤ C(||u||rr + ||v||rr) ≤ C(||u||rX + ||v||rX) ≤ C||(u, v)||r,

that is, ||(u, v)||r ≤ C||(u, v)||, i.e.,

E ↩→ Lr(RN )× Lr(RN )

is continuous for 2 ≤ r ≤ 2∗.

On the other hand, suppose that {(un, vn)} ⊂ E are bounded, i.e.,
{un} and {vn} are bounded in X. Then, there exist subsequences {un}
and {vn} such that

un −→ u0, vn −→ v0 in Lr
loc(RN ), r ∈ [2, 2∗).

Therefore,

0 ≤ ||(un, vn)− (u0, v0)||rr ≤ C(||un − u0||rr + ||vn − v0||rr) −→ 0,

as n→ ∞, that is,

(un, vn) −→ (u0, v0), in Lr
loc(RN )× Lr

loc(RN ), r ∈ [2, 2∗),

i.e.,
E ↩→ Lr

loc(RN )× Lr
loc(RN )

is compact for r ∈ [2, 2∗). The proof is complete. �

Lemma 2.2. Assume that (V1) and (f1) hold. Then, the functional
I : E → R, defined by

(2.1)

I(u, v) =
a

2

∫
RN

|∇u|2dx+
b

4

(∫
RN

|∇u|2dx
)2

+
1

2

∫
RN

V (x)u2dx+
c

2

∫
RN

|∇v|2dx

+
d

4

(∫
RN

|∇v|2dx
)2

+
1

2

∫
RN

V (x)v2dx

−
∫
RN

F (x, u, v) dx,
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is well defined and of class C1(E,R), and

(2.2)

⟨I ′(u, v), (φ,ψ)⟩ =
(
a+ b

∫
RN

|∇u|2dx
)∫

RN

∇u∇φdx

+

∫
RN

V (x)uφdx+

∫
RN

V (x)vψ dx

+

(
c+ d

∫
RN

|∇v|2dx
)∫

RN

∇v∇ψ dx

−
∫
RN

Fu(x, u, v)φdx−
∫
RN

Fv(x, u, v)ψ dx.

Moreover, the critical points of I in E are solutions to problem (1.1).

Proof. Set

Φ(u, v) =

∫
RN

F (x, u, v) dx.

Then, by the definition of I, it suffices to show that Φ(u, v) ∈ C1(E,R)
and

(2.3) ⟨Φ′(u, v), (φ,ψ)⟩ =
∫
RN

Fu(x, u, v)φdx+

∫
RN

Fv(x, u, v)ψ dx.

First, we prove the existence of the Gateaux derivative of Φ. From (f1),
we have

|F (x, u, v)| = |F (x, u, v)− F (x, 0, 0)|

≤
∫ 1

0

|Fu(x, tu, tv)||u| dt+
∫ 1

0

|Fv(x, tu, tv)||v| dt(2.4)

≤
m∑
i=1

ci(x)|(u, v)|αi +
m∑
i=1

di(x)|(u, v)|βi .

Then, for any (u, v) ∈ E, it follows from (V1), (2.4) and the Hölder
inequality that

∫
RN

|F (x, u, v)| dx ≤
∫
RN

[ m∑
i=1

ci(x)|(u, v)|αi +
m∑
i=1

di(x)|(u, v)|βi

]
dx

(2.5)

≤
m∑
i=1

a−αi/2

(∫
RN

|ci(x)|2/(2−αi)dx

)(2−αi)/2
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×
(∫

RN

V (x)|(u, v)|2dx
)αi/2

+
m∑
i=1

a−βi/2

(∫
RN

|di(x)|2/(2−βi)dx

)(2−βi)/2

×
(∫

RN

V (x)|(u, v)|2dx
)βi/2

≤
m∑
i=1

a−αi/2||ci||2/(2−αi)||(u, v)||
αi

+
m∑
i=1

a−βi/2||di||2/(2−βi)||(u, v)||
βi ,

which implies that I, defined by (2.1) is well defined on E.

For any function
θ : RN −→ (0, 1),

by (f1) and the Hölder inequality, we have

∫
RN

max
t∈[0,1]

|Fu(x, u(x) + tθ(x)φ(x), v(x) + tθ(x)ψ(x))φ(x)| dx

(2.6)

=

∫
RN

max
t∈[0,1]

|Fu(x, u(x) + tθ(x)φ(x), v(x) + tθ(x)ψ(x))||φ(x)| dx

≤
m∑
i=1

αi

∫
RN

(ci(x)|(u(x) + tθ(x)φ(x), v(x) + tθ(x)ψ(x))|αi−1)|φ(x)| dx

≤ C

[ m∑
i=1

∫
RN

(ci(x)(|u(x)|αi−1 + |φ(x)|αi−1))|φ(x)| dx

+
m∑
i=1

∫
RN

(ci(x)(|v(x)|αi−1 + |ψ(x)|αi−1))|φ(x)|dx
]

≤ C

[ m∑
i=1

a−αi/2

(∫
RN

|ci(x)|2/(2−αi)dx

)(2−αi)/2

×
(∫

RN

V (x)|u(x)|2dx
)(αi−1)/2(∫

RN

V (x)|φ(x)|2dx
)1/2
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+
m∑
i=1

a−αi/2

(∫
RN

|ci(x)|2/(2−αi)dx

)(2−αi)/2

×
(∫

RN

V (x)|φ(x)|2dx
)αi/2

+
m∑
i=1

a−αi/2

(∫
RN

|ci(x)|2/(2−αi)dx

)(2−αi)/2

×
(∫

RN

V (x)|v(x)|2dx
)(αi−1)/2(∫

RN

V (x)|φ(x)|2dx
)1/2

+
m∑
i=1

a−αi/2

(∫
RN

|ci(x)|2/(2−αi)dx

)(2−αi)/2

×
(∫

RN

V (x)|ψ(x)|2dx
)(αi−1)/2(∫

RN

V (x)|φ(x)|2dx
)1/2]

≤ C

m∑
i=1

||ci||2/(2−αi)

(
||u||αi−1 + ||φ||αi−1 + ||v||αi−1 + ||ψ||αi−1

)
||φ||

< +∞.

Similarly, we have
(2.7)∫

RN

max
t∈[0,1]

|Fv(x, u(x) + tθ(x)φ(x), v(x) + tθ(x)ψ(x))ψ(x)| dx < +∞.

Then, by (2.1), (2.6), (2.7) and Lebesgue’s dominated convergence
theorem, we have

⟨Φ′(u, v), (φ,ψ)⟩ = lim
t→0+

Φ(u+ tφ, v + tψ)− Φ(u, v)

t
(2.8)

= lim
t→0+

[ ∫
RN

Fu(x, u+ tθφ, v + tθψ)φdx

+

∫
RN

Fv(x, u+ tθφ, v + tθψ)ψ dx

]
=

∫
RN

Fu(x, u, v)φdx+

∫
RN

Fv(x, u, v)ψ dx,

which implies that (2.3) holds.
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Now, we show that Φ(u, v) ∈ C1(E,R). Let (un, vn) → (u, v) in E.
Then, (un, vn) → (u, v) in L2(RN )× L2(RN ), and

(2.9) lim
n→∞

(un, vn) = (u, v) almost everywhere x ∈ RN × RN .

Now, we claim that

(2.10) lim
n→∞

∫
RN

|Fu(x, un, vn)− Fu(x, u, v)|2dx = 0.

Otherwise, there exist a constant ε0 > 0 and a sequence {(uni, vni)}
such that

(2.11)

∫
RN

|Fu(x, un, vn)− Fu(x, u, v)|2dx ≥ ε0, for all i ∈ N.

In fact, since (un, vn) → (u, v) in L2(RN ) × L2(RN ), passing to a
subsequence, if necessary, it can be assumed that

∞∑
i=1

||(uni, vni)− (u, v)||22 < +∞.

Set

ω(x) =

( ∞∑
i=1

||(uni, vni)− (u, v)||22
)1/2

.

Then, ω ∈ L2(RN ). Evidently,

|Fu(x, uni, vni)− Fu(x, u, v)|2

(2.12)

≤ 2|Fu(x, uni, vni)|2 + 2|Fu(x, u, v)|2

≤ 2m−1
m∑
i=1

α2
i |ci(x)|2

[
|(uni, vni)|2(αi−1) + |(u, v)|2(αi−1)

]
≤ 2m−1

m∑
i=1

(2αi−1 + 1)α2
i |ci(x)|2

[
|(uni, vni)− (u, v)|2(αi−1)

+ |(u, v)|2(αi−1)
]

≤ 2m−1
m∑
i=1

(2αi−1 + 1)α2
i |ci(x)|2

[
|ω(x)|2(αi−1) + |(u, v)|2(αi−1)

]
:= h(x), for all i ∈ N, x ∈ RN ,
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and ∫
RN

h(x) dx = 2m−1
m∑
i=1

(2αi−1 + 1)α2
i(2.13)

·
∫
RN

|ci(x)|2
[
|ω(x)|2(αi−1) + |(u, v)|2(αi−1)

]
dx

≤ 2m−1
m∑
i=1

(2αi−1 + 1)α2
i ||ci||22/(2−αi)

·
(
||ω||2(αi−1)

2 + ||(u, v)||2(αi−1)
2

)
< +∞.

It follows from (2.12), (2.13) and Lebesgue’s dominated convergence
theorem that (2.10) holds.

Analogously, we obtain

(2.14) lim
n→∞

∫
RN

|Fv(x, un, vn)− Fv(x, u, v)|2dx = 0.

Then, by (2.2), (2.10) and (2.14), we have

|
⟨
Φ′(un, vn)− Φ′(u, v), (φ,ψ)

⟩
|

≤
∫
RN

|Fu(x, un, vn)− Fu(x, u, v)||φ| dx

+

∫
RN

|Fv(x, un, vn)− Fv(x, u, v)||ψ| dx

≤ a−1/2

[(∫
RN

|Fu(x, un, vn)− Fu(x, u, v)|2dx
)1/2

||φ||

+

(∫
RN

|Fv(x, un, vn)− Fv(x, u, v)|2dx
)1/2

||ψ||
]

−→ 0, as n→ ∞,

which implies that Φ ∈ C1(E,R). Moreover, by a standard argument,
it is easy to verify that the critical points of I in E are solutions of
problem (1.1), see [23]. The proof is complete. �

Theorem 2.3 ([14]). Let E be a real Banach space, and let I ∈
C1(E,R) satisfy the (PS) condition. If I is bounded from below, then
c = infE I is a critical value of I.
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In order to find the multiplicity of nontrivial critical points of I, we
will use the “genus” properties; thus, we recall the following definitions
and results, see [16].

Let E be a Banach space, c ∈ R and I ∈ C1(E,R). Set

Σ =
{
A ⊂ E\{0} : A is closed in E and symmetric with respect to 0

}
,

Kc = {u ∈ E : I(u) = c, I ′(u) = 0}, Ic = {u ∈ E : I(u) ≤ c}.

Definition 2.4. For A ∈ Σ, we say that the genus of A is n (denoted
by γ(A) = n) if there is an odd map φ ∈ C(A,RN \ {0}) and n is the
smallest integer with this property.

Theorem 2.5. Let E be an even C1 functional on E which satisfies
the (PS) condition. For any n ∈ N, set

Σn = {A ∈ Σ : γ(A) ≥ n}, cn = inf
A∈Σn

sup
u∈A

I(u).

(i) If Σn ̸= ∅ and cn ∈ R, then cn is a critical value of I.

(ii) If there exists an r ∈ N such that cn = cn+1 = · · · = cn+r = c ∈ R
and c ̸= I(0), then γ(Kc) ≥ r + 1.

3. Proofs of main results. In this section, we will prove Theorems
1.1 and 1.2. In order to complete the proof, we need the following
lemma.

Lemma 3.1. Assume that (V1) and (f1) hold. Then, I is bounded from
below and satisfies the (PS) condition.

Proof. From Lemma 2.1, (f1), the Sobolev embedding theorem and
the Hölder inequality, we have

I(u, v) =
a

2

∫
RN

|∇u|2dx+
b

4

(∫
RN

|∇u|2dx
)2

+
1

2

∫
RN

V (x)u2dx

(3.1)

+
c

2

∫
RN

|∇v|2dx+
d

4

(∫
RN

|∇v|2dx
)2
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+
1

2

∫
RN

V (x)v2dx−
∫
RN

F (x, u, v) dx

≥ 1

2
min{a, c, 1}||(u, v)||2 −

∫
RN

F (x, u, v)dx

≥ 1

2
min{a, c, 1}||(u, v)||2 −

m∑
i=1

∫
RN

ci(x)|(u, v)|αidx

−
m∑
i=1

∫
RN

di(x)|(u, v)|βidx

≥ 1

2
min{a, c, 1}||(u, v)||2

−
m∑
i=1

a−αi/2

(∫
RN

|ci(x)|2/(2−αi)dx

)(2−αi)/2

×
(∫

RN

V (x)|(u, v)|2dx
)αi/2

−
m∑
i=1

a−βi/2

(∫
RN

|di(x)|2/(2−βi)dx

)(2−βi)/2

×
(∫

RN

V (x)|(u, v)|2dx
)βi/2

≥ 1

2
min{a, c, 1}||(u, v)||2 −

m∑
i=1

a−αi/2||ci||2/(2−αi)||(u, v)||
αi

−
m∑
i=1

a−βi/2||di||2/(2−βi)||(u, v)||
βi ,

which implies that I(u, v) → +∞, as ∥(u, v)∥ → ∞, since a, c > 0, αi,
βi ∈ (1, 2). Consequently, I is bounded from below.

Next, we prove that I satisfies the (PS) condition. Assume that
{(un, vn)} is a (PS) sequence of I such that I(un, vn) is bounded and
||I ′(un, vn)|| → 0, as n → ∞. Then, it follows from (3.1) that there
exists a constant C > 0 such that

(3.2) ||(un, vn)||2 ≤ a−1/2||(un, vn)|| ≤ C, n ∈ N.
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Then by Lemma 2.1, there exists a (u, v) ∈ E such that

(un, vn)⇀ (u, v) in E,

(3.3) (un, vn) −→ (u, v) in Ls
loc(RN )× Ls

loc(RN ), s ∈ [2, 2∗),

(un, vn) −→ (u, v) almost everywhere RN .

On the other hand, for any given ε > 0, by (f1), we can choose
Rε > 0 such that

(3.4)

(∫
|x|>Rε

|ci(x)|2/(2−αi)dx

)(2−αi)/2

< ε, i = 1, 2, . . . ,m.

It follows from (3.3) that there exists an n0 > 0 such that

(3.5)

∫
|x|≤Rε

|(un, vn)− (u, v)|2dx < ε2, for n ≥ n0.

Therefore, by (f1), (3.2), (3.5) and the Hölder inequality, for any
n ≥ n0, we have

∫
|x|≤Rε

∣∣Fu(x, un, vn)− Fu(x, u, v)
∣∣∣∣(un, vn)− (u, v)

∣∣ dx
(3.6)

≤
(∫

|x|≤Rε

|Fu(x, un, vn)− Fu(x, u, v)|2dx
)1/2

×
(∫

|x|≤Rε

|(un, vn)− (u, v)|2dx
)1/2

≤ ε

[ ∫
|x|≤Rε

2(|Fu(x, un, vn)|2 + |Fu(x, u, v)|2) dx
]1/2

≤ 2ε

[ m∑
i=1

α2
i

∫
|x|≤Rε

|ci(x)|2(|(un, vn)|2(αi−1) + |(u, v)|2(αi−1) dx

]1/2
≤ 2ε

[ m∑
i=1

α2
i ||ci||22/(2−αi)

(
||(un, vn)||2(αi−1)

2 + ||(u, v)||2(αi−1)
2

)]1/2
≤ 2ε

[ m∑
i=1

α2
i ||ci||22/(2−αi)

(
C2(αi−1) + ||(u, v)||2(αi−1)

2

)]1/2
.
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For n ∈ N, it follows from (f1), (3.2), (3.4) and the Hölder inequality
that

∫
|x|>Rε

∣∣Fu(x, un, vn)− Fu(x, u, v)
∣∣∣∣(un, vn)− (u, v)

∣∣ dx
≤

m∑
i=1

αi

∫
|x|>Rε

|ci(x)|
(
|(un, vn)|αi−1 + |(u, v)|αi−1

)
×
(
|(un, vn)|+ |(u, v)|

)
dx

(3.7)

≤ 2
m∑
i=1

αi

∫
|x|>Rε

|ci(x)|
(
|(un, vn)|αi + |(u, v)|αi

)
dx

≤ 2
m∑
i=1

αi

(∫
|x|>Rε

|ci(x)|2/(2−αi)dx

)(2−αi)/2

×
(
||(un, vn)||αi

2 + ||(u, v)||αi
2

)
≤ 2

m∑
i=1

αi

(∫
|x|>Rε

|ci(x)|2/(2−αi)dx

)(2−αi)/2(
Cαi + ||(u, v)||αi

2

)
≤ 2ε

m∑
i=1

αi

(
Cαi + ||(u, v)||αi

2

)
.

Since ε is arbitrary, combining (3.6) and (3.7), we have

(3.8) lim
n→∞

∫
RN

(
Fu(x, un, vn)− Fu(x, u, v)

)(
(un, vn)− (u, v)

)
dx = 0.

Arguing in the same manner, we have

(3.9) lim
n→∞

∫
RN

(
Fv(x, un, vn)− Fv(x, u, v)

)(
(un, vn)− (u, v)

)
dx = 0.

Then, by (2.2), (3.8), (3.9) and the weak convergence of {(un, vn)}, we
obtain
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on(1) = ⟨I ′(un, vn)− I ′(u, v), (un − u, vn − v)⟩

(3.10)

=

(
a+ b

∫
RN

|∇un|2dx
)∫

RN

|∇(un − u)|2dx

+

∫
RN

V (x)|un − u|2dx+

∫
RN

V (x)|vn − v|2dx

−
∫
RN

[
Fu(x, un, vn)− Fu(x, u, v)

]
(un − u) dx

+

(
c+ d

∫
RN

|∇vn|2dx
)∫

RN

|∇(vn − v)|2dx

−
∫
RN

[
Fv(x, un, vn)− Fv(x, u, v)

]
(vn − v) dx

− b

(∫
RN

|∇u|2dx−
∫
RN

|∇un|2dx
)∫

RN

∇u∇(un − u) dx

− d

(∫
RN

|∇v|2dx−
∫
RN

|∇vn|2dx
)∫

RN

∇v∇(vn − v) dx

≥ min{a, c, 1}||(un − u, vn − v)||2

− b

(∫
RN

|∇u|2dx−
∫
RN

|∇un|2dx
)∫

RN

∇u∇(un − u) dx

− d

(∫
RN

|∇v|2dx−
∫
RN

|∇vn|2dx
)∫

RN

∇v∇(vn − v) dx

−
∫
RN

[
Fu(x, un, vn)− Fu(x, u, v

]
(un − u) dx

−
∫
RN

[
Fv(x, un, vn)− Fv(x, u, v)

]
(vn − v) dx.

On the other hand, the boundedness of {un} and {vn} imply

b

(∫
RN

|∇u|2dx−
∫
RN

|∇un|2dx
)∫

RN

∇u∇(un − u) dx −→ 0,(3.11)

as n→ ∞.

d

(∫
RN

|∇v|2dx−
∫
RN

|∇vn|2dx
)∫

RN

∇v∇(vn − v) dx −→ 0,(3.12)

as n→ ∞.
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Then, by (3.8)–(3.12), we have (un, vn) → (u, v) in E. Therefore, I
satisfies the (PS) condition. The proof is complete. �

Proof of Theorem 1.1. From Lemmas 2.2 and 3.1, the conditions of
Theorem 2.1 are satisfied. Thus, c = infE I(u, v) is a critical value of I,
that is, there exists a critical point (u∗, v∗) ∈ E such that I(u∗, v∗) = c.

Now, we show that (u∗, v∗) ̸= (0, 0). Let

(u, v) ∈
(
W 1,2

0 (J)
∩
X
)
×
(
W 1,2

0 (J)
∩
X
)
\ {(0, 0)},

||u||∞ ≤ 1 and ||v||∞ ≤ 1. Then, by (2.1) and (f2), we have

I(tu, tv) =
at2

2

∫
RN

|∇u|2dx+
bt4

4

(∫
RN

|∇u|2dx
)2

(3.13)

+
t2

2

∫
RN

V (x)u2dx−
∫
RN

F (x, tu, tv) dx

+
ct2

2

∫
RN

|∇v|2dx+
dt4

4

(∫
RN

|∇v|2dx
)2

+
t2

2

∫
RN

V (x)v2dx

=
at2

2

∫
RN

|∇u|2dx+
bt4

4

(∫
RN

|∇u|2dx
)2

+
t2

2

∫
RN

V (x)u2dx−
∫
J

F (x, tu, tv) dx

+
ct2

2

∫
RN

|∇v|2dx+
dt4

4

(∫
RN

|∇v|2dx
)2

+
t2

2

∫
RN

V (x)v2dx

≤ t2

2
max{a, c, 1}||(u, v)||2 + bt4

4

(∫
RN

|∇u|2dx
)2

+
dt4

4

(∫
RN

|∇v|2dx
)2

− a2t
a3

∫
J

|(u, v)|a3dx,

where 0 < t < a1, a1 is given in (f2). Since 1 < a3 < 2, it follows
from (3.13) that I(tu, tv) < 0 for t > 0 small enough. Therefore,
I(u∗, v∗) = c < 0, that is, (u∗, v∗) is a nontrivial critical point of I,
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and thus, (u∗, v∗) is a nontrivial solution to problem (1.1). The proof
is complete. �

Proof of Theorem 1.2. From Lemmas 2.2 and 3.1, I ∈ C1(E,R) is
bounded from below and satisfies the (PS) condition. It follows from
(2.1) and (f3) that I is even and I(0, 0) = 0. In order to apply
Theorem 2.2, we now show that, for any n ∈ N, there exists an ε > 0
such that

(3.14) γ(I−ε) ≥ n.

For any n ∈ N, we take n disjoint open sets Ji such that

n∪
i=1

Ji ⊂ J.

For i = 1, 2, . . . , n, let

(ui, vi) ∈
(
W 1,2

0 (Ji)
∩
X
)
×
(
W 1,2

0 (Ji)
∩
X
)
\ {(0, 0)},

||ui||∞ ≤ ∞, ||vi||∞ ≤ ∞, ||(ui, vi)|| = 1,

En = span
{
(u1, v1), (u2, v2), . . . , (un, vn)

}
,

and

Sn =
{
(u, v) ∈ En : ||(u, v)|| = 1

}
.

Then, for any (u, v) ∈ En, there exist λi ∈ R, i = 1, 2, . . . , n, such that

(3.15) (u(x), v(x)) =

n∑
i=1

λi(ui(x), vi(x)), x ∈ RN .

Then, we obtain
(3.16)

||(u, v)||a3 =

(∫
RN

|(u, v)|a3dx

)1/a3

=

( n∑
i=1

|λi|a3

∫
Ji

|(u, v)|a3dx

)1/a3

,

and

∥(u, v)∥2 = ∥u∥2X + ∥v∥2X(3.17)

=

∫
RN

(|∆u|2 + |∇u|2 + V (x)|u|2) dx
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+

∫
RN

(|∆u|2 + |∇u|2 + V (x)|u|2) dx

=
n∑

i=1

λ2i

∫
Ji

(|∆ui|2 + |∇ui|2 + V (x)|ui|2) dx

+
n∑

i=1

λ2i

∫
Ji

(|∆ui|2 + |∇ui|2 + V (x)|ui|2) dx

=

n∑
i=1

λ2i

∫
RN

(|∆ui|2 + |∇ui|2 + V (x)|ui|2) dx

+

n∑
i=1

λ2i

∫
RN

(|∆ui|2 + |∇ui|2 + V (x)|ui|2) dx

=
n∑

i=1

λ2i ||(ui, vi)||2 =
n∑

i=1

λ2i .

Since all norms are equivalent in a finite-dimensional normed space, so
there exists a c0 > 0 such that

(3.18) c0||(u, v)|| ≤ ||(u, v)||a3 , for any (u, v) ∈ En.

Then, from (2.1), (f2), (3.15)–(3.18) and the Sobolev embedding in-
equality, for (u, v) ∈ Sn, we have

I(tu, tv) =
at2

2

∫
RN

|∇u|2dx+
bt4

4

(∫
RN

|∇u|2dx
)2

(3.19)

+
t2

2

∫
RN

V (x)u2dx+
ct2

2

∫
RN

|∇v|2dx

+
dt4

4

(∫
RN

|∇v|2dx
)2

+
t2

2

∫
RN

V (x)v2dx

−
∫
RN

F (x, tu, tv) dx

=
at2

2

∫
RN

|∇u|2dx+
bt4

4
(

∫
RN

|∇u|2dx)2

+
t2

2

∫
RN

V (x)u2dx+
ct2

2

∫
RN

|∇v|2dx
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+
dt4

4

(∫
RN

|∇v|2dx
)2

+
t2

2

∫
RN

V (x)v2dx

−
n∑

i=1

∫
Ji

F (x, tu, tv) dx

≤ t2

2
max{a, c, 1}||(u, v)||2 + bt4

4

(∫
RN

|∇u|2dx
)2

+
dt4

4

(∫
RN

|∇v|2dx
)2

− a2t
a3

n∑
i=1

|λi|a3

∫
Ji

|(ui, vi)|a3dx

≤ t2

2
max{a, c, 1}||(u, v)||2+ (b+d)t4

4
||(u, v)||4−a2(c0t)a3 ||(u, v)||a3

=
t2

2
max{a, c, 1}+ (b+d)t4

4
− a2(c0t)

a3 ,

where 0 < t ≤ a1 and 1 < a3 < 2. Then, it follows from (3.19) that
there exist ε > 0 and δ > 0 such that

(3.20) I(δu, δv) < −ε, for any (u, v) ∈ Sn.

Let

Sδ
n =

{
(δu, δv) : (u, v) ∈ Sn

}
,

Ω =

{
(λ1, λ2, · · · , λn) ∈ RN :

n∑
i=1

λ2i < δ2
}
.

It follows from (3.20) that

I(u, v) < −ε, for (u, v) ∈ Sδ
n,

which, together, with the fact that I ∈ C1(E,R) and is even, implies
that

(3.21) Sδ
n ⊂ I−ε ∈ Σ.

On the other hand, from (3.15) and (3.17), there exists an odd
homeomorphism mapping ϕ ∈ C(Sδ

n, ∂Ω). By some properties of the
genus (see [15, Propositions 7.5, 7.7, 30]), we have

(3.22) γ(I−ε) ≥ γ(Sδ
n) = n.
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Thus, the proof of (3.2) holds. Set

(3.23) cn = inf
A∈Σn

sup
(u,v)∈A

I(u, v).

It follows from (3.22) and the fact that I is bounded from below on E
that −∞ < cn ≤ −ε < 0, that is to say, for any n ∈ N, cn is
a real negative number. From Theorem 2.5, I has infinitely many
nontrivial critical points; therefore, problem (1.1) possesses infinitely
many nontrivial solutions. The proof is complete. �
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